

Importance of Integrated Nutrient Management in Crop Production

Dr. Vaishali Sharma, Mr. Mayank Mehar, Mr. K. S. Yadav, Dr. Mamta Singh

Krishi Vigyan Kendra Sagar, JNKVV Jabalpur

INM stands for Integrated Nutrient Management, a holistic, sustainable approach combining organic manures, inorganic fertilizers, biofertilizers, and crop residues to maintain soil fertility, optimize nutrient supply for crops, boost yields, and minimize environmental damage by balancing nutrient sources for long-term soil health and productivity. It moves beyond single-source fertilization to create a dynamic nutrient system using scientific principles for balanced crop nutrition and ecosystem integrity. Integrated Nutrient Management refers to the maintenance of soil fertility and of plant nutrient supply at an optimum level for sustaining the desired productivity through optimization of the benefits from all possible sources of organic, inorganic and biological components in an integrated manner.

Concepts

1. Regulated nutrient supply for optimum crop growth and higher productivity.
2. Improvement and maintenance of soil fertility.
3. Zero adverse impact on agro - ecosystem quality by balanced fertilization of organic manures, inorganic fertilizers and bio- inoculant

Determinants

1. Nutrient requirement of cropping system as a whole.
2. Soil fertility status and special management needs to overcome soil problems, if any
3. Local availability of nutrients resources (organic, inorganic and biological sources)
4. Economic conditions of farmers and profitability of proposed INM option.
5. Social acceptability.
6. Ecological considerations.
7. Impact on the environment

Goals & Benefits of INM

1. **Sustained Productivity:** Maintains high crop yields over time.
2. **Improved Soil Health:** Enhances soil organic matter, microbial activity, and water retention.
3. **Environmental Protection:** Reduces nutrient runoff, pollution, and reliance on synthetic fertilizers.
4. **Economic Viability:** Optimizes nutrient use efficiency, potentially lowering costs.

Advantages

1. Enhances the availability of applied as well as native soil nutrients
2. Synchronizes the nutrient demand of the crop with nutrient supply from native and applied sources.

3. Provides balanced nutrition to crops and minimizes the antagonistic effects resulting from hidden deficiencies and nutrient imbalance.
4. Improves and sustains the physical, chemical and biological functioning of soil.
5. Minimizes the deterioration of soil, water and ecosystem by promoting carbon sequestration, reducing nutrient losses to ground and surface water bodies and to atmosphere

Key Components of Integrated Nutrient Management:

1. **Organic Fertilizers:** INM emphasizes the incorporation of organic sources such as compost, manure, and crop residues. These materials not only provide essential nutrients but also improve soil structure, water retention, and microbial activity [6]. The gradual release of nutrients from organic sources aligns with the natural growth patterns of plants, promoting sustained and healthy development.
2. **Inorganic Fertilizers:** While organic sources form the backbone of INM, judicious use of inorganic fertilizers supplements specific nutrient requirements. Precision application of synthetic fertilizers based on soil nutrient analysis helps address deficiencies, ensuring that crops receive the precise nutrients needed for optimal growth without overloading the soil.
3. **Crop Rotation and Diversification:** INM advocates for crop rotation and diversification as integral

components. Different crops have varying nutrient requirements, and rotating or diversifying crops helps break pest and disease cycles while promoting nutrient cycling in the soil. This approach enhances soil fertility and minimizes the risk of nutrient imbalances.

4. **Microbial Inoculants:** Harnessing the power of beneficial microorganisms, such as mycorrhizal fungi and nitrogen-fixing bacteria, contributes to INM. These microbes form symbiotic relationships with plants, aiding in nutrient uptake, particularly phosphorus and nitrogen. The use of microbial inoculants promotes a healthier rhizosphere, fostering optimal nutrient availability for plants.

