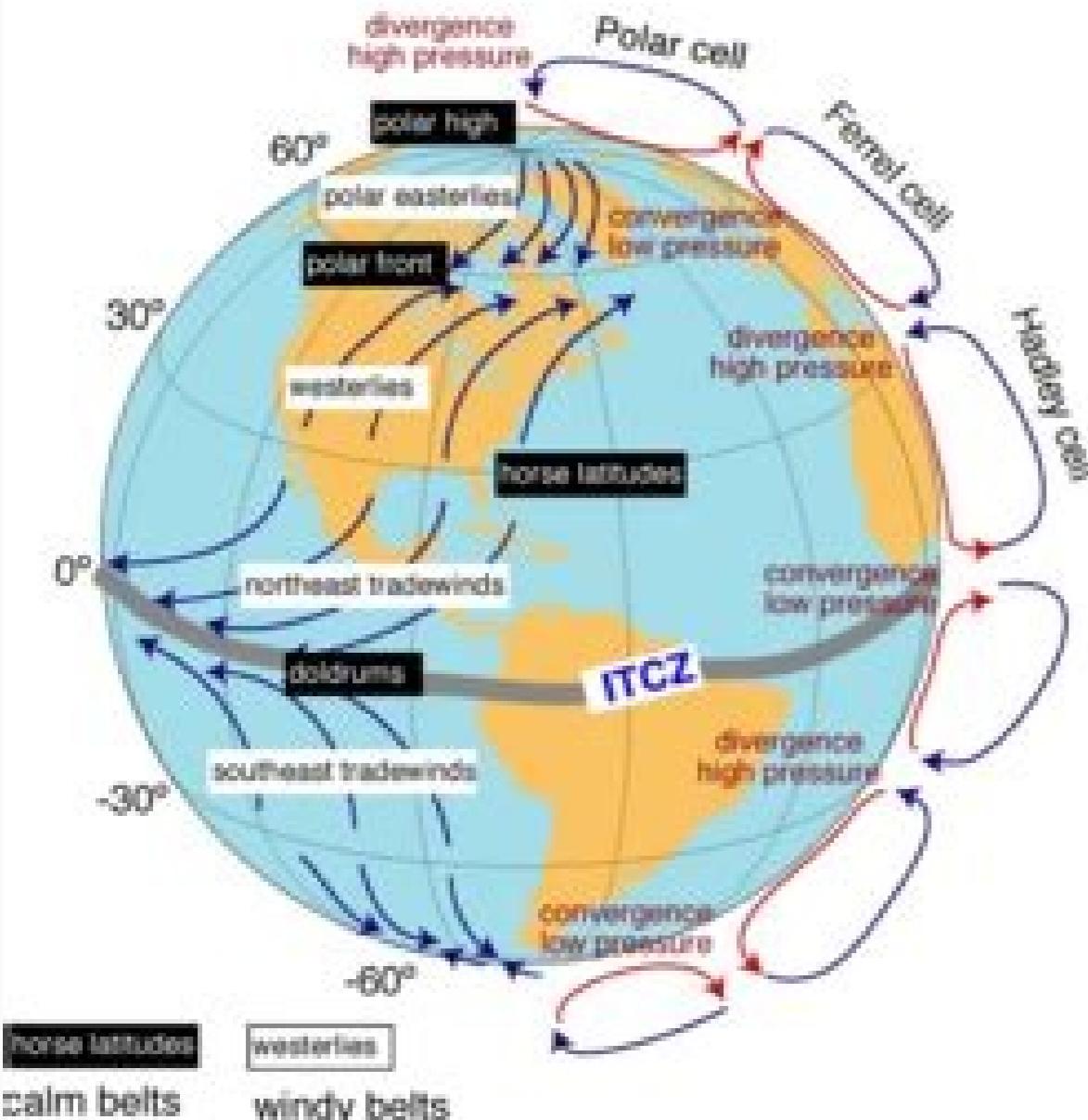
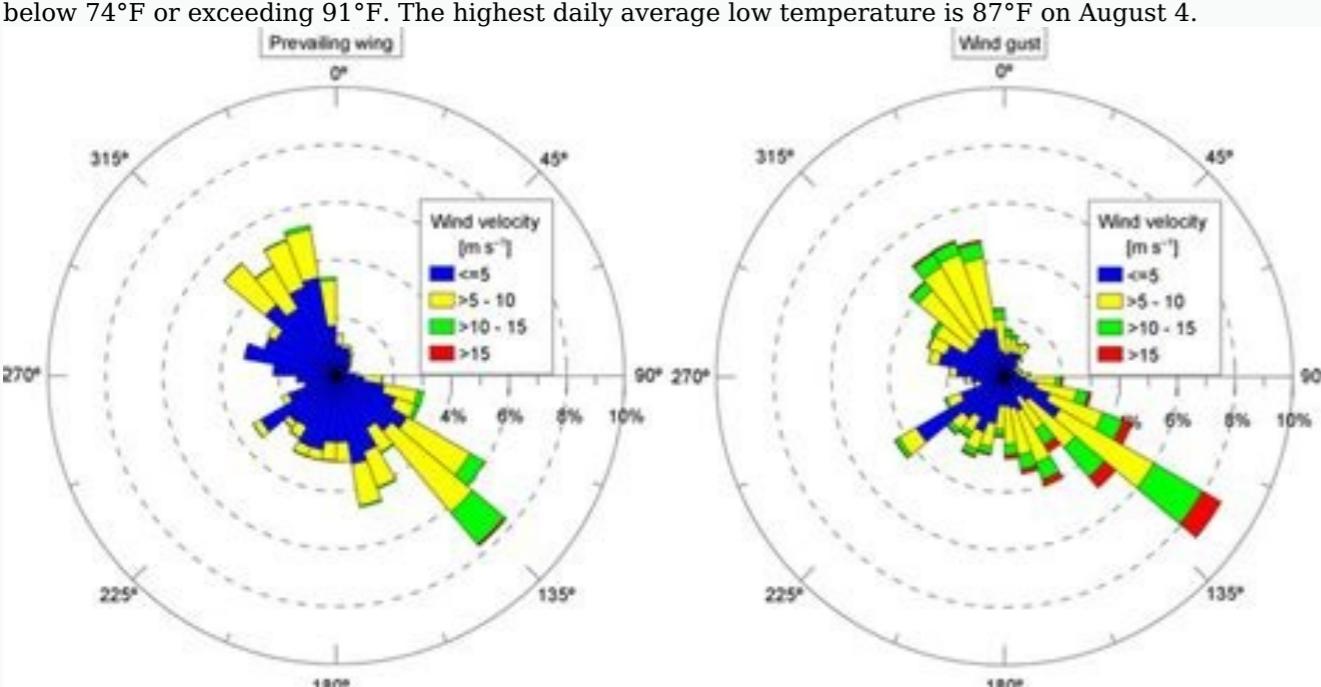


