

Nanotechnology - An Improved Technology in Storage System

¹K. Dey, ¹A. Ghosh, ²A. K. Singh, ³A.A. Minz, ³A. Kumar, ³N. Aind and ³A.N. Xaxa

¹Assistant Professor-cum-Junior Scientist, ²Associate Dean, ³UG student, Horticulture College, Birsia Agricultural University

Corresponding Author: koveldey02@gmail.com

Introduction

Horticultural crops including fruits, vegetables and ornamentals are vital for nutrition and economic stability worldwide. They are highly perishable, suffering significant post-harvest losses due to physical, microbial, and physiological factors. The Food and Agriculture Organization (FAO) estimated that up to 40% of horticultural produce is lost globally primarily in developing nations where inadequate handling and storage infrastructure exacerbate the issue. These losses not only represent wasted resources but also a missed opportunity to meet the nutritional needs of growing populations. Innovations such as nanotechnology offer transformative potential to address these challenges by providing advanced solutions for preservation, storage and monitoring of horticultural produce.

Definition and Scope of Nanotechnology

Nanotechnology involves manipulating matter at dimensions of approximately 1-100 nanometers to exploit unique properties arising at the nano scale. At this level, materials exhibit enhanced mechanical, thermal and antimicrobial properties due to increased surface area and quantum effects. In agriculture, nanotechnology spans applications from crop protection to food packaging. In postharvest management, it includes innovations such as antimicrobial coatings, nano-enabled sensors for spoilage detection and nanoemulsions for extending the shelf life of perishable produce. Silver nanoparticles are widely recognized for their ability to inhibit microbial growth, while nanocomposites can improve the gas barrier properties of packaging materials, delaying spoilage.

Post-Harvest Challenges in Horticulture

Horticultural crops remain metabolically active after harvest undergoing processes such as respiration and ethylene production that accelerate ripening and senescence. Poor handling practices, suboptimal storage conditions and microbial contamination compound the issue. The absence of adequate cooling, packaging, and transportation facilities contribute significantly to the spoilage of fruits and vegetables in tropical regions. Pathogens such as *Botrytis cinerea* (gray mold) and *Penicillium expansum* (blue mold) commonly infect stored fruits and vegetables, causing physical damage and microbial decay. Ethylene gas produced by climacteric fruits can induce premature ripening in surrounding produce, further exacerbating losses.

Significance of Applying Nanotechnology in Post-Harvest Management

Nanotechnology offers numerous advantages in addressing the challenges of post-harvest losses. Nano-enabled antimicrobial coatings and films prevent microbial

infections, which are responsible for a significant portion of spoilage. For example, silver nanoparticles integrated into packaging have shown to reduce microbial spoilage in strawberries by 50%, extending their shelf life by up to 10 days under refrigerated conditions. Nanosensors embedded in packaging materials can detect ethylene, moisture and microbial activity, providing real-time feedback on the storage environment. It also supports sustainability through the development of biodegradable nanocomposites, reducing the environmental footprint of packaging materials. Nanotechnology-based controlled-release systems for preservatives or fumigants ensure uniform application and prolonged efficacy. Chitosan nanoparticles loaded with essential oils have demonstrated superior antifungal activity in Citrus fruits compared to conventional treatments, significantly reducing decay rates during storage. These advancements address the dual objectives of reducing waste and enhancing food safety, aligning with global efforts toward sustainable agricultural practices.

Types of Nanomaterials Relevant to Post-Harvest Applications

Nanomaterials used in post-harvest systems can be broadly classified into nanoparticles, nanocomposites, and nanoemulsions. Each type offers unique advantages tailored to specific challenges in handling and storage.

1. Nanoparticles

Nanoparticles are materials with dimensions in the nanoscale and are extensively used in post-harvest management due to their antimicrobial and antioxidant properties. Metal and metal oxide nanoparticles such as silver (Ag), zinc oxide (ZnO) and titanium dioxide (TiO) are widely employed. Silver nanoparticles have been shown to reduce microbial spoilage in Strawberries and Citrus fruits, significantly extending their shelf life during storage. Zinc oxide nanoparticles enhance packaging films by improving UV protection and reducing oxidative damage, thus maintaining the quality of stored produce.

