
Review

The neurobiology of stress and gastrointestinal disease

The role of stress in the modulation of the most common
gastrointestinal disorders has traditionally been considered
a domain of psychology, and has frequently been lumped
together with the role of psychiatric comorbidity. Among
clinicians, the term “stress” is generally taken as synony-
mous with psychological (“exteroceptive”) stress. Based on
the deeply ingrained Cartesian view in medicine and
gastroenterology, stress and psychological factors have
been considered fundamentally separate and unrelated to
the “real” biological changes underlying organic disease.
However, recent breakthroughs in the understanding of the
neurobiology of the organism’s response to acute and
chronic stress, and the evolving understanding of elaborate
brain-gut interactions and their modulation in health and
disease, are beginning to require a reassessment of chronic
stress in the pathophysiology and management not only of
functional but also of “organic” gastrointestinal disorders.

Certain stressful life events have been associated with the
onset or symptom exacerbation in some of the most com-
mon chronic disorders of the digestive system, including
functional gastrointestinal disorders (FGD), inflammatory
bowel disease (IBD), gastro-oesophageal reflux disease
(GORD), and peptic ulcer disease (PUD). Even though
methodological diVerences in reported studies which do
and do not support such an association remain to be
resolved, the association of sustained stressful life events
preceding symptom exacerbation is based on several well
designed surveys in patients with FGD,1–4 with post-
infectious irritable bowel syndrome (IBS),4 and with
IBD.5–8 In addition, acute life threatening stress episodes in
adult life (rape, post-traumatic stress syndrome) are an
important risk factor in the development of functional
gastrointestinal disorders.9 Finally, early life stress in the
form of abuse plays a major role in the susceptibility of
individuals to develop functional as well as IBD10–14 later in
life. Thus, depending on the type of stressor, the lag time
between the stressful event and the clinical manifestation
or exacerbation of FGD or IBD may range from decades to
weeks.

Even though the recent focus on Helicobacter pylori in the
aetiology of PUD has nearly abolished the interest in the
role of stress in PUD, there is considerable evidence that
supports a role of stressful life events in the aetiology of
PUD.15–21 Furthermore, more than 80% of H pylori infected
individuals (and the majority of non-steroidal anti-
inflammatory drug (NSAID) users) never develop an
ulcer, while at least 10% of non-NSAID related peptic
ulcers are not infected with H pylori.22 It is intriguing to
speculate on the role of certain life stressors as risk factors
which determines which H pylori positive individual actu-
ally develops an ulcer and which patients develop
symptoms of dyspepsia instead, without an ulcer.

In contrast with FGD, IBD, and PUD, the epidemiologi-
cal evidence to support a causal relationship between life
events and disease activity in GORD is less conclusive. The
primary information on the role of stressful life events is
based on a population based survey in which 64% of
patients with GORD indicated that stress increased their
symptoms.23 GORD patients who are anxious and are
exposed to long periods of stress are more likely to notice
stress induced symptom exacerbation.24

Stress response: defence of homeostasis at the cost
of allostasis
Stress, defined as acute threats to the homeostasis of an
organism,25–27 be they real (physical) or perceived (psycho-
logical), and whether posed by events in the outside world
or from within, evokes adaptive responses which serve to
defend the stability of the internal environment and to
assure the survival of the organism.28 Surprisingly, despite
the wide range of diVerent types of stressors, some of the
principal circuits underlying the stress response under
these diVerent circumstances are remarkably similar.28

However, while the pathways involved in the activation of
hypothalamic eVector neurones during interoceptive stres-
sors (gut infection, mucosal inflammation, internal haem-
orrhage) may be conceived as simple reflex responses,
mediated at a subcortical level by the system involved in the
processing of visceral information, exteroceptive stressors
(psychological) engage circuits in the limbic forebrain,
including the lateral and medial prefrontal cortex, hippo-
campus, and amygdala.28 Involvement of cortical circuits
plays an important role in adjusting the stress response to
the context, the physiological state of the organism, memo-
ries of past stressful life events, and beliefs about the sub-
jective meaning of the situation.