I'm not a robot
reCAPTCHA

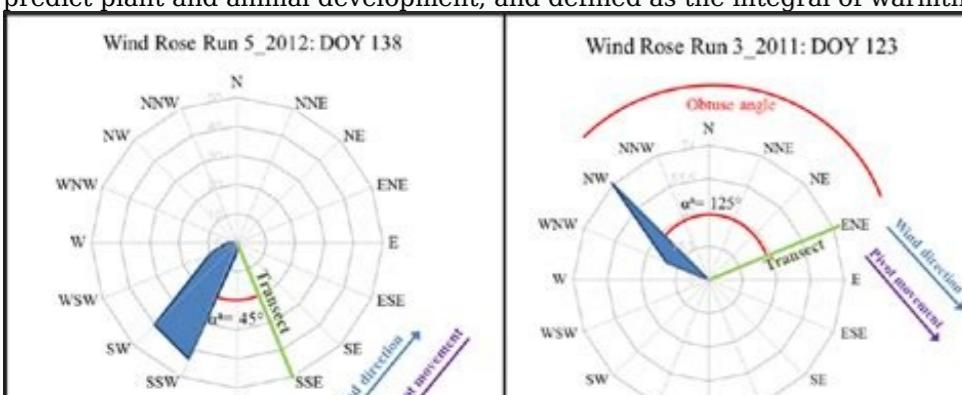
I'm not a robot!


