Saint Bridget Medical Center Data Analysis Report

Lava McCoy Data Analyst

November 29th, 2025

Report# 401994-C

Table of Contents

Introduction/Purpose	2
Data Sources & Preparation	3
Methodology	5
Observations	7
2023 Observations	7
2024 Observations	8
Average Length of Stay per Diagnosis	9
Geographic Analysis – Heatmap by City	10
Summary of Key Observations	11
Data Quality Assessment	12
Appendix	13
Appendix A	13
Appendix B	14

Introduction/Purpose

This analysis was conducted in response to a request from Dr. Sarah Johnson, Chief Medical Officer, Saint Bridget Medical Center, to evaluate patient admissions over the past two years (January 1, 2023 – December 31, 2024). The goal of the project is to provide actionable insights that can help improve hospital workflow and patient care by examining admissions patterns, diagnosis trends, and patient length of stay.

Specifically, this report addresses the following stakeholder needs:

- 1. **Total Admissions:** Analyze the total number of patient admissions per month and year to identify overall trends.
- 2. **Diagnosis Breakdown:** Provide a detailed view of key diagnoses (Chickenpox, Flu, COVID-19, Cold, Asthma) over time, including seasonal patterns such as flu peaks in winter.
- 3. **Average Length of Stay:** Determine which diagnoses are associated with longer hospital stays to inform resource allocation.
- 4. **Data Quality Assessment:** Identify missing or inconsistent patient data (e.g., discharge dates, demographic inconsistencies) that could affect reporting accuracy.
- 5. **Recommendations:** Suggest improvements for patient record data quality to support future analyses.
- 6. **Geographic Analysis:** Generate a Texas city-level heatmap of patient admissions to detect regions with unusually high or clustered diagnosis patterns.

Data Sources & Preparation

The analysis utilized multiple data sources and tools to provide a comprehensive view of patient admissions at Saint Bridget Medical Center from January 1, 2023 to December 31, 2024. All data was cleaned, processed, and integrated to ensure accuracy and support the stakeholder's request.

1. Patient Admission Data (Excel / CSV)

- o The raw dataset consisted of 2,000 patient records with columns: Patient_ID, DOB, Admission_Date, Discharge_Date, Diagnosis, City, and State.
- A cleaned dataset was created in Excel, including handling of missing or inconsistent data:
 - 67 missing Discharge Date values were updated to "NA".
 - Latitude and longitude columns were added to support GIS mapping.
- The cleaned Excel sheet served as the primary source for subsequent analysis in SOL, Python, and OGIS.

2. SQL Database & Queries

- o Database "SaintBridget" and table "SBMCRecords" were created to store patient records.
- o Key queries included:
 - First15Rows: preview of initial data
 - ColumnCheck: verify all columns present
 - AdmissionsPerMonthAndYear: total admissions by month/year
 - LongestAvgHospitalStay: identify diagnoses with the longest average stay
 - MonthlyDiagnosis: count of key diagnoses (Chickenpox, Flu, COVID-19, Cold, Asthma) per month

3. Python / Jupyter Notebook

- o A Jupyter Notebook was used to calculate average length of stay per diagnosis.
- o The notebook also helped verify data quality and highlight inconsistencies in the dataset.
- o Screenshots of the calculations were included for transparency.

4. PowerBI Dashboards

- o Interactive visualizations were created to summarize admissions and diagnoses:
 - Pie charts showing seasonal diagnosis trends (Spring, Summer, Fall, Winter) for 2023 and 2024
 - Bar charts showing total admissions per month
 - Bar charts showing diagnosis type per month
- Separate pages were created for 2023 and 2024 data to allow comparison across years.

5. Geographic Data & QGIS Analysis

- o Texas state boundary and city shapefiles were downloaded from census.gov.
- CSV points representing patient admission locations were imported and projected using EPSG:4326 (latitude/longitude), then reprojected to EPSG:3083 (Texas Centric Albers) for heatmap generation.
- A heatmap of patient admissions by city was generated using kernel density estimation (radius = 50 km, pixel size = 1,000–2,000 m).

o City points were overlayed and labeled to match the admissions data, providing a clear visual of geographic clustering.