Elaborate neurobiological response systems have evolved
to orchestrate an integrated response which is best suited to
respond to a specific stressor in a given situation for a spe-
cific individual. This ability to defend homeostasis (that is,
to maintain stability) through change has been referred to
as allostasis.29 In the healthy individual, the physiological
response systems are rapidly turned on and oV, synchronis-
ing the physiological stress response to the duration of the
stressor, and limiting the exposure time of the organism to
the potentially harmful eVects of the stress response. How-
ever, there are several situations in which the severity or
chronicity of the stressor and the ensuing physiological
response systems can cause damage, exacerbate existing
disease processes, or predispose the individual to acquire
new diseases—that is, become maladaptive. This is
particularly true in situations where the responsiveness of
physiological responses to stress and the ability to adapt
has already been altered due to genetic30 or early life
events,31 thereby biasing an individual’s susceptibility to the
negative eVects of stress throughout life. These long term
eVects of the organism’s accommodation to certain types of
stress have been referred to as allostatic load,32 the “wear
and tear” resulting from chronic overactivity or underactiv-
ity of physiological stress response systems. Stressors which
have been associated with such maladaptive consequences,
both acute and chronic, are referred to in this review as
pathological stressors. The outcome of pathological stress
on the patient is determined not only by the length, sever-

Abbreviations used in this paper: FGD, functional
gastrointestinal disorders; IBD, inflammatory bowel disease; GORD,
gastro-oesophageal reflux disease; PUD, peptic ulcer disease; IBS,
irritable bowel syndrome; NSAID, non-steroidal anti-inflammatory
drug; TNF-á, tumour necrosis factor á; IL, interleukin; HPA,
hypothalamic-pituitary-adrenal; CRH, corticotropin releasing
hormone; CRF, corticotropin releasing factor; PVN, paraventricular
nucleus; GCs, glucocorticoids.

Gut 2000;47:861–869 861

www.gutjnl.com

 on June 2, 2022 by guest. P
rotected by copyright.

http://gut.bm
j.com

/
G

ut: first published as 10.1136/gut.47.6.861 on 1 D
ecem

ber 2000. D
ow

nloaded from
 

http://gut.bmj.com/


ity, and type of stressor, but also by other factors, such as
genetics, early life experiences, cognitive factors, and envi-
ronmental support.

Physical and psychological stressors
Systemic or interoceptive stressors,28 in the context of the
four chronic gastrointestinal disorders listed above, can
occur in the form of mucosal inflammation (IBD, PUD) or
tissue irritation by excessive acid exposure (GORD).
Inflammatory cytokines, including tumour necrosis factor
á (TNF-á), interleukin (IL)-1, and IL-6 cause acute
stimulation of the hypothalamic-pituitary-adrenal (HPA)
axis alone or in synergy.33 34 The cytokine mediated stimu-
lation is mediated through stimulation of corticotropin
releasing hormone (CRH; or corticotropin factor, CRF)
and arginine vasopressin release from hypothalamic
neurones, and by direct eVects at the pituitary and adreno-
cortical levels. DiVerent mechanisms, including cytokine
stimulation of vagal aVerents, have been proposed by which
the cytokine signal crosses the blood-brain barrier.28 The
ultimate output of peripheral cytokine stimulated HPA axis
activation, plasma cortisol, is the principal negative
feedback mediator to shut oV both the inflammatory
response as well as HPA axis activation. In contrast with
the eVects of acute inflammation, several animal experi-
mental34 35 and human studies in patients with certain
chronic inflammatory disorders, such as rheumatoid
arthritis, have provided evidence for a blunting of the HPA
axis response.34 36–38 This blunting appears to be secondary
to downregulation of CRH gene expression and CRH
secretion by mediators associated with chronic inflamma-
tion.

Psychological or exteroceptive stressors fall into diVerent
categories, depending on the individual’s age during stress
exposure, severity and chronicity of the stressor, and the
subjectively perceived threat. For example, several diVerent
types of psychological stressor can have permanent
consequences on the responsiveness of the individual to
stress and chronic disease later in life: (1) Early life stress in
the form of altered mother-infant interaction during a spe-
cies specific “window” of development has been shown to
result in permanent hypersecretion of CRF and overactiv-
ity of the locus coeruleus.31 (2) Chronic abuse (physical or
sexual) and neglect throughout life have been found to be
associated with alterations in the HPA axis response to
stress.39–41 (3) Exposure to a one time stressor which is per-
ceived by the individual as life threatening (rape, combat
situation, natural disaster) resulting in post-traumatic
stress syndrome42 with alterations in sympathetic and HPA
axis responses to stress and to exaggerated memory recall
of the traumatic event.43 Chronic stressors in adult life
(such as losses, financial threats, etc), in particular when
sustained and perceived as threatening, may result in tran-
sient reversible alterations in allostatic systems, which in
the case of IBS have been shown to result in exacerbation
of IBS symptoms.3 It is primarily these latter types of
pathological stressors that have been addressed in the epi-
demiological studies mentioned earlier.

