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Abstract

This paper discusses identification, estimation, and inference on dynamic local average
treatment effects (LATEs) in instrumental variables (IVs) settings. First, we show that com-
pliers—observations whose treatment status is affected by the instrument—can be identified
individually in time series data using smoothness assumptions and local comparisons of treat-
ment assignments. Second, we show that this result enables not only better interpretability of
IV estimates but also direct testing of the exclusion restriction by comparing outcomes among
identified non-compliers across instrument values. Third, we document pervasive weak identifi-
cation in applied work using IVs with time series data by surveying recent publications in leading
economics journals. However, we find that strong identification often holds in large subsamples
for which the instrument induces changes in the treatment. Motivated by this, we introduce a
method based on dynamic programming to detect the most strongly-identified subsample and
show how to use this subsample to improve estimation and inference. We also develop new
identification-robust inference procedures that focus on the most strongly-identified subsample,
offering efficiency gains relative to existing full sample identification-robust inference when iden-
tification fails over parts of the sample. Finally, we apply our results to heteroskedasticity-based
identification of monetary policy effects. We find that about 75% of observations are compliers
(i.e., cases where the variance of the policy shifts up on FOMC announcement days), and we
fail to reject the exclusion restriction. Estimation using the most strongly-identified subsample
helps reconcile conflicting IV and GMM estimates in the literature.
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1 Introduction

Economists work hard to extract plausibly exogenous variation in order to identify causal

effects. Many identification strategies used in applied work either rely directly on instrumental

variables (IVs) or can be reframed in terms of IV identification. This holds also in dynamic

settings where, for example, external IVs may be constructed using a narrative approach or

heteroskedasticity is exploited to yield additional identifying equations. Since Imbens and

Angrist (1994), it has been well-known that IV-based approaches identify the local average

treatment effect (LATE)—the average treatment effect for the sub-population of compliers,

i.e., those whose treatment status is influenced by the policy intervention (the instrument).

In the LATE framework, the sub-population of compliers is unobserved. This means

that although a LATE can be identified, the specific sample observations this effect represents

is unknown. This limitation is often described informally as the inability to observe an

observation’s treatment status under both the intervention and non-intervention scenarios.

From a practical interpretability perspective, this presents a challenge that has been widely

discussed in the literature [see, e.g., Angrist, Imbens, and Rubin (1996), Heckman (1996),

Imbens (2010) and Robins and Greenland (1996)]. Some progress has been made by Imbens

and Rubin (1997) and Abadie (2003) who show that the proportion of compliers and some

of their statistical characteristics can be identified, provided these characteristics can be

expressed as functions of moments of the joint distribution of observed data. Using these

results, Bhuller, Dahl, Løken, and Mogstad (2020) conduct a detailed analysis of compliers

in the context of interpreting IV estimates of the effect of incarceration on recidivism and

subsequent labor market outcomes. Their work, along with many other studies, highlights the

importance of identifying the (characteristics of) compliers when drawing policy implications.

This paper considers IV identification in dynamic settings and shows how compliers can

be identified individually in this context. We first show that the notion of compliers can

be equivalently rewritten in terms of an inequality involving the difference in means of the

potential treatment under different instrument values. Under assumptions of continuity over

time in the mean of the potential treatment assignment process—conditional on a fixed hypo-

thetical value of the instrument—it is possible to recover counterfactual values by averaging

observations in a neighborhood around a given time point.

For example, consider heteroskedasticity-based identification of the causal effects of mon-

etary policy [cf. Rigobon (2003) and Nakamura and Steinsson (2018)] where the instrument

indicates whether there was an FOMC announcement on each date in the sample and the
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treatment variable is equal to the variance of a short-term interest rate. Here compliers are

defined as observations for which the volatility of the policy variable (change in short-term

interest rate) increases if and only if there is an FOMC announcement. Suppose that there is

an FOMC announcement on a given date of interest so that we do not observe the potential

treatment assignment under the counterfactual instrument value indicating the absence of

an announcement. Although the mean treatment assignment under non-announcement is

unobserved at this date, it can be recovered if mean treatment assignments are a smooth

function of time by computing an average of nearby days without an announcement. Under

an additional assumption of deterministic complier status, the complier status of the date in

question can be estimated and tested by comparing local means of the treatment variable,

one corresponding to nearby dates for which an announcement occurred and the other corre-

sponding to nearby dates for which it did not.1 Applying our identification results and tests

to the heteroskedasticity-based identification of monetary policy effects, we find that about

75% of observations are compliers while the non-compliers are primarily concentrated in the

early zero lower bound period, when the central bank could no longer lower interest rates

and forward guidance was not aggressive.

Identification of compliers is not only valuable in its own right. It also enables us to test

the exclusion restriction, a key condition for valid IV estimation that is typically untestable in

practice. By identifying compliers, and thus also non-compliers, we show that the exclusion

restriction can be tested using a t-test that compares the average outcomes of non-compliers

across different instrument values.

A key condition for identification of the LATE in the IV framework is instrument rele-

vance, entailing nontrivial correlation between the endogenous variable and the instrument.

We begin by analyzing the problem of weak instruments, entailing low correlation between

the endogenous variable and instrument, in empirical work through a survey of articles us-

ing IVs published from 2019 to 2022 in five leading journals: American Economic Review,

Econometrica, Journal of Political Economy, Quarterly Journal of Economics, and Review

of Economic Studies. Our sample includes 1,560 specifications from 18 papers, with 199

involving time series and 1361 involving panel data.2 The left panels of Figure 1 show his-

tograms of full sample first-stage F -statistics for the specifications in our survey, truncated

1Even though we focus on a time series setting, our identification results immediately apply to cross-
sectional settings with spatial data provided that the temporal distance between observations is interpreted
as geographical distance, and analogous continuity assumptions are imposed over space.

2See the supplement for the full list of papers and inclusion criteria.
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above 100 for visibility. Many F -statistics concentrate around the χ2
1 critical values and fall

below the conventional thresholds of 10 and 23.1 suggested by Staiger and Stock (1997) and

Montiel Olea and Pflueger (2013), raising serious concerns about weak instruments.3 These

findings align with those of Andrews, Stock, and Sun (2019), who analyze cross-sectional

studies. For example, we find that 75% of time series and 72% of panel data specifications

have first stage F -statistics below 24. The median F -statistic is 12.63 for time series and

9.29 for panel data.4

Figure 1: Distributions of the first-stage F (left panels) and F ∗ statistics (right panels). The top panels apply to time

series specifications and the bottom panels apply to panel data specifications. The orange and red vertical lines correspond to

the 5% and 1% level asymptotic critical values of the first-stage F (χ2
1 for left panels) and F ∗ statistics (8.28 and 11.63) for

right panels) under identification failure.

When identification fails or is weak, IV estimators can be severely biased for LATEs and

conventional inference methods are rendered invalid. These problems have prompted exten-

sive research on detecting weak instruments and constructing identification-robust confidence

sets.5 However, there has been little work on estimation and inference in a general LATE

setting when identification may be stronger over subsamples. The second main contribution

3Indeed, Staiger and Stock (1997) derive the threshold of 10 under the homoskedasticity-only assump-
tion—the relevant thresholds for time series data are larger [see Montiel Olea and Pflueger (2013)].

4For panel data specifications we consider each cross-sectional unit individually to enable comparison to
our proposed time series test shown on the right panels.

5See, e.g., Andrews et al. (2006), Kleibergen (2002), Moreira (2003) and Staiger and Stock (1997).
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of this paper is to develop a framework for identification, estimation, and inference on LATEs

that accommodates time-varying instrument relevance. Within this framework, we propose

a first-stage F -test to detect whether identification fails over all nontrivial subsamples. To

solve the computationally intensive problem of searching for maximal identification strength

among all possible sample partitions, we employ dynamic programming. This optimization

is more complex than that in the structural break literature since evaluating identification

strength requires more than comparing parameter changes across regimes.

In an attempt to understand the sources of weak IVs we plot the histograms of the F ∗

statistic proposed in this paper (cf. Section 4) in the right panels of Figure 1. The statistic

F ∗ searches for the subsample with maximal identification strength among all possible sub-

samples of size at least πLT .
6 The idea is that while the IVs may appear weak in the full

sample, they may be strong in a possibly large subsample. Figure 1 shows that this is indeed

often the case. The red vertical lines in Figure 1 mark the 95th percentile of the asymptotic

distributions of the F and F ∗ statistics under the null of identification failure. Although its

quantiles are larger, the F ∗ statistics have substantially more mass in the upper quantiles of

their null distribution. This has at least three implications. First, it confirms substantial time

variation in the instruments’ strength. Second, strong identification appears to be frequently

present in a sizeable subsample even when the instruments appear weak in the full sample.

The median F ∗ is 27.22 for time series and 33.81 for panel data specifications. These are

substantially higher than their full sample counterparts and this difference cannot be simply

attributed to the different null asymptotic distributions of the two test statistics given that

the difference in the asymptotic critical values is relatively small while the empirical distribu-

tions of the two test statistics is markedly different. About one half of the specifications that

appear to suffer from weak IVs in the full sample seem better characterized by strong IVs

in the subsample with maximal identification strength. Third, the subsamples where instru-

ments appear strong tend to be large. From an empirical perspective, this is encouraging:

although weak instruments in the full sample are common, researchers can often succeed in

identifying large subsamples where instruments appear strong.

Motivated by this survey evidence, we construct consistent estimators of LATEs when

subsamples are strongly-identified. It is commonly believed that if IVs are strong only in

some portion of the sample, the full sample IV estimator remains consistent for a LATE.

We show that this belief is unwarranted unless the LATE of interest is time-invariant (i.e.,

6We set πL = 0.6 in Figure 1. We discuss the choice of πL below.
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homogeneous). If this condition fails, one can at best identify a LATE corresponding to

the strongly-identified subsample. Even when the LATE is homogeneous, the full sample IV

estimator may still be severely biased if instruments are irrelevant over parts of the sample.

Our approach differs from that of Magnusson and Mavroeidis (2014) and Antoine and

Boldea (2018), who use time variation in IV strength to add moment conditions in a GMM

context, enabling more efficient inference and estimation. In contrast, we exploit this time

variation to identify the subsample where IVs are strongest and base our estimation on this

subsample. This insight allows for consistent estimation even when subsamples suffer from

identification failure.7 If the parameter of interest is heterogeneous, our estimator remains

valid but is interpretable only within the strongly-identified sub-population.

We apply our methodology to the heteroskedasticity-based identification strategy used

to estimate the causal effects of monetary policy from high-frequency data [e.g., Nakamura

and Steinsson (2018)]. The key identification condition for this strategy is that the volatility

of the daily changes in short-term interest rates is higher on FOMC announcement days

than on non-FOMC days. Lewis (2022) provides evidence of weak full sample identification

and shows that IV and GMM estimates even differ in sign. We find that identification is

substantially stronger over a subsample comprising 80–90% of the data, with the excluded

subsample centered around the financial crisis, during which volatility was high even on non-

FOMC days. Estimation using the most strongly-identified subsample yields IV and GMM

estimates that have the same sign and similar magnitudes. We recommend reporting the

most strongly-identified subsample estimates in addition to the full sample estimates when

strong full sample identification may be in question.

Although our new methods are able to find the most strongly-identified subsample,

this subsample may still fail to be strongly-identified. For our final theoretical contribution,

we develop identification-robust inference procedures using the most strongly-identified sub-

sample. We propose versions of the Anderson-Rubin, Lagrange Multiplier, and conditional

likelihood ratio tests, which depend only on this subsample. These tests are more efficient

than their full sample counterparts, which include noise from regimes suffering from iden-

tification failure. When instruments are strong throughout the sample, our tests coincide

with the conventional ones. When instruments are irrelevant over parts of the sample, our

tests achieve higher efficiency by focusing on stronger segments. In the worst case, when IVs

7Another major difference from Magnusson and Mavroeidis (2014) is that we address the computational
challenge for the case of multiple breaks in the first-stage coefficient. Magnusson and Mavroeidis (2014) did
not attempt to address this issue and refer to it as “computationally demanding”.
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are weak everywhere, our methods are no less efficient than existing ones. While there is a

trade-off between using fewer observations and more strongly identified subsamples, simula-

tions show that our tests have higher power, indicating that the efficiency loss from a smaller

sample size is outweighed by the gain in identification strength.

The paper is organized as follows. Section 2 introduces the potential outcome framework

and dynamic causal effects, and presents identification results. Section 3 discusses issues

pertaining to heteroskedasticity-based identification of monetary policy. Section 4 presents

an F -test for full sample identification failure. Estimation and inference robust to weak

identification are discussed in Sections 5-6. An empirical application is considered in Section

7. Section 8 concludes. The supplements Casini, McCloskey, Rolla, and Pala (2025b, 2025a)

include the Monte Carlo simulations, proofs and additional results.

2 Identification of Dynamic Causal Effects

A growing literature in macroeconomics uses IVs to identify dynamic causal effects when

the policy variable of interest is endogenous.8 Many existing identification approaches can be

reframed in terms of IVs, either derived from the modeling approach [e.g., heteroskedasticity-

based identification as in Rigobon (2003) and Nakamura and Steinsson (2018)] or through

external IVs constructed using a narrative approach [cf., Montiel Olea, Stock, and Watson

(2021)]. For example, Romer and Romer (1989) study the FOMC minutes to pinpoint dates

when monetary policy actions were arguably exogenous. This allows the construction of

exogenous variables that can be interpreted as IVs for some structural shock of interest.9

We adopt a potential outcomes framework, as introduced by Rubin (1974) and extended

to time series settings by Angrist and Kuersteiner (2011) and Rambachan and Shephard

(2021). Let the stochastic process Vt = (Yt, Xt, Dt, Zt) be defined on the probability space

(Ω, F , P), where Yt is a vector of outcome variables, Dt is a policy variable, Xt is a vector

of other exogenous and/or lagged endogenous variables, and Zt is a vector of instruments.

Let X⃗t = {. . . , Xt−1, Xt, } denote the covariate path up to time t, with analogous definitions

8See, e.g., Gertler and Karadi (2015), Jordà, Schularick, and Taylor (2015), Mertens and Montiel Olea
(2018), Mertens and Ravn (2013), Plagborg-Møller and Wolf (2022), Ramey and Zubairy (2018) and Stock
and Watson (2012, 2018).

9See Ramey and Shapiro (1998) for unanticipated defense spending shocks, Kuttner (2001), Nakamura
and Steinsson (2018) and Romer and Romer (2004) for monetary policy shocks, Hamilton (2003), Känzig
(2021a) and Kilian (2009) for oil market shocks, Känzig (2021b) for carbon pricing shocks, Romer and Romer
for tax shocks, and Ramey (2011) for government spending shocks.
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for Y⃗t, D⃗t and Z⃗t. Let the policy-relevant information set at time t denoted by Ft = σ(Ṽt)
where σ(Ṽt) is the σ-algebra generated by the history of Vt, Ṽt = (Y⃗t−1, X⃗t, D⃗t−1, Z⃗t−1).

Policy decisions depend on past observable variables and the contemporaneous outcome

through a systematic component and on idiosyncratic information available to the policy-

maker (i.e., the random component). The systematic component, denoted D(Ṽt, Yt, Zt, t),
is a time-varying non-stochastic function of the observed random variables Ṽt, contempora-

neous outcome Yt, and the contemporaneous instrument Zt. The idiosyncratic information

is represented by a scalar stochastic shock et that is not observed by the researcher. The

policy action is determined by Dt = φ(D(Ṽt, Yt, Zt, t), et, t), where φ is a general mapping.

In a SVAR context, et is the structural shock to the policy variable Dt. For example, if the

monetary authority follows a simple Taylor rule for the nominal interest rate, then φ is linear

and Ṽt includes inflation, output and the natural rate of interest.

We define two types of potential outcomes. The first, Yt ((ϵ1:t) , (z1:t)), denotes the coun-
terfactual values of Yt under hypothetical sequences of the policy shocks ϵ1:t and instruments

z1:t, where a1:t = {as}ts=1.

Definition 2.1. A generalized potential outcome, Yt ((ϵ1:t) , (z1:t)), is defined as the value

assumed by Yt if es = ϵs and Zs = zs for s = 1, . . . , t.

This definition excludes dependence on future shocks or instruments. The potential out-

come process should not be confused with the observed outcome {Yt}t≥1 = {Yt (e1:t, Z1:t)}t≥1.

For h ≥ 0 and any given ϵ and z, write the time-t + h potential outcome along the path

((e1:t−1, ϵ, et+1:t+h) , (Z1:t−1, z, Zt+1:t+h)) as

Yt,h (ϵ, z) = Yt+h ((e1:t−1, ϵ, et+1:t+h) , (Z1:t−1, z, Zt+1:t+h)) ,

where Yt,h (et, Zt) = Yt+h. Definition 2.1 captures the property that Yt,h (ϵ, z) also depends

on policy shocks that occur between time t+ 1 and t+ h. The notation Yt,h (e, z) focuses on
the effect of a single policy shock on current and future outcomes akin to the idea underlying

an impulse response. When the potential outcomes do not depend on the instruments,

Yt,h (ϵ, z) = Yt,h (ϵ), and for ϵ ̸= ϵ′, Yt,h (ϵ) − Yt,h (ϵ′) for h = 0, 1, . . . are the dynamic causal

effects of a policy shock on the outcome. In a SVAR setting, one is often interested in these

dynamic causal effects which are in fact the impulse responses.

The second potential outcome that we discuss, Y ∗
t ((d1:t) , (z1:t)), is defined as the coun-

terfactual values of Yt under hypothetical sequences of treatments d1:t and instruments z1:t.
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The distinction with Yt (ϵ1:t, z1:t) is that this formulation focuses on causal effects of the pol-

icy variable D, not the policy shock e. For t ≥ 1, we assume that dt ∈ D, zt ∈ Z for some sets

D and Z. In many applications outside SVARs, the causal effects of the policy are of interest.

Think about the slope of demand functions, price elasticities, response coefficients or reaction

functions of, for example, asset prices to monetary policy, and so on. Typically these causal

effects are analyzed using event-studies, quasi-experiments, IV regressions, etc. The recent

literature on causal effects in time series [e.g., Rambachan and Shephard (2021)] focuses on

the identification of causal effects of the structural shocks. In this paper, we consider iden-

tification of causal effects of the policy variable. We illustrate the difference between these

two causal effects and an application to SVAR using the following two examples.

Example 2.1. Consider the following system of simultaneous equations,

Yt = βDt + ηt and Dt = aYt + et, (2.1)

where the first equation is the demand curve, the second is the supply curve, Yt and Dt

are the observed price and quantity, and ηt and et are the structural shocks. The param-

eter β captures the slope of the demand function, which corresponds to the causal effect

∂Y ∗
t (d) /∂d = β. On the other hand, in a SVAR context one may be interested in the

impulse response of Yt given a shock to supply et. Solving for the reduced-form of (2.1),

Yt = β

1 − αβ
et + 1

1 − αβ
ηt,

shows that the lag-0 impulse response is dYt (e) /de = β/ (1 − aβ), which differs from β.

Example 2.2. Consider the following reduced-form VAR,

Vt = A1Vt−1 + A2Vt−2 + . . .+ ApVt−p + ut,

where Vt = (Dt, Y
′
t )′ is n× 1, Dt is a scalar, and ut is a vector of reduced-form VAR innova-

tions. The latter are related to structural shocks, εt = (et, η′
t)

′, via ut = B0εt where B0 is a

non-singular matrix. Under suitable conditions, Vt admits a moving-average representation

Vt = ∑∞
j=0 Cj (A)B0εt−j, where Cj (A) = ∑j

i=1 Cj−i (A)Ai for j = 1, 2, . . . with C0 (A) = In

8
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and Ai = 0 for i > p. Then, the outcome variable admits a moving-average representation,

Yt =
∞∑
j=0

cye,jet−j +
∞∑
j=0

cyη,jηt−j,

where cye,j and cyη,j are blocks of Cj (A)B0 partitioned conformably to Yt, et and ηt. If et is

the policy shock, the potential outcomes here are defined as

Yt,h (ϵ) =Yt,h (ϵ, z) =
∞∑

j=0,j ̸=h
cye,jet+h−j +

∞∑
j=0

cyη,jηt+h−j + cye,hϵ.

The potential outcome Yt,h (ϵ) tells us what Yt+h would be if et = ϵ and it does not depend

upon z since the instrument Zt is excluded from the VAR. Here the absence of causal effects

means that cye,h = 0 for all h, coinciding with the canonical condition that the impulse

responses are identically equal to zero.

The potential outcome framework is useful because it allows the study of nonparametric

conditions such that common statistical estimands (e.g., impulse responses) have a causal

interpretation. Montiel Olea, Stock, and Watson (2021) show how to use the instrument

Zt to identify the impulse response coefficient ϕr,e,h = ∂Y
(r)
t+h/∂et (the effect of et on the

rth variable in Yt+h). From the moving-average representation we have ϕr,e,h = ι′rCh (A)B0ι1

where ιs denotes the s-th standard basis vector. This shows that ϕr,e,h depends on the A’s and

the first column of B0. The following assumptions are needed for the identification of ϕr,e,h:

(i) E(Ztet) = θ ̸= 0 (instrument relevance) and (ii) E(Ztηt) = 0 (instrument exogeneity). By

(i)-(ii), B
(:,1)
0 = B0ι1 is identified up to scale by the covariance between Zt and the reduced-

form innovations ut: Γ = E(Ztut) = E(ZtB0εt) = θB
(:,1)
0 . Using the scale normalization

B
(1,1)
0 = 1 [see Stock and Watson (2018) for a discussion] we have Γ(1,1) = E(Ztet) = θ and

B
(:,1)
0 = Γ/Γ(1,1) = Γ/ι′1Γ. It follows that ϕr,e,h is identified since ϕr,e,h = ι′rCh (A) Γ/ι′1Γ,

where A can be estimated consistently from the reduced-form VAR and Γ can be estimated

consistently by using the VAR residuals ût in place of ut. On the other hand, identifying the

causal effects of the policy Dt here would require additional identification restrictions.

Montiel Olea, Stock, andWatson (2021) use shortfalls in OPEC oil production associated

with wars and civil disruptions as an instrument for the oil supply shock in the SVAR of

Kilian (2009) who investigates the effect of oil supply and demand shocks on oil production

and prices. This variable is plausibly correlated with the oil supply shock and, because

the shortfalls are associated with political events such as wars in the Middle East, it is

9
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plausibly uncorrelated with the demand shocks. Using the analog of the nonparametric

conditions we provide below, applied to the shock et rather than the policy Dt, permits a

causal interpretation of the impulse response even when E(Ztet) = 0 for a sub-population.

In the following, we discuss identification of causal effects of the policy via IV estimands.

2.1 Identification Conditions

We explicitly allow for endogeneity and rely on IVs. We assume that the instrument only

has a contemporaneous effect on Dt so that we may write Dt = Dt(Zt) where Dt(z) =
φ(D(Ṽt, Yt, z, t), et, t) is the potential treatment assignment at time t when Zt is set equal

to z ∈ Z. The instrument Zt is assumed to be (conditionally) independent of the potential

outcomes Y ∗
t,j (d, z) and treatments Dt(z) but correlated with the observed treatment Dt.

Assumption 2.1. (Independence) For all d ∈ D, z ∈ Z and t ≥ 1, we have{{
Y ∗
t,h (d, z)

}
h≥0

, Dt (z)
}

⊥Zt| Ṽt. (2.2)

Assumption 2.1 states that, given Ṽt, the instrument is as good as randomly assigned.

The second assumption is that potential outcomes Y ∗
t,h (d, z) are a function of d but not

of z. In studies of causal effects of monetary policy such as Nakamura and Steinsson (2018),

Zt = 1 if there is an FOMC announcement on day t and Zt = 0 otherwise. Then, potential

realizations of expected output growth respond to changes in the monetary policy variable

regardless of whether the change is associated with an FOMC announcement or not.

Assumption 2.2. (Exclusion) For all d ∈ D, t ≥ 1 and h ≥ 0, we have

{
Y ∗
t,h (d, z) = Y ∗

t,h (d, z′)
}
| Ṽt, for all z, z′ ∈ Z. (2.3)

In a dynamic simultaneous equations model (e.g., a SVAR) the exclusion restriction

requires the instrument not to appear in the causal equation of interest. In Example 2.2,

Assumption 2.2 corresponds to condition (ii), i.e., E(Ztηt) = 0 where ηt is composed of the

structural shocks other than et. Under Assumption 2.2 we write Y ∗
t,h (d, z) = Y ∗

t,h (d).
Identification based on IVs requires instrument relevance or “existence of a first-stage”.

The latter means that E(Dt (z) | Ṽt) is a non-trivial function of z. In cross-sectional settings,

the existence of a first-stage is typically assumed to hold for all units to guarantee strong
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identification. Strong identification of this form often fails to hold in applications involving

time series data due to temporary misspecification, bad luck, rare events or parameter insta-

bility. The analysis based on articles in five leading journals that we report earlier suggests

that there are time periods for which the first-stage exists (strong identification) and others

for which it does not (identification failure). Standard first-stage F -tests are then likely to

indicate weak identification since they are based on averaging these two sub-populations.

We provide a theoretical framework to address this identification problem by assuming

that there are two sub-populations. One comprises a fraction π0 ∈ [0, 1] of the overall

population for which the first-stage exists. For the second sub-population, which comprises a

fraction 1 −π0 of the population, the first-stage does not exist. This leads to a new notion of

LATE, which we name π-LATE, the LATE for the (unknown) π0 fraction of the population

for which the first-stage exists. If π0 = 1, then one recovers LATE.

Denote by |S0,T | the cardinality of S0,T (i.e., the number of indices in S0,T ).

Assumption 2.3. (Partial first-stage) Assume there exists S0,T ⊆ {1, . . . , T} such that |S0,T | =
⌊π0T ⌋ with π0 ∈ (0, 1] and for t ∈ S0,T , E(Dt (z) | Ṽt) is a non-trivial function of z, i.e., for

t ∈ S0,T , E(Dt (z′) | Ṽt) − E(Dt (z) | Ṽt) ̸= 0 for z′, z ∈ Z such that z ̸= z′.10

Assumption 2.3 implies that there are two sub-populations: one for which the first-stage

exists and one for which it does not. An average treatment effect can only be identified via

IVs for the fraction π0 of the population for which a first-stage exists.

The next assumption is monotonicity which, under heteroskedasticity-based identifica-

tion of monetary policy (see Section 3), means that while for some days the FOMC announce-

ment does not coincide with higher volatility in the policy variable, all of those days in which

the announcement affects the volatility of the policy variable, volatility is shifted up.

Assumption 2.4. (Monotonicity) D ⊆ R. For all z, z′ ∈ Z and t ∈ S0,T , either Dt (z) ≥
Dt (z′) or Dt (z′) ≥ Dt (z) with probability 1.

If π0 = 1 (so |S0,T | = T ), the condition reduces to that in Imbens and Angrist (1994).