Benefits of Integrated Nutrient Management:

1. **Improved Nutrient Use Efficiency:** INM optimizes the use of available nutrients, minimizing losses through leaching or runoff. This results in enhanced nutrient use efficiency, ensuring that a higher percentage of applied nutrients are taken up by crops, thereby maximizing yields.
2. **Sustainable Soil Health:** The organic components of INM contribute to improved soil structure, microbial diversity, and overall soil health. Sustainable soil practices foster long-term fertility, reducing the need for excessive external inputs and promoting resilience against environmental stressors.
3. **Environmental Sustainability:** By minimizing nutrient runoff and leaching, INM mitigates the environmental impact associated with excessive fertilizer application. This aligns with global efforts to promote sustainable agricultural practices that minimize harm to water bodies and ecosystems.
4. **Resilience to Climate Variability:** The diverse and balanced nutrient supply promoted by INM enhances the resilience of crops to climate variability. Plants grown under an INM regime exhibit greater adaptability to changing environmental conditions, resulting in more robust and consistent yields.

Strategies for Enhanced Nutrient Management:

Soil Testing: Accurate soil testing is fundamental for prescribing optimal nutrient quantities. Portable digital soil test kits supplement traditional testing, aiding distribution of soil health cards, fertilizer recommendations, and geo-referenced soil fertility maps.

Balanced & Integrated Nutrient Management: Long-Term Fertilizer Experiments reveal the superiority of balanced nutrient applications with organic manures in enhancing soil quality and yield sustainability. Balanced NPK application,

conjunctive nutrient use, and sole organic nutrient treatments outperform chemical fertilization.

Organic, Liquid Fermented and Bio Fertilizers: Technologies for producing organic manures and effective biofertilizers promote nutrient-rich soil and improved plant health. Biofertilizers increase productivity, reduce chemical fertilizer usage, and enhance nutrient use efficiency by 15-25%.

Crop Residue Recycling: Incorporating crop residues into the soil prevents adverse impacts on soil quality and sustains production systems. Inclusion of rice residue and FYM is particularly promising for maintaining soil organic carbon and system sustainability.

Nutrient Use Efficiency Enhancement: Adhering to the 5R approach (right kind, rate, time, place, and method of fertilizer application) optimizes nutrient use efficiency. Additional tools like leaf color charts, nitrification inhibitors, and slow-release fertilizers further contribute to efficiency.

Indicators of nutrient deficiency/ over-use

Farmers use agricultural practices that are best suited to their farming system (often based on a long tradition) and household circumstances, and are thus heavily influenced by the resources available. Thus, to be able to choose appropriate solutions/practices for improved nutrient management, it is important for farmers to assess correctly whether an identified improved soil management practice (solution) is appropriate to the problem they experience within their farming system (site-specific nutrient management). The farmers should therefore make an assessment of the resources needed (labour, land, cash, on-farm materials, external inputs etc) and their availability within the household and/or community. This will help farmers who are experiencing problems with soil fertility to identify from amongst the several possible solutions, the most promising practices to be experimented with in test plots, and to identify what changes to the present household farming system may be required in order to adopt a particular practice or technology.

Application methods: The need for fertilizer depends on the soil and the tillage practices (see section on Conservation Agriculture). Different crops require different amounts of fertilizer in different growing stages. These guidelines will give some main benefits and drawbacks of 4 commonly used application methods.

Broadcasting: Broadcasting by hand of fertilizer is commonly applied in cropping systems where mechanization is not possible due to economic or environmental restriction. Broadcasting is often a practice.

Placement: Application in bands or in pockets near the plants or plant rows.

Foliar application: Using sprayers, the fertilizers are sprayed covering the plants.

Fertigation: Fertigation, the application of fertilizers with irrigation water, is sometimes used on sandy soils and especially for vegetable production.

Conclusion: It may be concluded that the wide spread nutrient deficiency and toxicity are deteriorating the soil

health day by day. due to this there will be low productivity profitability in cereals crops major by the low nutrient use efficiency a judicious use of chemical fertilizers in combination with naturally available organic sources gives a breakthrough effect in maintaining the soil health and sustaining the environment.