How are stressors translated into integrative
physiological responses?
While the traditional concept of stress has focused on sub-
jective conscious feelings, thoughts, beliefs, and memories
reported by some individuals in association with stressful
life events, the major breakthroughs in this area have
occurred through an understanding of the biological
mechanisms which are responsible for the detrimental
eVect of certain stressful life events on health. The focus of
this review is on these biological mechanisms and their

implications, while the reader is referred to the extensive
cognitive literature.44–48

The organism’s response to stress is generated by a net-
work comprised of integrative brain structures, in particu-
lar subregions of the hypothalamus (paraventricular
nucleus, PVN), amygdala, and periaqueductal grey. These
structures receive input from visceral and somatic aVerents
and from cortical structures. Cortical inputs include the
medial prefrontal cortex, and subregions of the anterior
cingulate and insular cortices.28 49 50 In turn the integrative
network provides outputs to the pituitary and pontomedul-
lary nuclei, which in turn mediate the neuroendocrine and
autonomic output to the body, respectively.28 46 49 This cen-
tral stress circuitry is under feedback control via ascending
monoaminergic projections from these brain stem nuclei,
in particular serotonergic (raphe nuclei) and noradrenergic
(including locus coeruleus) nuclei, and via circulating glu-
cocorticoids (GCs), which exert an inhibitory control via
central GC receptors located in the medial prefrontal cor-
tex and hippocampus.34 The parallel outputs of this central
circuitry (“emotional motor system”)51 which is activated
in response to various stressors include responses of the
autonomic nervous system, the HPA axis response, the
endogenous pain modulation system, and ascending amin-
ergic pathways. These pathways are summarised in fig 1.

One important chemical mediator of the central stress
response is CRH (and probably related, currently un-
known molecules) located in certain eVector neurones of
the PVN, the amygdala, and locus coeruleus complex.52

CRH secretion by PVN neurones is under positive
feedback regulation by central noradrenergic pathways
(including those originating from the locus coeruleus),
thereby forming a bidirectional positive feedback loop
between the CRH-noradrenergic systems.53 54 Central
injection of CRH can reproduce behavioural and physio-
logical responses similar to those seen in response to acute
psychological stress,55 and inhibition of CRF mediated
responses by antagonists56 57 or in knockout animals results
in a decrease in the animal’s response to stress.58 59

Modulation of physiological stress responses by
allostasis
The responsiveness and output pattern of this network is
likely to be under partial genetic control30 60 and shows
considerable plasticity in response to early life events31 and
to certain types of pathological stress.61 62 For example,
studies in animals and humans have clearly demonstrated
that certain types of pathological stress can alter the

Figure 1 Emotional motor system (EMS) pathways.
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responsiveness of feedback systems by downregulation of
pre and/or postsynaptic receptors (adrenergic, serotoner-
gic, GC receptors)61 62 and in the most severe forms by
structural changes in certain brain regions.63 64 Thus
pathological stress can not only activate, but also
fundamentally change, the responsiveness and output of
the central stress circuits. These alterations could aVect the
individual output pathways of the general stress response
diVerentially and in diVerent directions; for example,
increase or decrease in target specific sympathetic outputs,
increase or decrease in certain vagal outputs, up or down-
regulation of the HPA axis, and up or downregulation of
pain perception. Some of the best characterised alterations
in this central adaptation to pathological stress are an
increase in CRF synthesis and secretion,65 66 67 an increase
in the activity and sensitivity of central noradrenergic
systems,31 68–71 and either downregulation or sensitisation of
GC receptors and adrenocorticotropic hormone release.72

As a consequence of these alterations in the central stress
circuitry, secondary changes in receptor systems can occur
in spinal73 or peripheral target cells of the output systems.74

Thus in cases of pathological stress resulting in permanent
changes in the central stress circuitry, life long changes in
peripheral receptor systems may also be expected. Finally,
changes in mood and aVect associated with alterations in
the stress response have been reported.32 75

AUTONOMIC RESPONSE

The classical description of the autonomic nervous system
to stress in the context of the “fight and flight” response by
Cannon76 has focused on the stereotypic and global activa-
tion of the sympathetic nervous system. However, despite
the integrated nature of the response to diVerent stressors,
there is considerable variability in the specifics of the
peripheral output. At the level of the PVN of the hypothal-
amus, the cells that give rise to major classes of visceromo-
tor projections are separate from another, suggesting they
are not necessarily called into play in a stereotyped all or
none matter, but rather that the potential exists for diVer-
ential recruitment.77 In the periphery, 12 diVerent
functional groups of sympathetic neurones have been
identified.78 Some of these pathways regulate mucin
production by large intestinal goblet cells, net water
absorption by intestinal epithelial cells,79 mucosal perme-
ability,80 81 mast cell degranulation,82 and possibly release of
peptides from enterochromaYn cells.