Following Kolesár and Plagborg-Møller (2025), we impose the following assumption.

Assumption 2.5. For all t ≥ 1 and h ≥ 0, (i) Y ∗
t,h (·) is locally absolutely continuous on D

and (ii) E
[�

D |∂Y ∗
t,h (d) /∂d|dd

∣∣∣ Ṽt] < ∞.

10We assume that all expectations exist.
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Assumption 2.5 allowsDt to be either discrete, continuous or mixed. WhenDt is discrete

or mixed, it is implicitly assumed that to deal with the gaps in the support of Dt one extends

Y ∗
t,h (·) to D such that the extension is locally absolutely continuous. The support of Dt is

allowed to be unbounded. These conditions are weaker than counterparts imposed in the

recent literature [cf. Casini and McCloskey (2025) and Rambachan and Shephard (2021)], in

particular local absolute continuity replaces differentiability of Y ∗
t,h (·) plus bounded support

of Dt. It allows the application of the fundamental theorem of calculus to Y ∗
t,h (·) without

requiring the support of Dt to be bounded.

2.2 Identification Results

2.2.1 Identification of Causal Effects

We first discuss the case of a discrete instrument. When the first-stage does not exist for all

t, it is useful to define an IV estimand corresponding to the sub-population for which it does.

Let the generalized Wald estimand be defined for all z′, z ∈ Z by

βπ,t,h (ṽ) =
E
(
Yt+h|Zt = z′, Ṽt = ṽ

)
− E

(
Yt+h|Zt = z, Ṽt = ṽ

)
E
(
Dt|Zt = z′, Ṽt = ṽ

)
− E

(
Dt|Zt = z, Ṽt = ṽ

) , for t ∈ S0,T , (2.4)

where ṽ ∈ V. This is the ratio of a reduced-form generalized impulse response to a first-stage

generalized impulse response for t ∈ S0,T . We show that for t ∈ S0,T , the estimand βπ,t,h (ṽ)
identifies a weighted average of causal effects for the compliers. Recall that t ∈ S0,T and π0

are related by |S0,T | = ⌊π0T ⌋. When π0 = 1 and there is no conditioning on Ṽt = ṽ, β1,t,h

reduces to the Wald estimand considered by Rambachan and Shephard (2021). For t /∈ S0,T ,

βπ,t,h does not identify a causal effect because the denominator of (2.4) is equal to zero.

We show that for t ∈ S0,T , the generalized Wald estimand is equal to a weighted average

of marginal effects where the latter are the derivatives ∂Y ∗
t, h (d) /∂d.

Proposition 2.1. (π-LATE) Let Assumptions 2.1-2.5 hold. For t ∈ S0,T , h ≥ 0, ṽ ∈ V and

z′, z ∈ Z, we have

βπ,t,h (ṽ) =
�

D
E
[
∂Y ∗

t, h (d)
∂d

∣∣∣∣∣ Dt (z) ≤ d ≤ Dt (z′) , Ṽt = ṽ

]
wt (d| ṽ) dd, where (2.5)

wt (d| ṽ) =
P
(
Dt (z) ≤ d ≤ Dt (z′) | Ṽt = ṽ

)
�

D P
(
Dt (z) ≤ d ≤ Dt (z′) | Ṽt = ṽ

)
dr

≥ 0 and
�

D
wt (d| ṽ) dd = 1.
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Proposition 2.1 shows that βπ,t,h (ṽ) identifies a weighted average of causal effects for

compliers, characterized by Dt(z′) > Dt(z), for observations with a first-stage, with weights

wt (d| ṽ) determined by the (conditional) likelihood that Dt (z) ≤ d ≤ Dt (z′). We refer

to the average treatment effect on the right-hand side of (2.5) as the time-t π-LATE since

it is the LATE for the observations in this sub-population, which is a fraction π0 of the

whole population. In practice, the IV estimand βπ,t,h (ṽ) is characterized by two types of

averaging. First, there is averaging over time. For any treatment d, the average involves

only those observations whose treatment variable can be induced to change by a change in

the instrument and is computed only over those observations that satisfy the first-stage (i.e.,

t ∈ S0,T ). The second averaging is over different treatment values d at the same date t. This

is reflected in the weight wt (·) which is proportional to the number of observations in S0,T

for which Dt (z) ≤ d ≤ Dt (z′). Indeed, under regularity conditions permitting one to change

the order of differentiation and integration, viz.,

E
[
∂Y ∗

t, h (d)
∂d

∣∣∣∣∣ Dt (z) ≤ d ≤ Dt (z′) , Ṽt = ṽ

]
= ∂

∂d
E
[
Y ∗
t, h (d)

∣∣∣ Dt (z) ≤ d ≤ Dt (z′) , Ṽt = ṽ
]
,

βπ,t,h (ṽ) can be interpreted as a local average marginal effect.

Stationarity of the conditional joint distribution of the average potential outcome and

treatment assignment functions for observations with a first-stage lends further interpretabil-

ity to the generalized Wald estimand. Specifically, if {Y ∗
t,h (d) , Dt(z)}|Ṽt is identically dis-

tributed across t for all t ∈ S0,T , d ∈ D and z ∈ Z, Proposition 2.1, immediately implies that

βπ,t,h is equal for all t ∈ S0,T . Given this, we can write βπ,t,h = βπ,h, making explicit that the

generalized Wald estimand (2.4) equals a weighted average of causal effects for members of

the sub-population with a first-stage, which represents a π0-sized fraction of the total pop-

ulation. Under this assumption, we refer to the average causal effect inside of the integral

as π-LATE since it is a LATE for a member of the S0,T sub-population whose treatment

variable can be induced to change by a change in the instrument.

The sample counterpart to the generalized Wald estimand (2.4) involves replacing the

conditional expectations with sample estimates based upon observations t ∈ S0,T , yielding

an estimator of a causal effect. When Assumption 2.3 holds with π0 ∈ (0, 1), the full

sample estimand, i.e., the ratio of the time averages of the numerator and denominator of

(2.4), is a poor representative of the full sample average treatment effects because it includes

observations for which the instrument is not relevant in the averaging. We caution that the
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usual practice of estimating the conditional expectations in (2.4) with full sample estimates

will not estimate the full sample LATE, but π-LATE.

Angrist, Graddy, and Imbens (2000) and Rambachan and Shephard (2021) consider

related results in cross-sectional and time series settings. The difference here is that we do

not require Dt to be continuous or that the first-stage holds for all t. Kolesár and Plagborg-

Møller (2025) established a similar result for the slope coefficient in the population version of

the “reduced-form” regression of the outcome Yt+h onto Zt where they imposed no restriction

on the first-stage and allowed for a continuous instrument.

A connection to program evaluation with binary policy actions arises when we map

a dynamic problem with continuous variables into one with binary policy actions and in-

struments. For example, consider the analysis of causal effects of monetary policy using

heteroskedasticity-based identification [cf. Nakamura and Steinsson (2018) and Rigobon and

Sack (2003)]. Define a binary instrument Zt with Zt = 1 if there is a scheduled announcement

on day t and Zt = 0 otherwise. The policy ∆it typically reflects changes in short-term inter-

est rates. Identification relies on higher volatility in ∆it during announcement days (policy

sample) compared to non-announcement days (control sample). Think about mapping |∆it|
into a binary treatment such that Dt = 1 if |∆it| ≥ δ for some threshold δ > 0 and Dt = 0 if

|∆it| < δ [cf. Rigobon and Sack (2003)]. Here π-LATE captures the average treatment effect

for the sub-population whose interest rate changes exceed δ only when there is an announce-

ment (i.e., when Zt = 1). Observations where |∆it| < δ regardless of announcements are

“never-takers,” while those with |∆it| ≥ δ regardless of announcements are “always-takers.”

Under monotonicity, these groups form the non-compliers, whose responses are driven by

idiosyncratic factors other than announcement-specific effects. In Section 3 we document

regimes where the volatility of ∆it is high even in the absence of announcements.

Sojitra and Syrgkanis (2025) study dynamic treatment regimes with one-sided compli-

ance where treatments in each period may depend on past instruments, treatments, outcomes,

and confounding factors, while instruments in each period are generated based on prior in-

struments, treatments, and states. This setting encompasses applications such as digital

recommendation systems and adaptive medical trials. Their focus is on the causal effect of

treatment histories on long term outcomes, rather than of one-time shocks or single policy

shifts on outcomes at horizon h. Under binary instruments and treatments, they establish

nonparametric identification of the expected values of multi-period treatment effect contrasts

for the corresponding complier subpopulations, which they refer to as dynamic LATE.
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2.2.2 Identification of Compliers and Exclusion Restriction

A practical challenge for the π-LATE framework, and LATE frameworks in general, is that

the sub-population of compliers is unknown. However, in time series settings with binary

instruments, we show below that one can identify the compliers individually, i.e., to determine

whether each observation t is a complier. In this section, we consider a binary instrument,

e.g., Zt = 1 if t is an FOMC meeting day and Zt = 0 otherwise. Under Assumption 2.4,

assume without loss of generality that Dt(1) ≥ Dt(0) for all t. Then, observation t0 ∈ S0,T is

a complier if and only if Dt0 (1) > Dt0 (0) with probability one—if the treatment changes in

response to the instrument.

We begin with the following assumption which states that each observation is either a

complier or a non-complier with certainty.

Assumption 2.6. (Deterministic complier status) For each t either P (Dt (1) > Dt (0)) = 1 or

P (Dt (1) > Dt (0)) = 0.

Assumption 2.6 rules out cases where P (Dt (1) > Dt (0)) = p for some p ∈ (0, 1).
A non-complier cannot be characterized by P (Dt (1) > Dt (0)) > 0. The latter probabil-

ity must be zero. Under Assumption 2.6, Lemma S.D.2 in the supplement shows that

P (Dt0 (1) > Dt0 (0)) = 1 is equivalent to E (Dt0 (1)) > E (Dt0 (0)). This equivalence implies

that compliers can be identified by comparing the expected treatment values under different

instrument values.11 Under mild smoothness assumptions that we discuss below, the latter

two expected values can be estimated consistently from the sample so that we can determine

whether t0 is a complier in large samples by looking at the corresponding inequality based

on sample quantities.

Let P ⊂ {1, . . . , T} denote the “policy sample”, the set of observations for which Zt = 1
so thatDt = Dt(1) for all t ∈ P, and let C = {1, . . . , T}\P denote the“control sample”, where

Dt = Dt(0). It is reasonable to assume that, for a given value of the instrument, the potential

treatment assignments vary smoothly over time. Suppose we wish to determine whether an

observation t0 ∈ P is a complier. Since Dt0 (0) is not observed, under time-smoothness we

approximate E (Dt0 (0)) by averaging nearby observations in the control sample. Letting

11Note that this result is different from that in Lemma 2.1 in Abadie (2003) who shows that under several
assumptions the proportion of compliers can be identified by E (Di (1))−E (Di (0)) in a cross-sectional setting.
He uses this lemma to show that any statistical characteristic that can be defined in terms of moments of the
joint distribution of (Yi, Di, Zi) is identified for compliers. He then remarks that it is not possible to identify
compliers individually under these assumptions.
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N0(t0) denote the n0 largest indices s ∈ C such that s ≤ t0 − 1, this implies

DC,t0−1,n0 ≡ n−1
0

∑
s∈N0(t0)

Ds
P→ E (Dt0−1 (0))

as n0 → ∞ with n0/|C| → 0 under mild conditions. In addition, it follows that E (Dt0−1 (0))
is close to E (Dt0 (0)). A similar argument can be applied to E (Dt0 (1)) using adjacent days

in the policy sample: we have DP,t0,n1
P→ E (Dt0(1)) as n1 → ∞ with n1/|P| → 0, where

DP,t0,n1 = n−1
1
∑
s∈N1(t0) Ds and N1(t0) denotes the n1 largest indices s ∈ P such that s ≤ t0.

Thus, observation t0 ∈ P is a complier if and only if DP,t0,n1 −DC,t0−1,n0
P→ c as n0, n1 → ∞

with n0/|C|, n1/|P| → 0 for any c > 0.
Intuitively, even though Dt0 (0) is not observed when t0 ∈ P, observations close to

t0 characterized by no FOMC announcement provide information about what E (Dt0(0))
would have been in the absence of an FOMC announcement.12 There are about six weeks

in between any two FOMC meetings, and so n0 ≈ 30. Alternatively, following Naka-

mura and Steinsson (2018) the control sample could include all Tuesdays and Wednesdays

that are not FOMC meeting days. Nevertheless, one can skip the observation that per-

tains to the previous meeting, say Dt−1 (0), whose realization is not observed, and con-

tinue averaging using the observations prior to that meeting as well to construct the average

DC,t0−1,n0 possibly applying down-weighting for observations further in time from t0, i.e., use

. . . , Dt−1−1, Dt−1+1, Dt−1+2 . . . , Dt0−2, Dt0−1. Similarly, observations in P close to t0 provide

information about what E (Dt0 (1)) would have been, though here the successive observations

are separated chronologically by the observations in the control sample C.

We now present the formal result for identification of the compliers. The following

two assumptions can be justified in large samples when the mean (potential) treatment as-

signments in both the control and policy samples vary smoothly over time. Under an infill

asymptotic embedding where the original observations indexed by t = 1, . . . , T are mapped

into the unit interval [0, 1] via u = t/T , if limT→∞ E(DTu(z)) is continuous in u under a fixed

instrument value z ∈ Z, the following assumptions hold. This type of continuity accommo-

dates general forms of smoothly time-varying means but not abrupt breaks in mean.13

Assumption 2.7. (i) For any t ∈ C, DC,t,n
P→ E (Dt) as n → ∞ with n/|C| → 0. (ii) For

t ∈ P E(Dt−1 (0)) = E(Dt (0)).
12One could also use the observations to the right of t0 to construct DC,t0+1,n, i.e., Dt0+1, . . . , Dt0+n.
13However, breaks in the mean of the assignment process can be estimated under some conditions as we

explain below. Then, time-smoothness is required to hold only in regimes defined by successive break dates.
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Assumption 2.8. (i) For any t ∈ P DP,t,n
P→ E (Dt) as n → ∞ with n/|P| → 0. (ii) For

t ∈ C E(Dt (1)) = E(Ds∗(t) (1)) where s∗ (t) = argmins∈P|t− s|.

Assumption 2.7(i) requires a law of large numbers to apply to the rolling-window sample

average of Dt at the points of continuity of E (Dt). It is a minimal technical assumption.

Assumption 2.7(ii) strengthens part (i) a bit by requiring that for t ∈ P the potential treat-

ment assignment under the trajectory Zt = 0 has a locally constant mean. Assumption

2.8(i) adapts Assumption 2.7(i) to the observations in P. This is a stronger assumption since

two successive observations in the policy sample are separated by several observations in the

control sample. Assumption 2.8(ii) requires that E (Dt (1)) for t ∈ C is equal to the mean

of the potential treatment assignment at the closest date in the policy sample s∗ (t). This

is a first moment constancy assumption on the potential treatment assignment under the

trajectory Zt = 1. Assumption 2.7 is used to identify the compliers in the policy sample,

while Assumption 2.8 is used to identify the compliers in the control sample.

Theorem 2.1. Let Assumptions 2.6-2.8 hold and n0, n1 → ∞ with n0/|C|, n1/|P| → 0. Then:
(i) t ∈ P is a complier if and only if DP,t,n1 −DC,t−1,n0

P→ c where c > 0.
(ii) t ∈ C is a complier if and only if DP,s∗(t),n1 −DC,t,n0

P→ c̃ where c̃ > 0.

Theorem 2.1 shows that the compliers can be identified individually. To the best of our

knowledge, there is no equivalent result in the cross-sectional setting. The assumptions of the

theorem are easily satisfied in time series applications. Using Theorem 2.1 is straightforward:

one computes the difference between two sample averages and check whether it is greater

than zero. Given the sampling uncertainty associated with the two averages, one can conduct

inference using a t-statistic for the null hypothesis E (Dt0 (1)) − E (Dt0 (0)) = 0 (t0 is not a

complier) versus the alternative hypothesis that E (Dt0 (1))−E (Dt0 (0)) > 0 (t0 is a complier).

An additional challenge specific to the π-LATE framework is that the set of observations

with a first stage S0,T is also unknown. However, as the following result states, under As-

sumption 2.4, in the absence of covariates Ṽt, S0,T is equal to the (identified) set of compliers

—i.e., observations for which the first-stage holds individually.

Proposition 2.2. Suppose Zt is binary and let Assumptions 2.3 without conditioning on Ṽt,

2.4 and 2.6 hold. Then, the set of compliers coincide with S0,T .

Knowledge of the compliers sub-population (and hence of the non-compliers sub-population)

can be used to test the exclusion restriction (cf. Assumption 2.2) by comparing the mean
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outcomes of groups of non-compliers across different values of the instrument. For example,

one can divide any large subset of non-compliers into two groups according to their assign-

ment status. If one can reject the hypothesis that the average outcomes in these two groups

is the same, then the exclusion restriction cannot hold.

Under Assumption 2.4 with Dt(1) ≥ Dt(0), the set of non-compliers is N C = {t ∈
{1, . . . , T} : Dt(1) = Dt(0) = Dt}. Let N Cs be any non-empty subset of N C such that

N CsP = N Cs ∩ P ̸= ∅ and N CsC = N Cs ∩ C ̸= ∅. We can test the exclusion restriction in

Assumption 2.2 under the following assumption on the subsets N CsP and N CsC.

Assumption 2.9. (i) E[Y ∗
t (d, z)|t ∈ N CsP] = E[Y ∗

r (d, z)|r ∈ N CsC] for all t, r ≥ 1, d ∈ D and

z ∈ Z. (ii) {Dt, Ṽt}|t ∈ N CsP ∼ {Dr, Ṽr}|r ∈ N CsC for all t, r ≥ 1. (iii) For R = C or P,

|N CsR|−1∑
t∈N Cs

R
Yt

P→ E [Yt|t ∈ N CsR] as |N CsR| → ∞.

Condition (i) states that the potential outcome for non-compliers is mean-stationary

and the mean is the same across control and policy subsamples. Condition (ii) states that

the policy variable and past observables for non-compliers are distributed identically across

the control and policy subsamples. Condition (iii) states that a law of large numbers holds

for non-compliers observations in both the control and policy subsamples. As long as the

policy sample does not tend to contain systematic different values of the policy variable Dt

among non-compliers than the control sample, these are relatively mild conditions.

Proposition 2.3. Suppose Zt is binary and let Assumptions 2.4 and 2.9 hold. If Assumption

2.2 holds, then as |N CsP|, |N CsC| → ∞,

|N CsP|−1 ∑
t∈N Cs

P

Yt − |N CsC|−1 ∑
t∈N Cs

C

Yt
P→ 0.

Using Proposition 2.3 to test Assumption 2.2 is simple: since non-compliers can be

identified individually using Theorem 2.1, one can immediately compute the sample averages

specified in Proposition 2.3 and conduct inference using a t-statistic for the null hypothesis

that the population mean of t ∈ N CsP is equal to that of t ∈ N CsC. The researcher has

the ability to choose the subset of non-compliers N Cs when implementing this test. The

simplest choice is to set N Cs = N C, however, the researcher also has the ability to direct

the power of the test toward particular types of non-compliers they may suspect of being

more likely to violate the exclusion restriction. For example, one may wish to focus on

N Cs = {t ∈ N C : Dt ≥ d∗} or N Cs = {t ∈ N C : Dt < d∗} for some d∗ value, such as
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d∗ = |N C|−1∑
t∈N C Dt, in order to test violations of the exclusion restriction for observations

roughly corresponding to“always-takers”or“never-takers” in the case of a binary treatment.14

3 High-Frequency Identification of Monetary Policy Effects

To study the effects of monetary policy on real variables, a large literature has relied on

high-frequency identification. This exploits the fact that at the time of an FOMC meeting a

large amount of economic news is revealed. Here we discuss Rigobon’s (2003) heteroskedas-

ticity identification approach which uses a 1-day window [see, e.g., Nakamura and Steinsson

(2018)], and can be reformulated as IV-based identification. In Section 3.1 we explain when

the resulting reduced-form estimands have a causal meaning within the potential outcome

framework of Section 2. In Section 3.2 we discuss the weak identification problem of current

approaches and show how the π-LATE framework can be used to strengthen identification.

3.1 Heteroskedasticity-Based Identification

Consider the following system of equations:

Ỹt = β0D̃t + ηt, and D̃t = aỸt + et, (3.1)

where Ỹt is the (demeaned) daily change in an outcome variable, (e.g., an asset price or a bond

yield) and D̃t is the (demeaned) daily change in the unexpected component of a short-term

interest rate or policy news (e.g., ∆it as discussed after Proposition 2.1), ηt is a shock to Ỹt,

et is the monetary policy shock and a and β0 are scalar parameters. The errors ηt and et have

no serial correlation and are mutually uncorrelated. The parameter of interest is β0 which

represents the causal effect of monetary policy on the outcome variable. The model in (3.1)

could arise from a bivariate VAR. In fact, one could add a vector Xt of exogenous variables

to the model in (3.1). However, to focus on the main intuition, we follow Nakamura and

14Under an analogous assumption to Assumption 2.9 for a function of outcomes f(Yt), an analogous result
to Proposition 2.3 holds. One may use this fact, for example, to test if the variances of groups of non-
compliers are equal across different values of the instrument, which is implied by Assumption 2.2, or to test
the equality of a set of moments across different values of the instrument. Taking this logic even further,
one could invoke Gilvenko-Cantelli theorems to show that the difference between the empirical distribution
functions of observations in N Cs

P and N Cs
C converge uniformly to zero under Assumption 2.2 and use a test

for the equality of distributions such as the Kolmogorov-Smirnov test. However, we focus here on testing the
equality of means across instrument values because the level of the outcomes, rather than functions of them,
are likely to be of primary importance in practice.
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Steinsson (2018) and we omit Xt and lagged terms of Ỹt and D̃t. See Casini and McCloskey

(2025) for a detailed discussion of why the lags can be omitted in this setting.

The model in (3.1) is a special case of the generalized framework studied in Section 2.

It is useful because it directly motivates a particular IV estimand. However, we study the

causal interpretation of this estimand in the general case for which the linear model with

stable parameters is not the correct specification.

Heteroskedasticity-based identification requires that the variance of the monetary shock

increases in the days of FOMC announcements, while the variance of other shocks is un-

changed. Let TP denote the number of days containing an FOMC announcement (policy

sample), and let TC denote the number of days that do not contain an FOMC announcement

(control sample). Let σ2
e,P = T−1

P

∑
t∈P E (e2

t ) and σ2
e,C = T−1

C

∑
t∈C E (e2

t ) be the average

variance of the monetary policy shock in the policy and control samples. Define σ2
η,P and

σ2
η,C similarly. Then, the identification condition is

σe,P > σe,C and ση,P = ση,C . (3.2)

Identification can be shown analytically by first solving for the reduced-form of (3.1):

Ỹt = 1
1 − aβ0

(ηt + β0et) , D̃t = 1
1 − aβ0

(aηt + et) .

Let Σi denote the covariance matrix of [Ỹt, D̃t]′ in the subsample i = P, C. It follows that

Σi = 1
(1 − aβ0)2

 σ2
η,i + β2

0σ
2
e,i β0σ

2
e,i + aσ2

η,i

β0σ
2
e,i + aσ2

η,i σ2
e,i + a2σ2

η,i

 , i = P, C.

It is typical in the literature to assume within-regime covariance-stationarity, i.e., E (e2
t )

and E (η2
t ) are constant within each subsample P and C which is, however, restrictive for

economic time series. It turns out that this is not necessary for identification. Volatilities

can be time-varying as long as the average volatilities σe,i and ση,i (i = P, C) satisfy (3.2).

When (3.1) is correctly specified, i.e., the true model is linear with stable parameters,

the parameter β0 can be identified using (3.2) by taking the difference between the covariance
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matrices in the policy and control samples:

β0 = ∆Σ(1,2)

∆Σ(2,2) =
T−1
P

∑
t∈P Cov

(
Ỹt, D̃t

)
− T−1

C

∑
t∈C Cov

(
Ỹt, D̃t

)
T−1
P

∑
t∈P Var

(
D̃t

)
− T−1

C

∑
t∈C Var

(
D̃t

) , where (3.3)

∆Σ ≜ ΣP − ΣC =
σ2
e,P − σ2

e,C

(1 − a1β0)2

β2
0 β0

β0 1

 .
To determine which average treatment effect this approach identifies in the general framework,

we re-frame this problem in terms of instrumental variables as follows. Let Zt = 1 for t ∈ P
and Zt = 0 for t ∈ C. Multiply both sides of (3.1) by D̃t to yield D̃tỸt = β0D̃

2
t + D̃tηt. We

can use Zt as an instrument for D̃2
t . The first-stage is D̃2

t = θZt + εt, where εt is some error

term satisfying εt ≥ −θZt. The resulting Wald estimand is

β∗
π,t,0 =

E
(
D̃tỸt|Zt = 1

)
− E

(
D̃tỸt|Zt = 0

)
E
(
D̃2
t |Zt = 1

)
− E

(
D̃2
t |Zt = 0

) , (3.4)

which corresponds to the Wald estimand (2.4) for h = 0, Yt = D̃tỸt, Dt = D̃2
t and no

conditioning variable Ṽt. Under covariance stationarity within subsamples P and C, the

right-hand side of (3.4) is equal to the right-hand side of (3.3). The following corollary of

Proposition 2.1 presents the causal meaning of β∗
π,t,0 under the general setting of Section 2.

Corollary 3.1. (LATE in heteroskedasticity-based identification) Let Assumptions 2.1-2.5 hold

for Yt = D̃tỸt and Dt = D̃2
t with D̃t(1)2 ≥ D̃t(0)2. For t ∈ S0,T , we have

β∗
π,t,0 =

�
D E

(
∂(d̃Ỹ ∗

t,0(d̃))
∂(d̃2)

∣∣∣∣ D̃t(1)2 ≥ d̃2 ≥ D̃t(0)2
)
P
(
D̃t(1)2 ≥ d̃2 ≥ D̃t(0)2

)
d(d̃2)

�
D P

(
D̃t(1)2 ≥ d̃2 ≥ D̃t(0)2

)
d(d̃2)

. (3.5)

Corollary 3.1 shows that the Wald estimand in (3.4) has a causal meaning because it

is the ratio of a reduced-form generalized impulse response of D̃tỸt to a first-stage gener-

alized impulse response of D̃2
t . More specifically, β∗

π,t,0 identifies a weighted average of the

derivative of the product between the potential outcome and policy variable for compliers.