Prevailing wind direction in dubai

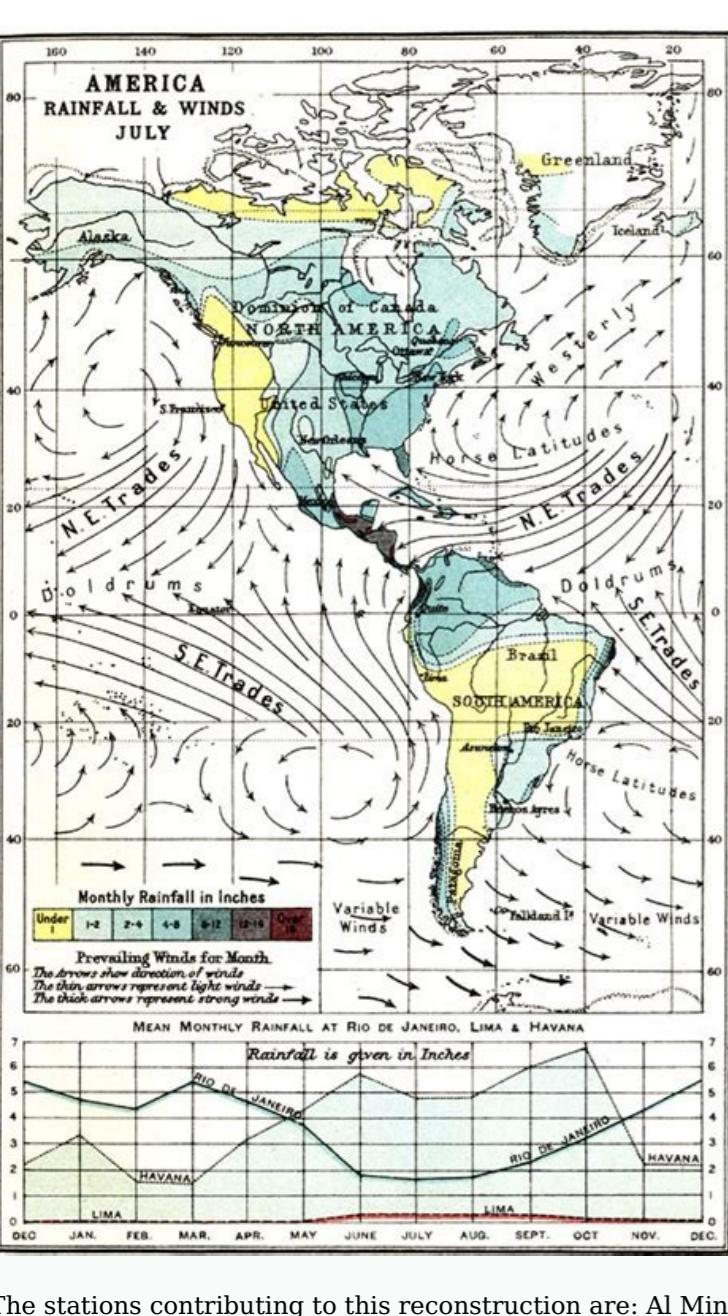
Dubai prevailing wind is a weather phenomenon which is decidedly courteous in the Arab peninsula around the Persian Gulf. The Dubai prevailing wind is characterized as heavy sandstorms which go from the desert around the city and directly into the suburbia. Often it can be dangerous to get out in the Dubai prevailing wind, because it blows directly into your face and if you try to get around the area you can't see anything at all. The special Dubai prevailing wind can cause a lot of trouble for the society off course, especially the famous golf courses around the city are often exposed by storms, and then need big clean ups before they can be used again, - good luck Dubai Desert Classic! At last if you are living in the UAE and drive long distances in the desert outback, then remember to check the local weather forecasts for Dubai prevailing wind and sandstorms, just to be safe. Weather in Dubai Taken from DataDubai.com Situated between 22 and 26 degrees north, the United Arab Emirates lies within a sub-region of the northern desert belt, characterized by scanty and erratic rainfall, and high levels for temperature, humidity, and sunshine. Winter sunshine averages eight hours per day, while the summer figure reaches as high as eleven hours a day. Despite this apparently stable climatic picture, the weather does show a remarkable degree of local variability, throwing up thunder storms, fog, gale force winds, sand storms and, of course, rain. For statistical data regarding the weather (provided by the Dubai Airport Met Office) please click here. Average precipitation figures count for relatively little here since the range of readings, from one year to the next often exceeds twice the nominal "average" figure, i.e. roughly 8 cm (80 mm) per year. Most rain falls in the winter months, from November to April. Less frequent, but nevertheless important rainfall occurs in isolated summer showers, carried into the area by south-westerly monsoons, and often occurring at the eastern edge of the great Rub al Khali, along the borders between Abu Dhabi and Saudi Arabia. sandstorm in Dubai.... Weather Chart The weather chart during much of the year shows a ridge of high pressure extending southwards into central Saudi Arabia with lower pressure over the eastern Gulf. Prevailing light to moderate north-westerly winds, known by their Arabic name shamal, meaning 'north', are associated with mid-latitude disturbances.



Along the western coastal plain, sea breezes tend to dominate with light south-south-easterlies at night being replaced by moderate north-westerlies during daytime. This pattern changes on the east coast where the proximity of the mountains results in gusty and less predictable wind shifts. A good strong blast of northerly shamal is usually preceded in the UAE by strong southerly winds, raising desert sands and reducing visibility. The shift to northerly