

Soil Moisture Conservation Practices

V. Santhosh

Assistant Professor in Agronomy, Nalanda College of Agriculture, Trichy- 621 104.

Corresponding Author: santhoshvms2000@gmail.com

1. Introduction

Soil moisture conservation refers to the strategic manipulation of soil-plant-atmosphere interactions to maximize water storage in the root zone, minimize non-productive water losses, and ensure efficient water availability for crops across temporal and spatial scales. It is understood as an integrated system governed by soil physical properties, hydrological processes, biological activity, crop physiology, land management practices, and climatic variability. Together, these factors determine how effectively water is conserved and utilized within agricultural systems.

2. Soil-Water Dynamics: Theoretical Basis

2.1 Soil Water Retention and Availability

Soil moisture exists in different energy states, including gravitational water that drains away, capillary water that is available to plants, and hygroscopic water that is unavailable for plant use. Key parameters such as field capacity (FC), permanent wilting point (PWP), and available water capacity (AWC = FC – PWP) define the soil's ability to retain and supply water. Soil moisture conservation strategies aim to maximize AWC within the effective rooting depth to ensure crops have sufficient water during critical growth stages.

2.2 Soil Texture and Structure

Soil texture and structure play a crucial role in water retention. Coarse-textured soils have low water-holding capacity but allow rapid infiltration, while fine-textured soils retain more water but suffer from poor drainage. Aggregated soils provide an optimal balance between retention and aeration. Organic matter and biological activity enhance soil aggregation, thereby improving moisture conservation and resilience against climatic variability.

3. Pathways of Soil Moisture Loss

Soil moisture can be lost through surface runoff, evaporation, deep percolation, and transpiration beyond crop demand. Effective conservation strategies primarily target evaporation and runoff while optimizing productive transpiration to ensure water is used efficiently for crop growth rather than wasted through non-productive pathways.

4. Agronomic and Mechanical Methods of Soil Moisture Conservation

4.1 Mulching (Surface Energy Balance Modification)

Mulching modifies the soil-atmosphere energy exchange by reducing net radiation at the soil surface,

lowering soil temperature gradients, and decreasing vapor pressure deficit. This results in a 30–60% reduction in evaporation, enhanced microbial activity, and improved infiltration. While organic mulches contribute positively to soil carbon dynamics, synthetic mulches such as polyethylene pose risks of microplastic pollution.

4.2 Conservation Tillage and Zero Tillage

Conservation tillage improves soil pore continuity and residue cover, increasing macroporosity, reducing crust formation, and enhancing infiltration rates. Over the long term, it contributes to soil organic carbon sequestration, improves soil water retention curves, and enhances resilience under climate extremes.

4.3 Contour Farming & Terracing (Landscape Hydrology)

Contour farming and terracing operate at the catchment scale by reducing slope length, decreasing runoff velocity, and increasing water residence time. Terracing is particularly effective in upland agroecosystems, where it converts surface runoff into stored soil moisture, thereby improving water availability for crops.

4.4 Cover Cropping and Living Mulches

Cover crops act as biological regulators of soil moisture by improving soil structure through root activity, enhancing organic matter inputs, and reducing evaporative losses. However, in arid systems, they may compete with main crops for water, making species selection based on rainfall regime essential.

5. Biological and Organic Matter-Driven Conservation

5.1 Role of Soil Organic Matter (SOM)

An increase of 1% in soil organic matter can raise soil water-holding capacity by 15–25 mm per meter depth. SOM improves aggregation, increases microporosity, and enhances cation exchange capacity. Organic amendments such as farmyard manure, compost, green manure, and biochar are widely used to improve soil moisture conservation, with biochar being an emerging area of research.

5.2 Soil Biota and Rhizosphere Effects

Soil organisms play a vital role in moisture conservation. Mycorrhizal fungi enhance water uptake efficiency, root exudates improve soil aggregation, and earthworms increase infiltration and moisture storage. These biological processes highlight the importance of soil health in sustaining water availability.

6. Irrigation and Water Management Approaches

6.1 Precision Irrigation

Precision irrigation techniques such as drip irrigation minimize evaporative losses, maintain soil moisture near field capacity, and reduce deep percolation.

6.2 Deficit and Supplemental Irrigation

Deficit and supplemental irrigation strategies involve applying water during critical growth stages to maximize water productivity, measured as crop yield per unit of water applied. These approaches ensure efficient use of limited water resources.

7. Rainwater Harvesting and In-Situ Conservation

7.1 In-Situ Moisture Conservation

In-situ techniques such as ridge and furrow systems, tied ridges, and micro-basins retain rainfall where it falls, maximizing infiltration and reducing runoff.

7.2 Ex-Situ Rainwater Harvesting

Ex-situ methods include farm ponds, check dams, and percolation tanks, which enhance groundwater recharge and improve soil moisture availability across larger landscapes.

8. Climate Change Context

Climate change increases rainfall variability, evapotranspiration rates, and drought frequency. Soil moisture conservation serves as a primary adaptation strategy by enhancing drought resilience, stabilizing crop yields, and reducing dependency on irrigation. It is therefore central to climate-smart agriculture.

9. Integrated Soil Moisture Conservation Systems

Modern approaches emphasize systems thinking by integrating conservation agriculture, agroforestry, precision water management, and soil organic carbon enhancement. No single method is sufficient; instead, synergistic integration of multiple practices ensures sustainable soil moisture conservation.

10. Research Frontiers

Current research explores soil moisture modeling using tools like HYDRUS and DSSAT, biochar-soil-water

interactions, remote sensing technologies, carbon-water trade-offs, and microbial mediation of water retention. These frontiers aim to deepen understanding and improve management of soil-water-plant interactions.

Conclusion

Soil moisture conservation is not merely a field-level agronomic practice but a multi-scale, interdisciplinary process central to sustainable agriculture, climate resilience, and global food security. Effective conservation requires managing the soil-water-plant-atmosphere continuum through both traditional knowledge and advanced scientific tools, ensuring long-term sustainability of agricultural systems.

REFERENCES:

Ahluwalia, S., Kaur, N., & Kumari, A. (2025). *In-situ soil and water conservation for sustainable agriculture*. *Asian Journal of Soil Science and Plant Nutrition*, 11(3), 126–135.

Demo, A. H., & Bogale, G. A. (2024). *Enhancing crop yield and conserving soil moisture through mulching practices in dryland agriculture*. *Frontiers in Agronomy*, 6.

Kumar, G. N., Sreedevi, B., Hemalatha, S., Surekha, K., Ramana, C., & Latha, P. (2024). Impact of conservation tillage and nitrogen management on soil temperature and soil moisture in aerobic rice. *Journal of Experimental Agriculture International*, 46(10), 450–460.

Dash, A. K., Meena, M. C., Das, S., et al. (2025). *Longterm conservation agriculture to enhance soil properties and quality in rice–wheat cropping system*. *Scientific Reports*, 15, Article 28393.

Soujanya, B., & Gurjar, D. S. (2024). *Water-efficient crop production: Agronomic strategies for drought-prone areas*. *International Journal of Research in Agronomy*, 7(12), 187–196.

Gao, Y., Ahmed, T., He, S., Cheng, Z., & Nandakumar, R. (2025). *SoilSound: Smartphone-based soil moisture estimation*. *arXiv*.