Importantly, some of the sympathetic pathways have a
direct immunomodulatory function.83 Evidence has been
provided to suggest that there is a functionally distinct
branch of the sympathetic nervous system dedicated
specifically to immune modulation.78 Noradrenergic sym-
pathetic nerve fibres innervate the vasculature and
parenchyma of lymphoid organs, including the gut.84 These
nerves and their principal neurotransmitter noradrenaline
can influence (a) basic immune cell function such as pro-
liferation, diVerentiation, cell traYcking, and cytokine pro-
duction; (b) acquired immune responses, and (c) autoim-
mune reactivity in susceptible strains.83 For example,
activation of the sympathetic system causes systemic secre-
tion of IL-6 from immune cells. IL-6, by inhibiting TNF-á
and IL-1â, and by activating the HPA axis, participates in
the stress induced suppression of the immune-
inflammatory reactions.85 The eVects of the sympathetic
system on immune cell function are consistent with the
reported suppressing eVect of naturalistic and certain
experimental induced stressors on immune function.86

However, in experimentally induced urethral inflam-
mation,87 arthritis,88 and colitis89 in rats, sympathectomy
has been shown to reduce inflammation.

Stress related increases in plasma adrenaline (and GCs)
play an important role in the facilitation of memory in
amygdala-hippocampal circuits, including the develop-
ment of conditioned fear.90 Adrenaline stimulated vagal
feedback has also been implicated in the activation of
endogenous pain modulation circuits.91

In addition to activation of sympathetic pathways,
various acute stressors produce a characteristic biphasic
pattern of parasympathetic activation, consisting of gastro-
vagal inhibition and activation of sacral parasympathetic
output.92 Similar to the diVerent subclasses of central sym-
pathetic neurones, subpopulations of function and target
specific vagal motor neurones have been identified. Patho-
logical stress has also been associated with persistent
decreases in cardiovagal tone and in cardiovagal respon-
siveness to stress.93 94

Viewed together, these results demonstrate that the
interface between the gut lumen and neural, endocrine,
and immune pathways is under close control of the
autonomic nervous system. Alterations in the autonomic
regulation of this interface, under conditions of allostatic
load, are likely to play an important role in the modulation
of secretion, motility, inflammation, and sensory response
of the gut to luminal contents.

HYPOTHALAMIC-PITUITARY-ADRENAL (HPA) AXIS

The HPA axis is acutely activated by both interoceptive34 53

and exteroceptive stressors.75 The peripheral GC response
to stress, in parallel with the sympathetic response plays a
prominent role in suppression of the inflammatory
response. In addition, a central mechanism in the normal
counterregulation of stress induced HPA axis activation is
GC mediated feedback by GC receptors in certain brain
regions such as the hippocampus and medial prefrontal
cortex (see fig 1).95 96 This feedback mechanism observed
in response to acute stress can be up or downregulated in
various chronic disease states. Hyperactivity of the HPA
axis manifesting as hypercortisolism as seen in certain
forms of depression has been considered the classical form
of a generalised stress response which has escaped its usual
counterregulation.75 Such hyperactivity has also been
reported in anorexia nervosa,97 panic disorder,98 and sexual
abuse.41 A decrease in GC receptor expression has been
observed in animal models of chronic stress99 and in adult
animals exposed to perinatal stress.31 A decrease in central
GC receptors may be secondary to reversible downregula-
tion of the receptor or permanent destruction of GC con-
taining brain regions.63 100 101

A diVerent pattern of stress induced HPA dysregulation
has been described in patients with post-traumatic stress
disorder,72 chronic fatigue syndrome,102 fibromyalgia,103

and possibly diarrhoea predominant IBS.104 Published
reports suggest that these patient populations have
evidence of a highly sensitised HPA axis characterised by
decreased basal cortisol levels, increased number of
lymphocyte GC receptors, greater suppression of cortisol
to dexamethasone, and a more sensitised pituitary gland.72

Thus in addition to the classic pattern of increased cortisol
levels in response to acute stress, there appears to be a pat-
tern characterised by diminished cortisol levels as a result
of a stronger negative feedback inhibition in certain types
of disorders associated with pathological stress. This
diminished cortisol response may be associated with
increased central CRF responses to stress.65 On the other
hand, decreased corticosterone response to stress has been
reported in chronically stressed rats, associated with
decreased expression of CRF mRNA in the PVN.105 The
diVerent patterns of HPA axis dysregulation may be related
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to genetic factors and/or develop in response to diVerent
types of pathological stress (for example, chronicity, sever-
ity).

In summary, HPA axis responses vary in diVerent disease
states with diVerent impacts on duration of the stress
response and on peripheral and central cortisol levels.
Chronically elevated cortisol levels can be associated with
structural irreversible changes in certain brain regions.