2. Nanocomposites

Nanocomposites are hybrid materials formed by embedding nanoscale fillers into a matrix to improve mechanical, thermal and barrier properties. These materials are particularly effective in food packaging applications, where they minimize oxygen and moisture ingress, thus slowing down respiration and ethylene-mediated ripening in climacteric fruits. For example, nanoclay-reinforced polymer films have demonstrated superior gas barrier properties, extending the freshness of fruits like bananas and apples during storage. Nanocomposites also enhance the strength

and durability of packaging materials, reducing mechanical damage during transportation.

3. Nanoemulsions

Nanoemulsions are colloidal systems with nanoscale droplets, typically less than 200 nm in size. These systems improve the solubility, bioavailability and stability of active compounds, making them ideal for coatings and sprays. Essential oil-based nanoemulsions, such as those containing thyme or oregano oil, have demonstrated strong antifungal activity against spoilage-causing pathogens in citrus fruits. Their small droplet size ensures even distribution and prolonged efficacy, reducing microbial contamination and preserving the visual and textural quality of produce during storage.

Mechanisms of Action in Post-Harvest Preservation

Nanotechnology enhances post-harvest preservation through multiple mechanisms that address critical factors contributing to spoilage and quality degradation.

1. Antimicrobial Activity:

Nanoparticles such as silver, zinc oxide, and chitosan exhibit potent antimicrobial properties by generating Reactive Oxygen Species (ROS) and disrupting microbial membranes. These mechanisms effectively inhibit the growth of spoilage-causing microorganisms like *Escherichia coli* and *Pseudomonas spp.*, reducing contamination and extending the shelf life of horticultural produce.

2. Enhanced Gas Barrier Properties

Nanocomposites improve the gas barrier performance of packaging materials, reducing oxygen and carbon dioxide permeability. This slows respiration and ethylene production in climacteric fruits, delaying ripening and senescence. For example, nanoclay-reinforced films have been shown to preserve the freshness of fruits like mangoes and guavas for extended periods.

3. Controlled Release of Active Agents

Nanotechnology enables the controlled release of active compounds such as preservatives, antimicrobial agents and ethylene scavengers. Encapsulation systems using chitosan nanoparticles provide a gradual and sustained release of essential oils, maintaining their efficacy over longer storage periods and preventing fungal decay.

4. Real-Time Monitoring

Nanosensors integrated into packaging systems detect spoilage indicators such as ethylene, ammonia and microbial byproducts. These sensors provide real-time data on the storage environment, allowing for timely corrective measures to prevent quality loss. Sensors that change color in response to ethylene levels are increasingly being used in packaging systems for climacteric fruits.

5. Physical Protection

Nano-coatings create protective barriers on the surface of fruits and vegetables, reducing moisture loss, microbial

infiltration and mechanical damage. Silica-based coatings have been successfully applied to tomatoes, reducing weight loss by up to 15% during storage and enhancing their marketability. By employing these mechanisms, nanotechnology provides a comprehensive approach to improve the efficiency and sustainability of post-harvest systems. These advancements not only reduce spoilage and losses but also ensure the safety and quality of horticultural produce, meeting the demands of a growing population.

Role of Nanotechnology in Post-Harvest Handling

Nanotechnology has emerged as a transformative tool in addressing the challenges of post-harvest management in horticulture. Post-harvest losses, accounting for nearly 30–40% of total produce globally, are primarily due to microbial spoilage, moisture loss, and inadequate storage conditions. By integrating nanotechnology into post-harvest handling systems, it is possible to enhance the shelf life, reduce spoilage, and maintain the quality of fresh produce. Nanotechnology applications such as active and smart packaging, biodegradable materials and nanocoatings have demonstrated significant efficacy in mitigating these challenges.

Applications in Post-Harvest Packaging

Packaging is a critical component of post-harvest management, protecting produce from physical, microbial and environmental damage. Nanotechnology has revolutionized packaging systems by enhancing their functionality through the development of active, smart and biodegradable nanomaterials.