Hence, contrary to popular belief, the causal interpretation of the heteroskedasticity-based

estimator (i.e., Rigobon’s estimator) estimator is not the same as that of a standard IV esti-

mator—though it remains local in nature as it averages over compliers. We continue to refer

to it as LATE with the understanding that it is a LATE for D̃tỸt, not Ỹt itself.
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Here the compliers are the observations for which the announcement induces a higher

volatility of the policy D̃t. In contrast, the non-compliers are characterized by idiosyncratic

or general equilibrium factors that dominate the news specific to the announcement. That is,

regimes where D̃2
t remains low regardless of the presence of an announcement correspond to

“never-takers,”while regimes where D̃2
t remains high even in the absence of an announcement

correspond to “always-takers.” Noting that Dt = D̃2
t in this context, we can apply Theorem

2.1 to identify the compliers individually. We do so in the empirical application in Section 7.

It is important to consider how the interpretation of the causal effect identified by β∗
π,t,0

in Corollary 3.1 varies with the functional relationship between Ỹt and D̃t. Let us begin with

the linear case with stable parameters as in (3.1). From (3.4), simple algebra shows that

β∗
π,t,0 reduces to β0 when the denominator of (3.5) is nonzero, which means that Rigobon’s

estimator identifies the causal effect of the policy (i.e., the slope coefficient in (3.1)). This

result does not generally extend to the case where β0 is time-varying or the first-stage is zero.

At most one could identify a π-LATE provided that Rigobon’s estimator is computed over

the sub-population where the first-stage is nonzero. We will return to this in Section 3.2.

Let us turn to analyzing the consequences of nonlinearities. When Dt and the shock

ηt are additively separable (i.e., Yt = φD(Dt) + φη (ηt) for some nonlinear functions φD (·)
and φη (·)), Kolesár and Plagborg-Møller (2025) show that the estimand resulting from a

regression of Yt on Dt using Zt = (Wt−E (Wt))Dt as an instrument for which Cov (D2
t , Wt) ̸=

0 identifies a weighted average of marginal effects of the policy shock et with weights that

are not guaranteed to be positive. As a result, the researcher may infer an incorrect sign

for the marginal effects. Thus, this estimand is not weakly causal [cf. Blandhol, Bonney,

Mogstad, and Torgovitsky (2025)]. The authors also note that for the case Yt = etφη (ηt)
with E[φη (ηt)] = 0 and et⊥ηt the estimand is nonzero while the true causal effect of the

policy shock is zero since E [Yt| et] = 0.
Corollary 3.1 provides even more negative news about the effect of nonlinearities for

heteroskedasticity-based identification than that shown by Kolesár and Plagborg-Møller (2025):

in a general nonparametric model, Corollary 3.1 implies that Rigobon’s Wald estimand β∗
π,t,0,

which is in general different from the IV estimand examined by Kolesár and Plagborg-Møller

(2025), does not necessarily equal a weighted average of marginal effects. The intuition is

that the instrument affects Var (Dt) and not E (Dt), so variation in the instrument induces

exogenous variation in D2
t , which has a causal effect on DtYt not just Yt. In short, it is gen-

erally difficult to interpret β∗
π,t,0 when the true model is nonlinear. Thus, we concur with the
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recommendation of Kolesár and Plagborg-Møller (2025) that the linearity assumption should

be checked carefully when using heteroskedasticity-based identification. This is likely even

more important in the context of SVARs and local projections than in the the current event

study setting since the former aggregates data over a month or a quarter while the latter uses

relatively higher frequency data (e.g., a 30-minute or 1-day change in policy and outcome

variables around an announcement), where linearity may be a more credible assumption since

a nonlinear function can be locally well approximated by a linear one.15

3.2 Weak or Lack of Identification and the Usefulness of π-LATE

The key identification condition that the volatility of the policy variable is higher during

FOMC announcement days appears reasonable in principle, since each announcement day is

likely to be associated with substantial monetary news. However, the volatility of monetary

policy variables can be high for other reasons. There are multi-year periods during which

the volatility of several macroeconomic variables is elevated. In this case, general equilibrium

factors dominate the news specific to the announcement. For example, during the 2007-09

financial crisis and the Covid-19 pandemic, volatility was high across many macroeconomic

and financial variables. These facts pose serious challenges for identification, as the first-stage

condition may not hold for all t. To see this, examine the denominator of β0 in (3.3). If the

first-stage does not hold for all t, we may have

T−1
P

∑
t∈P

Var
(
D̃t

)
− T−1

C

∑
t∈C

Var
(
D̃t

)
≈ 0, (3.6)

which would render the estimate of the average treatment effect highly imprecise.

Using an F -test for weak identification, Lewis (2022) shows that the monetary policy

effects based on a 1-day window in Nakamura and Steinsson (2018) appear to be weakly-

identified. We show that this arises from significant time variation in the volatility of the

policy variable within both policy and control samples. Figure 2 plots D̃t (2-Year Treasury

yields) for the control and policy samples. The policy sample includes all regularly scheduled

FOMC meeting days from 1/1/2000 to 3/19/2014. The control sample includes all Tuesdays

15The differences between our results on identification via heteroskedasticity and those in Kolesár and
Plagborg-Møller (2025) are: (i) they consider the causal effect of the policy shock et while we consider the
causal effect of the policy variable Dt; (ii) they consider an IV estimand while we explicitly consider Rigobon’s
estimand motivated by ∆Σ(1,2)/∆Σ(2,2) in (3.3) and as usually implemented in empirical work based on event
studies; (iii) they consider specific nonlinear restrictions and allow the instrument to be continuous whereas
we allow for a general nonlinear model and consider a binary instrument as motivated by (3.3).
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and Wednesdays that are not FOMC meeting days between 1/1/2000 and 12/31/2012.

There appear to be multiple volatility regimes. Using the structural break test from

Casini and Perron (2024), which allows for stable or smoothly varying volatility under the null

and abrupt breaks under the alternative, we detect three breaks in the control sample. The

first break (April 24, 2007) marks the start of the 2007-09 financial crisis. The second (July

28, 2009) captures the crisis period itself, characterized by the highest volatility. Afterward,

volatility returns to pre-crisis levels until the third break (February 2, 2011), which aligns

with the zero lower bound (ZLB) period and the start of unconventional monetary policy.

The final regime shows the lowest volatility, reflecting initial policy effects and stabilization.16

These findings show significant time variation in Var(D̃t). In the second regime, control-

sample volatility is close to the policy-sample average, contributing to the weak identification

in (3.6). Nakamura and Steinsson (2018) find their estimates imprecise and not economically

meaningful for some of the interest rates they use as outcome variables. Lewis (2022) reports a

first-stage F -statistic of 8.11—well below the 23 critical value—suggesting weak identification.

We propose to focus on π-LATE. The fraction π0 of the sample (i.e., all t ∈ S0,T )

that has a first-stage corresponds to the regimes in the control sample where Var(D̃t) is low

(relative to its average level). For example, it is likely that the regime [T̂1 + 1, T̂2] does not
belong to S0,T since Var(D̃t) within this regime appears close to the average volatility in the

policy sample. By construction, it is easier to identify π-LATE than full sample LATE. The

usefulness of π-LATE depends on the magnitude of π0: a small π0 implies that identification

is achievable only in a small portion of the population, whereas a large π0 indicates that the

identified π-LATE is representative of a substantial part of the population.17

The π-LATE parameter is the same as the LATE parameter (3.3) in Section 3.1 but

instead of supposing that a first-stage exists, only uses observations with a nonzero first-stage.

Let TP,S denote the number of days in S0,T that contain an FOMC announcement, and let

TC,S the number of days in S0,T that do not contain an FOMC announcement. This means

TP,S + TC,S = π0T .
18 Let Σi,S denote the covariance matrix of [Ỹt, D̃t]′ in the subsample

16We do not test for breaks in the policy sample due to small size (TP = 74), treating it as a single regime.
17It is possible that in practice the π0 fraction of the sample contains a mixture of strong and weak

identification. We discuss weak identification in the context of π-LATE formally in Section 6.
18For notational simplicity we assume that π0T is an integer so that we avoid using the notation ⌊π0T ⌋,

where ⌊·⌋ denotes the largest smaller integer function.

24



dynamic late

Figure 2: Plot of 2-years Treasury yields in control (top panel) and policy sample (bottom panel). Vertical broken lines are

the estimated break dates using Casini and Perron’s (2024) test.

i = P, C using only observations t ∈ S0,T . We have

β̃π,0 = ∆Σ(1,2)
S

∆Σ(2,2)
S

=
T−1
P,S

∑
t∈PS Cov

(
Ỹt, D̃t

)
− T−1

C,S

∑
t∈CS Cov

(
Ỹt, D̃t

)
T−1
P,S

∑
t∈PS Var

(
D̃t

)
− T−1

C,S

∑
t∈CS Var

(
D̃t

) , where (3.7)

∆ΣS = ΣP,S − ΣC,S =
σ2
e,P − σ2

e,C

(1 − a1β0)2

β2
0 β0

β0 1

 ,
with PS = P ∩ S0,T and CS = C ∩ S0,T . Proceeding as for LATE, the Wald estimand is

β̃∗
π,t,0 =

E
(
D̃tỸt|t ∈ PS

)
− E

(
D̃tỸt|t ∈ CS

)
E
(
D̃2
t |t ∈ PS

)
− E

(
D̃2
t |t ∈ CS

) , (3.8)

to which Corollary 3.1 immediately applies without the (now redundant) qualifier “for t ∈
S0,T .” Under within subsample covariance stationarity, the right-hand side of (3.8) is equal

to that of (3.7), implying β̃π,0 = β̃∗
π,t,0. Therefore, β̃π,0 identifies the same π-LATE, as defined

explicitly in Corollary 3.1. π-LATE is the average treatment effect for the sub-population

for which a first-stage holds: observations for which D̃2
t is induced to be higher by the

announcement (i.e., the sub-population of compliers in S0,T ).
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If the treatment effect is constant across the population [e.g., as in (3.1)], then the π-

LATE for the sub-population S0,T is equal to both the LATE and ATE in the full population.

To determine which treatment effect is identified, we must determine which parts of the

sample belong to S0,T .We discuss this in Sections 4-5.

4 Testing for Full Population Identification Failure

In this section, we introduce a test of the null hypothesis that no subpopulation exists for

which a LATE can be identified, even weakly. In other words, the test assesses whether

identifying a sub-population LATE is possible at all. However, we strongly caution against

using this as a pretest before estimation or inference, as doing so may introduce pretest bias

and invalidates standard inference unless the inference method is modified to account for

the pretest [see, e.g., Andrews (2018)]. Instead, the test should be viewed as a diagnostic

tool for evaluating whether there is evidence of identifiable sub-population LATEs in a given

application. We apply it for this purpose to several existing studies that appear to face

identification challenges. Notably, such a pretest is unnecessary for conducting identification-

robust inference on sub-population LATEs, which we discuss in Section 6.

In accord with the analysis of Section 2, consider an IV regression model with a single

endogenous variable and multiple instruments. In matrix format, the structural equation is

Y = Dβ +Xγ1 + u, t = 1, . . . , T, (4.1)

where Y is a T × 1 vector of outcome variables, D is T × 1 vector of endogenous variables,

X is a T × p matrix of p exogenous regressors, u is a T × 1 vector of error terms, and β ∈ R
and γ1 ∈ Rp are unknown parameters. The reduced-form equation is

Dt = Z ′
tθ1{t ∈ S0,T} +X ′

tγ2 + et, (4.2)

where Zt is a q × 1 vector of instruments, et is an error term, and θ ∈ Rq and γ2 ∈ Rp

are unknown parameters. For t /∈ S0,T , the instrument Zt is irrelevant. For t ∈ S0,T , the

instrument Zt is relevant if θ ̸= 0. We assume that |S0,T | = π0T for some π0 ∈ (0, 1], noting
that this is without loss of generality since it does not rule out complete identification failure
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which occurs when θ = 0 for any π0 ∈ (0, 1]. The hypothesis testing problem is

Hθ,0 : θ = 0 versus Hθ,1 : θ ̸= 0.

We discuss both the cases for which the sub-population S0,T is known and unknown. For the

sake of the exposition, we focus on homogeneous θ in S0,T .
19

Consider the (πT × T ) selection matrix ST that selects the πT rows of a matrix corre-

sponding to the indices in ST . That is, for an arbitrary T × k matrix A, STA is the (πT × k)
matrix whose elements are the rows of A that correspond to the indices in ST . For example,

if ST = {1, . . . , 0.25T, 0.75T + 1, . . . , T},

STA =
[
A(1,:)′ : · · · : A(0.25T,:)′ : A(0.75T+1,:)′ : · · · : A(T,:)′

]′
,

where A(r,:) denotes the rth row of the matrix A. Using the standard projection matrix

notation, PA = A(A′A)−1A′ and MA = I − PA, let Ã(ST ) = MSTXSTA for any arbitrary

T × k matrix A. The following F test statistic is useful for testing whether θ = 0 in the

regression (4.2) when the sub-population S0,T is known:

FT (ST ) = D̃ (ST )′ Z̃ (ST ) Ĵ(ST )−1Z̃ (ST )′ D̃ (ST )
q (πT − p− q) ,

for ST = S0,T and Z = [Z1 : · · · : ZT ]′ and Ĵ(ST ) a consistent estimate of the long-run

variance,

lim
T→∞

(Tπ)−1Var(Z̃(ST )′ST e)

with e = [e1 : · · · : eT ]′. HAC or DK-HAC estimators can be used to estimate the long-run

variance [cf. Andrews (1991), Casini (2023) and Newey and West (1987)].

For the case of an unknown sub-population, we follow the structural break literature and

search for maximal identification strength over all sub-populations of minimal size πLT that

can be partitioned into m distinct smaller sub-populations, where πL > 0 and 1 ≤ m ≤ m+

for some upper bound on the number of regimes m+ > 0:

F ∗
T = sup

π∈[πL, 1]
max

1≤m≤m+
sup

ST ∈Ξϵ,π,m,T

FT (ST ) ,

19We could allow for θt ̸= 0 for t ∈ S0,T at the expense of additional notation and longer proofs, though
the key insights would not change. Actually, the computational procedures we develop to implement our
methods allow θt ̸= 0 for t ∈ S0,T .
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where Ξϵ,π,m,T denotes the set of all possible partitions of a fraction π of {1, . . . , T} that

involve m regimes ((λL,1T, λR,1T ) , . . . , (λL,mT, λR,mT )) for λL,i, λR,i ∈ [0, 1] such that (i)

λL,i < λR,i for all i, (ii) λR,i < λL,i+1 for i = 1, . . . , m − 1, (iii) |λR,i − λL,i| ≥ ϵ for all i

and some (small) ϵ > 0 and (iv)
∑m
i=1(λR,i − λL,i) = π. Conditions (i) and (ii) correspond to

TλL,i (TλR,i) denoting the start (end) date of regime i within the sub-population ST while

condition (iii) implies that each regime involves a non-negligible fraction of the sample. The

statistic F ∗
T thus implicitly searches for maximal identification strength over all possible sub-

populations of size πLT and larger with less than m+ distinct regimes that are at least a ϵ

fraction of the overall sample size.

The tuning parameters πL and ϵ determine the types of sub-populations for which the

test can detect identification: smaller values of πL allow detection in smaller sub-populations,

while smaller values of ϵ enable detection in sub-populations with shorter regimes. The

choice of these lower bounds should be guided by the empirical context, reflecting the small-

est sub-population and regime sizes for which LATE inference remains meaningful in the

application.20 In our simulations and empirical applications we set πL = 0.6 and ϵ = 0.05.
For X ′

t the t
th row of X, let wt = (X ′

t, Z
′
t)′ and Wr (·) denote a r-vector of independent

Wiener processes on [0, 1]. We derive the asymptotic null distributions of FT (ST ) and F ∗
T

under the following standard high-level assumptions that permit both heteroskedastic and

serially correlated errors. Sufficient conditions for them can be found in the supplement.

Assumption 4.1. T−1∑⌊Ts⌋
t=1 wtw

′
t

P→ sQ, uniformly in s ∈ [0, 1] for some p.d. matrix Q.

Assumption 4.2. T−1/2∑⌊Ts⌋
t=1 wtet ⇒ Ω1/2

weWp+q (s) for some p.d. variance matrix Ωwe.

Assumption 4.3. Ĵ(ST ) is p.d. for all T, ST ∈ Ξϵ,π,m,T and Ĵ(ST ) P→ limT→∞ T−1Var(
e′S ′

T Z̃(ST )) uniformly in ST ∈ Ξϵ,π,m,T .

Theorem 4.1. Let Assumptions 4.1-4.3 hold. Under Hθ,0,

FT (ST ) ⇒ F (S) if ST ∈ Ξϵ,π,m,T , and F ∗
T ⇒ sup

π∈[πL, 1]
max

1≤m≤m+
sup

S∈Ξϵ,π,m

F (S) ,

where S = limT→∞ T−1ST , Ξϵ,π,m = limT→∞ T−1Ξϵ,π,m,T and

F (S) = 1
qπ

m∑
i=1

∥(Wq (λR,i) −Wq (λL,i))∥2 .

20In the structural break literature, common recommendations for ϵ are 0.05, 0.10 and 0.15. See Casini
and Perron (2019) for a review.
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When π = 1 (πL = 1 and m+ = 1), FT (ST ) (F ∗
T ) reduces to the usual first-stage F -

statistic for θ = 0 in (4.2). For π ∈ (0, 1) (πL ∈ (0, 1)), the consistency of tests against Hθ,1

using FT (S0,T ) (F ∗
T ) follows from similar arguments as for the π0 = 1 case. The asymptotic

null distributions of both F (S) and F ∗
T are free of nuisance parameters. The critical values

are obtained via simulations and reported in Table 4 for up to m+ = 6 and up to q = 6.

5 Estimation of LATE and Identified Sub-Populations

We discuss estimation of the LATE parameter β in (4.1) in both the cases of a known and

unknown sub-population S0,T , as well as estimation of S0,T itself in the latter case. When

S0,T is known, estimation of β is an application of IV estimation for which Zt1{t ∈ S0,T} is

treated as the vector of instruments. Let this estimator be denoted as β̂(S0,T ).
On the other hand, when the sub-population S0,T is unknown, we must estimate it first.

Although S0,T can be estimated consistently in the special case of a binary instrument under

the conditions of Proposition 2.2 and Theorem 2.1, it can also be estimated more generally.

We discuss two methods. The first is more computationally straightforward but the second is

more efficient because it uses the information in both structural and reduced-form equations

(4.1)-(4.2). We follow the structural change literature and assume that π0 and m0 are known,

i.e., the practitioner has previously used the tests from Section 4 to determine π0 and m0.

We begin with the first estimator. Consider the T × T matrix CT that selects the πT

rows of a matrix corresponding to the indices in ST while setting the remaining (1 − π)T
rows to zero. For example, for a T × k matrix A, if ST = {1, . . . , 0.25T, 0.75T + 1, . . . , T},

CTA =
[
A(1,:)′ : · · · : A(0.25T,:)′ : 0k×1 : · · · : 0k×1 : A(0.75T+1,:)′ : · · · : A(T,:)′

]′
.

Let A(CT ) = MXCTA so that for a given ST , the OLS estimators of θ and γ2 in (4.2) can be ex-

pressed as θ̂OLS(ST ) = (Z(CT )′Z(CT ))−1Z(CT )′D and γ̂2,OLS(ST ) = (X ′MCTZX)−1X ′MCTZD.

Our first estimator of S0,T minimizes the sum of squared residuals of the reduced-form:

ŜT,OLS = argmin
ST ∈Ξϵ,π0,m0,T

(
D − CTZθ̂OLS(ST ) −Xγ̂2,OLS(ST )

)′ (
D − CTZθ̂OLS(ST ) −Xγ̂2,OLS(ST )

)
.

Correspondingly, we estimate β with β̂(ŜT,OLS).
For the second estimator of the sub-population S0,T , we propose a GLS criterion that

minimizes an efficiently weighted combination of the sum of squared residuals of both the
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reduced-form representation of the structural equation (4.1) and the reduced-form equation

(4.2). That is, the system of equations (4.1)-(4.2) can be written in reduced-form as

y⃗ = W (ST )ξ + ε, (5.1)

where y⃗ = (Y ′, D′)′, W (S0,T ) = I2 ⊗ [C0,TZ : X], ξ = (βθ′, γ′
1 + βγ′

2, θ
′, γ′

2)′ and ε =
(u′ + βe′, e′)′ with C0,T defined as CT but corresponding to the indices in S0,T . This is a

system of two seemingly unrelated regressions. Let

ξ̂FGLS(ST ) = (W (ST )′Ω̂ε(ST )−1W (ST ))−1W (ST )′Ω̂ε(ST )−1y⃗,

denote a feasible GLS estimator of ξ, where Ω̂ε(ST ) is a consistent estimator of E[εε′|W (ST )].
Our second estimator of S0,T minimizes the following GLS criterion based upon (5.1):

ŜT,FGLS = argmin
ST ∈Ξϵ,π0,m0,T

(
y⃗ −W (ST )ξ̂FGLS(ST )

)′
Ω̂−1
ε,S

(
y⃗ −W (ST )ξ̂FGLS(ST )

)
.

Correspondingly, we estimate β with β̂(ŜT,FGLS). In order for β̂(ŜT,FGLS) to be provably more

efficient than β̂(ŜT,OLS), Ω̂ε,S must be a consistent estimator of E[εε′|W (S0,T )]. When εt does

not exhibit conditional serial correlation or heteroskedasticity, i.e., E[εε′|W (S0,T )] = Σε ⊗ IT ,

this is feasible since one could simply use Ω̂ε,S = Σ̂ε ⊗ IT , where Σ̂ε,i,j = (T − q− p)−1ε̂i′ε̂j for

i, j = 1, 2 with ε̂1 (ε̂2) equal to the first (last) T elements of y⃗−W (ŜT,OLS)ξ̂OLS(ŜT,OLS), as is
standard in seemingly unrelated regression. For serially dependent εt, consistent estimation

of E[εε′|W (S0,T )] requires a correctly-specified model for the dependence in εt, a strong

assumption in some empirical applications. In the supplement Casini et al. (2025b) we

present the consistency results about ŜT,OLS, β̂(ŜT,OLS), ŜT,FGLS and β̂(ŜT,FGLS).
In model (4.1) the LATE parameter β is constant, so π-LATE is the full population

LATE and β̂(ŜT,OLS) and β̂(ŜT,FGLS) are consistent for the LATE parameter β. They can

be precise estimates even when a first-stage F test detects full sample weak identification

because they use the most-strongly identified subsample of the data. When the model (4.1)

is misspecified, so that LATEs may be nonlinear and time-varying, the estimators β̂(ŜT,OLS)
and β̂(ŜT,FGLS) are still consistent for a weighted average the of the LATEs in the S0,T

subsample if the S0,T subsample exhibits strong identification.

The estimators ŜT,OLS and ŜT,FGLS and the test statistic F ∗
T solve an optimization

problem over many partitions. This is computationally more complex than problems in
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the structural breaks literature, as it involves optimizing both over sample partitions and

identification strength. We address this challenge by proposing an efficient algorithm based

on dynamic programming, extending the approach of Bai and Perron (2003) to our setting.21

6 Identification-Robust Inference

We consider tests on β in (4.1) that are robust to weak identification in both the cases for

which the sub-population S0,T is known and unknown. The hypothesis testing problem is

H0 : β = β0 versus H1 : β ̸= β0. Here we present results for the case of unknown sub-

population S0,T and weak instruments. We also briefly discuss the case of known S0,T and

strong instruments and defer their formal treatment to the supplement. We rewrite (5.1) as

y = Z(C0,T )θa′ +Xη + v, where y = [Y : D] , v = [v1 : e] , a = (β, 1)′ , η = [γ : ϕ] , (6.1)

with v1 = u + βe, γ = γ1 + ϕβ and ϕ = γ2 + (X ′X)−1X ′C0,TZθ. When S0,T is known, it is

straightforward to use existing tests in the identification-robust linear IVs literature to test

H0 [cf. Anderson and Rubin (1949), Andrews, Moreira, and Stock (2006), Kleibergen (2002)

and Moreira (2003)]. However, Proposition S.B.1 in the supplement shows that Z ′MXy is

not a sufficient statistic for (β, θ′)′ but Z(C0,T )′y is, implying that existing tests suffer a loss

in efficiency because they treat Z rather than C0,TZ as the matrix of IVs. Efficient tests are

therefore functions of Z(C0,T )′y. Magnusson and Mavroeidis (2014) consider a model similar

to (6.1). Our model specifies that θ is nonzero in the sub-population S0,T and is zero in Sc0,T
where Sc0,T is the complement of S0,T . Magnusson and Mavroeidis (2014) allow the first-stage

coefficient θt to be generally time-varying for some of their tests. Their tests are based on

the full sample of observations whereas our tests are based on a lower-dimensional statistic

since we do not use the sub-population Sc0,T . This allows us to obtain gains in efficiency.

When S0,T is known we can apply the results of Andrews, Moreira, and Stock (2006) to

form identification-robust tests of H0 vs H1 that are functions of Z(C0,T )′y and are robust to

both heteroskedasticity and autocorrelation (HAR) in the reduced-form errors {vt}. Suppose
Σ̂N1(S0,T ), Σ̂N1,N2(S0,T ) and Σ̂N2(S0,T ) are consistent estimators of ΣN1(S0), ΣN1,N2(S0) and

21While Antoine and Boldea (2018) consider the case of a single break, and Magnusson and Mavroei-
dis (2014) study a related context, neither provide a computational solution—referring to the problem as
“computationally demanding.”
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ΣN2(S0) under H0, where these latter quantities are defined by

ΣvZ (S0) =
 ΣN1 (S0) ΣN1N2 (S0)′

ΣN1N2 (S0) Σ∗
N2 (S0)

 , (6.2)

ΣN2 (S0) = Σ∗
N2 (S0) − ΣN1N2 (S0) Σ−1

N1 (S0) ΣN1N2 (S0)′

for ΣvZ (S0) = ΣvZ (S0,S0), with

ΣvZ (S,S′) = lim
T→∞

Cov
T−1/2

T∑
t=1

 v′
tb0Zt (CT )

v′
tΣ−1

v a0Zt (CT )

 , T−1/2
T∑
t=1

 v′
tb0Zt (C ′

T )
v′
tΣ−1

v a0Zt (C ′
T )


for S = limT→∞ T−1ST , S′ = limT→∞ T−1S′

T b0 = (1,−β0)′ and a0 = (β0, 1)′, where and vt

and Zt (CT ) are the tth rows v and Z(CT ).22 Let Σ̂v (S0,T ) = (T − q − p)−1 v̂ (S0,T )′ v̂ (S0,T )
with v̂ (S0,T ) = y − PZ(C0,T )y − PXy. Define

N1,T (S0,T ) = Σ̂−1/2
N1 (S0,T )T−1/2Z (C0,T )′ yb0 and (6.3)

N2,T (S0,T ) = Σ̂−1/2
N2 (S0,T )

(
T−1/2Z (C0,T )′ yΣ̂−1

v (S0,T ) a0 − Σ̂N1N2 (S0,T ) Σ̂−1/2
N1 (S0,T )N1,T (S0,T )

)
.