MODULATION OF GUT IMMUNE FUNCTION

Peripheral outputs of the stress response, in particular GCs
and catecholamines, have profound eVects on cytokine
networks, including those in the gut mucosa.105a Via its
peripheral mediators, stress influences the production of
key regulatory type 1 and type 2 cytokines, T helper (Th)
1 and Th2 functions, and components of cellular and
humoral immunity. In the healthy organism, both GCs and
catecholamines suppress Th1 responses and cellular
immunity and shift the immune response towards Th2
responses and humoral immunity. In contrast, in Crohn’s
disease, the response pattern is shifted towards Th1
responses.105b Based on these observations, one might
speculate that the diVerent patterns of the stress response
in chronic functional and inflammatory conditions of the
gut (see below) may have opposite eVects on the Th1/Th2
balance in the gut mucosa.

MODULATION OF VISCEROSOMATIC SENSITIVITY

Both clinical and animal experimental data strongly
support the concept of stress and fear induced analgesia
resulting in decreased somatic pain perception.106 107 Stress
induced analgesia is mediated by descending pain
inhibitory pathways and, depending on the nature and
severity of the stressor, is partially mediated by opioidergic,
glutaminergic, and serotonergic systems.108 Recent evi-
dence suggests that this stress induced somatic hypoalgesia
can be accompanied by a stress induced visceral hyper-
algesia.109 110 One way to explain these observations is the
concept that both pain facilitatory and inhibitory systems
are activated simultaneously in response to stress, the net
eVect being determined by the relative contribution of
these opposing influences.111 Another hypothesis assumes
that the visceral hyperalgesia is indirectly mediated by a
population of sympathetic and/or parasympathetic nerves,
stimulating the release of chemicals from cells within the
gut wall (for example, mast cells,112 enterochromaYn cells)
with sensitising eVect on visceral aVerent terminals.112 The
role of pathological stress on the relative activation of this
dual activation has not been characterised.

In summary, stress is associated with modulation of vis-
ceral and somatic sensitivity. Alterations in these endog-
enous stress activated pain modulation systems may play
an important role in several functional visceral or somatic
syndromes characterised by chronic discomfort and pain.

MONOAMINERGIC SYSTEMS

Noradrenergic, serotonergic, and cholinergic projection
neurones to cortical (prefrontal cortex) and subcortical
(including PVN, amygdala, hippocampus, nucleus tractus
solitarius) regions play an important role in emotional
arousal and in feedback modulation of the emotional
motor system. Evidence for reciprocal positive feedback
regulation of hypothalamic CRF neurones and noradrener-
gic locus coeruleus neurones has been reported.54 113 For
example, upregulation of tyrosine hydroxylase in locus
coeruleus neurones has been reported in perinatally
stressed rats which show upregulation of hypothalamic
CRH,31 and parallel downregulation of message for CRH
and tyrosine hydroxylase has been demonstrated during
long term treatment of rats with imipramine.34 For

example, noradrenergic modulation of synaptic vagal
transmission in the nucleus tractus solitarius can be
assumed to play a role in the modulation of vagovagal
reflexes,62 114 115 including those regulating gastric accom-
modation, regulation of spontaneous transient lower
oesophageal sphincter relaxation, and duodenogastric
reflexes. Chronic overactivity of these systems, as observed
in certain animal models of social stress62 and in patients
with post-traumatic stress syndrome68 has been shown to
be associated with downregulation of autoreceptors (á2,
5-HT1A receptors)62 116 resulting in enhanced release of
noradrenaline and serotonin, respectively. Enhanced re-
lease in turn may result in downregulation of postsynaptic
receptors (such as â adrenergic and á1 receptors).62 117

These neuroplastic changes would initially increase
noradrenaline release (presynaptic) but ultimately decrease
activation of postsynaptic target neurones. In addition,
excessive release of transmitter could result in depletion of
noradrenaline and serotonin further decreasing postsynap-
tic neurone activation. The time course and extent of these
adaptive changes to chronic stress diVer between involved
brain regions.62 116 Thus similar to alterations in the GC
mediated system, neuroplastic alterations in aminergic sys-
tems may play a prominent role in the chronic biasing of
the stress response towards maladaptive responses.

In summary, central aminergic networks involving sero-
tonergic, noradrenergic, and cholinergic pathways play an
important role in mediating the output of the central stress
response both to specific regions of the brain (arousal,
emotion) and to the periphery (autonomic, pain modula-
tion). Alterations in the gain and eVectiveness of these net-
works are likely to play a central role in the wide range of
maladaptive responses to pathological stress, manifesting
as both aVective and somatic disorders.

Possible role of allostasis in chronic gastrointestinal
disorders
The association of disease activity with certain types of
stressors in FGD, IBD, and probably GORD suggests that
the alterations in specific outputs of the central stress
circuits, as well as the adaptive changes in peripheral target
cells induced by pathological stress and facilitated by
genetic factors, play a pathophysiological role in disease
activity. While such altered outputs may be solely responsi-
ble for predominant symptoms in IBS and possibly
functional dyspepsia, they may only play a modulatory role
in the other disorders. It is important to realise that fear
conditioning and interoceptive conditioning118 are likely to
play important roles in triggering stress responses to situa-
tions and contexts which by themselves are not threatening
or stressful.119 Below we will summarise selected reports of
altered autonomic, neuroendocrine, and endogenous
sensory modulation in FGD, IBD, and GORD, viewing
these alterations as changes not in isolation but as
alterations in the integrated response to stressors as
described in fig 1.