6. File List / Outputs

- Heatmap (Texas_Patient_Cities_Heatmap.tif)
- o PowerBI Dashboards (2023 & 2024)
- o Jupyter Notebook screenshots for average length of stay
- Cleaned CSV dataset

Preparation Summary:

All data was checked for completeness, merged as needed, and prepared for analysis in SQL, Python, PowerBI, and QGIS. The workflow ensured consistency across tools and enabled the generation of accurate visualizations and metrics aligned with the stakeholder's request.

Methodology

The following methodology outlines the steps taken to address the stakeholder's request for patient admission analysis, linking each requirement to the specific tools and processes used.

1. Total Admissions per Month/Year

- Tool: SQL & PowerBI
- o Process:
 - SQL query AdmissionsPerMonthAndYear extracted the total number of admissions grouped by month and year from the cleaned dataset.
 - PowerBI bar charts were created to visualize admissions trends across 2023 and 2024, enabling quick identification of peaks and overall patient volume patterns.

2. Detailed Breakdown of Diagnoses Over Time

- Tool: SQL & PowerBI
- o Process:
 - SQL query MonthlyDiagnosis calculated the number of patients diagnosed with Chickenpox, Flu, COVID-19, Cold, and Asthma per month.
 - PowerBI dashboards displayed seasonal trends, dividing the year into Spring (Mar–May), Summer (Jun–Aug), Fall (Sep–Nov), and Winter (Dec–Feb).
 - Separate dashboard pages were created for 2023 and 2024 for comparative analysis.

3. Average Length of Stay per Diagnosis

- o **Tool:** Python / Jupyter Notebook
- Process:
 - Patient admission and discharge dates were imported into a Jupyter Notebook.
 - Python code calculated the average length of stay for each diagnosis.
 - Screenshots of the notebook results were included to provide transparency and reproducibility.

4. Identification of Missing or Inconsistent Patient Data

- o **Tool:** Excel & Jupyter Notebook
- o Process:
 - Audit of the cleaned Excel dataset revealed missing Discharge_Date values (67 records) and other inconsistencies.
 - Data cleaning included updating missing discharge dates to "NA" and verifying latitude/longitude for GIS mapping.
 - Jupyter Notebook checks confirmed no remaining critical inconsistencies affecting the analysis.

5. Recommendations for Improving Data Quality

- o **Tool:** Excel audit log & observations from SQL/Python
- o Process:
 - Documented missing or invalid data points during cleaning.

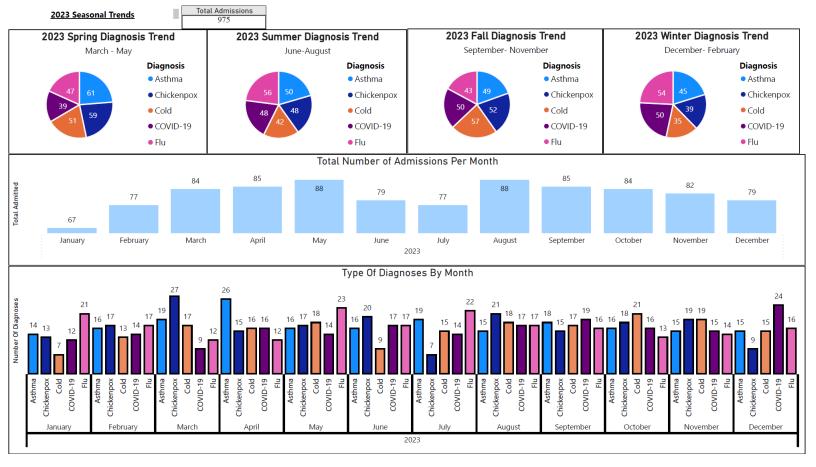
 Recommendations include implementing data validation rules in patient records, mandatory entry of discharge dates, and regular audits to maintain dataset integrity.