Consider the following HAR versions of the Anderson-Rubin (AR), Lagrange multiplier (LM)

and likelihood ratio statistics based on the sufficient statistic Z(C0,T )′y:

ART (S0,T ) = M1,T (S0,T ), LMT (S0,T ) = M1,2,T (S0,T )2

M2,T (S0,T ) , (6.4)

LRT (S0,T ) = 1
2

(
M1,T (S0,T ) −M2,T (S0,T ) +

√
(M1,T (S0,T ) −M2,T (S0,T ))2 + 4M1,2,T (S0,T )2

)
,

where M1,T (S0,T ) = N1,T (S0,T )′ N1,T (S0,T ), M1,2,T (S0,T ) = N1,T (S0,T )′ N2,T (S0,T ) and M2,T (
S0,T ) = N2,T (S0,T )′ N2,T (S0,T ). The conditional likelihood ratio (CLR) test of level α rejects

H0 when LRT (S0,T ) > κα(N2,T (S0,T )), where the critical value function κα(·) is defined such

that κα(n2) is the 1 − α quantile of the large-sample conditional distribution of LRT (S0,T )
under H0, given N2,T (S0,T ) = n2:

1
2

(
Z ′
qZq − n′

2n2 +
√(

Z ′
qZq − n′

2n2
)2

+ 4(Z ′
qn2)2

)
,

22See the supplement for details on how to construct these estimators and for consistency results.
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where Zq ∼ N (0, Iq). The critical value function κα(·) is approximated in Moreira (2003).

The LM and AR tests reject H0 when LMT > χ2
1(1 − α) and ART > χ2

q(1 − α), where
χ2
q(1 −α) denotes the 1 −α quantile of a chi-squared distribution with q degrees of freedom.

When S0,T is known the results of Andrews et al. (2006) imply that the CLR, LM and

AR tests have limiting null rejection probabilities equal to α under weak IV asymptotics,

θ = c/T 1/2 for some nonstochastic c ∈ Rq, under a weakening of Assumptions 6.1-6.4 below

for which these assumptions need only hold pointwise in ST . These tests are asymptotically

similar and therefore have asymptotically correct size in the presence of weak IVs.

For the case of an unknown sub-population, the identification-robust tests in the extant

literature no longer apply because the set of instruments C0,TZ is unknown and must be

estimated. In this section, we show how to form HAR CLR, LM and AR tests with correct

asymptotic null rejection probabilities under both weak and strong IV asymptotics. To

estimate the true sub-population S0,T when constructing these tests let

ŜT = arg max
ST ∈S

M2,T (ST ), where S = ∪
1≤m≤m+

∪
π∈(ϵ, 1]

Ξϵ,π,m,T . (6.5)

Proposition S.B.2 in the supplement shows that the process {Z(CT )′y}ST ∈S is sufficient for

(β, θ′)′ in a canonical Gaussian setting analogous to that in Andrews et al. (2006) so that there

is no loss in efficiency from using the unknown sub-population AR, LM and LR statistics,

LRT (ŜT ), LMT (ŜT ) and ART (ŜT ), which are only functions of the process {Z(CT )′y}ST ∈S .

We establish the asymptotic validity of the HAR CLR, LM and AR tests in the un-

known sub-population setting under a weak set of high-level sufficient conditions on the IVs,

exogenous variables and errors. Define w (ST ) = [CTZ : X].

Assumption 6.1. T−1w (ST )′ w (S′
T ) P→ Q (S,S′) uniformly in ST ,S′

T ∈ S for S = limT→∞ T−1ST ,
S′ = limT→∞ T−1S′

T and some p.d. (q + p) × (q + p) matrix Q (S,S′).

Assumption 6.2. T−1v′v
P→ Σv for some 2 × 2 p.d. matrix Σv.

Assumption 6.3. For ST ,S′
T ∈ S and S = limT→∞ T−1ST , S′ = limT→∞ T−1S′

T , T
−1/2vec(w (ST )′ v) ⇒

G (S), where G (·) is a mean-zero Gaussian process indexed by S ⊆ (0, 1] with 2 (q + p) ×
2 (q + p) covariance function Ψ (S, S′) = limT→∞ T−1Cov(vec(w (ST )′ v), vec(w (S′

T )′ v)).

In Assumption 6.3, vec (·) denotes the vec operator. The quantities Q (·), Σv, and Ψ (·)
are assumed to be unknown. Assumptions 6.1-6.2 hold under suitable conditions by a (uni-

form) law of large numbers. Assumption 6.3 holds under suitable conditions by a functional
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central limit theorem. Assumptions 6.1-6.3 are consistent with non-normal, heteroskedastic,

autocorrelated errors and IVs and regressors that may be random or non-random.23

We assume that we can consistently estimate ΣvZ (S) ≡ ΣvZ (S,S) uniformly in ST .

Assumption 6.4. We have an estimator Σ̂vZ(ST ) such that Σ̂vZ(ST ) P→ ΣvZ(S) uniformly in

ST ∈ S for S = limT→∞ T−1ST .

Note that this assumption immediately implies the uniform consistency of Σ̂N2(ST ) =
Σ̂∗
N2(ST )− Σ̂N1N2(ST )Σ̂−1

N1(ST )Σ̂N1N2(ST )′ as well. Consistent estimators of ΣvZ are HAC and

DK-HAC estimators.24

Finally, we impose a second-order stationarity condition for v′
tb0Zt (CT ) and v′

tΣ−1
v a0Zt (CT ).

Assumption 6.5. Let π(S) equal the Lebesgue measure of S ⊆ (0, 1]. Assume that ΣvZ (S, S′) =
π (S ∩ S′) ΣvZ where S, S′ ⊆ (0, 1] and ΣvZ is p.d.

Assumption 6.5 is implied by a uniform law of large numbers and functional central

limit theorem for partial sum processes under second-order stationarity. Under weak IV

asymptotics, T−1ŜT is not consistent for S0. Assumption 6.5 is needed in order to show that

N1,T (·) and N2,T (·) are asymptotically independent processes. Under strong IV asymptotics

we can dispense with Assumption 6.5 because T−1ŜT
P→ S0 and the limit of the processes

N1,T (·) and N2,T (·) have zero covariance when evaluated at a fixed S0.

Define the LR, LM and AR statistics in this context according to (6.4), replacing S0,T

with ŜT . We now establish the correct asymptotic null rejection probabilities of the sub-

population-estimated plug-in HAR CLR, LM and AR tests under weak identification.

Theorem 6.1. Let Assumptions 6.1-6.5 hold and suppose θ = c/T 1/2 for some nonstochastic

c ∈ Rq. We have: (i) ART (ŜT ) d→ χ2
q under H0; (ii) LMT (ŜT ) d→ χ2

1 under H0; (iii)

Pβ0(LRT (ŜT ) > κα(N2,T (ŜT )) → α where Pβ0(·) is the probability computed under H0.

The key to establishing these asymptotic validity results is to show that each of the above

statements hold conditional on the realization of N2,T (·). This can be readily established from

the facts that the stochastic processes N1,T (·) and N2,T (·) are asymptotically independent by

construction, ŜT is a function of N2,T (·) and N1,T (ST ) ⇒ N (0, Iq) under H0.
25

23In the supplement we provide primitive sufficient conditions for Assumptions 6.1-6.3.
24In the supplement we provide weak sufficient conditions, even allowing for certain forms of nonstation-

arity, that ensure this assumption holds.
25In addition to identification-robust tests of H0 vs H1, since the causal interpretation of β depends upon
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7 Empirical Evidence on LATE of Monetary Policy

We illustrate our methods by revisiting the identification of monetary policy effects in the

framework of Nakamura and Steinsson (2018), introduced in Section 3. They use a bi-

variate model (3.1) to estimate the causal effect of D̃t on Ỹt, employing both event-study

and heteroskedasticity-based identification approaches. The dependent variable is the daily

change in instantaneous U.S. Treasury forward rates. For the policy news D̃t they use three

variables: the daily change in nominal 2-Year Treasury yields, and the 30-minute or 1-day

change in a “policy news” series—constructed as the first principal component of the unan-

ticipated 30-minute changes in five selected interest rates. Heteroskedasticity-based identi-

fication assumes the variance of the monetary shock rises on FOMC announcement days,

while the variance of other shocks remains constant [cf. eq. (3.2)]. FOMC dates define the

policy sample P, and analogous non-FOMC dates define the control sample C. We consider

specifications where D̃t is either the 30-minute policy news series or 1-day change in Trea-

sury yields, and Ỹt is either the nominal or real 2-Year instantaneous Treasury forward rate.

Nakamura and Steinsson’s instrument for D̃2
t is defined as Zt = 1 {t ∈ P}, corresponding to

the model in Section 3. We focus on the same period: January 1, 2004, to March 19, 2014.

Lewis (2022) recently analyzes this problem by developing a first-stage F -test for weak

identification. He finds that weak identification is not rejected when D̃t is the 1-day change

in nominal 2-Year Treasury yields, but is strongly rejected when D̃t is the 30-minute policy

news series. This supports Nakamura and Steinsson’s (2018) observation that the daily policy

variable may suffer from weaker identification. Unlike Nakamura and Steinsson (2018), Lewis

(2022) estimates the model using GMM and does not impose the assumption that the non-

monetary policy shock ηt has equal variance across the treatment and control samples.

Section 7.1 reports results of our test for full sample identification failure. Section 7.2

presents causal effect estimates based on the most strongly-identified subsample. Section 7.3

provides identification-robust inference results, and Section 7.4 estimates compliers at the

individual level and tests the exclusion restriction.

the sub-population S0,T , practitioners may wish to simultaneously report the result of these tests along with
a corresponding estimate of the sub-population. More specifically, failure to reject H0 should be interpreted
as failure to reject that the estimand is equal to β0, where the estimand is interpreted as a weighted average
of the LATEs for the estimated sub-population ŜT . Given that the tests of H0 remain asymptotically valid
conditional on the realization of N2,T (·) and the fact that ŜT is a function of N2,T (·), the tests remain

asymptotically valid when interpreted conditional on the value of ŜT .
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7.1 Testing for Identification Failure

We present the results of our test for identification failure over all sub-populations from

Section 4 in Table 1 considering values of πL from 0.6 to 1. For the 30-minute policy news

variable, the F ∗
T statistic is very large and identification failure is rejected at any common

significance level. This supports the finding in Lewis (2022) and intuition in Nakamura and

Steinsson (2018) that the 30-minute policy news variable leads to stronger identification in

the full sample. In contrast, for the 1-day change in nominal Treasury yields, identification

failure cannot be strongly rejected in the full sample: the F ∗
T statistic at πL = 1 (i.e.,

full sample) is only slightly larger than the 1% critical value. The F ∗
T statistic increases

substantially as πL decreases and it is very far from the critical values. This is clear evidence

that identification is much stronger over subsamples. At πL = 0.9 it reaches 33.87, clearly

rejecting identification failure in the π-subsample (with π = 0.9 or 0.95) over which the

supremum of FT (ST ) is computed. The F ∗
T statistic increases monotonically with smaller

πL due to the increasing number of partitions considered. For example, at πL = 0.8, F ∗
T

is 54.78—nearly seven times the full sample value. Overall, the results indicate that strong

identification may hold when using a 1-day window, but only within subsamples comprising

at most 90% of the data. The weak identification reported by Lewis (2022) using a 1-day

window around FOMC announcements likely does not stem solely from volatility returning

to normal after announcements. Rather, a small subsample (10–20% of the data) exhibits

weak or failed identification, contributing to the weaker identification exhibited in the full

sample.

Table 1: Tests for Identification Failure over all Sub-Populations

F ∗
T statistic and critical values

F ∗
T

Dt\πL 0.6 0.7 0.8 0.9 1

30-minute
“policy news”

104 × 95.36 104 × 56.50 104 × 32.45 104 × 18.75 104 × 7.42

1-day nominal
Treasury yields

155.69 88.22 54.78 33.88 8.09

1% critical values 11.63 10.94 9.73 8.68 6.68
5% critical values 8.28 7.55 6.84 6.04 3.85

F ∗
T statistics for first-stage identification failure. Dt is either the 30-minute policy news series or 1-day change in nominal

Treasury yields. πL is the minimum fraction of the sample over which the supremum of the F (ST ) is computed. Maximum
number of breaks is set to m+ = 5.
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7.2 Estimation in Strongly-Identified Subsample

We turn to estimation of π0 and S0,T using the methods from Section 5, and then to estimating

the LATE of monetary policy based on the strongly-identified subsample, β̂(ŜT,OLS), or

simply, π̂-sample, where π̂ = |ŜT,OLS|/T . We focus on β̂(ŜT,OLS); results using β̂(ŜT,FGLS) are
similar. Figure 3 plots the 1-day changes in 2-Year yields for the control and policy samples

and highlights the regimes included in the strongly-identified subsample ŜT,OLS. The estimate

π̂ = 0.8 implies that in 80% of the sample, the first-stage is strong and identification holds.

In the control sample, the excluded periods include the first seven months of 2005 and the

regime surrounding the financial crisis (2007-2009). As shown in the figure, volatility during

the crisis period is much higher than in the rest of the control group and higher than the

average volatility in the treatment group. This subsample appears to drive the apparent full

sample weak identification. Since our method searches for maximum identification strength, it

correctly excludes this period when computing π-LATE.26 The interpretation is that in both

excluded regimes—especially during the financial crisis—market uncertainty was elevated

even on non-FOMC days, violating the identification assumption.

Figure 3: Plot of Dt (2-Years Treasury yields) in the control sample (top panel) and policy sample (bottom panel). The red

rectangles indicate subsamples included in the strongly-identified subsample ŜT,OLS where π̂ = 0.8.

26The other excluded period (January to July 2005) does not display obviously high volatility but shows
some persistence, with a short-duration cluster below the mean toward the end.
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We now estimate the causal effect of monetary policy using the π̂-sample, where by

construction the LATE is most strongly-identified. We compare these results with full sample

estimates obtained using two-stage least squares (TSLS) and GMM, following Nakamura and

Steinsson (2018) and Lewis (2022), respectively. Table 2 presents the results. Starting with

the full sample estimates: when the policy variable is the 30-minute policy news series, TSLS

and GMM yield very similar point estimates for both nominal and real forward rates, and

both are statistically significant using standard and robust confidence intervals.27

As noted by Lewis (2022), the assumption that non-monetary shocks have equal vari-

ance across treatment and control groups does not bias the TSLS estimates, as they closely

match the GMM ones. One explanation is that the GMM estimate of a (capturing reverse

causality from forward rates to policy news) is both near zero and statistically significant

(not reported). Since potential bias from this assumption is proportional to a(σ2
η,P − σ2

η,C),
and a is close to zero, the resulting bias is negligible even if the variances σ2

η,P and σ2
η,C differ.

Turning to the case where the policy variable is the 1-day change in 2-Year Treasury

yields, the TSLS and GMM estimates differ markedly from each other and from those based on

the 30-minute policy news series. Notably, the GMM estimate of β is negative for nominal for-

wards and positive for real forwards, but in neither case is it statistically significant—whether

using standard or robust confidence intervals.

As discussed by Lewis (2022), these estimates are difficult to interpret in economically

meaningful terms. He also shows that the GMM estimates of a are nonzero and proposed a

second dimension of policy news to account for the findings. However, the opposing signs of

β across nominal and real forwards complicate this interpretation. Ultimately, he concludes

that these results are inconsistent with Nakamura and Steinsson’s (2018) “background noise”

view of the non-monetary shock ηt which assumes that its volatility remains unchanged

between FOMC and non-FOMC days.

We contribute to this discussion by presenting TSLS and GMM estimates based on the

most strongly-identified π̂-sample. We focus first on standard confidence intervals and defer

weak identification-robust inference to Table 3. The bottom panel of Table 2 shows that, for

the 30-minute policy news variable, the TSLS and GMM estimates, including their statistical

significance, are virtually unchanged. As expected—given the apparent strong identification

27The robust confidence intervals for the GMM estimates are based on the subset K-test in Lewis (2022).
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in the full sample—results are broadly similar when using the π̂-sample.28

Table 2: Estimation of β

30-minute Policy News 1-day 2-Year Yield
dep. var. Nominal Real Nominal Real

Full Sample
TSLS

β 1.10** 0.96*** 1.14*** 0.97***
standard CI [0.17, 2.02] [0.41, 1.51] [0.83, 1.45] [0.40, 1.565]

GMM
β 1.07** 0.94*** -0.27 1.31

standard CI [0.17, 1.98] [0.36, 1.51] [-4.90, 4.36] [-3.74, 6.35]
robust CI [0.27, 3.25] [0.44, 2.38] [-77.27, 0.94] [-253.70, 1.92]

π-sample based on ŜT,OLS with π̂ = 0.8
TSLS

β 1.11** 0.97*** 1.13*** 0.92***
standard CI [0.19, 2.02] [0.42, 1.51] [0.92, 1.30] [0.56, 1.28]

GMM
β 1.07** 0.94*** 0.65* 0.86**

standard CI [0.17, 1.96] [0.38, 1.50] [-0.02, 131] [0.29, 1.43]
TSLS estimates of β and GMM estimates of β/(1 −aβ). The GMM estimates allow for changes also in
the variance of ηt across regimes. The dependent variable is the 1-day change in either nominal or real
2-Year instantaneous Treasury forward rate. The policy variable is either the 30-minute changes in
the “policy news” variable or 1-day changes in the 2-Year nominal Treasury yield. The standard 95%
confidence interval is based on the standard normal critical values. For the GMM estimates, the robust
95% confidence interval is based on the subset K-test in Lewis (2022). Asterisks indicate statistical
significance at the 10%, 5%, or 1% level based on standard intervals.

Finally, we turn to the π̂-sample estimates using the 1-day window for the policy. The

GMM estimates differ sharply from those in the full sample: for both nominal and real

forwards, they now have the same sign and are statistically significant. This suggests that the

opposite signs reported by Lewis (2022) likely stemmed from weak identification, rendering

those estimates unreliable.29 Notably, the GMM estimates are now similar in magnitude to

those based on the 30-minute policy variable, supporting a more meaningful interpretation.30

28The confidence intervals in the π̂-sample are even slightly tighter.
29While the TSLS estimates are nearly unchanged from the full sample, this should not be taken as evidence

of their reliability. Under weak IVs, their similarity to the π̂-sample results may simply be coincidental.
30We also verified that the GMM estimate of a is 0.70 for nominal forwards and -0.91 for real forwards. It

is intuitive that the estimate of a is close to zero when using a 30-minute window but significantly different
from zero with a 1-day window. In the narrow 30-minute window around an FOMC announcement, reverse
causality from Ỹt to D̃t is limited, as monetary news is more pronounced than other shocks—though some
endogeneity may still arise from omitted factors affecting both. In contrast, over a full day, asset price
movements can influence short-term interest rates, making reverse causality more likely.
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Overall, this analysis highlights the advantage of using the most strongly-identified π̂-

sample. Given weak identification in the full sample when using 1-day Treasury yields as

the policy variable, the corresponding estimates should be discarded. In contrast, evidence

from the π̂-sample shows that TSLS and GMM produce similar, positive estimates for β,

consistent with monetary policy affecting real forward rates, as predicted by New Keynesian

models, and supporting the existence of a forward guidance channel.31

7.3 Weak Identification-Robust Inference

We apply the weak identification-robust tests proposed in Section 6 and compare them to

existing full sample tests LMT and LRT .
32 We test the the null hypothesis H0 : β = 0

against H1 : β ̸= 0, and extend the analysis to include 5-Year forward rates, in addition to

the 2-Year forwards. Results are shown in Table 3. When the policy variable is the 30-minute

policy news, identification is strong in the full sample. Accordingly, both the proposed and

existing tests yield similar results: all tests reject at the 5% level for both nominal and real

forwards. Nakamura and Steinsson (2018) showed that the effect of policy news peaks at the

2-Year maturity and declines with longer maturities. Consistent with this, we find weaker

statistical significance for the 5-Year. In line with theoretical predictions, the long-run impact

of monetary policy shocks on real interest rates (i.e., the 10 Year forwards) approaches zero

(not reported). Our proposed tests confirm this, showing some rejection for the 5-Year real

forwards but not for the 10-Year.

Let us instead consider the 1-day change in 2-Year yields as the policy variable. The

existing LMT and LRT tests do not reject the null at any standard significance level for

nominal forwards, and at the 1% level for real forwards. In contrast, our proposed tests

based on ŜT show much stronger rejections, aligning with the results using the 30-minute

policy news series, which indicate a positive causal effect on 2-Year forwards.

31However, the results do not yet support a second meaningful dimension of news, as proposed by Lewis
(2022), since the sign of the GMM estimate of a is unstable across nominal and real forwards. Regarding
Nakamura and Steinsson’s (2018) “background noise” interpretation of non-monetary shocks, we find no clear
evidence against it: in the π̂-sample, identification appears strong, and TSLS and GMM estimates consistently
share the same sign and similar magnitudes.

32We do not report the ART test since for q = 1 it is equivalent to the LMT test.
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Table 3: Identification-Robust Inference on β

30-minute Policy News 1-day change in 2-Year Yields
2-Year Forwards Nominal Real Nominal Real

α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

LMT ✓ ✓ × ✓ ✓ ✓ × × × ✓ ✓ ×
CLRT ✓ ✓ × ✓ ✓ ✓ × × × ✓ ✓ ×

LMT (ŜT ) ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓
CLRT (ŜT ) ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓

5-Year Forwards Nominal Real Nominal Real
α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

LMT × × × × × × × × × × × ×
CLRT × × × × × × × × × × × ×

LMT (ŜT ) × × × × × × ✓ × × ✓ ✓ ×
CLRT (ŜT ) × × × × × × ✓ ✓ × ✓ ✓ ×

Weak identification-robust tests on β. The dependent variable Yt is either the 2-Year forward rates (top panel) or the 5-Year
forward rates (bottom panel). Dt is either the 30-minute policy news series or the 1-day nominal Treasury yields. Significance
levels are α = 0.10, 0.05, 0.01. A ✓ means indicates rejection H0; a × non-rejection.

7.4 Identification and Estimation of Compliers, and Exclusions Restriction

We now identify compliers individually by applying Theorem 2.1. Under heteroskedasticity-

based identification, the sample rolling window averages in Theorem 2.1 correspond to rolling

window variances, i.e., DP,t,n1 and DC,t,n0 are equal to σ2
P,t,n1 and σ2

C,t,n0 in this context,

where σ2
P,t,n1 and σ2

C,t,n0 are defined analogously but using D̃2
t for Dt.

33 We use two-sided

rolling windows with n0 = 101 and n1 = 15. For each t0 we test the null hypothesis H0 :
E(D2

t0 (1)) − E(D2
t0 (0)) = 0 (t0 is a non-complier) versus the one tailed alternative H1 :

E(D2
t0 (1)) − E(D2

t0 (0)) > 0 (t0 is a complier). We use the t-statistic

tt0 =


√
n0(σ2

P,t0,n1
−σ2

C,t0−1,n0)√
JHAC,t0−1

t0 ∈ P
√
n0

(
σ2

P,s∗(t0),n1
−σ2

C,t0,n0

)
√
JHAC,t0

t0 ∈ C,

where JHAC,t0 is the Newey-West estimator with
⌊
n

1/3
0

⌋
lags applied to D̃2

s−n−1
0
∑
k∈N0(t0+1) D̃

2
k.

The results are shown in Figure 4. Approximately 75% of observations are classified

as compliers. The non-compliers are mostly concentrated in the period from 2010 to mid-

33More specifically, we have σ2
C,t0−1,n0

= 1
n0

∑
s∈N0(t0) D̃2

s , and σ2
P,t0,n1

= 1
n1

∑
s∈N1(t0) D̃2

s .
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Figure 4: Plot of D̃t (2-Years Treasury yields) in the control sample (top panel) and policy sample (bottom panel). The

orange rectangles indicate subsamples included in the strongly-identified set ŜT,OLS where π̂ = 0.8. Green filled circles indicate

compliers; red filled circles indicate non-compliers. Time points without colored markers correspond to cases where rolling

sample variances could not be computed due to proximity to the start or end of the sample.

2011, which corresponds to the early phase of the zero lower bound (ZLB) period following

the 2008–09 recession. During this time, the Fed relied primarily on qualitative forward

guidance—e.g., stating that economic conditions were ”likely to warrant exceptionally low

levels of the federal funds rate for some time.”In August 2011, the Fed shifted to more explicit,

calendar-based guidance, stating that such conditions were ”likely to warrant exceptionally

low levels of the federal funds rate at least through mid-2013.”Thus, the non-complier period

aligns with the phase of the ZLB when forward guidance was less aggressive as the policy

announcements by then only imply a near zero-rate horizon for the following three to four

quarters, significantly shorter than what the ZLB constraint would actually have implied.34

Finally, we use Theorem 2.1 and Proposition 2.3 to test the exclusion restriction (cf.

Assumption 2.2). We consider the whole set of compliers N C. We test the null hypothesis

34The set of compliers does not coincide with the set of observations in the strongly-identified π̂-sample.
However, this does not necessarily imply a violation of monotonicity [cf. Proposition 2.2]. First, the com-
plier status is determined via a t-test whereas the strongly-identified π̂-sample is determined via estimation.
Second, the complier status is determined by the rolling window variances at each t, whereas inclusion in the
π̂-sample depends on how these variances contribute to the average volatility in the control sample relative
to that in the policy sample.
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that the exclusion restriction holds by using the following t-statistic:

texclusion =

√
|N CC|

(
Y N Cs

P
− Y N Cs

C

)
√
JHAC,N Cs

where Y N CP
= 1

|N CP|
∑
t∈N CP

Yt, Y N CC
= 1

|N CC|
∑
t∈N CC

Yt, Yt = D̃tỸt and JHAC,N Cs is the

Newey-West estimator applied to Y N CP
−Y N CC

. For the real (nominal) 2-Year forward rate,

we find texclusion = 0.91 (texclusion = 1.02), and thus fail to reject the exclusion restriction.

8 Conclusions

This paper discusses identification, estimation and inference on dynamic LATE. We show

that compliers can be identified individually and the exclusion restriction can be tested

using a t-test. While weak identification is common in the full sample in practice, strong

identification often appears to hold in a sizable subsample. We propose a method to isolate

this strongly-identified subsample, enabling consistent estimation and inference.