winds may be quite sudden and can be accompanied by rain, thunder storms, or dust-storms. At sea, conditions can become quite difficult for small boats with force seven winds whipping up twelve foot high waves. In summer, weather charts usually indicate a broad area of low pressure, extending from the western Sahara, across the Arabian peninsula and across Asia, to China. Local pressure variations in the Gulf combine with this to create weather conditions in the UAE. Steady north-westerlies, predominating in the central and northern regions of the Gulf, do not generally extend as far south as the UAE. When they do so, sea conditions around Abu Dhabi become quite rough, while the rest of UAE's coastal waters experience only slight swells. The UAE is the first country in the Middle East to introduce the Satellite Delivered Information System technology (SADIS), a weather forecasting technology which covers the globe with the exception of Polar Zones. According to the National Meteorological Authority (NMA), which is affiliated to the Ministry of Communications, the system supplies data on temperature, humidity, volcanoes and wind directions. It also enables the UAE to receive the latest forecasts for centers all over the world through direct contact with the world center in London. The NMA has qualified forecasters to operate the system, and is currently training more forecasters to operate it. WindArabic interest in the weather and in the different types of winds blowing across the desert stems from the Bedouin tribes, for whom changes in weather could mean the difference between life and death. For them, each wind had its own characteristics and was known by a different name; thus, the main period of storms was Al-Barih al-owd, while the minor storm period was called Al-Barih al-sagheer. The first major Shamal occurring around May 25th is the Al-Haffar, or the driller since it drills huge depressions in the desert dunes. These second, arriving in early June, coincides with the dawn star, Thorayya (Pleiades) and is therefore named Barih Thorayya. During this one, which is somewhat more violent than the others, fishermen tend to remain in port, not just because of the wind's strength, but because ancient folklore tells them that this wind devours ships! Near the end of June, the last shamal arrives known as the Al-Dabaran. It is a violent wind, continuing for several days. Local residents keep doors and windows firmly barred in a battle against the all-penetrating fine dust driven by these shamal winds into every conceivable nook and cranny. Temperatures in the summer months, from June to September, are too hot for comfort. Midday temperatures range from 35°C to 42°C, and occasionally top 49°C at the height of summer. During this period there is a sharp drop in night time temperatures, with these falling to roughly half the midday readings, i.e. 20°C to 28°C, and providing a welcome respite from the searing heat of the day.