Active Packaging

Active packaging incorporates functional nanomaterials that actively interact with the food or its environment to extend shelf life and maintain quality. Metal nanoparticles such as silver (Ag) and zinc oxide (ZnO) are widely used for their antimicrobial properties. For example, silver nanoparticles embedded in polyethylene films have shown excellent efficacy in reducing microbial growth on strawberries, extending their shelf life by up to 15 days. ZnO nanoparticles in packaging materials prevent fungal growth on fruits like bananas and mangoes by disrupting microbial membranes and inhibiting enzymatic activity. In antimicrobial properties, active packaging can also include oxygen scavengers and ethylene absorbers. These functionalities help reduce oxidative damage and delay ripening in climacteric fruits, preserving their nutritional and sensory attributes for extended periods.

Smart Packaging with Sensors

Smart packaging systems leverage nanosensors to monitor the quality and safety of stored produce in real time. These nanosensors detect spoilage indicators such as ethylene gas, microbial activity and temperature changes, providing actionable data for timely interventions. Ethylene-sensitive sensors based on carbon nanotubes or gold nanoparticles can accurately measure ethylene concentrations in packaging,

enabling optimal storage conditions for climacteric fruits. Smart packaging also incorporates visual indicators that change color in response to specific spoilage parameters, providing a simple yet effective tool for quality monitoring. These systems are particularly valuable in supply chain management, ensuring that produce reaches consumers in the best possible condition.

Biodegradable Nanopackaging

Biodegradable packaging materials infused with nanomaterials offer a sustainable alternative to conventional plastics, addressing the dual challenges of post-harvest losses and environmental pollution. Polylactic acid (PLA) and chitosan-based nanocomposites are commonly used in biodegradable packaging due to their excellent mechanical and barrier properties. For example, chitosan nanocomposites reinforced with silver nanoparticles not only reduce microbial spoilage but also degrade naturally, minimizing environmental impact. Nanoclays and cellulose nanocrystals are also used to enhance the gas and moisture barrier properties of biodegradable films. These materials have been shown to significantly reduce respiration rates in stored fruits, delaying ripening and senescence.

Enhancement of Shelf Life

Nanotechnology plays a pivotal role in extending the shelf life of horticultural produce by mitigating factors such as microbial spoilage, moisture loss, and oxidative damage. Nano-coatings made from materials like silica, titanium dioxide, and chitosan are applied directly to the surface of fruits and vegetables, creating a protective barrier that reduces weight loss, microbial infiltration, and respiration rates. Chitosan-based nano-coatings loaded with essential oils have been shown to extend the shelf life of tomatoes by up to 20 days, preserving their firmness and color. Nanoemulsions, particularly those containing natural antimicrobials such as thyme or oregano oil are also effective in prolonging shelf life.

These emulsions exhibit enhanced stability and bioavailability, ensuring uniform and sustained antimicrobial action. Studies have demonstrated that citrus fruits treated with essential oil nanoemulsions exhibit significantly reduced microbial growth and weight loss during storage. Nanotechnology-enabled storage solutions such as ethylene scavengers and moisture absorbers actively regulate the storage environment, preventing over-ripening and spoilage. These advancements align with the growing demand for longer-lasting, high-quality produce in global markets.

Impact on Storage and Quality Maintenance

Nanotechnology has significantly enhanced the storage and quality maintenance of horticultural produce, addressing critical challenges related to physiological degradation, microbial contamination and atmospheric conditions. By leveraging the unique properties of nanomaterials, it is now possible to create controlled storage environments, manage ethylene and moisture levels and prevent microbial spoilage. These innovations have not only prolonged shelf life but also ensured the safety and his quality of produce throughout the supply chain.

Conclusion

Nanotechnology is an emerging science with large functions and possible benefits. This evaluate summarizes the function of nanotechnology for energy Storage, conservation, biomedical application, industrial application, food industry and submit combustion CO₂ capture in industry. The existing assessment has given similarly evidence to this problem and it has tried to address what all the potential environmental influences of the science may be. Although the use of nanotechnology in every and each field is endless and still in its infancy stage, set of legal guidelines should be present which will govern the way nanotech will be used in addition in future.