Supplemental Materials: The online supplement [cf. Casini et al. (2025a)] includes Monte

Carlo simulations, proofs of the results of Sections 2-4 and 6. The non-online supplement

[cf. Casini et al. (2025b)] contains the theoretical results and corresponding proofs for the

estimators in Section 5 and additional results.
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S.A Critical Values of F ∗
T

Table 4: Critical values of F ∗
T

α = 0.10
πL\q 1 2 3 4 5 10

0.50 7.44 5.18 4.20 3.70 3.35 2.53

0.60 6.92 4.76 3.94 3.46 3.14 2.40

0.70 6.19 4.44 3.71 3.28 2.96 2.31

0.80 5.51 4.02 3.37 2.79 2.77 2.18

0.90 4.81 3.59 3.08 2.78 2.52 2.04

1.00 2.70 2.32 2.09 1.94 1.80 1.59

α = 0.05
πL\q 1 2 3 4 5 10

0.50 8.90 6.03 4.75 4.14 3.74 2.74

0.60 8.28 5.60 4.49 3.91 3.51 2.62

0.70 7.55 5.21 4.26 3.70 3.31 2.53

0.80 6.84 4.71 3.83 3.43 3.13 2.39

0.90 6.04 4.31 3.58 3.19 2.89 2.25

1.00 3.85 3.00 2.57 2.37 2.16 1.82

α = 0.01
πL\q 1 2 3 4 5 10

0.50 12.27 7.91 6.08 5.12 4.56 3.19

0.60 11.63 7.28 5.73 4.81 4.37 3.08

0.70 10.94 6.97 5.56 4.67 4.19 3.04

0.80 9.73 6.41 5.06 4.34 3.89 2.84

0.90 8.68 5.94 4.62 4.15 3.65 2.69

1.00 6.68 4.60 3.70 3.31 2.99 2.31

S.B Additional Results on Identification-Robust Inference

We present the sufficiency results referenced in Section 6 as well as other results.

S.B.1 Known Sub-Population

When S0,T is known, it is straightforward to use existing tests in the identification-robust

linear IVs literature to test H0 with known optimality properties under certain conditions.

However, one must be careful in defining the appropriate statistics when applying existing

tests in this setting in order to maintain efficiency.
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With fixed regressors X and Z and reduced-form errors v that are i.i.d. across rows with

each row being bivariate normally distributed with a mean of zero and a known nonsingular

covariance matrix Σv, careful application of the results of Andrews, Moreira, and Stock (2006)

imply that Z(C0,T )′y is a sufficient statistic for (β, θ′)′. This implies that there can be no loss

in efficiency from focusing on tests that are functions of only Z(C0,T )′y. On the other hand,

the following proposition implies a loss in efficiency from tests that are functions of only

Z ′MXy, which a casual user may be tempted to use when constructing identification-robust

tests for β.

Proposition S.B.1. For the model in (6.1) with fixed regressors X and Z and reduced-form

errors v that are i.i.d. across rows with each row being bivariate normal with a zero mean

and known p.d. covariance matrix Σv, Z
′MXy is not sufficient for (β, θ′)′ if π0 < 1.

This result implies that existing tests (i.e.,. CLR, LM and AR tests) and extensions

thereof are not efficient when Z is treated as the matrix of IVs rather than C0,TZ.

The results of Andrews, Moreira, and Stock (2006) imply that the CLR, LM and AR

tests have limiting null rejection probabilities equal to α under weak instrument asymptotics.

In addition, results in Andrews, Moreira, and Stock (2006) imply asymptotic near-optimality

properties of the CLR test under a stronger set of assumptions that may not hold in the

presence of serial correlation in {vt}.

S.B.2 Unknown Sub-Population

In Section 6 we propose CLR, LM and AR statistics where we plug-in the estimate for the

unknown sub-population: CLRT (ŜT ), LMT (ŜT ) and ART (ŜT ). To motivate their use in the

unknown sub-population setting, we establish the analog of the sufficiency result of Andrews,

Moreira, and Stock (2006) in this setting.

Proposition S.B.2. For the model in (6.1) with fixed regressors X and Z and reduced form

errors v that are i.i.d. across rows with each row being bivariate normal with a zero mean,

known p.d. covariance matrix Σv and an unknown sub-population S0,T ∈ S, the Gaussian

process {Z(CT )′y}ST ∈S is a sufficient statistic for (β, θ′)′.

Since the AR, LM and CLR statistics are only functions of {Z(CT )′y}ST ∈S , this result

implies that these tests entail no loss in efficiency relative to tests using the entire data.
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We finally show that under weak IV asymptotics, ŜT is the maximum likelihood esti-

mator of ST under H0, so that the sub-population estimate we use when constructing and

interpreting the identification-robust tests is efficient.

Proposition S.B.3. For the model in (6.1) with fixed regressors X and Z and reduced form

errors v that are i.i.d. across rows with each row being bivariate normal with a zero mean,

p.d. covariance matrix Σv and unknown sub-population ST ∈ S, if Assumptions 6.1 and

6.3-6.4 hold and θ = c/T 1/2 for some nonstochastic c ∈ Rq, ŜT is asymptotically equivalent

to the maximum likelihood estimator of ST under H0.

The result in Proposition S.B.3 continues to hold under strong IVs, i.e., θ ̸= 0 is fixed.

See Casini, McCloskey, Rolla, and Pala (2025b).

Magnusson and Mavroeidis (2014) propose tests for β that are robust to changes in

θ whether through persistent time variation or breaks. For the latter case, they assumed

the number of breaks is known, whereas our approach does not require this prior knowl-

edge. For the weak IVs case, Magnusson and Mavroeidis (2014) consider a single break

and build split-sample tests based on the sufficient statistic {Z (τ)′ y}τ∈[0, 1] where Z (τ) =
[[{Z ′

t}
⌊τT ⌋
t=1 0′]′ ... [0′ {Z ′

t}
T
t=⌊τT ⌋+1]′]. This high-dimensional statistic effectively uses the full data

sequence evaluated at all potential split points. In contrast, our framework focuses on sub-

samples where θ is nonzero, allowing us to construct a lower-dimensional sufficient statistic.

In other words, their statistic is not minimal sufficient [cf. Lehmann and Romano (2005)],

whereas ours is—making our tests more efficient in this setting.

S.C Monte Carlo Simulations

S.C.1 Finite-Sample Size and Power of F ∗
T

We study the finite-sample rejection frequencies of the F ∗
T test using a simulation experiment

calibrated to real data from the analysis in Nakamura and Steinsson (2018) introduced in

Section 3. We use the same sequences of policy dates and control dates, P and C, to construct

the instrument as

Zt =


T
TP
, t ∈ P

− T
TC
, t ∈ C.
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Under heteroskedasticity-based identification the first-stage equation can be equivalently

written as Dt = θZtDt + et for some θ and et [cf. Rigobon and Sack (2003) and Lewis

(2022)]. Hence, we generate Dt according to the following data-generating process (DGP):

Dt =


et

1−θ1Zt
, t ≤ ⌊T/4⌋

et

1−θ2Zt
, ⌊T/4⌋ + 1 ≤ t ≤ ⌊T/4⌋ + ⌊(1 − π0)T ⌋

et

1−θ3Zt
, ⌊T/4⌋ + ⌊(1 − π0)T ⌋ + 1 ≤ t ≤ T,

(S.C.1)

where π0 = 0.4, 0.6, 0.8 and T = 400. We set TP and TC equal to the number of policy

and control dates that occur in the first T observations in Nakamura and Steinsson’s (2018)

sample. We specify et = ρeet−1 + ve,t, where ρe ∈ {0, 0.25, 0.5, 0.75}, ve,t ∼ i.i.d.N (0, σ2
v)

and σ2
v is set equal to the sample variance of the policy variable (2-years nominal Treasury

yields). We set θ1 = θ2 = θ3 = 0 under the null hypothesis. Under the alternative, θ1 = θ3 > 0
and θ2 = 0.

We also consider the following DGP:35

Yt = βDt + γ1Xt + ut, (S.C.2)

where Xt = 1 for all t and

Dt =


θ1Zt + γ2Xt + et, t ≤ ⌊T/4⌋

θ2Zt + γ2Xt + et, ⌊T/4⌋ + 1 ≤ t ≤ ⌊T/4⌋ + ⌊(1 − π0)T ⌋

θ3Zt + γ2Xt + et, ⌊T/4⌋ + ⌊(1 − π0)T ⌋ + 1 ≤ t ≤ T,

(S.C.3)

Zt ∼ i.i.d.N (1, 1) , and ut and et are i.i.d. jointly normal with mean zero and covariance

Σue =
1 ρ

ρ 1

 , (S.C.4)

with ρ ∈ {0.25, 0.75} and γ1 = γ2 ∈ {0, 1} . Under the null hypothesis we set θ1 = θ2 = θ3 =
0. Under the alternative hypothesis we set θ1 = θ3 = dT−1/2 with d ∈ {4, 16, 32} and θ2 = 0.
We also consider two additional specifications for θ2. In the first, θ2 = −0.5dT−1/2, so θ2 has

the opposite value to θ1 and θ3. In the second, θ2 = −0.5. In both cases the instrument is

35This is also used to compare the performance of the estimators of β discussed in Section 5 and of the
identification-robust tests discussed in Section 6.
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relevant throughout the sample (no identification failure). However, in the second regime the

first-stage effect tends to offset instrument relevance in the other regimes because of the sign

reversal. We set π0 ∈ {0.6, 0.8} and T = 200. We also consider a variant of the DGP with

serially correlated data. We assume ut = ρuut−1 + vu,t and et = ρeet−1 + ve,t with vu,t and ve,t

being jointly normal with mean zero and covariance Σue as in (S.C.4) with ρ ∈ {0.25, 0.75}.
Throughout the simulation study, F ∗

T is implemented with πL = 0.6, ϵ = 0.05, m+ = 5.
For both F ∗

T and the full sample FT we use the Newey-West estimator with bandwidth

equal to the popular rule
⌊
T−1/3

⌋
for Ĵ(·).36 The significance level is 5% and the number

of simulations is 5,000. Figure 5 plots the rejection rates of F ∗
T and the full sample FT for

the calibrated DGP in (S.C.1). F ∗
T yields accurate rejection rates whereas FT is undersized,

providing evidence for the reliability of our empirical results in Section 7. F ∗
T is more powerful

than FT by about 10% across all values of ρe.

Figure 5: Power curves of F ∗
T and FT for the DGP calibrated to Nakamura and Steinsson’s (2018) sample with T = 400.

Moving on to the DGP specified in (S.C.2)-(S.C.3), Table 5 presents the size and size-

adjusted power of the F tests for the case θ2 = −0.5 under the alternative. The F ∗
T statistic

is more oversized than FT for ρ = 0.25 and its size improves for ρ = 0.75, possibly due to

small-sample bias in the long-run variance estimator. However, the over-sizing is relatively

modest. The size-adjusted power of F ∗
T is much higher than that of the the full sample FT for

36We also consider data-dependent bandwidths. The results are similar and not reported.
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all values of d. Power gains are larger when π0 = 0.6 than when 0.8 since in the former case

the strongly-identified subsample is smaller, making the full sample FT rely more heavily on

subsamples that suffer from identification failure.

Table 5: Size and size-adjusted power of F tests under alternative hypothesis with θ2 = −0.5
ρ = 0.25, π0 = 0.6 θ1 = θ2 = θ3 = 0 (null) d = 4 d = 8 d = 12 d = 16 d = 20 d = 24
full sample FT 0.061 0.023 0.123 0.478 0.797 0.933 0.981

F ∗
T 0.110 0.167 0.441 0.847 0.973 0.991 1.000

ρ = 0.75, π0 = 0.6 θ1 = θ2 = θ3 = 0 (null) d = 4 d = 8 d = 12 d = 16 d = 20 d = 24
full sample FT 0.063 0.034 0.107 0.394 0.712 0.879 0.957

F ∗
T 0.083 0.163 0.410 0.791 0.946 0.991 0.999

ρ = 0.25, π0 = 0.8 θ1 = θ2 = θ3 = 0 (null) d = 2 d = 6 d = 10 d = 14 d = 18 d = 22
full sample FT 0.061 0.038 0.642 0.969 0.998 1.000 1.000

F ∗
T 0.110 0.107 0.872 0.994 1.000 1.000 1.000

ρ = 0.75, π0 = 0.8 θ1 = θ2 = θ3 = 0 (null) d = 2 d = 6 d = 10 d = 14 d = 18 d = 22
full sample FT 0.063 0.049 0.468 0.907 0.993 0.999 1.000

F ∗
T 0.083 0.091 0.709 0.984 0.999 1.000 1.000

Figure 6 plots the size-adjusted power of the F tests for the specification θ2 = −0.5dT−1/2.37

In this specification, under the alternative the instrument is relevant throughout the sample.

However, because θ2 has opposite sign to θ1 and θ3 the contribution of the second regime

tends to offset those of the first and third. Consistent with this, the plots show that F ∗
T is

substantially more powerful than the full sample FT . The resulting power gains exceed those

obtained when θ2 shares the same sign as θ1 and θ3.

S.C.2 Finite-Sample Properties of ŜT,OLS, ŜT,FGLS, β̂(ŜT,OLS) and β̂(ŜT,FGLS)

We study the finite-sample bias and mean-squared error (MSE) of the proposed estimators

of S0,T and β. For the latter, we compare them with β̂FS, the full sample IV estimator of β.

We consider the same DGP as in (S.C.2)-(S.C.3) where Xt ∼ i.i.d.N (1, 1). We set β = 1.38

The number of simulations is 5,000.

Table 6 reports the MSE of ŜT,OLS and ŜT,FGLS for the case θ1 = θ2 = θ3 = dT−1/2,

where ŜT,FGLS is constructed using Ω̂ε(ST ) = Σ̂ε ⊗ IT , which is misspecified in the presence

37Note that the size of the tests is that reported in Table 5 since the DGPs for the two specifications are
the same under the null.

38The results do not change with other values of β.
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Figure 6: Power curves of F ∗
T and full sample FT for θ2 = −0.5dT−1/2 under the alternative hypothesis with T = 200.

of serial correlation. Under i.i.d. errors, FGLS yields a lower MSE when the endogeneity is

high (ρ = 0.75) and the instrument is not weak (d = 16 and 32). This is intuitive, as FGLS

expolits information from the cross-equation correlation in the errors. However, when the

errors are serially correlated (ρe = ρu > 0), FGLS exhibits a higher MSE than OLS except for

a few instances (e.g., ρ = 0.75 and d = 32). This pattern arises because the relative efficiency

gains of FGLS over OLS are not guaranteed in the presence of a misspecified covariance.

Table 6: MSE of ŜT,OLS and ŜT,FGLS

ρe = ρu = 0 ρe = ρu = 0.50
ρ = 0.25, π0 = 0.6 d = 4 d = 16 d = 32 d = 4 d = 16 d = 32

MSE(ŜT,OLS) 31.58 2.24 0.71 37.44 4.03 1.07

MSE(ŜT,F GLS) 55.29 2.83 0.76 55.97 9.21 1.29

ρe = ρu = 0 ρe = ρu = 0.50
ρ = 0.75, π0 = 0.6 d = 4 d = 16 d = 32 d = 4 d = 16 d = 32

MSE(ŜT,OLS) 31.58 2.24 0.71 37.44 4.03 1.07

MSE(ŜT,F GLS) 52.71 1.84 0.47 54.69 4.56 0.64

ρe = ρu = 0 ρe = ρu = 0.50
ρ = 0.25, π0 = 0.8 d = 4 d = 16 d = 32 d = 4 d = 16 d = 32

MSE(ŜT,OLS) 22.61 2.26 0.92 26.70 3.84 1.21

MSE(ŜT,F GLS) 30.43 2.81 1.02 32.56 8.81 1.53

ρe = ρu = 0 ρe = ρu = 0.50
ρ = 0.75, π0 = 0.8 d = 4 d = 16 d = 32 d = 4 d = 16 d = 32

MSE(ŜT,OLS) 22.44 2.27 0.96 26.70 3.84 1.21

MSE(ŜT,F GLS) 24.24 1.55 0.77 31.63 3.42 0.92
To facilitate readability each value is multiplied by 102.
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Next, we examine the bias and MSE of β̂(ŜT,OLS), β̂(ŜT,FGLS) and β̂FS for the case

θ1 = θ2 = θ3 = dT−1/2, where ŜT,FGLS is again constructed using Ω̂ε(ST ) = Σ̂ε ⊗ IT . Table 7

reports the results. When the instrument is weak throughout the sample (d = 4) no estima-

tor uniformly dominates in terms of bias or MSE, and the results vary considerably across

settings. In contrast, when the instrument is strong in parts of the sample (d = 16, 32),
β̂(ŜT,OLS) generally exhibits lower bias and MSE than both β̂(ŜT,FGLS) and β̂FS. The re-

duction in bias and MSE can be substantial—often at least 50% in many configurations.

Moreover, β̂(ŜT,FGLS) tends to outperform β̂FS when d = 16 or 32, and occasionally even

when d = 4. The results for the cases θ2 = −0.5dT−1/2 and θ2 = −0.5 are similar and omitted.

We now evaluate the performance of the estimators of β in a setting where the instrument

is strong in the subsample S0,T but weak in the remainder of the sample. This allows us to

assess whether the full sample estimator—which combines the strongly identified subsample

with the weakly identified subsample—outperforms estimators based solely on the strongly

identified subsample. We consider the DGP specified in (S.C.2)-(S.C.3), setting θ2 = d2/
√
T

with d2 ∈ {4, 8} and θ1 = θ3 = d/
√
T with d ∈ {16, 24, 32}.

The results are reported in Table 8. When the instrument is weak in the remaining

part of the sample (d2 = 4), β̂(ŜT,OLS) and β̂(ŜT,FGLS) consistently yield lower MSE for both

ρ = 0.25 and 0.75. The bias of the full sample estimator is smaller than that of β̂(ŜT,OLS)
and β̂(ŜT,FGLS) only when d = 16. For larger values of d, β̂(ŜT,OLS) and β̂(ŜT,FGLS) exhibit

lower bias.

When the instrument has intermediate identification strength in the remaining sample

(d2 = 8), β̂FS delivers lower bias and MSE than β̂(ŜT,OLS) and β̂(ŜT,FGLS) when d = 16.
However, for d = 24 and 32, β̂(ŜT,OLS) exhibits lower bias and MSE than both β̂FS and

β̂(ŜT,FGLS).
Overall, the results indicate that when the instrument is weak in the remaining part

of the sample, β̂(ŜT,OLS) and β̂(ŜT,FGLS) outperform the full sample estimator that also

incorporates the weakly identified subsample, provided that the instrument is sufficiently

strong in the strongly identified subsample.
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Table 7: Bias and MSE of β̂FS, β̂(ŜT,OLS) and β̂(ŜT,FGLS)
θ2 = dT −1/2 ρe = ρu = 0 ρe = ρu = 0.50

ρ = 0.25, π0 = 0.6 d = 4 d = 16 d = 32 d = 4 d = 16 d = 32
Bias(β̂F S) -12.00 -0.18 -0.09 -46.77 -0.24 -0.08

Bias(β̂(ŜT,OLS)) 18.70 0.21 -0.08 8.75 0.13 -0.01

Bias(β̂(ŜT,F GLS)) -2.16 -0.33 -0.18 -8.13 -0.70 -0.18

MSE(β̂F S) 2801.97 1.19 0.29 71860.15 1.57 0.38

MSE(β̂(ŜT,OLS)) 4868.16 0.70 0.16 26217.10 0.92 0.22

MSE(β̂(ŜT,F GLS)) 179845.84 7.90 0.18 25547.87 1.22 0.25

ρe = ρu = 0 ρe = ρu = 0.50
ρ = 0.75, π0 = 0.6 d = 4 d = 16 d = 32 d = 4 d = 16 d = 32

Bias(β̂F S) -18.00 -0.82 -0.22 29.23 -1.13 -0.29

Bias(β̂(ŜT,OLS)) 30.88 0.19 -0.07 54.22 0.22 -0.11

Bias(β̂(ŜT,F GLS)) 126.40 -0.64 -0.18 9.22 -1.04 -0.29

MSE(β̂F S) 6879.05 1.27 0.29 114152.48 1.68 0.40

MSE(β̂(ŜT,OLS)) 12408.54 0.71 0.17 98469.13 0.98 0.23

MSE(β̂(ŜT,F GLS)) 397451.09 0.79 0.19 38287.46 1.18 0.25

ρe = ρu = 0 ρe = ρu = 0.50
ρ = 0.25, π0 = 0.8 d = 4 d = 16 d = 32 d = 4 d = 16 d = 32

Bias(β̂F S) -16.50 -0.07 -0.05 0.58 -0.08 -0.03

Bias(β̂(ŜT,OLS)) 13.51 0.11 -0.07 2.60 0.20 -0.00

Bias(β̂(ŜT,F GLS)) -11.13 -0.30 -0.13 -34.74 -0.41 -0.12

MSE(β̂F S) 7589.57 0.64 0.16 19.70 0.83 0.21

MSE(β̂(ŜT,OLS)) 8934.70 0.51 0.12 290.25 0.67 0.17

MSE(β̂(ŜT,F GLS)) 1174.15 0.56 0.13 52974.88 0.80 0.18

ρe = ρu = 0 ρe = ρu = 0.50
ρ = 0.75, π0 = 0.8 d = 4 d = 16 d = 32 d = 4 d = 16 d = 32

Bias(β̂F S) -11.70 -0.43 -0.06 -6.43 -0.58 -0.16

Bias(β̂(ŜT,OLS)) -11.75 0.11 -0.03 -1.45 0.25 -0.07

Bias(β̂(ŜT,F GLS)) -24.69 -0.50 -0.13 -49.61 -0.77 -0.23

MSE(β̂F S) 607.85 0.62 0.16 3808.63 0.86 0.21

MSE(β̂(ŜT,OLS)) 4083.34 0.50 0.13 1577.48 0.70 0.17

MSE(β̂(ŜT,F GLS)) 8027.84 0.54 0.14 33900.00 0.77 0.18
To facilitate readability each value is multiplied by 102.
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Table 8: Bias and MSE of β̂FS, β̂
(
ŜT,OLS

)
and β̂

(
ŜT,FGLS

)
ρ = 0.25 ρ = 0.75

d2 = 4, π0 = 0.6 d = 16 d = 24 d = 32 d = 16 d = 24 d = 32
Bias(β̂F S) -0.13 -0.12 -0.14 -0.55 -0.26 -0.25

Bias(β̂(ŜT,OLS)) 0.45 0.03 -0.05 1.02 0.12 -0.05

Bias(β̂(ŜT,F GLS)) -0.34 -0.19 -0.16 -0.43 -0.31 -0.21

MSE(β̂F S) 0.87 0.40 0.24 0.89 0.40 0.24

MSE(β̂(ŜT,OLS)) 0.68 0.30 0.17 0.70 0.30 0.17

MSE(β̂(ŜT,F GLS)) 0.81 0.35 0.19 0.78 0.34 0.18

ρ = 0.25 ρ = 0.75
d2 = 8, π0 = 0.6 d = 16 d = 24 d = 32 d = 16 d = 24 d = 32

Bias(β̂F S) -0.09 -0.10 -0.13 -0.40 -0.21 -0.22

Bias(β̂(ŜT,OLS)) 1.00 0.09 -0.03 -2.70 0.36 0.08

Bias(β̂(ŜT,F GLS)) 0.28 -0.22 -0.16 0.55 -0.26 -0.20

MSE(β̂F S) 0.65 0.33 0.20 0.67 0.33 0.20

MSE(β̂(ŜT,OLS)) 0.71 0.30 0.17 0.75 0.30 0.17

MSE(β̂(ŜT,F GLS)) 0.96 0.35 0.19 0.82 0.34 0.18
To facilitate readability each value is multiplied by 102.

S.C.3 Finite-sample Size and Power of Weak Identification-Robust Tests

We study the finite-sample rejection frequencies of the proposed tests and compare their

performance to the tests analyzed by Andrews, Moreira, and Stock (2006) and Magnusson

and Mavroeidis (2014). The analysis is based on the same DGP described in (S.C.2)-(S.C.3)

with parameters ρ ∈ {0.25, 0.5, 0.75}, γ1 = γ2 ∈ {0, 1}, θ1 = θ3 = dT−1/2 with d ∈
{4, 8, 10, 16, 24} and θ2 = 0. We consider values of π0 ∈ {0.4, 0.6, 0.8} and T = {200, 400}.
Under the null hypothesis we set β = 0.

We compare the performance of our proposed test statistics ART (ŜT ), LMT (ŜT ) and

CLRT (ŜT ) with their full sample counterparts and with the test statistics Split-S, Split-CLR,
qLL-S, ave-S and exp-S analyzed by Andrews, Moreira, and Stock (2006) and with the tests

statistics Split-S, Split-CLR, qLL-S, ave-S and exp-S proposed by Magnusson and Mavroeidis

(2014). For all tests, we consider heteroskedasticity and autocorrelation-robust versions using

the Newey-West estimator with bandwidth equal to the popular rule
⌊
T−1/3

⌋
.39 For qLL-S,

the tuning parameters c and c̃ are set to 10, following the recommendation in Magnusson

and Mavroeidis (2014). The significance level is fixed at 5%, and the number of Monte Carlo

replications is set to 10,000 throughout the analysis.

39We also experiment with data-dependent bandwidths, though results are similar and therefore omitted.
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Tables 9-10 report the null rejections frequencies of the various test statistics. In Table

9 the sample size is set to T = 400, ρ = 0.25 and the errors are assumed to be i.i.d.40 The

results show that qLL-S and exp-S tests systematically yield rejection rates below the nominal

significance level, while the Split-CLR is systematically oversized. LMT and LMT (ŜT ) show

accurate null rejection frequencies for all values of d, whereas CLRT and CLRT (ŜT ) tend

to produce slightly oversized rejection rates when the instrument is weak (i.e., d = 4 and

d = 8). We note that LMT (ŜT ) and CLRT (ŜT ) have often more accurate rejection rates

than their full sample counterparts. These findings are consistent across values of π0. In

Table 10 we consider a smaller sample size of T = 200 and ρ ∈ {0.25, 0.50, 0.75}. The

qualitative patterns remain similar. As ρ increases LMT (ŜT ) and CLRT (ŜT ) become slightly

more oversized than their full sample counterparts for d = 4, although the opposite occurs

for larger d. Thus, the proposed tests demonstrate good size control, even in small samples.

In the supplement, we examine the impact of serial correlation on the null rejection rates.

Under strong serial dependence (ρe = ρu = 0.75) all tests exhibit rejection rates that exceed

the nominal significance level. Specifically, LMT (ŜT ) and CLRT (ŜT ) are a bit more oversized

than LMT and CLRT but similar to qLL-S. Under weak serial dependence ρe = ρu = 0.25,
the proposed tests LMT (ŜT ) and CLRT (ŜT ) are only slightly more oversized than their full

sample counterparts, LMT and CLRT .

Finally, we turn to the comparison of size-adjusted power, as reported in Figures 7-8.

Neither test achieves unit power when the instrument is weak. The results indicate that the

proposed tests consistently achieve the highest size-adjusted power across all specifications

considered. The power gains are substantial, averaging around approximately 20–30% and

reaching 40-50% in the most favorable cases. The latter coincide with the specifications

θ2 = −0.5dT−1/2 and θ2 = −0.5. Consistent with the theoretical predictions, the gains are

more pronounced for smaller values of π0, provided that π0 is not too small. Overall, these

finite-sample results support our theoretical relative efficiency results.