Convection Cells and Prevailing Surface Winds

Gulf waters exert a modifying influence on coastal zones, which experience less dramatic diurnal fluctuations in temperature, and higher humidities than inland regions. Although the evenings are not so cool, coastal towns do have the advantage of pleasantly refreshing sea-breezes. Mountainous regions are a little cooler and less humid. From December to March, the climate is considerably more equable with midday temperatures ranging from 25 to 35°C and falling to as low as 9°C at night. For statistical data regarding the weather (provided by the Dubai Airport Met Office) please click here. Dubai Desert Safari The most exciting and most popular tour in Dubai. Dubai Desert Safari is a treat for any one visiting Dubai. You will experience a thrilling drive in the sand dunes. Your tour begins at about 4PM we will pick you from your hotel or home in Dubai or Sharjah. You will take a Jeep drive across the majestic sandy dunes just outside Dubai, your experienced Safari driver cum Guide will ensure you enjoy the trip across the undulating sand dunes. We stop for sunset and take photographs and enjoy the some rough but careful tactic of driving in fine sand. We will stop for sunset for a picture of the sunset in the desert and later visit a camel farm. Upon arrival at the Desert camp you will have the opportunity to ride a camel, do sand skating, have henna painting on your hands and shop for interesting handicrafts. Once in the camp you will be served a delicious B.B.Q. dinner beside a blazing bonfire and entertained by a traditional belly dancer. The dinner includes a variety of Arabian & continental dishes including vegetarian and non-vegetarian dishes. You arrive back at your hotel around 2230 HRS. Click here to see more pictures of the Dubai desert Safari. There is also a choice of overnighting at the desert on our overnight Desert Safari. Cost: US\$ 62.00 Per person | Adult US\$ 40.00 Per Child | Contact us to book now. Home | Contact Details | Dubai Desert Safari | Hotel Reservations | Dubai Dhow Cruise Daily high temperatures are around 105°F, rarely falling below 97°F or exceeding 112°F. The highest daily average high temperature is 106°F on August 4. Daily low temperatures increase by 6°F, from 78°F to 84°F, rarely falling below 74°F or exceeding 91°F. The highest daily average low temperature is 87°F on August 4.



For reference, on August 2, the hottest day of the year, temperatures in Dubai typically range from 86°F to 106°F, while on January 15, the coldest day of the year, they range from 57°F to 75°F. The figure below shows you a compact characterization of the hourly average summer temperatures. The horizontal axis is the day, the vertical axis is the hour of the day, and the color is the average temperature for that hour and day. Chinguetti, Mauritania (4,270 miles away) is the far-away foreign place with temperatures most similar to Dubai (view comparison). © OpenStreetMap contributors The summer in Dubai experiences rapidly increasing cloud cover, with the percentage of time that the sky is overcast or mostly cloudy increasing from 14% to 30%. The highest chance of overcast or mostly cloudy conditions is 50% on July 22. The clearest day of the summer is June 1, with clear, mostly clear, or partly cloudy conditions 86% of the time. For reference, on July 22, the cloudiest day of the year, the chance of overcast or mostly cloudy conditions is 50%, while on October 5, the clearest day of the year, the chance of clear, mostly clear, or partly cloudy skies is 93%. To show variation within the season and not just the monthly totals, we show the rainfall accumulated over a sliding 31-day period centered around each day. The average sliding 31-day rainfall during the summer in Dubai is essentially constant, remaining about 0.0 inches throughout, and rarely exceeding 0.1 inches or falling below -0.0 inches. The lowest average 31-day accumulation is 0.0 inches on August 22. Over the course of the summer in Dubai, the length of the day decreases by 55 minutes, implying an average daily decrease of 37 seconds, and weekly decrease of 4 minutes, 16 seconds. The shortest day of the summer is August 31, with 12 hours, 40 minutes of daylight and the longest day is June 21, with 13 hours, 42 minutes of daylight. The earliest sunrise of the summer in Dubai is 5:28 AM on June 10 and the latest