Functional gastrointestinal disorders
CHANGES IN AUTONOMIC NERVOUS SYSTEM RESPONSES

In both healthy humans and animals, stressors have been
shown to result in a characteristic stress induced slowing of
gastric emptying,120 increase in distal colonic motility,121 122

and acceleration of intestinal transit.92 123 In the most com-
mon functional gastrointestinal disorders, IBS and FD,
persistent alterations of autonomic responsiveness is likely
to play a role in altered bowel habits and alteration in gas-
tric emptying, respectively. Evidence for such alterations in
IBS includes increased responses of distal colonic motility
in response to laboratory stress121 and possibly food
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intake124 and delayed gastric emptying in a subset of
patients.125

A model of IBS, taking into account altered autonomic
regulation of gastric and distal colonic function and based
on upregulation of CRF containing neurones in Bar-
rington’s nucleus (part of the locus coeruleus complex) has
recently been reported by Valentino and coworkers.52

While descending CRF containing projections from this
pontine nucleus to the distal colon may mediate increased
stress and food induced motor responses of the distal
colon, ascending projections to the locus coeruleus and to
the forebrain may be responsible for mediating arousal and
shifting attention to visceral aVerent stimuli. Increased
expression and release of CRF in IBS patients, or a subset
of patients, are also consistent with the reported evidence
for increased sympathetic responses.104 126–128

Changes in the frequency of high amplitude propagated
contraction in the colon, presumably via alteration in vagal
colonic regulation, may play an important role in diarrhoea
and slow transit constipation, thereby determining the pre-
dominant bowel habit pattern in IBS.129–131 In FD, reported
findings of delayed gastric emptying, decreased antral
motor activity to food and stress,120 132 and impaired proxi-
mal gastric accommodation to a meal133 and to duodenal
distension134 are also consistent with an alteration in the
gain of vago-vagal reflexes, possibly by central monaminer-
gic systems, as discussed above.

There is evidence that decreased cardiovagal tone is
present in certain patients with functional dyspepsia135 136

and in subsets of patients with IBS.136 137 Recent evidence
from patients with functional constipation suggests that
despite the heterogeneity of vagal motor neurones, changes
in cardiovagal tone, vagal regulation of intestinal transit,
and vagal regulation of colonic mucosal blood flow may all
be reduced in parallel.138

HPA AXIS CHANGES

Evidence for alterations in HPA axis function has been
demonstrated in diarrhoea predominant IBS patients who
showed decreased 24 hour plasma cortisol, blunted cortisol
responses, and normal adrenocorticotropic hormone
responses to noxious rectosigmoid distension.104 In con-
trast, Heitkemper et al reported that urine cortisol levels
obtained immediately on rising were significantly higher in
IBS women compared with control women.128 Even though
a thorough characterisation of HPA axis responses in FGD
patients has not been reported, these preliminary findings
suggest the pattern of sensitised GC feedback also reported
in victims of abuse,39 fibromyalgia, and chronic fatigue
syndrome.139 There is significant overlap in the epidemiol-
ogy of all of these conditions with IBS.10 140–143 While it is
currently not known if these HPA axis changes are an epi-
phenomenon or play a role in symptom generation and
pathophysiology of these syndromes, one may speculate on
their possible role in the observed findings in post-
infectious IBS patients. The reported persistence of
chronic inflammatory mucosal changes after eradication of
the infectious organism,4 and increased intestinal perme-
ability and hyperplasia of enterochromaYn cells144 are con-
sistent with an inadequate physiological response to acute
gut inflammation, in particular an inadequate cortisol (and
possibly an altered sympathetic) response. One may
speculate that a downregulated cortisol response to intero-
and exteroceptive stressors might also predispose IBS
patients to chronic inflammatory conditions, such as
asthma, rheumatoid arthritis, or IBD.145

CHANGES IN PAIN MODULATION

Suggestive evidence for alterations in stress induced
modulation of viscerosomatic sensitivity comes from

human and animal studies. IBS patients show cutaneous
hypoalgesia146 147 combined with visceral hypersensitivity,148

a similar pattern as seen in the rat in response to
psychological stressors.110 Preliminary results using psy-
chological laboratory stress in healthy volunteers suggests a
stress induced increase in colonic or rectosigmoid sensitiv-
ity to distension.109 Even though all published human stud-
ies are open to methodological criticism, they are consist-
ent with reported findings in animals of diVerential
viscerosomatic pain modulation. It is of interest to note
that patients with bulimia (who, in contrast with IBS
patients have a hyperactive HPA axis) show cutaneous
hypoalgesia also which precedes symptom exacerbation.149