6. Geographic Analysis of Admissions

- o **Tool:** QGIS
- o Process:
 - Cleaned CSV patient records were imported as point layers and projected to EPSG:3083 – Texas Centric Albers.
 - A heatmap was generated using kernel density estimation with a 50 km radius and 1,000–2,000 m pixel size to visualize areas of high patient concentration.
 - Texas state boundaries and city layers (from census.gov) were overlaid to provide geographic context.
 - City points were labeled to highlight locations with patient admissions, allowing stakeholders to identify regional patterns and potential hotspots.

Notes on Workflow Integration

- All steps were documented in the audit log, ensuring reproducibility and transparency.
- Outputs from SQL, Jupyter, PowerBI, and QGIS were integrated into the final report, providing both numerical and visual evidence aligned with stakeholder objectives.


Observations

2023 Observations

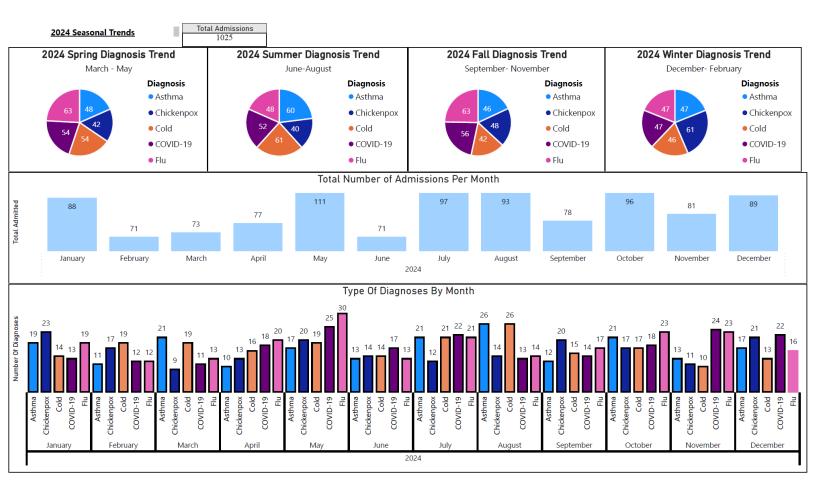
Visualization: Showing total patient admissions, seasonal diagnosis trends for 2023.

- Source: SQL query AdmissionsPerMonthAndYear → PowerBI dashboard
 SQL query MonthlyDiagnosis → PowerBI seasonal charts
- Observation:
 - o Total admissions for 2023 were 975.
 - o Admissions peaked in *May* and *August*, with 88 admissions each month.
 - o Asthma peaked in the spring months
 - o The flu peaked in the summer and winter months
 - o Colds peaked in the fall months

Figure 1: Total Patient Admissions per Month, 2023.

2024 Observations

Visualization: Showing total patient admissions, seasonal diagnosis trends for 2024.


• Source: SQL query AdmissionsPerMonthAndYear → PowerBI dashboard

SQL query MonthlyDiagnosis → PowerBI seasonal charts

Observation:

- o Total admissions for 2024 were 1025.
- Admissions peaked in May 111 admissions, July 97 admissions and October –
 97 admissions.
- o Flu peaked in the spring and fall months.
- o Asthma peaked in the summer months.
- o Chickenpox peaked in the winter months.

Figure 2: Total Patient Admissions per Month, 2024.