sunrise is 31 minutes later at 5:59 AM on August 31. The latest sunset is 7:13 PM on July 3 and the earliest sunset is 34 minutes earlier at 6:39 PM on August 31. Daylight saving time is not observed in Dubai during 2023. For reference, on June 21, the longest day of the year, the Sun rises at 5:30 AM and sets 13 hours, 42 minutes later, at 7:12 PM, while on December 22, the shortest day of the year, it rises at 7:00 AM and sets 10 hours, 35 minutes later, at 5:35 PM. The figure below presents a compact representation of the sun's elevation (the angle of the sun above the horizon) and azimuth (its compass bearing) for every hour of every day in the reporting period. The horizontal axis is the day of the year and the vertical axis is the hour of the day. For a given day and hour of that day, the background color indicates the azimuth of the sun at that moment. The black isolines are contours of constant solar elevation. The figure below presents a compact representation of key lunar data for the summer of 2023. The horizontal axis is the day, the vertical axis is the hour of the day, and the colored areas indicate when the moon is above the horizon. The vertical gray bars (new Moons) and blue bars (full Moons) indicate key Moon phases. The label associated with each bar indicates the date and time that the phase is obtained, and the accompanying labels indicate the rise and set times of the Moon for the nearest time interval in which the moon is above the horizon. We base the humidity comfort level on the dew point, as it determines whether perspiration will evaporate from the skin, thereby cooling the body. Lower dew points feel drier and higher dew points feel more humid. Unlike temperature, which typically varies significantly between night and day, dew point tends to change more slowly, so while the temperature may drop at night, a muggy day is typically followed by a muggy night. The chance that a given day will be muggy in Dubai is rapidly increasing during the summer, rising from 72% to 84% over the course of the season. The highest chance of a muggy day during the summer is 89% on July 29. For reference, on July 28, the muggiest day of the year, there are muggy conditions 89% of the time, while on January 16, the least muggy day of the year, there are muggy conditions 1% of the time. This section discusses the wide-area hourly average wind vector (speed and direction) at 10 meters above the ground. The wind experienced at any given location is highly dependent on local topography and other factors, and instantaneous wind speed and direction vary more widely than hourly averages. The average hourly wind speed in Dubai is gradually decreasing during the summer, decreasing from 8.3 miles per hour to 7.4 miles per hour over the course of the season. For reference, on March 15, the windiest day of the year, the daily average wind speed is 9.3 miles per hour, while on October 12, the calmest day of the year, the daily average wind speed is 6.9 miles per hour. The wind direction in Dubai during the summer is predominantly out of the west from June 1 to August 3 and the east from August 3 to August 31. Dubai is located near a large body of water (e.g., ocean, sea, or large lake). This section reports on the wide-area average surface temperature of that water. The average surface water temperature in Dubai is increasing during the summer, rising by 6°F, from 86°F to 92°F over the course of the season. The highest average surface water temperature during the summer is 92°F on August 12. Definitions of the growing season vary throughout the world, but for the purposes of this report, we define it as the longest continuous period of non-freezing temperatures ($\geq 32^{\circ}\text{F}$) in the year (the calendar year in the Northern Hemisphere, or from July 1 until June 30 in the Southern Hemisphere). Temperatures in Dubai are sufficiently warm year round that it is not entirely meaningful to discuss the growing season in these terms. We nevertheless include the chart below as an illustration of the distribution of temperatures experienced throughout the year. Growing degree days are a measure of yearly heat accumulation used to predict plant and animal development, and defined as the integral of warmth above a base temperature, discarding any excess above a maximum temperature. In this report, we use a base of 50°F and a cap of 86°F.

