

Regional Plates, Global Risks: How India's Cuisines Shape the Non-Communicable Disease Burden and How Traditional Foods Can Help Fix It

Shraddha Joshi¹ and Neetu Dobhal²

¹Ph.D. Research Scholar (UGC-JRF), Department of Food Science and Nutrition, College of Community Science, GBPUA&T, Pant Nagar, Uttarakhand

²Assistant Professor, Department of Food Science and Nutrition, College of Community Science, GBPUA&T, Pant Nagar, Uttarakhand

Corresponding Author: shraddha20december@gmail.com

India is undergoing one of the most rapid and complex nutritional transitions observed globally. While communicable diseases once dominated the national health profile, non-communicable diseases (NCDs) now account for more than 60% of all deaths in the country, with cardiovascular diseases, type 2 diabetes mellitus, hypertension, and obesity forming the core of this epidemiological shift. What distinguishes India's NCD crisis from that of many high-income Western nations is the context in which it is unfolding: a society anchored in ancient, regionally diverse food traditions rather than a historically uniform or industrialized dietary pattern.

Indian regional cuisines emerged as finely tuned adaptive systems. Staple grains, cooking fats, fermentation practices, and meal structures evolved in close alignment with agroecology, climate variability, seasonal food availability, and high levels of occupational physical activity.

For centuries, these dietary systems functioned as nutritionally adequate, metabolically compatible, and culturally sustainable frameworks. However, the rapid decoupling of food consumption from physical labour, combined with urbanization, industrial food processing, and changing social norms, has fundamentally altered the metabolic consequences of these diets.

It is therefore critical to emphasize that India's rising burden of NCDs does not indict traditional foods themselves. Rather, it reflects profound changes in how these foods are prepared, consumed, and contextualized in modern life. This distinction is not merely academic; it lies at the heart of designing nutrition strategies that are both scientifically effective and culturally acceptable.

India's NCD burden is strikingly heterogeneous across regions, reflecting deep-rooted differences in dietary patterns, culinary practices, and lifestyle exposures. Early epidemiological analyses by Gupta (2006) revealed significant regional clustering of cardiovascular mortality, with strong associations between dietary fat intake, cereal type, and circulatory disease outcomes. Northern and western states exhibited higher ischemic heart disease mortality, while southern states showed disproportionately high prevalence of type 2 diabetes despite relatively lower rates of generalized obesity.

Subsequent national surveys and studies have reinforced these observations. Southern India consistently records the highest prevalence of diabetes in the country, a

phenomenon increasingly attributed to high dietary glycaemic load, driven by large quantities of polished rice consumed multiple times daily. In contrast, northern Indian dietary patterns—characterized by refined wheat, high visible fat intake, and frequent consumption of dairy-based preparations—are associated with elevated hypertension, dyslipidaemia, and cardiovascular risk. Meanwhile, several northeastern states report comparatively lower prevalence of metabolic diseases, a pattern plausibly linked to higher consumption of fermented foods, foraged vegetables, lean proteins, and diets with lower overall energy density.

These regional contrasts underscore the limitations of uniform dietary guidelines and highlight the urgent need for regionally contextualized nutritional epidemiology. Generic prescriptions that fail to account for culinary identity, staple foods, and local food systems risk poor adherence and limited impact.

Overlaying these regional dietary frameworks is a powerful nutritional transition that has quietly but decisively altered the quality of Indian diets. Sharma et al. (2020), in their comparison of Indian dietary intakes with the EAT-Lancet reference diet, documented profound structural imbalances: excessive dependence on refined cereals, insufficient intake of fruits, vegetables, pulses, and nuts, and rising consumption of saturated fats and sodium. Notably, these shifts are occurring within traditional meal patterns rather than through complete dietary replacement.

Hand-pounded rice has been replaced by polished white rice; whole wheat flours have given way to refined atta;

traditional vegetable dishes are increasingly prepared with excessive oil, cream, and salt. The nutritional consequence is a diet that is simultaneously energy dense and micronutrient poor, characterized by high glycaemic load and low fibre density. This combination is strongly associated with insulin resistance, pancreatic beta-cell stress, dyslipidaemia, and chronic low-grade inflammation—hallmarks of metabolic syndrome and type 2 diabetes.

Urbanization has further intensified this process through what may be described as culinary distortion. Foods once reserved for festivals or high-energy agricultural seasons are now consumed daily. Portion sizes have increased substantially, while occupational and incidental physical activity has declined sharply. Labor-intensive cooking practices have been replaced by convenience-driven shortcuts that rely heavily on refined oils, sugars, and processed ingredients. As a result, even individuals who perceive themselves as adhering to “traditional diets” may be unknowingly exposed to sustained metabolic stress.

Yet embedded within India’s regional cuisines are powerful protective elements—foods and practices whose scientific relevance is only now being fully appreciated. Among the most compelling of these are millets, long marginalized as “coarse grains” but increasingly recognized as metabolically advantageous staples. Millets such as finger millet, sorghum, pearl millet, and small millets possess low glycaemic indices, high dietary fibre content, and substantial levels of magnesium and polyphenolic compounds. These attributes collectively contribute to improved insulin sensitivity, moderated post-prandial glucose responses, and reduced oxidative stress.