40When the number of instruments is one, the AR tests are not reported, as they are numerically equivalent
to the LM tests. For results with serially correlated errors, see the supplement. The conclusions are similar
to i.i.d. errors.
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Table 9: Finite-Sample Null Rejection Frequencies of Tests

T = 400 γ1 = γ2 = 0 and ρe = ρu = 0 γ1 = γ2 = 1 and ρe = ρu = 0
ρ = 0.25, π0 = 0.6 d = 4 d = 8 d = 12 d = 16 d = 4 d = 8 d = 12 d = 16

LMT 0.057 0.057 0.053 0.056 0.059 0.060 0.058 0.056

CLRT 0.078 0.065 0.060 0.062 0.083 0.074 0.067 0.065

LMT (ŜT ) 0.061 0.052 0.049 0.050 0.065 0.055 0.054 0.048

CLRT (ŜT ) 0.072 0.054 0.051 0.050 0.079 0.074 0.055 0.049

split − S 0.039 0.038 0.036 0.036 0.042 0.042 0.038 0.034

split − CLR 0.115 0.122 0.117 0.115 0.110 0.130 0.122 0.123

qqL − S 0.027 0.031 0.028 0.056 0.031 0.029 0.031 0.026

ave − S 0.044 0.039 0.043 0.038 0.043 0.043 0.042 0.038

exp − S 0.019 0.020 0.017 0.019 0.017 0.022 0.021 0.019

ρ = 0.25, π0 = 0.4 d = 4 d = 8 d = 12 d = 16 d = 4 d = 8 d = 12 d = 16
LMT 0.058 0.058 0.058 0.058 0.059 0.058 0.056 0.060

CLRT 0.087 0.079 0.073 0.072 0.083 0.081 0.072 0.073

LMT (ŜT ) 0.061 0.060 0.065 0.064 0.065 0.065 0.062 0.066

CLRT (ŜT ) 0.081 0.071 0.073 0.071 0.079 0.076 0.070 0.072

split − S 0.036 0.036 0.038 0.037 0.042 0.039 0.039 0.038

split − CLR 0.104 0.119 0.120 0.121 0.110 0.119 0.119 0.122

qqL − S 0.027 0.028 0.029 0.031 0.028 0.030 0.032 0.032

ave − S 0.040 0.043 0.047 0.043 0.044 0.043 0.037 0.044

exp − S 0.015 0.017 0.017 0.018 0.017 0.020 0.020 0.019

ρ = 0.25, π0 = 0.8 d = 4 d = 8 d = 12 d = 16 d = 4 d = 8 d = 12 d = 16
LMT 0.055 0.056 0.057 0.058 0.056 0.060 0.058 0.060

CLRT 0.069 0.061 0.060 0.060 0.076 0.067 0.062 0.062

LMT (ŜT ) 0.060 0.061 0.053 0.049 0.061 0.059 0.056 0.052

CLRT (ŜT ) 0.068 0.063 0.054 0.049 0.071 0.062 0.058 0.053

split − S 0.038 0.041 0.047 0.045 0.043 0.047 0.044 0.041

split − CLR 0.117 0.128 0135 0.135 0.122 0.133 0.133 0.128

qqL − S 0.028 0.032 0.029 0.030 0.025 0.030 0.032 0.031

ave − S 0.045 0.044 0.047 0.040 0.042 0.046 0.044 0.041

exp − S 0.028 0.019 0.017 0.020 0.018 0.022 0.019 0.018
Model M1 and M2. The null hypothesis is H0 : β = 0.

S-12



dynamic late

Table 10: Finite-Sample Null Rejection Frequencies of Tests

γ1 = γ2 = 0 and ρe = ρu = 0
ρ = 0.25 ρ = 0.50 ρ = 0.75

T = 200, π0 = 0.6 d = 4 d = 10 d = 16 d = 4 d = 10 d = 16 d = 4 d = 10 d = 16
LMT 0.061 0.061 0.061 0.062 0.062 0.059 0.062 0.062 0.062

CLRT 0.084 0.073 0.070 0.085 0.073 0.063 0.080 0.071 0.070

LMT (ŜT ) 0.068 0.054 0.053 0.075 0.057 0.059 0.082 0.057 0.054

CLRT (ŜT ) 0.081 0.057 0.054 0.086 0.059 0.059 0.090 0.058 0.054

split − S 0.034 0.035 0.034 0.035 0.034 0.035 0.036 0.035 0.034

split − CLR 0.105 0.113 0.111 0.106 0.115 0.115 0.110 0.115 0.115

qqL − S 0.015 0.017 0.017 0.019 0.019 0.014 0.017 0.018 0.018

ave − S 0.035 0.038 0.035 0.038 0.036 0.039 0.036 0.039 0.042

exp − S 0.012 0.012 0.012 0.012 0.012 0.014 0.012 0.012 0.012

γ1 = γ2 = 1 and ρe = ρu = 0
ρ = 0.25 ρ = 0.50 ρ = 0.75

T = 200, π0 = 0.6 d = 4 d = 10 d = 16 d = 4 d = 10 d = 16 d = 4 d = 10 d = 16
LMT 0.066 0.066 0.066 0.064 0.064 0.064 0.069 0.069 0.069

CLRT 0.089 0.077 0.075 0.089 0.075 0.073 0.089 0.080 0.078

LMT (ŜT ) 0.070 0.060 0.056 0.082 0.061 0.056 0.095 0.058 0.056

CLRT (ŜT ) 0.085 0.063 0.057 0.094 0.064 0.056 0.105 0.060 0.057

split − S 0.040 0.040 0.039 0.041 0.040 0.038 0.040 0.037 0.038

split − CLR 0.110 0.123 0.121 0.112 0.112 0.119 0.118 0.119 0.120

qqL − S 0.020 0.021 0.021 0.024 0.019 0.024 0.025 0.023 0.024

ave − S 0.041 0.040 0.039 0.042 0.036 0.037 0.040 0.041 0.038

exp − S 0.014 0.015 0.015 0.015 0.016 0.015 0.014 0.016 0.014
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Figure 7: Size-adjusted power of identification robust tests for θ2 = dT−1/2 with T = 200 and π0 = 0.6.
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Figure 8: Size-adjusted power of identification robust tests for θ2 = −0.5dT−1/2 and θ2 = −0.5 wirh T = 200 and ρ = 0.25.
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S.D Mathematical Proofs

S.D.1 Proofs of the Results of Sections 2-3

S.D.1.1 Preliminary Lemmas

Lemma S.D.1. Let Assumption 2.4 hold, gt (·) be locally absolutely continuous on D ⊆ R and

E[
�

D |∂gt(d)/∂d|dd|Ṽt] < ∞. For t ∈ S0,T , ṽ in the support of Ṽt, and z, z
′ ∈ Z, we have

E
(
gt (Dt (z′)) − gt (Dt (z)) | Ṽt = ṽ

)
=

�
D
E
(
∂

∂d
gt (d) |Dt (z) ≤ d ≤ Dt (z′) , Ṽt = ṽ

)
P
(
Dt (z) ≤ d ≤ Dt (z′) | Ṽt = ṽ

)
dd.

Proof of Lemma S.D.1. Suppose that Assumption 2.4 holds with Dt (z′) ≥ Dt (z). We have

E
(
gt (Dt (z′)) − gt (Dt (z)) | Ṽt = ṽ

)
= E

(� Dt(z′)

Dt(z)

∂gt
∂d

(d) dd| Ṽt = ṽ

)

= E
(�

D

∂gt
∂d

(d) 1 {Dt (z) ≤ d ≤ Dt (z′)} dd| Ṽt = ṽ

)

=
�

D
E
(
∂gt
∂d

(d) 1 {Dt (z) ≤ d ≤ Dt (z′)} | Ṽt = ṽ

)
dd

=
�

D
E
(
∂gt
∂d

(d) |Dt (z) ≤ d ≤ Dt (z′) , Ṽt = ṽ

)
P
(
Dt (z) ≤ d ≤ Dt (z′) | Ṽt = ṽ

)
dd,

where the first equality follows from local absolute continuity and the fundamental theorem

of calculus and the third equality follows from Fubini’s theorem and integrability. □

S.D.1.2 Proof of Proposition 2.1

Consider first the denominator of βπ,t,h (ṽ). We appeal to Assumption 2.1 and apply Lemma

S.D.1 with gt (d) = d to obtain for t ∈ S0,T ,

E
(
Dt|Zt = z′, Ṽt = ṽ

)
− E

(
Dt|Zt = z, Ṽt = ṽ

)
=

�
D
P
(
Dt (z) ≤ d ≤ Dt (z′) | Ṽt = ṽ

)
dd.
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Noting that Yt,h is a function of Dt = d, we appeal to Assumptions 2.1-2.2 and 2.5(i) and

apply Lemma S.D.1 with gt (d) = Y ∗
t,h (d) to the numerator of βπ,t,h (ṽ) to obtain,

E
(
Yt+h|Zt = z′, Ṽt = ṽ

)
− E

(
Yt+h|Zt = z, Ṽt = ṽ

)
=

�
D
E
(
∂Y ∗

t,h

∂d
(d) |Dt (z) ≤ d ≤ Dt (z′) , Ṽt = ṽ

)
× P

(
Dt (z) ≤ d ≤ Dt (z′) | Ṽt = ṽ

)
dd.

Using the derived expressions for the numerator and denominator of βπ,t,h (ṽ) yields the

expression given in the proposition, which is well-defined by Assumption 2.3. Note that by

definition wt (d| ṽ) ≥ 0 and
�

D wt (d| ṽ) dd = 1. □

S.D.1.3 Proof of Theorem 2.1

Lemma S.D.2. Let Assumption 2.6 hold. For each t, Dt (1) > Dt (0) with probability one if

and only if E (Dt (1)) > E (Dt (0)).

Proof of Lemma S.D.2. First, note that P (Dt (1) > Dt (0)) = 1 immediately implies E (Dt (1)) >
E (Dt (0)). To see the reverse implication, suppose E (Dt (1)) > E (Dt (0)). Then it must

be the case that P (Dt(1) > Dt(0)) > 0. But then Assumption 2.6 immediately implies

P (Dt(0) < Dt(1)) = 1. □

Consider first the policy sample. Given t ∈ P we have Zt = 1 and Dt = Dt (1) . By
Lemma S.D.2 t ∈ P is a complier if and only if E (Dt (1)) > E (Dt (0)). By Assumption

2.7(ii) we have E (Dt (0)) − E (Dt−1 (0)) = 0. The latter implies t ∈ P is a complier if and

only if

E (Dt (1)) − E (Dt−1 (0)) = E (Dt (1)) − E (Dt (0))

> E (Dt (0)) − E (Dt (0)) = 0.

By Assumption 2.7(i), DC,t−1,n0
P→ E (Dt−1 (0)) as n0 → ∞. By Assumption 2.8(i), DP,t,n1

P→
E (Dt (1)) as n1 → ∞. Thus, DP,t,n1 −DC,t−1,n0

P→ c as n0, n1 → ∞, where c > 0 if and only

if t ∈ P is a complier.

Now consider the control sample. Since t ∈ C we have Zt = 0 and Dt = Dt (0) . Using
Assumption 2.8(ii) and Lemma S.D.2 we have t ∈ C is a complier if and only if

E
(
Ds∗(t) (1)

)
− E (Dt (0)) = E (Dt (1)) − E (Dt (0))
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> E (Dt (0)) − E (Dt (0)) = 0.

By Assumption 2.7(i), DC,t,n0
P→ E (Dt (0)) as n0 → ∞. By Assumption 2.8(i), DP,s∗(t),n1

P→
E(Ds∗(t) (1)) as n1 → ∞. Thus, DP,s∗(t),n1 − DC,t,n0

P→ c̃ as n0, n1 → ∞, where c̃ > 0 if and

only if t ∈ C is a complier. □

S.D.1.4 Proof of Proposition 2.2

Under Assumption 2.4 with Dt(1) ≥ Dt(0), non-compliers are characterized by P(Dt(1) =
Dt(0)) = 1 using Assumption 2.6 so that any non-complier cannot belong to S0,T . On the

other hand, if t is a complier, E[Dt(1)] ̸= E[Dt(0)] since P(Dt(1) > Dt(0)) = 1 by the

definition of a complier so that t ∈ S0,T . □

S.D.1.5 Proof Proposition 2.3

For t ∈ N CsC, Zt = 0 so that Yt = Y ∗
t (Dt(0), 0) and Assumption 2.9(iii) implies

|N CsC|−1 ∑
t∈N Cs

C

Yt
P→ E[Yt|t ∈ N CsC] = E[Y ∗

t (Dt(0), 0)|t ∈ N CsC] = E[Y ∗
t (Dt, 0)|t ∈ N CsC],

as |N CsC| → ∞ since t is a non-complier. Similarly, Assumption 2.9(iii) implies

|N CsP|−1 ∑
t∈N Cs

P

Yt
P→ E[Y ∗

t (Dt, 1)|t ∈ N CsP]

as |N CsP| → ∞. But Assumption 2.9(i)–(ii) implies E[Y ∗
t (Dt, 0)|t ∈ N CsC] = E[Y ∗

t (Dt, 0)|t ∈
N CsP], which is in turn equal to E[Y ∗

t (Dt, 1)|t ∈ N CsP] under Assumption 2.2. □

S.D.2 Proofs of the Results of Sections 4, 6 and S.B

S.D.2.1 Proof of Theorem 4.1

Suppose that ST ∈ Ξϵ,π,m,T . Note that Z̃ (ST ) = MSTXSTZ and

D̃ (ST ) = MSTXSTD = MSTXST (Xγ2 + e) = MSTXST e
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under Hθ,0. Thus,

D̃ (ST )′ Z̃ (ST ) = (ST e)′MSTXMSTXSTZ = (ST e)′MSTXSTZ = (ST e)′Z̃(ST ).

By Assumptions 4.1-4.2 we have

T−1/2Z̃ (ST )′ D̃ (ST ) = T−1/2 ∑
t∈ST

Z̃tet ⇒ B (λL,1, λR,m) ,

where B (λL,1, λR,m) is q-dimensional Brownian motion with covariance J(S) = lim
T→∞

(πT )−1

Var((STZ)′ MSTXST e) and S = lim
T→∞

ST . Since Ĵ(ST ) P→ J (S) uniformly by Assumption 4.3,

we have

FT (ST ) ⇒ B (λL,1, λR,m)′ J(S)−1B (λL,1, λR,m)
qπ

= 1
qπ

m∑
i=1

∥(Wq (λR,i) −Wq (λL,i))∥2 .

The result then follows from the continuous mapping theorem. □

S.D.2.2 Proof of Theorem 6.1

Lemma S.D.3. Let Assumptions 6.1-6.3 hold and suppose θ = c/T 1/2 for some nonstochastic

c ∈ Rq. We have Σ̂v (ST ) P→ Σv uniformly in ST ∈ S.

Proof of Lemma S.D.3. Recall that CT is the selection matrix that corresponds to ST . Using
y = Z (C0,T ) θa′ +Xη + v, PXZ (CT ) = 0 and PZ(CT )X = 0, we have

v̂ (ST ) = y − PZ(CT )y − PXy = y − PZ(CT )y −Xη − PXv (S.D.1)

= Z (C0,T ) θa′ + v − PZ(CT )y − PXv

= Z (C0,T ) θa′ + v − PZ(CT )Z (C0,T ) θa′ − PZ(CT )v − PXv

= MZ(CT )Z (C0,T ) θa′ + v − PZ(CT )v − PXv.

Then, using Z (CT )′ X = 0, we have

v̂ (ST )′v̂ (ST ) (S.D.2)

=
(
MZ(CT )Z (C0,T ) θa′ + v − PZ(CT )v − PXv

)′

×
(
MZ(CT )Z (C0,T ) θa′ + v − PZ(CT )v − PXv

)

S-18



dynamic late

= aθ′Z (C0,T )′ MZ(CT )Z (C0,T ) θa′ + aθ′Z (C0,T )′ MZ(CT )v

+ v′MZ(CT )Z (C0,T ) θa′ + v′v − v′PZ(CT )v − v′PXv.

Using Assumptions 6.1, 6.3 and θ = cT−1/2 we have

T−1v′MZ(CT )Z (C0,T ) θa′ (S.D.3)

= T−1v′Z (C0,T ) c√
T
a′ − T−1v′Z (CT )

(
Z (CT )′ Z (CT )

)−1
Z (CT )′ Z (C0,T ) c√

T
a′

= T−1/2OP (1) c√
T
a′ − T−1/2

(
T−1/2v′Z (CT )

) (
T−1Z (CT )′ Z (CT )

)−1
T−1Z (CT )′ Z (C0,T ) c√

T
a′

= OP

(
T−1

)
, and

T−1aθ′Z (C0,T )′ MZ(CT )Z (C0,T ) θa′ (S.D.4)

= T−1aθ′Z (C0,T )′ Z (C0,T ) θa′ − T−1aθ′Z (C0,T )′ Z (CT )
(
Z (CT )′ Z (CT )

)−1
Z (CT )Z (C0,T ) θa′

= a
c′

√
T
T−1Z (C0,T )′ Z (C0,T ) c√

T
a′

− a
c′

√
T
T−1Z (C0,T )′ Z (CT )

(
T−1Z (CT )′ Z (CT )

)−1
T−1Z (CT )′ Z (C0,T ) c√

T
a′ = OP

(
T−1

)

so that

T−1v̂′ (ST ) v̂ (ST ) − Σv =
(
T−1v′v − Σv

)
− T−1v′PZ(CT )v − T−1v′PXv +OP

(
T−1

)
. (S.D.5)

By Assumption 6.2, the first term on the right-hand side of (S.D.5) converges in probability

to zero. The second term satisfies

T−1v′PZ(CT )v ≤ T−1v′PCTZv

= T−1
(
T−1/2v′CTZ

) (
T−1 (CTZ)′ CTZ

)−1 (
T−1/2 (CTZ)′ v

)
= oP (1) ,

where the inequality holds because the span of Z (CT ) = MXCTZ is contained in the span

of CTZ and the oP (1) result follows from Assumptions 6.1 and 6.3. All convergence results

above hold uniformly in ST . The argument for the third term of (S.D.5) is analogous. □

Lemma S.D.3 shows that Σ̂v (ST ) is consistent for Σv for all ST ∈ S. The convergence

in the lemma occurs uniformly over all true parameters β, c, γ, ϕ and over ST ∈ S. Thus,
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estimation based on any partition ST ∈ S leads to residuals {v̂ (ST )} that can be used to

construct a consistent estimate Σ̂v (ST ) for Σv under weak instruments.

For some partitions S,S′ ⊆ (0, 1], partition Q (S,S′) conformably with

w(ST )′w(S′
T ) =

Z(CT )′Z(C ′
T ) Z(CT )′X

X ′Z(C ′
T ) X ′X

 ,
where Z(CT ) = CTZ, so that

Q (S,S′) =
Q11 (S,S′) Q12 (S)
Q21 (S′) Q22

 ,
and let Q(S) = Q (S,S). In addition, note that

ΣN1 (S,S′) = J (S)B0Ψ (S,S′)B′
0J (S′)′

, ΣN1N2 (S,S′) = J (S)A0Ψ (S,S′)B′
0J (S′)′

,

Σ∗
N2 (S,S′) = J (S)A0Ψ (S,S′)A′

0J (S′)′
(S.D.6)

for J (S) =
[
Iq : −Q12 (S)Q−1

22

]
, B0 = (b′

0 ⊗ Iq+p) and A0 = (Σ−1
v a0)′ ⊗ Iq+p.

41

Finally, let N1,∞ (·) and N2,∞ (·) be independent q-dimensional Gaussian processes in-

dexed by S ⊆ (0, 1] with

N1,∞ (S) ∼ N
(
Σ−1/2
N1 (S) ΣZ(S,S0)ca′b0, Iq

)
, (S.D.7)

N2,∞ (S) ∼ N
(
Σ−1/2
N2 (S)

(
ΣZ(S,S0)ca′Σ−1

v a0 − ΣN1N2 (S) Σ−1
N1 (S) ΣZ(S,S0)ca′b0

)
, Iq

)
,

where ΣZ(S,S′) = Q11 (S,S′) −Q12 (S)Q−1
22 Q21 (S′).

Lemma S.D.4. Let Assumptions 6.1-6.5 hold and suppose θ = c/T 1/2 for some nonstochastic

c ∈ Rq. Then, for ST ∈ S and S = limT→∞ T−1ST , we have (N1,T (ST ) , N2,T (ST )) ⇒
(N1,∞ (S) , N2,∞ (S)).

Proof of Lemma S.D.4. By Assumption 6.1,

T−1Z (CT )′ Z (C ′
T ) = T−1Z(CT )′Z(C ′

T ) − T−1Z(CT )′PXZ(C ′
T ) P→ ΣZ(S,S′), (S.D.8)

41See (S.D.9) and (S.D.12) for details.
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uniformly in ST ,S′
T ∈ S. By Assumptions 6.1 and 6.3, we have uniformly in ST ∈ S,

T−1/2Z (CT )′ vb0 = T−1/2 (Z (CT ) − PXZ (CT ))′ vb0 (S.D.9)

= T−1/2
(
Z (CT ) −XQ−1

22 Q21 (ST )
)′
vb0 + oP (1)

=
[
Iq : −Q12 (ST )Q−1

22

]
T−1/2w (ST )′ vb0 + oP (1)

=
[
Iq : −Q12 (ST )Q−1

22

]
(b′

0 ⊗ Iq+p)T−1/2vec (w(ST )′v) ,

⇒ J(S)B0G (S).

Using (S.D.6), (S.D.8), (S.D.9) and Assumption 6.4,

N1,T (ST ) = Σ̂−1/2
N1 (ST )T−1/2Z (CT )′

(
T−1/2Z (C0,T ) ca′ + v

)
b0 (S.D.10)

⇒ Σ−1/2
N1 (S) ΣZ(S,S0)ca′b0 + Σ−1/2

N1 (S) J(S)B0G (S) ∼ N1,∞ (S)

since J(S)B0G (S) ∼ N (0,ΣN1(S)). Similarly, using Lemma S.D.3, Assumptions 6.1, 6.3

and 6.4, (S.D.6) and (S.D.10), we have

N2,T (ST ) (S.D.11)

= Σ̂−1/2
N2 (ST )

×
(
T−1/2Z (CT )′

(
T−1/2Z (C0,T ) ca′ + v

)
Σ̂−1
v (ST ) a0 − Σ̂N1N2 (ST ) Σ̂−1/2

N1 (ST )N1,T (ST )
)

= Σ̂−1/2
N2 (ST )

×
((
T−1Z (CT )′ Z (C0,T ) ca′ + T−1/2Z (CT )′ v

)
Σ−1
v a0 − Σ̂N1N2 (ST ) Σ̂−1/2

N1 (ST )N1,T (ST )
)

+ oP (1)

⇒ Σ−1/2
N2 (S)

(
ΣZ(S,S0)ca′Σ−1

v a0
)

+ Σ−1/2
N2 (S) J (S)A0G (S)

− Σ−1/2
N2 (S)

(
ΣN1N2 (S) Σ−1

N1 (S) ΣZ(S,S0)ca′b0
)

− Σ−1/2
N2 (S)

(
ΣN1N2 (S) Σ−1

N1 (S) J (S)B0G (S)
)

∼ N2,∞ (S) ,

where T−1Z (CT )′ Z (C0,T ) P→ ΣZ(S,S0) uniformly over ST ∈ S by (S.D.8) and

T−1/2Z (CT )′ vΣ−1
v a0 ⇒

[
Iq : −Q12 (S)Q−1

22

] (
a′

0Σ−1
v ⊗ Iq+p

)
G (S) (S.D.12)

in analogy with the arguments that show (S.D.9). The distributional equivalence of the limit
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in (S.D.11) can be seen after noting

Var
(
J (S)A0G (S) − ΣN1N2 (S) Σ−1

N1 (S) J (S)B0G (S)
)

(S.D.13)

= J (S)A0Ψ (S,S))A′
0J (S)′ − J (S)A0Ψ (S,S))B′

0J (S)′ Σ−1
N1 (S) ΣN1N2 (S)′

− ΣN1N2 (S) Σ−1
N1 (S) J (S)B0Ψ (S,S))A′

0J (S)′

+ ΣN1N2 (S) Σ−1
N1 (S) J (S)B0Ψ (S,S))B′

0J (S)′ Σ−1
N1 (S) ΣN1N2 (S)′ (S.D.14)

= Σ∗
N2 (S) − ΣN1N2 (S) Σ−1

N1 (S) ΣN1N2 (S)′ − ΣN1N2 (S) Σ−1
N1 (S) ΣN1N2 (S)′

+ ΣN1N2 (S) Σ−1
N1 (S) ΣN1 (S) Σ−1

N1 (S) ΣN1N2 (S)′

= Σ∗
N2 (S) − ΣN1N2 (S) Σ−1

N1 (S) ΣN1N2 (S)′ = ΣN2 (S) .

The weak convergence in (S.D.9) occurs jointly with that in (S.D.11) since N1,T (·) and N2,T (·)
are functions of the same data. And finally, they are asymptotically independent since they

are asymptotically Gaussian and

Cov
(
Σ−1/2
N1 (S) J(S)B0G (S),Σ−1/2

N2 (S′)
(
J (S′)A0 − ΣN1N2 (S′) Σ−1

N1 (S′) J (S′)B0
)
G (S′)

)
= Σ−1/2

N1 (S) J(S)B0Ψ(S,S′)
(
A′

0J (S′)′ −B′
0J (S′)′ Σ−1

N1 (S′) ΣN1N2 (S′)′)Σ−1/2
N2 (S′)

= Σ−1/2
N1 (S)

(
ΣN1N2 (S′,S)′ − ΣN1 (S,S′) Σ−1

N1 (S′) ΣN1N2 (S′)′)Σ−1/2
N2 (S′)

= π(S ∩ S′)Σ−1/2
N1 (S)

(
Σ′
N1N2 − ΣN1Σ−1

N1Σ′
N1N2

)
Σ−1/2
N2 (S′) = 0

for any S, S′ ⊆ (0, 1] by Assumption 6.5. □

Inspection of the proof shows that the results hold uniformly over compact sets of true

values of β and c (including the zero vector) and over arbitrary sets of true γ and ϕ values.

Proof of Theorem 6.1. Let

M∞ (S) = [N1,∞ (S) : N2,∞ (S)]′ [N1,∞ (S) : N2,∞ (S)] , (S.D.15)

M1,∞ (S) =
(
N1,∞ (S)′ N1,∞ (S) , N1,∞ (S)′ N2,∞ (S)

)′
,

M2,∞ (S) = N2,∞ (S)′ N2,∞ (S) , M1,2,∞ (S) = N1,∞ (S)′ N2,∞ (S) , M1,∞ (S) = N1,∞ (S)′ N1,∞ (S) .