CHANGES IN BRAIN ACTIVATION

Functional brain imaging studies of IBS patients have
shown decreased activation of the perigenual cingulate and
hippocampus.150 Decreased perigenual cingulate/medial
prefrontal cortex activity has also been reported in patients
with depression151 and with post-traumatic stress disor-
der.152 Bremner et al reported a decrease in prefrontal and
orbitofrontal cortical metabolism in patients with post-
traumatic stress disorder in response to the á2 antagonist
yohimbine.68 Together with results from preclinical studies
showing decreased metabolism in cortical regions with
high noradrenaline release,153 these results are consistent
with enhanced noradrenaline release in these brain regions
in patients with post-traumatic stress disorder. One may
speculate that the decreased activation in the perigenual
cortex and other brain regions seen in IBS patients may
also be related to exaggerated noradrenaline release in
response to stress.

In summary, IBS patients, in particular the non-
constipated subpopulation, present with a pattern consist-
ent with enhanced stress responsiveness manifested by
predicted autonomic and pain modulatory responses, and
sensitised GC feedback. This response pattern is associ-
ated with changes in brain activity in response to stress
consistent with increased central noradrenaline release.
The blunting of the HPA axis may precede the onset of IBS
symptoms and may predispose individuals to develop
post-infectious IBS. The fact that up to 40% of IBS
patients show evidence of increased anxiety,154 and the fact
that the changes are similar to those reported in a variety of
other so called “functional” disorders, suggest a top down
model, in which the alterations in the central stress circuits
in predisposed individuals are triggered by pathological
exteroceptive stressors and play a primary role in
pathophysiology.

Inflammatory bowel disease
CHANGES IN AUTONOMIC NERVOUS SYSTEM RESPONSES

Little is known about specific alterations in the autonomic
nervous system responses to interoceptive or exteroceptive
stressors in patients with IBD or in animal models of coli-
tis. However, several animal studies provide indirect
evidence for involvement of autonomic dysregulation.

Qiu and colleagues155 recently provided evidence that
short term moderate stress can enhance the response of the
colon to chemically induced inflammation. Their findings
are consistent with a model in which the eVect of the stres-
sor is primarily mediated by autonomic responses, and not
by stress induced alterations in neuroendocrine function
(HPA axis). The authors show that CD4+ cells which are
sensitised by a chemically induced colitis can be reactivated
by a subthreshold dose of the same chemical irritant
applied to the colon six weeks after the initial insult, at a
time of complete mucosal healing. They provide evidence
that this eVect requires sensitised CD4+ lymphocytes, and
is mediated in part by an eVect of the stressor on mucin
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production and colon permeability, presumably facilitating
access of the irritant to the sensitised lymphocytes. A pre-
vious study by the same group in the trinitrobenezene sul-
phonic acid rat model had demonstrated stress induced
increases in myeloperoxidase levels in the rat colon, six
weeks after induction of colitis.156 A series of articles from
Perdue’s group provided evidence for stress induced
increases in mucosal permeability of the rat intestine.81 82 157

Pharmacological evidence for mediation of these perme-
ability changes by cholinergic and adrenergic nerves, mast
cell degranulation, and involvement of peripheral CRH has
been provided.81 The source of peripheral CRF in these
stress mediated changes is not known but may include
immune cells, postganglionic sympathetic neurones, and
colonic enterochromaYn cells. In this context, it is of
interest that increased intestinal permeability has also been
reported in certain patients with post-infectious IBS symp-
toms.144

Taken together, these findings in animals together with
the extensive literature on immune modulation by the
sympathetic nervous system indirectly support a role for
stress mediated activation of certain sympathetic (in addi-
tion to parasympathetic) nerves in increasing the perme-
ability of the gut, altering the quantity of mucin, and alter-
ing immune function in the reactivation of inflammatory
mucosal changes in chronic colitis. As activation of sympa-
thetic nerve pathways during acute stress is generally asso-
ciated with an immunosuppressive role, alterations in stress
activated autonomic output, possibly associated with
altered cortisol responses, must be responsible for a mal-
adaptive response.