Average Length of Stay per Diagnosis

Visualization: Jupyter Notebook outputs calculating average length of stay

• **Source:** Python / Jupyter Notebook

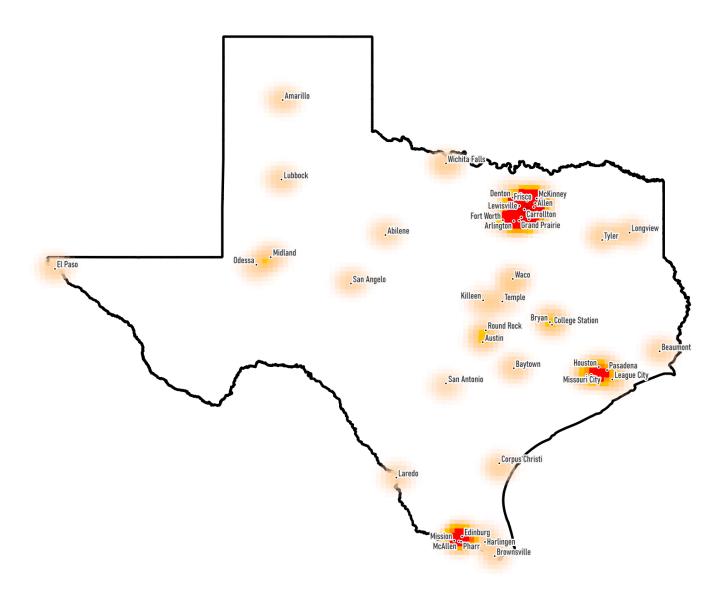
• Observation:

- Diagnoses with the longest average hospital stays include COVID-19 with 6.58 days and Asthma with 3.57 days.
- o Shorter stays observed for the flue with 1.93 days and colds with 1.33 days.

Figure 3: Average Length of Stay per Diagnosis

Diagnosis	Length_of_Stay
COVID-19	6.58
Asthma	3.57
Chickenpox	2.54
Flu	1.93
Cold	1.33

Geographic Analysis – Heatmap by City


Visualization: QGIS-generated heatmap of patient admissions with city overlays

• Source: CSV patient records \rightarrow QGIS heatmap \rightarrow Texas state and city layers

• Observation:

 Heatmap clearly identifies regional clusters and potential hotspots for hospital workflow attention.

Figure 4: Heatmap of Patient Admissions by City in Texas

Summary of Key Observations

- 1. Admissions fluctuate seasonally, with predictable peaks for flu and other respiratory illnesses.
- 2. Certain diagnoses require longer hospital stays, which should be factored into workflow and bed management planning.
- 3. Geographic clustering of admissions in major Texas cities can help target resources efficiently.
- 4. Data cleaning and quality control are essential to ensure accurate reporting and reliable visualizations.

Data Quality Assessment

As requested by the stakeholder, an in-depth review of patient data was conducted to identify any missing or inconsistent information that could affect reporting accuracy and analysis outcomes.

1. Identification of Missing or Inconsistent Data

• **Discharge Dates:** 67 patient records were missing Discharge Date values.

2. Actions Taken

• Missing discharge dates were manually or programmatically updated to "NA" to ensure downstream calculations would not fail.

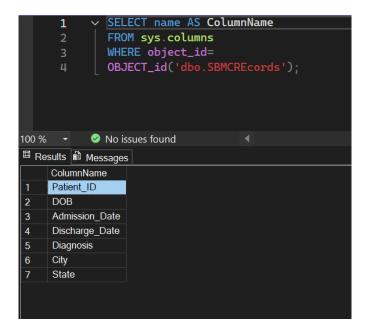
3. Recommendations for Improving Data Quality

To prevent future inconsistencies and ensure reliable reporting:

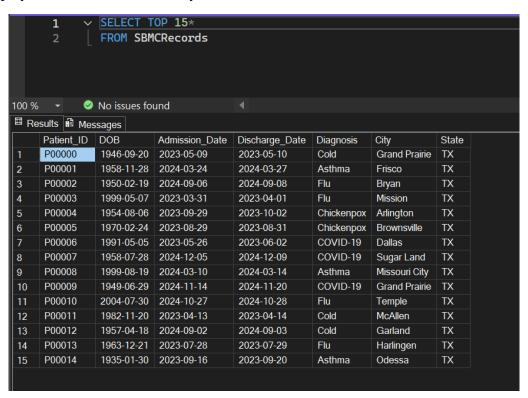
- 1. **Mandatory Data Fields:** Require all critical fields such as Discharge_Date and Diagnosis to be entered before record submission.
- 2. **Regular Audits:** Periodically review the patient records to identify missing or inconsistent data before analysis.
- 3. **Documentation:** Review the systems audit log for all data cleaning activities to track corrections and modifications.