By Lemma S.D.4 N1,T (·) and N2,T (·) are asymptotically independent. ŜT depends on N2,T (·)
only. Thus, N1,∞(·) and ŜT are asymptotically independent. Using Lemma S.D.4 we yield

that under H0 N1,∞(ŜT ) is Gaussian with zero mean and variance Iq. Thus, M1,∞ (ST ) ∼
M1,∞ for all ST ∈ S. Part (i) follows by using the continuous mapping theorem.
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For part (ii), note that conditional on N2,∞(·) Lemma S.D.4 implies that M1,2,∞(ŜT ) is

Gaussian with zero mean and variance N2,∞(ŜT )′N2,∞(ŜT ). The result then follows from the

continuous mapping theorem.

We now move to part (iii). By Lemma S.D.4 N1,T (·) and N2,T (·) are asymptotically

independent and ŜT depends on N2,T (·) only. ŜT is inconsistent and converges in distribution

to a random variable S∞. Thus, LRT (ŜT ) has asymptotically the same distribution as

CLR∞ (M1,∞(S∞), M2,∞(S∞), Σv, β0)

= 1
2

(
M1,∞(S∞) −M2,∞(S∞) +

√
(M1,∞(S∞) −M2,∞(S∞))2 + 4M2

1,2,∞(S∞)
)
.

Conditional on N2,T (·) ŜT is fixed. Define κCLR,α(M1,∞(S∞), m2, Σv, β0) to be the 1 − α

quantile of the null distribution of CLR∞(M1,∞(S∞), m2, Σv, β0). Since underH0 κCLR,α(ŜT )
has asymptotically the same distribution as κCLR,α(M1,∞(S∞), M2,∞(S∞), Σv, β0), we have

that the distribution of LRT (ŜT ) − κCLR,α(ŜT ) is asymptotically the same distribution as

CLR∞ (M1,∞(S∞), M2,∞(S∞), Σv, β0) − κCLR,α(M1,∞(S∞), M2,∞(S∞), Σv, β0).

Conditional on N2,∞(·), N1,∞(ŜT )∼ N (0, Iq) under H0. This implies that the conditional

null distribution of CLR∞ given N2,∞(·) does not depend on θ or c. Thus, the test that

rejects H0 when LRT (ŜT ) − κCLR,α(ŜT ) > 0 is similar at significance level α. □

S.D.2.3 Proof of Proposition S.B.1

The distribution of y is multivariate normal with

E (y) = Z(C0,T )θa′ +Xη, (S.D.16)

independence across rows, and covariance matrix Σv for each row. Thus, the density of y is

(2π)−T/2 |Σv|−T/2 exp
(

−1
2

T∑
t=1

(
yt − aθ′Zt(C0,T ) − η′Xt

)′
Σ−1
v

(
yt − aθ′Zt(C0,T ) − η′Xt

))
(S.D.17)

= (2π)−T/2 |Σv|−T/2 exp
−1

2

 T∑
t=1

y′
tΣ−1

v yt − 2θ′
(

T∑
t=1

Zt(C0,T )y′
t

)
Σ−1
v a
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− 2Tr
((

T∑
t=1

X ty
′
t

)
Σ−1
v η′

)
+

T∑
t=1

(
aθ′Zt(C0,T ) − η′Xt

)′
Σ−1
v

(
aθ′Zt(C0,T ) − η′Xt

).
By the Fisher–Neyman factorization theoremN (y) is a sufficient statistic for ψ = (β, θ′, γ′, ϕ′)′

if and only if the density L (y; β, θ, γ, ϕ, S0,T ) can be factorized as L (y; β, θ, γ, ϕ, S0,T ) =
fψ (N (y))h (y) for nonnegative functions fψ (·) and h (·). Note that Z(C0,T ) = MXC0,TZ ̸=
MXZ if π0 < 1 and so L (y; β, θ, γ, ϕ, S0,T ) cannot be factorized as above for N(y) =
[y′MXZ : y′X]. Thus, Z ′MXy and X ′y are not sufficient statistics for ψ if π0 < 1. Therefore
when π0 < 1, Z ′MXy cannot be sufficient for (β, θ′)′ if (i) Z ′MXy and X ′y are independent,

(ii) the distribution of X ′y does not depend on (β, θ′)′ and (iii) the distribution of Z ′MXy

does not depend on (γ′, ϕ′)′.

To complete the proof, we verify that (i)–(iii) above hold. For (i), note that Z ′MXy and

X ′y are (jointly) multivariate normal random matrices and for any b1, b2 ∈ R2, we have

Cov (Z ′MXyb1, X
′yb2) = Z ′MXCov(yb1, yb2)X = Z ′MXb

′
1Σvb2ITX = b′

1Σvb2Z
′MXX = 0,

where the second equality uses the independence of the rows of y. Lemma 1(c) of Andrews,

Moreira, and Stock (2006) implies (ii) and for (iii), note that the normality of Z ′MXy has

E (Z ′MXy) = Z ′MXE (y) = Z ′MX

(
Z(C0,T )θa′ +Xη

)
= Z ′Z(C0,T )θa′,

Var (Z ′MXyb) = Z ′MXVar (yb)MXZ = Z ′MXb
′ΣvbITMXZ,

for any b ∈ R2, which do not depend on (γ′, ϕ′)′. □

S.D.2.4 Proof of Proposition S.B.2

The density of y is given by L (y; β, θ, γ, ϕ, ST ), where L (·) is defined in (S.D.17) and ST
is an unknown parameter. Using the same logic as in the proof of Proposition S.B.1, by the

Fisher–Neyman factorization theorem {Z (CT )′ y}ST ∈S is a sufficient statistic for (β, θ′)′ if

(i) {Z (CT )′ y}ST ∈S and X ′y are independent, (ii) the distribution of X ′y does not depend

on (β, θ′)′ and (iii) the distribution of {Z (CT )′ y}ST ∈S does not depend on (γ′, ϕ′)′. For (i),

note that Z (CT )′ y and X ′y are (jointly) multivariate normal random matrices and for any

b1, b2 ∈ R2, we have

Cov
(
Z (CT )′ yb1, X

′yb2
)

= Z ′C ′
TMXCov(yb1, yb2)X = Z ′C ′

TMXb
′
1Σvb2ITX = b′

1Σvb2Z
′MXX = 0,
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where the second equality uses the independence of the rows of y. Lemma 1(c) of Andrews,

Moreira, and Stock (2006) implies (ii) and for (iii), note that

E (Z ′C ′
TMXy) = Z ′C ′

TMXE (y) = Z ′C ′
TMX

(
Z(C0,T )θa′ +Xη

)
= Z ′C ′

TZ(C0,T )θa′,

Var (Z ′C ′
TMXyb) = Z ′C ′

TMXVar (yb)MXCTZ = Z ′C ′
TMXb

′ΣvbITMXCTZ,

for any b ∈ R2, which does not depend on (γ′, ϕ′)′. □

S.D.2.5 Proof of Proposition S.B.3

Under the conditions of the proposition, the log-likelihood of y is given (up to a constant) by

ℓ (β, θ, γ, ϕ ,ST ) (S.D.18)

= −1
2Tr

(
Σ−1
v

((
y − Z (CT ) θa′ −Xη

)′ (
y − Z (CT ) θa′ −Xη

)))
= Tr

(
Σ−1
v aθ′Z (CT )′ y

)
− 1

2Tr
(
Σ−1
v aθ′Z (CT )′ Z (CT ) θa′

)
− 1

2Tr
(
Σ−1
v (y −Xη)′(y −Xη)

)
.

Maximizing this log-likelihood with respect to θ under H0 yields

θ̃(CT ) =
(
Z (CT )′ Z (CT )

)−1
Z (CT )′ yΣ−1

v a0(a′
0Σ−1

v a0)−1,

so that the concentrated likelihood function under H0 is

ℓ
(
y; β0, θ̃(CT ), γ, ϕ ,ST

)
(S.D.19)

= (a′
0Σ−1

v a0)−1Tr
(

Σ−1
v a0a

′
0Σ−1

v y′Z (CT )
(
Z (CT )′ Z (CT )

)−1
Z (CT )′ y

)
− 1

2(a′
0Σ−1

v a0)−2Tr
(

Σ−1
v a0a

′
0Σ−1

v y′Z (CT )
(
Z (CT )′ Z (CT )

)−1
Z (CT )′ yΣ−1

v a0a
′
0

)
− 1

2Tr
(
Σ−1
v (y −Xη)′(y −Xη)

)
= 1

2(a′
0Σ−1

v a0)−1a′
0Σ−1

v y′Z (CT )
(
Z (CT )′ Z (CT )

)−1
Z (CT )′ yΣ−1

v a0

− 1
2Tr

(
Σ−1
v (y −Xη)′(y −Xη)

)
.

Maximizing (S.D.19) with respect to ST is equivalent to maximizing

(a′
0Σ−1

v a0)−1a′
0Σ−1

v y′Z (CT )
(
Z (CT )′ Z (CT )

)−1
Z (CT )′ yΣ−1

v a0, (S.D.20)
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making the MLE of ST equal to the maximizer of (S.D.20) over ST ∈ S.
To complete the proof, we show that maximizing M2,T (ST ) = N2,T (ST )′ N2,T (ST ) over

ST ∈ S is asymptotically equivalent to maximizing (S.D.20) over ST ∈ S under the conditions

of the proposition. To see this, first note that

ΣN1N2(S) = lim
T→∞

T−1
T∑
t=1

E
[
vtb0Zt (CT )′ Zt (CT ) a′

0Σ−1
v v′

t

]
(S.D.21)

= lim
T→∞

T−1
T∑
t=1

Zt (CT )′ Zt (CT ) a′
0Σ−1

v E [v′
tvt] b0

= lim
T→∞

T−1
T∑
t=1

Zt (CT )′ Zt (CT ) a′
0b0 = 0

for S = limT→∞ T−1ST , where the first equality follows from the i.i.d. assumption, the sec-

ond from the assumption of fixed regressors, the third from E [v′
tvt] = Σv and the fourth

from a′
0b0 = 0. Thus, applying Lemma S.D.3, N2,T (ST ) is asymptotically equivalent to

Σ−1/2
N2 (ST )T−1/2Z (CT )′ yΣ−1

v a0 under Assumption 6.4, implying that M2,T (ST ) is asymptot-

ically equivalent to T−1a′
0Σ−1

v y′Z (CT ) Σ−1
N2 (ST )Z (CT )′ yΣ−1

v a0. The result then follows from

ΣN2(S) = lim
T→∞

T−1
T∑
t=1

E
[
vtΣ−1

v a0Zt (CT )′ Zt (CT ) a′
0Σ−1

v v′
t

]

= lim
T→∞

T−1
T∑
t=1

Zt (CT )′ Zt (CT ) a′
0Σ−1

v E [v′
tvt] Σ−1

v a0 = lim
T→∞

T−1Z (CT )′ Z (CT ) a′
0Σ−1

v a0

for S = limT→∞ T−1ST , in analogy with (S.D.21). □
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Abstract

This supplemental material is structured as follows. Section N.A describes the collection of articles
and specifications for the figure reported in the Introduction of the main article. Section N.B includes
the theoretical results about the estimators of the true sub-population proposed in Section 5. Section
N.C presents additional results on testing for full sample identification failure under homoskedasticity,
primitive conditions for the assumptions of Section 6, results on consistent covariance matrix estimation
for the tests introduced in Section 6 and results about identification-robust inference under strong IV
and local or fixed alternatives. Section N.D presents additional Monte Carlo simulations.

N.A Publication Selection Criterion

We select recent publications from the following five economics journals: American Economic

Review, Econometrica, Journal of Political Economy, Quarterly Journal of Economics and Review

of Economic Studies. We first identify articles published in these journals between January 2019

and December 2022 that contain the keyword “instrument” in their text. We then exclude articles

that do not estimate linear instrumental variables (IV) models or that are based solely on cross-

sectional data. This results in 18 articles, listed in Table 1. From these 18 articles, we collect all

IV specifications reported in their main text. Articles 1–3, 6–7, 9–12, and 14–16 use time series

data, while articles 4–5, 8, 13, and 17–18 use panel data. Since the F ∗statistic requires time series

data, for panel data applications we treat each cross-sectional unit separately. In cases where an

application includes thousands of cross-sectional units, we select only a subset to prevent a single

panel application from dominating the distribution of the F statistics. The median cross-sectional

size across applications is 34, so for panel specifications with more than 34 units we randomly



a. casini, a. mccloskey, l. rolla and r. pala

select 34 units, while for those with fewer than 34 units we include all available units. When a

specification involves multiple endogenous regressors, we run separate first-stage regressions for

each endogenous regressor. This yields a total of 214 time series specifications and 1,346 panel

data specifications.
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N.B Theoretical Results on Estimation of LATE and Sub-populations

In this section we establish theoretical results about the estimator ŜT,F GLS from which we deduce

the same results for ŜT,OLS as a special case with y⃗ = D and Ω̂ε,S = IT . We first rewrite the

model in matrix format as follows. We have 2 equations and T observations, excluding the initial

conditions if lagged dependent variables are included among the regressors. The number of regimes

that define the π sub-population is m, while the total number of regimes in the full sample is

m̃ ≥ m. For example, if π = 1 then m̃ = m, else m̃ > m. The break dates are denoted by the

m̃ vector (T1, . . . , Tm̃) and we use the usual convention that T0 = 1 and Tm̃+1 = T . A subscript

i indexes a regime (i = 1, . . . , m̃ + 1), a subscript t indexes a temporal observation (t = 1, . . . , T )
and a subscript j indexes the equation (j = 1, 2) to which a scalar dependent variable yjt belongs.

According to our model in Section 5 y1t = Yt and y2t = Dt. q + p is the number of regressors and

zt is the set that includes the regressors from all equations zt = (z1,t, . . . , zq+p,t)′ = (Z ′
t, X ′

t)
′. The

model considered in (5.1) can be written as

yt = (I2 ⊗ z′
t) αi + vt, (N.1)

where vt has mean zero and covariance matrix Σ. The parameters in regime i are the p + q vector

αi = (βθ′
i, γ′

1 + γ′
2β, θ′

i, γ′
2)′, where θi = θ for Ti−1 + 1 ≤ t ≤ Ti with t ∈ S0,T and θi = 0 for

Ti−1 + 1 ≤ t ≤ Ti with t /∈ S0,T . Let α = (α′
1, . . . , α′

m̃+1)
′.

To ease notation, define the (q + p) × 2 matrix xt by x′
t = (I ⊗ z′

t) and rewrite (N.1) as

yt = x′
tαi + vt, (N.2)

for Ti−1 + 1 ≤ t ≤ Ti (i = 1, . . . , m̃ + 1). We now express the model in matrix form. Let

Y⃗ = (y′
1, . . . , y′

T )′ be the 2T vector of dependent variables, let V = (v′
1, . . . , v′

T )′ be the error

vector, and let the 2T × 2 (q + p) matrix of regressors be X⃗ = (x1, . . . , xT )′. For a given parti-

tion S with associated breaks (T1, . . . , Tm̃), we define the block partition of the matrix X⃗ as the

2T × 2 (q + p) (m̃ + 1) matrix X (S) = diag(X1, . . . , Xm̃+1), where X i (i = 1, . . . , m̃ + 1) is the

2 (Ti − Ti−1) × 2 (q + p) subset of X⃗ that corresponds to observations in regime i. We also define

the subvector Vi of V similarly. Then the regression (N.2) can be written as Y⃗ = X (S) α + V .

The true values of the parameters are denoted with a 0 superscript so that the data generating

process is assumed to be Y⃗ = X (S0,T ) α0 + V , where X (S0,T ) is the diagonal partition of X⃗

using the partition S0,T , i.e. (T 0
1 , . . . , T 0

m̃
). Let Ω̂S be the rearrangement of Ω̂ε,S in the main text

corresponding to the rearrangement
−→
Y of −→y . We make the following assumptions.
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Assumption N.B.1. supS ||X (S)′ Ω̂−1/2
S || = OP(T 1/2), supS,S′ ||X (S)′ Ω̂−1

S X (S′) /T || = OP (1) and

supS ||V ′Ω̂−1
S X (S) || = OP(T 1/2).

Assumption N.B.2. There exists an l0 > 0 such that for all l > l0, the minimum eigenvalues

of (1/l)∑T 0
i +l

t=T 0
i +1

∑T 0
i +l

s=T 0
i +1 xt[Ω̂−1

S ](t,s)x
′
s and (1/l)∑T 0

i +l

t=T 0
i +1

∑T 0
i +l

s=T 0
i +1 xt[Ω̂−1

S ](t,s)x
′
s are bounded away

from zero uniformly over i = 1, . . . , m̃ and S where [Ω̂−1
S ](t,s) denotes the (t, s)-th element of Ω̂−1

S .

Assumption N.B.3. The matrix
∑l

t=k

∑l
s=k xt[Ω̂−1

S ](t,s)x
′
s is invertible for l − k ≥ k0 for some

0 < k0 < ∞.

Assumption N.B.4. We have 0 < λ0
1 < · · · < λ0

m̃
< 1 with T 0

i = ⌊Tλ0
i ⌋.

Assumption N.B.5. The minimization search is taken over all partitions that satisfy |λi+1 − λi| ≥ ϵ,

|λ1| ≥ ϵ, |λm̃| ≤ 1 − ϵ.

Assumption N.B.6. For Ω = E[V V ′|X (S0,T )], supS,S′ T −1X (S′)′ (Ω̂−1
S −Ω−1)X (S) P→ 0, supS T −1

X (S)′ (Ω̂−1
S − Ω−1)V P→ 0 and T −1V ′(Ω̂−1

S − Ω−1)V P→ 0.

N.B.1 Consistency Under Fixed Shifts

Let λ̂ be the estimate of the break fractions λ0 = (λ0
1, λ0

2, . . . , λ0
m̃

) that corresponds to ŜT,F GLS.

The following proposition states the consistency of λ̂ for λ0.

Proposition N.B.1. Let Assumptions N.B.1-N.B.6 hold. Then, λ̂i
P→ λ0

i , i = 1, . . . , m̃.

We now consider the rate of convergence of λ̂.

Proposition N.B.2. Let Assumptions N.B.1-N.B.6 hold, for every η > 0, there exists a C < ∞,

such that for all large T ,

P
(∣∣∣T (λ̂i − λ0

i

)∣∣∣ > C
)

< η, (i = 1, . . . , m̃) .

Let α̂(·) be defined in analogy with ξ̂F GLS(·) in the main text upon rearrangement of y⃗ to

Y⃗ . The T rate of convergence of λ̂i allows us to obtain the asymptotic equivalence between the

estimated slope coefficients with the estimated subpopulation α̂(ŜT,F GLS) and the estimated slope

coefficients with known subpopulation α̂ (S0,T ) so that standard results feasbilbe generalized least

squares results implying
√

T asymptotic normality for the latter also immediately apply to the

former.

Proposition N.B.3. Let Assumptions N.B.1-N.B.5 hold. We have
√

T (α̂(ŜT,F GLS) − α0) = OP (1).
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N.B.2 Proofs

N.B.2.1 Proof of Proposition N.B.1

We first outline the main steps of the proof using a few lemmas that are proved below. By the

definition of ŜT,F GLS and Assumption N.B.6,

1
T

V̂
(
Ŝ
)′

Ω̂−1
S V̂

(
Ŝ
)

≤ 1
T

V ′Ω−1V, (N.3)

with probability approaching one, where V̂ (Ŝ) = Y⃗ − X
(
Ŝ
)

α̂
(
Ŝ
)
with Ŝ = ŜT,F GLS. Note that

V̂
(
Ŝ
)′

Ω̂−1
S V̂

(
Ŝ
)

(N.4)

=
(
V − X

(
Ŝ
) (

α̂
(
Ŝ
)

− α0
)

−
(
X
(
Ŝ
)

− X (S0,T )
)

α0
)′

Ω̂−1
S

×
(
V − X

(
Ŝ
) (

α̂
(
Ŝ
)

− α0
)

−
(
X
(
Ŝ
)

− X (S0,T )
)

α0
)

= V ′Ω−1V +
(
V ′Ω̂−1

S V − V ′Ω−1V
)

+
(
α̂
(
Ŝ
)

− α0
)′

X
(
Ŝ
)′

Ω̂−1
S X

(
Ŝ
) (

α̂
(
Ŝ
)

− α0
)

+ α′
0

(
X
(
Ŝ
)

− X (S0,T )
)′

Ω̂−1
S

(
X
(
Ŝ
)

− X (S0,T )
)

α0

+ 2
(
α̂
(
Ŝ
)

− α0
)′

X
(
Ŝ
)′

Ω̂−1
S

(
X
(
Ŝ
)

− X (S0,T )
)

α0

− 2V ′Ω̂−1
S X

(
Ŝ
) (

α̂
(
Ŝ
)

− α0
)

− 2V ′Ω̂−1
S

(
X
(
Ŝ
)

− X (S0,T )
)

α0

≡ V ′Ω−1V +
6∑

j=1
Ej.

The proof of Proposition N.B.1 uses (N.3)-(N.4) and the limit of E1, . . . , E6. By Assumption

N.B.6, T −1E1
P→ 0 and we show that T −1Ej

P→ 0 for j = 5 and 6, in Lemma N.B.1 below. These

results combined with (N.3) imply that T −1 (E2 + E3 + E4) P→ 0. The proof follows by showing

that the latter imply λ̂
P→ λ0 via Lemma N.B.2. We proceed with a couple of lemmas.

Lemma N.B.1. Let Assumptions N.B.1 and N.B.3 hold. We have T −1Ej
P→ 0 for j = 5 and 6.

Proof of Lemma N.B.1. To prove the lemma, it suffices to show that

sup
S

1
T

∣∣∣V ′Ω̂−1
S X (S) (α̂ (S) − α0)

∣∣∣ = OP
(
T −1/2

)
= oP (1) , (N.5)

sup
S

1
T

∣∣∣V ′Ω̂−1
S

(
X (S) − X (S0,T )

)
α0

∣∣∣ = OP
(
T −1/2

)
= oP (1) . (N.6)
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First consider (N.5). We can rewrite

V ′Ω̂−1
S X (S) α̂ (S) − V ′Ω̂−1

S X (S) α0

= V ′Ω̂−1
S X (S)

(
X (S)′ Ω̂−1

S X (S)
)−1

X (S)′ Ω̂−1
S X (S0,T ) α0

+ V ′Ω̂−1
S X (S)

(
X (S)′ Ω̂−1

S X (S)
)−1

X (S)′ Ω̂−1
S V

− V ′Ω̂−1
S X (S) α0.

Using Assumptions N.B.1 and N.B.3, the first term on the right-hand side is OP(T 1/2) OP(T −1)OP (T ) =
OP(T 1/2) uniformly over all partitions. The second term is OP(T 1/2)OP (T −1) OP(T 1/2) = OP (1)
and the third term is OP(T 1/2), both uniformly over all partitions. Then, (N.5) follows. Next,

consider (N.6). Using Assumption N.B.1, we have

V ′Ω̂−1
S

(
X (S) − X (S0,T )

)
α0 = V ′Ω̂−1

S X (S) α0 − V ′Ω̂−1
S X (S0,T ) α0

= OP

(
T 1/2

)
+ OP

(
T 1/2

)
.

This implies (N.6). □

Lemma N.B.2. Let Assumptions N.B.2-N.B.5 hold. If λ̂i
P↛ λ0

i for some i, then

lim inf
T →∞

P
(
T −1 (E2 + E3 + E4) > c

)
> ϵ0

for some c > 0 and ϵ0 > 0.

Proof of Lemma N.B.2. We have for Ti−1 + 1 ≤ t ≤ Ti,

v̂t

(
Ŝ
)

=
Yt

Dt

−

Z ′
tθ̂β,̂i

Z ′
tθ̂î

−

X ′
tγ̂β

X ′
tγ̂2

 =
Z ′

tθβ,i

Z ′
tθi

+
X ′

tγβ

X ′
tγ2

−

Z ′
tθ̂β,̂i

Z ′
tθ̂î

−

X ′
tγ̂β

X ′
tγ̂2

+ vt

=
Z ′

t

(
θβ,i − θ̂β,̂i

)
Z ′

t

(
θi − θ̂î

)
+

X ′
t (γβ − γ̂β)

X ′
t (γ2 − γ̂2)

+ vt,

where αi = (θβ,i, γβ, θ′
i, γ′

2)′, α̂î = (θ̂β,̂i, γ̂β, θ̂′
î
, γ̂′

2)′ and î corresponds to a regime in Ŝ.
By Assumptions N.B.4 and N.B.5, if there exists a break, say λ0

i , which cannot be consistently

estimated, then with some probability ϵ0 > 0 there exists a η > 0 such that no estimated break

falls in the interval [T (λ0
j −η), T (λ0

j +η)] for a subsequence of T . Suppose this interval is classified

into the k-th regime, i.e., T̂k−1 ≤ T (λ0
i − η) and T (λ0

i + η) ≤ T̂k. Let dt denote the difference
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between the fitted residuals and true errors. Then,

dt =



Z ′
t

(
θβ,i − θ̂β,k

)
Z ′

t

(
θi − θ̂k

)
+

X ′
t (γβ − γ̂β)

X ′
t (γ2 − γ̂2)

 for t ∈ [T (λ0
i − η) , Tλ0

i ]Z ′
t

(
θβ,i+1 − θ̂β,k

)
Z ′

t

(
θi+1 − θ̂k

)
+

X ′
t (γβ − γ̂β)

X ′
t (γ2 − γ̂2)

 for t ∈ [Tλ0
i , T (λ0

i + η)] .

For t ∈ [T (λ0
i − η), Tλ0

i ],

d′
t =

[
θβ,i − θ̂β,k θi − θ̂k

]
Zt +

[
γβ − γ̂β γ2 − γ̂2

]
Xt

≡ a′
β,i,kxt,

where xt = (Z ′
t, X ′

t)
′ while for t ∈ [Tλ0

i , T (λ0
i + η)],

d′
t =

[
θβ,i+1 − θ̂β,k θi+1 − θ̂k

]
Zt +

[
γβ − γ̂β γ2 − γ̂2

]
Xt

≡ b′
β,i,kxt.

