

Targeting the Gut Microbiome Through Precision Prebiotics and Personalized Nutrition Strategies

¹Lalitha Prasanna MV, ¹Harini Hutt and ^{2*}Gangaraju Divyashri

¹Research Associates

²Head, Bioproducts Research

Iom Bioworks Pvt. Ltd., C- Camp, GVK Campus, Bangalore - 560 065

***Corresponding Email: divyashri@iombio.com**

Introduction

In recent years, an increasing body of scientific research has significantly expanded our understanding of the human gut microbiota, its diversity, and its functional potential. The gastrointestinal tract hosts a highly complex ecosystem composed of over 100 trillion microbial cells, which play critical roles in human physiology, metabolism, nutrition, immune regulation, and the production of key bioactive metabolites such as short-chain fatty acids (SCFAs) and neurotransmitters (Guinane and Cotter, 2013). Disturbances in this microbial ecosystem, termed as dysbiosis, have been implicated in a wide range of pathological conditions, including obesity, type 2 diabetes, inflammatory bowel disease, mental health disorders, and cancer (Belizário and Faintuch, 2018). These associations highlight the microbiome's integral role as both a biomarker and a modifiable factor in disease development and progression.

Gut Microbiota

The composition of the gut microbiota is highly individualized and tends to remain relatively stable throughout life; however, transient daily fluctuations can occur in response to various stimuli. Among the many determinants, diet has emerged as one of the most influential and modifiable factors affecting microbial diversity and community structure (Leeming et al., 2019). In fact, diet is estimated to account for more than 50% of gut microbial structural variation in mice and approximately 20% in humans, underscoring the therapeutic potential of diet-based microbiome modulation strategies (Rothschild et al., 2018). Beyond diet, the gut microbiota is shaped by both extrinsic factors *viz.*, lifestyle, medications, and environmental exposures and intrinsic factors including host genetics, immune responses, and metabolic pathways. Among these, extrinsic factors appear to exert a dominant influence, with diet being the most extensively studied and most amenable to intervention (Rothschild et al., 2018). The increasing recognition of the gut microbiome's role as the central regulator for metabolic, immune and neurocognitive health in addition to the accumulating evidence about the limitations of one-size-fits-all dietary interventions highlights the urgent requirement for precision-driven nutritional strategies. This can be done through personalized prebiotic approaches that are rooted in individual microbiome profiles and pave the way for translating the microbiome science into meaningful health outcomes.

At Iom Bioworks, we are pioneering precision nutrition strategies through the development and application of personalized prebiotic interventions. Our approach is rooted in the belief that individual-specific gut ecology must be the foundation for dietary recommendations aimed at restoring or enhancing microbiome function. To enable this, we have developed a state-of-the-art, AI-powered, and patented *in silico* pipeline that provides deep insights into person-specific microbiome structure and functional capacity. This technology allows us to predict individual responses to prebiotic interventions, enabling the rational design of precision prebiotics tailored to selectively promote beneficial microbial taxa while suppressing pathogenic ones.

We adopt an iterative, translational research framework that spans:

1. *In silico* modeling of microbe-host metabolic interactions,
2. *In vitro* validation of predicted microbial responses,
3. *In vivo* experimentation in both animal models and human participants to assess clinical outcomes.

This integrative, systems-based approach allows for feedback loops between computational predictions and experimental validation, facilitating data-driven personalization of prebiotic therapies that target gut microbiome composition, metabolic outputs, and host health outcomes. As we continue to refine and scale these methodologies, we aim to contribute significantly to the field of personalized nutrition, with the goal of developing clinically effective, microbiome-informed dietary interventions for both preventive and therapeutic healthcare applications. Our scientific and translational innovations have garnered recognition at prominent national platforms. Our unique multi-component stress formulation was acknowledged under the Karnataka Startup Advancement Programme (KSAP) 2025. Our novel, a one-of-its-kind agri-source derived prebiotic, received the Winner Award at the National Bio-Entrepreneurship Competition (NBEC) 2025. These recognitions underscore our commitment to advancing evidence-based, microbiome-focused solutions with robust translational and commercial potential.

Concluding remarks

Advances in microbiome science increasingly position microbiome-guided personalization as a transformative force in dietary and therapeutic interventions. The successful translation of microbiome-targeted precision nutrition into meaningful health benefits will require sustained

interdisciplinary collaboration, rigorous clinical validation, and a deep mechanistic understanding of host microbiome interactions.

References

Belizário, J. E., & Faintuch, J. (2018). Microbiome and gut dysbiosis. In *Metabolic interaction in infection* (pp. 459-476). Cham: Springer International Publishing.

Guinane, C. M., & Cotter, P. D. (2013). Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic

organ. *Therapeutic advances in gastroenterology*, 6(4), 295-308.

Leeming, E. R., Johnson, A. J., Spector, T. D., & Le Roy, C. I. (2019). Effect of diet on the gut microbiota: rethinking intervention duration. *Nutrients*, 11(12), 2862.

Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., ... & Segal, E. (2018). Environment dominates over host genetics in shaping human gut microbiota. *Nature*, 555(7695), 210-215.