Summary:

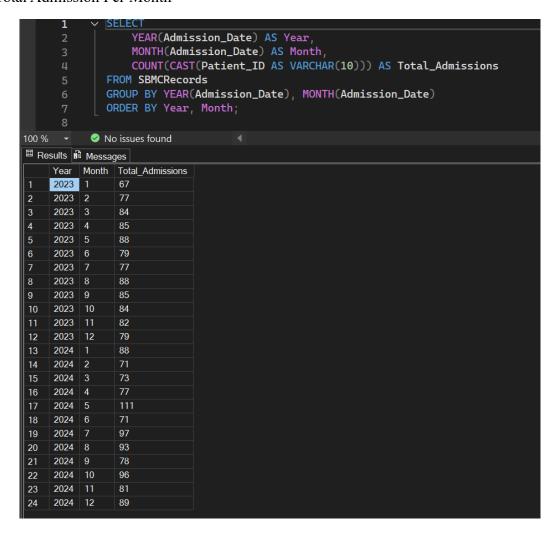
These measures will help maintain dataset integrity, prevent errors in analysis, and ensure that future reports provide accurate and actionable insights for hospital management.


Appendix

Appendix A — SQL Queries Used in the Analysis


A1.Determined Average Length of Stay by Diagnosis

Appendix B — SQL Queries Used in the Analysis


B1. Verified Columns

B2. Displayed First 15 Rows to Verify Correct File

B3. Total Admission Per Month

B4. Total Number of Diagnoses Per Month & Year

```
YEAR(Admission_Date) AS Year,
MONTH(Admission_Date) AS Month,
                                                                                                                                          Diagnosis,
COUNT(CAST(Patient_ID AS VARCHAR(10))) AS Total_Admissions
                                                                                                       COUNT(CAST(PATIENT_ID AS VARIENTALOS);
FROM SBMCRecords
WHERE Diagnosis IN ('Chickenpox', 'Flu', 'COVID-19', 'Cold', 'Asthma')
GROUP BY YEAR(Admission_Date), MONTH(Admission_Date), Diagnosis
ORDER BY Year, Month, Diagnosis;
  100 % ▼ ● No issues found

■ Results ■ Messages

Year Month Diagnosis Total_Admissions
                              | 2023 | 1 | 2023 | 1 | 2023 | 1 | 2023 | 1 | 2023 | 2 | 2023 | 2 | 2023 | 3 | 2023 | 3 | 2023 | 4 | 2023 | 4 | 2023 | 4 | 2023 | 4 | 2023 | 4 | 2023 | 4 | 2023 | 5 | 2023 | 5 | 2023 | 5 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 6 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 | 2023 | 7 
                                                                                                           Asthma 14
Chickenpox 13
                                                                                                                         Cold 7
COVID-19 12
                                                                                                                       Flu 21
Asthma 16
Chickenpox 17
Cold 13
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
30
30
31
                                                                                                                       COVID-19 14
Flu 17
                                                                                                                       Flu 17
Asthma 19
Chickenpox 27
                                                                                                                         Cold 17
COVID-19 9
                                                                                                                       COVID-19 9
Flu 12
Asthma 26
Chickenpox 15
Cold 16
COVID-19 16
                                                                                                                         Asthma 16
Chickenpox 17
                                                                                                                         Cold
COVID-19
                                                                                                                              Flu
Asthma
                                                                                                                           Chickenpox
Cold
                                                                                                                              COVID-19
Flu
```