CHANGES IN HPA AXIS RESPONSES

Little is known about HPA axis regulation in patients with
IBD. One may speculate that similar to patients with rheu-
matoid arthritis,36 HPA axis responses are downregulated
by the chronic colonic inflammation in IBD patients,
thereby compromising the organism’s ability to counter-
regulate mucosal inflammation.158 Preliminary studies in
rats with TNB induced colitis are indeed consistent with
such downregulation (Tache, personal communication,
1999). Furthermore, in analogy to findings in Fisher and
Lewis rats34 there may be genetic factors, such as a hypore-
sponsive HPA axis in subsets of IBD patients, that predis-
pose to the persistence of inflammation. Evidence for such
greater susceptibility of CRF hyposecreting Lewis rats to
stress induced colitis has recently been provided.92

However, no evidence for a role of alterations in stress
induced HPA axis activation has been found between
rodents with short term colitis that showed stress induced
recurrence of mucosal changes and those that did
not.155 156 159 160 As only single time point measurements of
corticosterone responses to stress were reported in these
studies, it is not known if diurnal variation or 24 hour cor-
ticosterone output was altered in these animals.

In summary, one can only speculate that IBD patients
may show similar downregulation of the HPA axis as
patients with rheumatoid arthritis. However, in contrast
with IBS, fibromyalgia, or post-traumatic stress disorder
patients where this blunting appears to be related to
increased central CRH release combined with enhanced
GC receptor mediated feedback, HPA axis downregulation
is likely to be secondary to decreased CRH gene expression
and secretion.

CHANGES IN PAIN MODULATION

The limited information on visceral and somatic pain per-
ception in patients with IBD suggests that acute inflamma-
tory changes (at the site of distension) are associated with
enhanced visceral sensitivity,161 while patients in remission

have normal perception of rectal distension.162 Patients
with Crohn’s disease of the small bowel show normal or
decreased sensitivity to rectal distension.163 In contrast,
induction of colonic pain by repetitive sigmoid stimulation
resulted in a decrease in rectal pain sensitivity, consistent
with adequate activation of endogenous pain inhibitory
pathways.164

CHANGES IN BRAIN ACTIVATION

Preliminary results comparing regional brain activation
assessed by O15 water positron emission tomography
between healthy control subjects, and patients with mild
ulcerative colitis and IBS suggest similar activation
patterns both during rectal distension as well as during
anticipation of such distension, while IBS patients showed
decreased activation of the perigenual cingulate, amygdala,
and hippocampus.165

In summary, our understanding of the outputs of the
central stress circuits in IBD is incomplete. However, it
appears to be diVerent from that observed in FGD
patients. One may speculate that the output is comprised of
downregulation of the HPA axis, alteration of gut targeted
branches of the sympathetic nervous system, and normal
activation of stress induced pain modulation pathways. In
contrast with the pattern seen in IBS patients, the pattern
in IBD may reflect genetic predisposition to a hyporeactive
HPA axis combined with secondary downregulation in the
central response to a chronic interoceptive stressor (for
example, mucosal inflammation). In those IBD patients
who appear to have comorbid IBS, the low cortisol
response may be associated with alterations in autonomic
and pain modulation seen in IBS patients.

GORD
Despite the suggestive epidemiological data on the associ-
ation of GORD with stressful life events, little is known
about possible alterations in the peripheral outputs of the
central stress system in subgroups of patients with GORD.
Recent evidence is consistent with a primary role of spon-
taneous transient relaxations of the lower oesophageal
sphinter in the mediation of pathological acid reflux.166 One
may speculate on the possible role of altered transmission
of vago-vagal reflexes by central aminergic systems in this
dysregulation (see above). Alteration of the gastro-
oesophageal high pressure zone by changes in diaphrag-
matic function may also contribute to stress induced
symptom exacerbation. Changes in diaphragmatic func-
tion related to stress induced breathing patterns have been
reported.167 In addition, slowing of gastric emptying by
inhibition of vagal gastric regulation may contribute to
stress induced symptoms. Finally, recent evidence suggests
a role for endogenous pain modulation systems in stress
induced increase in oesophageal chemosensitivity.168

In conclusion, recent breakthroughs in understanding
the neurobiology of stress emphasise the importance of the
peripheral outputs of the central stress response in the
modulation of some of the most common gastrointestinal
disorders. The same central alterations discussed above
may also explain the association with aVective disorders
seen in a certain percentage of patients with functional
gastrointestinal disorders, and the overlap with a variety of
clinical syndromes such as fibromyalgia, chronic fatigue
syndrome, and interstitial cystitis. Animal models of diVer-
ent pathological interoceptive and exteroceptive stres-
sors9 31 64 169 170 are available and, together with knockout
technology will help to determine which components of the
altered stress response are epiphenomena and which play a
primary role in the pathophysiology. Finally, a better
understanding of the role of pathological stressors in
modulation of disease activity will have important
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therapeutic implications. Both pharmacological interven-
tions (for example, CRF1 antagonist) as well as
educational-behavioural interventions in selected patient
populations are likely to become an integral part of cost
eVective disease management of FGD, IBD, and GORD.
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