The average accumulated growing degree days in Dubai are very rapidly increasing during the summer, increasing by 3,220°F, from 3,631°F to 6,851°F, over the course of the season. This section discusses the total daily incident shortwave solar energy reaching the surface of the ground over a wide area, taking full account of seasonal variations in the length of the day, the elevation of the Sun above the horizon, and absorption by clouds and other atmospheric constituents. Shortwave radiation includes visible light and ultraviolet radiation. The average daily incident shortwave solar energy in Dubai is decreasing during the summer, falling by 1.1 kWh from 8.0 kWh to 6.9 kWh over the course of the season. The highest average daily incident shortwave solar energy during the summer is 8.0 kWh on June 4. For the purposes of this report, the geographical coordinates of Dubai are 25.066 deg latitude, 55.171 deg longitude, and 10 ft elevation. The topography within 2 miles of Dubai contains only modest variations in elevation, with a maximum elevation change of 180 feet and an average elevation above sea level of 8 feet.

Within 10 miles also contains only modest variations in elevation (407 feet). Within 50 miles contains only modest variations in elevation (6,155 feet). The area within 2 miles of Dubai is covered by bare soil (81%) and cropland (14%), within 10 miles by bare soil (65%) and water (33%), and within 50 miles by bare soil (53%) and water (44%). This report illustrates the typical weather in Dubai, based on a statistical analysis of historical hourly weather reports and model reconstructions from January 1, 1980 to December 31, 2016. Temperature and Dew Point There are 3 weather stations near enough to contribute to our estimation of the temperature and dew point in Dubai. For each station, the records are corrected for the elevation difference between that station and Dubai according to the International Standard Atmosphere, and by the relative change present in the MERRA-2 satellite-era reanalysis between the two locations. The estimated value at Dubai is computed as the weighted average of the individual contributions from each

The stations contributing to this reconstruction are: Al Minhad Air Base (OMDM, 55%, 12 mi, east, 154 ft elevation change) Dubai International Airport (OMDB, 39%, 16 mi, northeast, 16 ft elevation change) Abu Dhabi International Airport (OMAA, 6%, 55 mi, southwest, 75 ft elevation change) To get a sense of how much these sources agree with each other, you can view a comparison of Dubai and the stations that contribute to our estimates of its temperature history and climate. Please note that each source's contribution is adjusted for elevation and the relative change present in the MERRA-2 data. Other Data All data relating to the Sun's position (e.g., sunrise and sunset) are computed using astronomical formulas from the book, *Astronomical Algorithms 2nd Edition*, by Jean Meeus.

All other weather data, including cloud cover, precipitation, wind speed and direction, and solar flux, come from NASA's MERRA-2 Modern-Era Retrospective Analysis. This reanalysis combines a variety of wide-area measurements in a state-of-the-art global meteorological model to reconstruct the hourly history of weather throughout the world on a 50-kilometer grid. Land Use data comes from the Global Land Cover SHARE database, published by the Food and Agriculture Organization of the United Nations. Elevation data comes from the Shuttle Radar Topography Mission (SRTM), published by NASA's Jet Propulsion Laboratory. Names, locations, and time zones of places and some airports come from the GeoNames Geographical Database. Time zones for airports and weather stations are provided by AskGeo.com. Maps are © OpenStreetMap contributors. Disclaimer The information on this site is provided as is, without any assurances as to its accuracy or suitability for any purpose. Weather data is prone to errors, outages, and other defects. We assume no responsibility for any decisions made on the basis of the content presented on this site. We draw particular cautious attention to our reliance on the MERRA-2 model-based reconstructions for a number of important data series. While having the tremendous advantages of temporal and spatial completeness, these reconstructions: (1) are based on computer models that may have model-based errors, (2) are coarsely sampled on a 50 km grid and are therefore unable to reconstruct the local variations of many microclimates, and (3) have particular difficulty with the weather in some coastal areas, especially small islands. We further caution that our travel scores are only as good as the data that underpin them, that weather conditions at any given location and time are unpredictable and variable, and that the definition of the scores reflects a particular set of preferences that may not agree with those of any particular reader. Please review our full terms contained on our Terms of Service page.