Controlled feeding trials by Geetha et al. (2020) demonstrated significantly lower post-prandial glycaemic excursions following millet-based meals compared to rice- or wheat-based meals. More recent intervention studies summarized by Anitha et al. (2024) showed meaningful improvements in fasting blood glucose and glycated haemoglobin with regular millet consumption over sustained periods. These findings firmly position millets not merely as cultural artifacts, but as functional foods with therapeutic relevance for diabetes prevention and management.

Equally significant is the growing scientific recognition of traditional Indian fermented foods and their role in modulating metabolic health through the gut microbiome. For generations, fermentation has been integral to Indian food culture, serving as a method of preservation, flavour development, and digestibility enhancement. Contemporary nutrition science now provides mechanistic insight into these practices. Fermented foods such as idli and dosa batter, curd, pakhala or baasi rice, gundruk, and kinema enhance microbial diversity, promote the production of short-chain fatty acids, strengthen gut barrier integrity, and attenuate systemic inflammation.

Molecular and metabolomic analyses by Balyan et al. (2024) revealed that Himalayan fermented foods harbor diverse probiotic strains and bioactive metabolites implicated in glucose homeostasis, lipid metabolism, and immune regulation. These foods represent indigenous probiotic systems, offering scalable, culturally embedded interventions at a fraction of the cost of commercial functional foods.

Regional dietary case analyses further illustrate how risk amplification and nutritional repair can coexist within the same cuisine. Punjabi dietary patterns, often characterized by high dairy fat, refined wheat, and sugar-rich desserts, are associated with elevated cardiovascular risk markers. Yet the traditional foundations of this cuisine—leafy greens, legumes, and coarse grains—provide clear opportunities for reformulation. Evidence supports reducing visible fat, increasing pulse-based dishes, and reintroducing millet-based rotis while preserving culinary identity.

In South India, the challenge lies primarily in managing glycaemic load rather than eliminating staple foods. Partial substitution of polished rice with millets in fermented batters has been shown to significantly lower glycaemic responses without compromising sensory acceptability.

In the Northeast, dietary patterns rich in fermented foods, wild greens, and minimal processing offer a compelling model of metabolic resilience, warranting deeper investigation and policy-level integration. Translating this body of evidence into public health impact requires a shift in approach. Reformulation rather than replacement must guide dietary interventions, as small, sustained modifications are far more likely to be adopted than radical dietary overhauls. Scaling traditional fermentation through standardization and safety validation can transform household practices into powerful community-level health tools. At the policy level, millet inclusion in public distribution systems, school feeding programs, and national dietary guidelines represents a rare convergence of nutritional science, agricultural sustainability, and cultural relevance—an approach strongly endorsed by South Asia-focused analyses in *The Lancet*.

Despite these advances, critical research gaps remain. There is a paucity of randomized controlled trials evaluating region-specific recipe reformulation, limited clinical validation of fermented foods as adjunct therapies, and an urgent need to integrate microbiome and metabolome science into Indian dietary research. Addressing these gaps could position India as a global leader in culturally grounded preventive nutrition.

In conclusion, India’s traditional cuisines are not relics of the past nor contributors to the NCD crisis. They are repositories of scientifically relevant solutions awaiting thoughtful reinterpretation. By reclaiming their nutritional wisdom and aligning it with contemporary lifestyles, India can transform its regional plates from sources of global risk into instruments of metabolic resilience and public health renewal.

References

1. Sharma, M., Kishore, A., Roy, D., & Joshi, K. (2020). Comparison of the Indian diet with the EAT–Lancet reference diet. *The Lancet Planetary Health*, 4(11), e504–e514. [https://doi.org/10.1016/S2542-5196\(20\)30246-6](https://doi.org/10.1016/S2542-5196(20)30246-6)
2. Gupta, R. (2006). Burden of coronary heart disease in India. *Indian Heart Journal*, 58(2), 161–166.
3. Geetha, K., Bharathi, P., Rajeswari, G., & Venkatesan, P. (2020). Glycemic index of millet-based food mixes and their effect on post-prandial glycaemia. *Journal of Food Science and Nutrition*, 7(3), 112–120.
4. Anitha, S., Kane-Potaka, J., Tsusaka, T. W., Botha, R., & Nithya, D. J. (2024). Impact of regular consumption of millets on glycaemic control and metabolic health outcomes: Evidence from intervention studies. *Frontiers in Sustainable Food Systems*, 8, Article 1342197. <https://doi.org/10.3389/fsufs.2024.1342197>
5. Baliyan, N., Thakur, N., Negi, P. S., & Tamang, J. P. (2024). Unveiling the microbiome and metabolite diversity of traditional Himalayan fermented foods using multi-omics approaches. *Food Research International*, 176, 113473. <https://doi.org/10.1016/j.foodres.2024.113473>