We have

E2 + E3 + E4 =
(
V̂
(
Ŝ
)

− V
)′

Ω̂−1
S

(
V̂
(
Ŝ
)

− V
)

=
(
X
(
Ŝ
)

α̂
(
Ŝ
)

− X (S0,T ) α0
)′

Ω̂−1
S

(
X
(
Ŝ
)

α̂
(
Ŝ
)

− X (S0,T ) α0
)

= D
(
Ŝ
)′

Ω̂−1
S D

(
Ŝ
)

≥
T λ0

i∑
t=T(λ0

i −η)

T λ0
i∑

s=T(λ0
i −η)

d′
t

[
Ω̂−1

S

]
(t,s)

ds +
T (λ0

i +η)∑
t=T λ0

i +1

T (λ0
i +η)∑

s=T λ0
i +1

d′
t

[
Ω̂−1

S

]
(t,s)

ds

= a′
β,i,k

T λ0
i∑

t=T(λ0
i −η)

T λ0
i∑

s=T(λ0
i −η)

xt

[
Ω̂−1

S

]
(t,s)

x′
saβ,i,k + b′

β,i,k

T (λ0
i +η)∑

t=T λ0
i +1

T (λ0
i +η)∑

s=T λ0
i +1

xt

[
Ω̂−1

S

]
(t,s)

x′
sbβ,i,k

(N.7)

≥ γT

[∥∥∥θβ,i − θ̂β,k

∥∥∥2
+ ∥γβ − γ̂β∥2 +

∥∥∥θi − θ̂k

∥∥∥2
+ ∥γ2 − γ̂2∥2

]
+ γ∗

T

[∥∥∥θβ,i+1 − θ̂β,k

∥∥∥2
+ ∥γβ − γ̂β∥2 +

∥∥∥θi+1 − θ̂k

∥∥∥2
+ ∥γ2 − γ̂2∥2

]
≥ min {γT , γ∗

T }
(∥∥∥θβ,i − θ̂β,k

∥∥∥2
+
∥∥∥θi − θ̂k

∥∥∥2
+
∥∥∥θβ,i+1 − θ̂β,k

∥∥∥2
+
∥∥∥θi+1 − θ̂k

∥∥∥2
)

≥ 2−1 min {γT , γ∗
T }
(
∥θβ,i − θβ,i+1∥2 + ∥θi − θi+1∥2

)
,
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where D(Ŝ) = [d′
1 d′

2 · · · d′
T ]′, γT and γ∗

T are the smallest eigenvalues of the first and second matrices

on the left-hand side of the second inequality, and the last inequality follows from

(x − a)′ A (x − a) + (x − b)′ A (x − b) ≥ 1
2 (a − b)′ A (a − b)

for an arbitrary positive definite matrix A and for all x. Now, the first matrix in (N.7) can be

written as

(Tη) 1
Tη

T λ0
j∑

T(λ0
j −η)

T λ0
i∑

s=T(λ0
i −η)

xt

[
Ω̂−1

S

]
(t,s)

x′
s ≡ (Tη) AT .

By Assumption N.B.2, the smallest eigenvalue of AT is bounded away from zero. Thus, γT is of

the order (Tη). A similar argument can be applied to γ∗
T . Therefore,

4∑
j=2

Ej > Tηc1 min{∥θβ,i − θβ,i+1∥2 , ∥θi − θi+1∥2} = TC min{∥θβ,i − θβ,i+1∥2 , ∥θi − θi+1∥2},

for some C = ηc1 > 0 with probability no less than ϵ0 > 0 as T → ∞. □

Proof of Proposition N.B.1. Using (N.4), T −1E1
P→ 0 and Lemmas N.B.1-N.B.2, and under the

supposition that some break date is not consistently estimated, we have the inequality

1
T

V̂
(
Ŝ
)′

Ω̂−1
S V̂

(
Ŝ
)

≥ 1
T

V ′Ω−1V + C + oP (1)

for some C > 0 holding with probability no less than some ϵ0 as T → ∞. This is in contradiction

with (N.3). Hence, all break fractions are consistently estimated. □

N.B.2.2 Proof of Proposition N.B.2

Without loss of generality, we assume there are only three regimes (m̃ = 3) and provide an explicit

proof of T -consistency for λ̂2 only. The analysis for λ̂1 and λ̂3 is virtually the same and is omitted.

By Proposition N.B.1, for each ϵ > 0 and T large, we have |T̂i − T 0
i | ≤ ϵT with probability

approaching one. For each ϵ > 0, let Tϵ = {(T1, T2, T3) : |T̂i − T 0
i | ≤ ϵT for i = 1, . . . , 3} so

that P({T̂1, T̂2, T̂3} ∈ Tϵ) → 1. Therefore we only need to examine the behavior of the objective

function, QT (T1, T2, T3) = V̂ (S)′ Ω̂−1
S V̂ (S), for those Ti corresponding to S that are close to the

true breaks such that |Ti −T 0
i | < ϵT for all i. Also using an argument of symmetry, we can without
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loss of generality, restrict attention to the case T2 < T 0
2 . For C > 0, define

Tϵ (C) =
{
(T1, T2, T3) :

∣∣∣Ti − T 0
i

∣∣∣ < ϵT, 1 ≤ i ≤ 3, T2 − T 0
2 < −C

}
.

Note that Tϵ (C) ⊂ Tϵ. Because QT (T̂1, T̂2, T̂3) ≤ QT (T̂1, T 0
2 , T̂3) with probability 1, to prove the

proposition it is enough to show that for each η > 0, there exist C > 0 and ϵ > 0 such that for

large T ,

P
(

min
Tϵ(C)

{
QT (T1, T2, T3) − QT

(
T1, T 0

2 , T3
)}

≤ 0
)

< η, (N.8)

or equivalently,

P
(

min
Tϵ(C)

{[
QT (T1, T2, T3) − QT

(
T1, T 0

2 , T3
)]

/
(
T 0

2 − T2
)}

≤ 0
)

< η. (N.9)

That would imply that for a large C, global minimization cannot be achieved on Tϵ (C). Thus

with probability approaching one, |T̂2 − T 0
2 | ≤ C. Now denote

Q1,T = QT (T1, T2, T3)

Q2,T = QT

(
T1, T 0

2 , T3
)

Q3,T = V̂ (S3,T )′ Ω̂−1
S V̂ (S3,T )

where S3,T is the partition based on (T1, T2, T 0
2 , T3). Subtracting and adding Q3,T , we have

Q1,T − Q2,T = Q1,T − Q3,T − (Q2,T − Q3,T ) .

This latter relation is useful because it allows us to perform the analysis in terms of two problems

involving a single break. Indeed, Q1,T − Q3,T is the difference in the objective function allowing

an additional fourth break at time T 0
2 between the breaks T2 and T3. Similarly, Q2,T − Q3,T is

the difference in the objective function allowing an additional fourth break at time T2 between

the breaks T1 and T 0
2 . Consider Q1,T − Q3,T first. Let (α̂∗

1, α̂∗
2, α̂∗

∆, α̂∗
3, α̂∗

4) denote the estima-

tor of (α0
1, α0

2, α0
2, α0

3, α0
4). In particular, α̂∗

2 is an estimate of α0
2 associated with the regressors

(0, . . . 0, xT1+1, . . . , xT2 , 0, . . . 0)′, α̂∗
∆ is the vector of estimated coefficients associated with the

regressors X∆ = (0, . . . 0, xT2+1, . . . , xT 0
2
, 0, . . . 0)′.
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From the argument on p. 31 in Amemiya (1985),

Q1,T − Q3,T = V̂ (S1,T )′ Ω̂−1
S V̂ (S1,T ) − V̂ (S3,T )′ Ω̂−1

S V̂ (S3,T )

= (α̂∗
3 − α̂∗

∆)′ X ′
∆Ω̂−1/2

S MΩ̂−1/2
S X(S1,T )Ω̂−1/2

S X∆ (α̂∗
3 − α̂∗

∆) ,

where MX = I − X (X ′X)−1 X ′ for a matrix X and α̂∗
3 is the vector of estimated coefficients

associated with the regressors (0, . . . 0, xT 0
2 +1, . . . , xT3 , 0, . . . 0)′. Similarly, we have for Q2,T −Q3,T ,

Q2,T − Q3,T = (α̂∗
2 − α̂∗

∆)′ X ′
∆Ω̂−1/2

S MΩ̂−1/2
S X(S2,T )Ω̂−1/2

S X∆ (α̂∗
2 − α̂∗

∆) .

Thus,

Q1,T − Q2,T ≥ (α̂∗
3 − α̂∗

∆)′ X ′
∆Ω̂−1/2

S MΩ̂−1/2
S X(S1,T )Ω̂−1/2

S X∆ (α̂∗
3 − α̂∗

∆) (N.10)

− (α̂∗
2 − α̂∗

∆)′ X ′
∆Ω̂−1

S X∆ (α̂∗
2 − α̂∗

∆) ,

where we used

X ′
∆Ω̂−1/2

S MΩ̂−1/2
S X(S2,T )Ω̂−1/2

S X∆ ≤ X ′
∆Ω̂−1

S X∆.

From the definition of MΩ̂−1/2
S X(S1,T ), we have

Q1,T − Q2,T

T 0
2 − T2

≥ (α̂∗
3 − α̂∗

∆)′ X ′
∆Ω̂−1

S X∆

T 0
2 − T2

(α̂∗
3 − α̂∗

∆) (N.11)

− (α̂∗
3 − α̂∗

∆)′ X ′
∆Ω̂−1

S X (S1,T )
T 0

2 − T2

[
X (S1,T )′ Ω̂−1

S X (S1,T )
T

]−1

× X (S1,T )′ Ω̂−1
S X∆

T
(α̂∗

3 − α̂∗
∆)

− (α̂∗
2 − α̂∗

∆)′ X ′
∆Ω̂−1

S X∆

T 0
2 − T2

(α̂∗
2 − α̂∗

∆) + Q2,T − Q2,T

≡ L1 − L2 − L3.

Consider the limiting behavior of L1. Note first that for small ϵ, the estimates α̂∗
i will be close to

α0
i with high probability for large T given that, on the set Tϵ (C), the distance between Ti and T 0

i

can be made small by choosing a small ϵ. Further, α̂∗
∆ is estimated using observations from the

second true regime only and it is close to α0
2 in probability on Tϵ (C) for a large enough C. Hence,
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for large C, large T and small ϵ, L1 is larger than

(α̂∗
3 − α̂∗

∆)′ X ′
∆Ω̂−1

S X∆

T 0
2 − T2

(α̂∗
3 − α̂∗

∆) ≥ 1
2
(
α0

3 − α0
2

)′ X ′
∆Ω̂−1

S X∆

T 0
2 − T2

(
α0

3 − α0
2

)

with high probability.

Next consider L2. It is easy to see that on Tϵ (C), α̂∗
3 and α̂∗

∆ are OP (1) uniformly. Also on

Tϵ (C),

X (S1,T )′ Ω̂−1
S X (S1,T )

T
= OP (1) ,

and

X ′
∆Ω̂−1

S X (S1,T )
T 0

2 − T2
= OP (1)

by Assumption N.B.1 since X ′
∆Ω̂−1

S X (S1,T ) involves less than T 0
2 − T2 observations. Furthermore,

∥∥∥∥∥X (S1,T )′ Ω̂−1
S X∆

T

∥∥∥∥∥ =
∥∥∥∥∥X (S1,T )′ Ω̂−1

S X∆

T 0
2 − T2

T 0
2 − T2

T

∥∥∥∥∥ ≤ ϵOP (1) .

Thus L2 is no larger than ϵOP (1) . Consider finally L3. Because both α̂∗
2 and α̂∗

∆ are close to α0
2,

∥α̂∗
2 − α̂∗

∆∥ < ρ with probability approaching one for any given small number ρ > 0. We also have

∥∥∥∥∥X (S1,T )′ Ω̂−1
S X∆

T 0
2 − T2

∥∥∥∥∥ = OP (1) ,

uniformly on Tϵ (C). Thus L3 is no larger than ρOP (1) . In summary, the following inequality

holds with probability approaching one on Tϵ (C):

Q1,T − Q2,T

T 0
2 − T2

≥ 1
2
(
α0

3 − α0
2

)′ X ′
∆Ω̂−1

S X∆

T 0
2 − T2

(
α0

3 − α0
2

)
− ϵOP (1) − ρOP (1) . (N.12)

By Assumption N.B.2,

X ′
∆Ω̂−1

S X∆

T 0
2 − T2

has its minimum eigenvalue bounded away from zero on Tϵ (C). Thus, the first term on the right-

hand side of (N.12) is positive and larger in absolute value than the other two terms. Thus, we
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have

Q1,T − Q2,T

T 0
2 − T2

> 0

with probability approaching one. This proves (N.9) and the proposition. □

N.B.3 Proof of Proposition N.B.3

Begin by noting that

Ω̂−1/2
S

(
X
(
Ŝ
)

− X (S0,T )
)

involves
∑m̃

i=1 |T̂i −T 0
i | = OP (m̃) nonzero observations by Proposition N.B.2 so that, after applying

Assumption N.B.1,

T −1X
(
Ŝ
)′

Ω̂−1
S X

(
Ŝ
)

= T −1X (S0,T )′ Ω̂−1
S X (S0,T ) + OP

(
T −1/2

)
.

Similarly,

T −1/2X
(
Ŝ
)′

Ω̂−1
S X (S0,T ) α0 − α0 = T −1/2X

(
Ŝ
)′

Ω̂−1
S

(
X (S0,T ) − X

(
Ŝ
))

α0 = OP

(
T −1/2

)
and

T −1/2X
(
Ŝ
)′

Ω̂−1
S V − T −1/2X (S0,T )′ Ω̂−1

S V = T −1/2
(
X
(
Ŝ
)

− X (S0,T )
)′

Ω̂−1
S V = OP

(
T −1/2

)
so that another application of Assumption N.B.1 yields

√
T
(
α̂
(
ŜT,F GLS

)
− α̂ (S0,T )

)
=
((

T −1X (S0,T )′ Ω̂−1
S X (S0,T )

)−1
+ oP (1)

)
×T −1/2

(
X
(
Ŝ
)′

Ω̂−1
S X (S0,T ) α0 − α0 + X

(
Ŝ
)′

Ω̂−1
S V − X (S0,T )′ Ω̂−1

S V
)

= OP

(
T −1/2

)
. □

N.C Additional Results

N.C.1 Identification of Compliers for Continuous Instrument

N.C.1.1 Identification of Compliers

We say that observation t ∈ S0,T is a complier if and only if E(Dt (z) | Ṽt) is strictly increasing in

z almost surely. In the present case of a continuous instrument, the policy and control samples P
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and C need to be redefined relative to the simpler case of a binary instrument in the main text.

Let P ⊂ {1, . . . , T} and C ⊂ {1, . . . , T} satisfy P ∩ C = ∅ and mint∈P Zt > maxt∈C Zt. Let ZP

denote the values in Z such that Zt ∈ ZP is equivalent to t ∈ P and similarly for ZC. Construct

P and C such that zP ≡ inf(ZP) > sup(ZC) ≡ zC. For example, a simple way to define the policy

and control samples is P = {t ∈ {1, . . . , T} : Zt ≥ z̃ + ϵ} and C = {t ∈ {1, . . . , T} : Zt ≤ z̃ − ϵ}
for some z̃ and small ϵ > 0. With these definitions, we impose the continuous instrument-analogs

of Assumptions 2.7 and 2.8 in the main text.

Assumption N.C.1. (i) For any t ∈ C, DC,t,n
P→ E(Dt(Zt)|Zt ∈ ZC) as n → ∞ with n/|C| → 0.

(ii) For t ∈ P, E[Dt−1(Zt−1)|Zt−1 ∈ ZC] = E[Dt(Zt)|Zt ∈ ZC].

Assumption N.C.2. (i) For any t ∈ P, DP,t,n
P→ E(Dt(Zt)|Zt ∈ ZP) as n → ∞ with n/|P| → 0.

(ii) For t ∈ C, E[Dt(Zt)|Zt ∈ ZP] = E[Ds∗(t)(Zs∗(t))|Zs∗(t) ∈ ZP], where s∗(t) = arg mins∈P |t − s|.

Proposition N.C.1. Let Assumptions 2.1, N.C.1 and N.C.2 hold and n0, n1 → ∞ with n0/|C|, n1/|P| →
0. We have:

(i) if t ∈ P is a complier, then DP,t,n1 − DC,t−1,n0
P→ c where c > 0.

(ii) if t ∈ C is a complier, then DP,s∗(t),n1 − DC,t,n0
P→ c̃ where c̃ > 0.

Proof of Proposition N.C.1. Consider first the policy sample. Suppose t ∈ P is a complier. Then,

by Assumptions N.C.1(i) and N.C.2(i), as n0, n1 → ∞,

DP,t,n1 − DC,t−1,n0
P→ E(Dt(Zt)|Zt ∈ ZP) − E(Dt−1(Zt−1)|Zt−1 ∈ ZC)

= E(Dt(Zt)|Zt ∈ ZP) − E(Dt(Zt)|Zt ∈ ZC)

=
�

ṽ

E(Dt(Zt)|Zt ∈ ZP, Ṽt = ṽ)dF
Ṽt

(ṽ) −
�

ṽ

E(Dt(Zt)|Zt ∈ ZC, Ṽt = ṽ)dF
Ṽt

(ṽ)

=
�

ṽ

�
z∈ZP

E(Dt(z)|Ṽt = ṽ)dF
Zt|Ṽt=ṽ,Zt∈ZP

(z)dF
Ṽt

(ṽ)

−
�

ṽ

�
z∈ZC

E(Dt(z)|Ṽt = ṽ)dF
Zt|Ṽt=ṽ,Zt∈ZC

(z)dF
Ṽt

(ṽ)

≥
�

ṽ

�
z∈ZP

E(Dt(zP)|Ṽt = ṽ)dF
Zt|Ṽt=ṽ,Zt∈ZP

(z)dF
Ṽt

(ṽ)

−
�

ṽ

�
z∈ZC

E(Dt(zC)|Ṽt = ṽ)dF
Zt|Ṽt=ṽ,Zt∈ZC

(z)dF
Ṽt

(ṽ)

= E(Dt(zP)) − E(Dt(zC)) > 0,

where F
Ṽt

(·) is the distribution function of Ṽt, F
Zt|Ṽt=ṽ,Zt∈ZP

(·) is the conditional distribution

function of Zt given Ṽt = ṽ and Zt ∈ ZP, F
Zt|Ṽt=ṽ,Zt∈ZC

(·) is the conditional distribution function
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of Zt given Ṽt = ṽ and Zt ∈ ZC, the first equality follows from Assumption N.C.1(ii), the third

equality follows from Assumption 2.1 and the inequalities follow from the definition of a complier.

The proof for the control sample is entirely analogous and therefore omitted. □

Assumption N.C.3. (Continuous Case Monotonicity) E(Dt (z) | Ṽt) is monotonic in z almost surely.

Under Assumption N.C.3, assume without loss of generality that E(Dt (z) | Ṽt) is increasing

in z almost surely. We obtain the following characterization of compliers under monotonicity for

the continuous instrument case.

Corollary N.C.1. Let Assumptions 2.3 and N.C.3 hold. Then, the set of compliers coincides with

S0,T .

Proof of Proposition N.C.1. Assumption N.C.3 rules out defiers, i.e., E(Dt (z) | Ṽt) being strictly

decreasing in z almost surely, so that non-compliers are characterized by E(Dt (z) | Ṽt) being con-

stant in z almost surely. Therefore, a non-complier cannot belong to S0,T by definition. And any

complier belongs to S0,T by definition. □

N.C.2 Primitive Conditions on IVs, Exogenous Regressors and Errors for the

Assumptions of Section 6.2

Assumptions 6.1-6.3 of Section 6.2 are implied by any one of the following assumptions:

Assumption N.C.4. {(vt, wt) : t ≥ 1} are i.i.d., E (vt ⊗ wt) = 0, E||vt||2 +E||wt||2 +E||vt ⊗wt||2 <

∞, Σv = E(vtv
′
t) is positive definite, and uniformly in ST , S′

T ∈ S, for S = limT →∞ T −1ST and

S′ = limT →∞ T −1S′
T , T −1∑T

t=1 E(wt (ST ) wt (S′
T )′) → Q(S, S′) for some (q + p) × (q + p) matrix

Q(S, S′) for which Q(S, S) is positive definite and T −1∑T
t=1 E((vt ⊗ wt (ST )) (vt ⊗ wt (S′

T ))′) →
Ψ (S, S′) for some 2 (q + p) × 2 (q + p) matrix Ψ (S, S′).

Assumption N.C.5. {(vt, wt) : t ≥ 1} are independent, E (vt ⊗ wt) = 0 for all t ≥ 1, supt≥1(E||vt||2+ς+
E||wt||2+ς +E||vt ⊗ wt||2+ς) < ∞ for some ς > 0, T −1∑T

t=1 E (vtv
′
t) → Σv for some positive definite

2 × 2 matrix Σv, and uniformly in ST , S′
T ∈ S, for S = limT →∞ T −1ST and S′ = limT →∞ T −1S′

T ,

T −1∑T
t=1 E(wt (ST ) wt (S′

T )′) → Q(S, S′) for some (q + p) × (q + p) matrix Q(S, S′) for which

Q(S, S) is positive definite and T −1∑T
t=1 E((vt ⊗ wt (ST )) (vt ⊗ wt (S′

T ))′) → Ψ (S, S′) for some

2 (q + p) × 2 (q + p) matrix Ψ (S, S′).

Assumption N.C.6. {(vt ⊗ wt, Ft) : t ≥ 1} is a martingale difference sequence, where Ft = σ(vt, wt, vt−1,

wt−1, . . .), {(vt ⊗ wt) : t ≥ 1} is an ergodic sequence, supt≥1(E||vt||2 +E||wt||2 +E||vt ⊗wt||2) < ∞,
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Σv = E(vtv
′
t) is positive definite, and uniformly in ST , S′

T ∈ S, for S = limT →∞ T −1ST and S′ =
limT →∞ T −1S′

T , T −1∑T
t=1 E(wt (ST ) wt (S′

T )′) → Q(S, S′) for some (q +p)× (q +p) matrix Q(S, S′)
for which Q(S, S) is positive definite and T −1∑T

t=1 E((vt ⊗ wt (ST )) (vt ⊗ wt (S′
T ))′) → Ψ (S, S′)

for some 2 (q + p) × 2 (q + p) matrix Ψ (S, S′).

Assumption N.C.7. {(vt, wt) : t = . . . 0, 1, . . .} is a doubly infinite ergodic sequence with E(vt ⊗
wt) = 0, supt≥1(E||vt||2 +E||wt||2 +E||vt ⊗ wt||2) < ∞, supt≥1

∑∞
j=1(E||E(vt ⊗ wt| Ft−j)||2)1/2 < ∞

where Ft = σ (vt, wt, vt−1, wt−1, . . .), T −1∑T
t=1 E (vtv

′
t) → Σv for some positive definite 2 × 2

matrix Σv, and uniformly in ST , S′
T ∈ S, for S = limT →∞ T −1ST and S′ = limT →∞ T −1S′

T ,

T −1∑T
t=1 E(wt (ST ) wt (S′

T )′) → Q(S, S′) for some (q + p) × (q + p) matrix Q(S, S′) for which

Q(S, S) is positive definite and T −1∑T
t=1

∑∞
j=−∞ E (vt ⊗ wt (ST )) (vt−j ⊗ wt−j (S′

T ))′ → Ψ (S, S′) =� 1
0 Ψu (S, S′) du, where Ψu (S, S′) is the local long-run covariance matrix of vt ⊗ wt (ST ) and vt ⊗

wt (S′
T ).

The random vectors {(vt, wt) : t = . . . 0, 1, . . .} are uncorrelated under Assumptions N.C.4-

N.C.6, but are (possibly) correlated under Assumption N.C.7. Assumptions N.C.5-N.C.7 allow for

nonstationarity (i.e., time-varying moments). In particular, they are satisfied by segmented local

stationarity [see Casini (2024, 2023)].

If the errors are conditionally homoskedastic and {(vt, wt) : t ≥ 1} are uncorrelated, the fol-

lowing assumption holds.

Assumption N.C.8. Ψ (S, S′) = Σv ⊗ Q (S, S′), where Q(·) is defined in Assumption 6.1 and Ψ (·)
is defined in Assumption 6.3.

This assumption is implied by any one of Assumptions N.C.4, N.C.5, and N.C.6 plus the

following.

Assumption N.C.9. E((vtv
′
t) ⊗ (wt (ST ) wt (S′

T )′)) = Σv ⊗ Q̃ (ST , S′
T ) for all t ≥ 1 and ST , S′

T ∈ S.

By iterated expectations, a sufficient condition for Assumption N.C.9 is E(vtv
′
t| wt (ST ) , wt (S′

T )) =
E(vtv

′
t) = Σv a.s. for all ST , S′

T ∈ S and all t ≥ 1. Note that Assumptions N.C.6 and N.C.7 allow

for intertemporal conditional heteroskedasticity even when Assumption N.C.9 holds. The following

lemma summarizes the relations between the assumptions.

Lemma N.C.1. (i) Any one of Assumptions N.C.4, N.C.5, N.C.6 and N.C.7 implies Assumptions

6.1-6.3;

(ii) Any one of Assumptions N.C.4, N.C.5, N.C.6 plus Assumption N.C.9 imply Assumption

N.C.8.
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Proof of Lemma N.C.1. Although w (ST ) is a function of the partition ST , we do not need to rely

on laws of large numbers for partial sum processes or functional central limit theorems. The reason

is that Assumptions 6.1-6.3 and N.C.9 involve full-sample averages. Thus, the lemma follows from

Lemma 4 in Andrews, Moreira, and Stock (2004). These authors required stationarity in their

Assumptions INID, MDS and CORR but this is not required for the lemma to hold. □

N.C.3 Consistent Covariance Matrix Estimation

Let Vb,t (ST ) = v′
tb0Zt (CT ) and Va,t (ST ) = v′

tΣ−1
v a0Zt (CT ). We have

ΣN1 (S) = lim
T →∞

T −1
T∑

t=1

T∑
r=1

E
(
Vb,t (ST ) Vb,r (ST )′

)
,

ΣN1N2 (S) = lim
T →∞

T −1
T∑

t=1

T∑
r=1

E
(
Vb,t (ST ) Va,r (ST )′

)
,

Σ∗
N2 (S) = lim

T →∞
T −1

T∑
t=1

T∑
r=1

E
(
Va,t (ST ) Va,r (ST )′

)
.

Let V̂b,t (ST ) = v̂t (ST )′ b0Zt (CT ) and V̂a,t (s) = v̂t (ST )′ Σ̂−1
v a0Zt (CT ). We consider both HAC

and double-kernel HAC (DK-HAC) estimators of ΣvZ (S). Here we discuss the HAC estimators of

Newey and West (1987) and Andrews (1991). The DK-HAC estimator was recently proposed by

Casini (2023). It is consistent under both the null and the alternative so that tests based on it do

not suffer from power losses induced by nonstationarity [cf. Casini, Deng, and Perron (2025)].

The HAC estimators are defined as

Σ̂N1 (ST ) = T

T − q − p

T −1∑
k=−T +1

K1 (b1,T k) Γ̂bb (k, ST ) ,

with Γ̂bb (k, ST ) =

T −1∑T
t=k+1 V̂b,t (ST ) V̂ ′

b,t−k (ST ) , k ≥ 0

T −1∑T
t=−k+1 V̂b,t+k (ST ) V̂ ′

b,t (ST ) , k < 0
,

and Σ̂∗
N2 (ST ) and Σ̂N1N2 (ST ) are defined analogously to Σ̂N1 (ST ) after replacing Γ̂bb (k, ST ) with

analogous quantities Γ̂aa (k, ST ) and Γ̂ab (k, ST ), respectively. We consider the following class of
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kernels

K1 =
{

K1 (·) : R → [−1, 1] : K1 (0) = 1, K1 (x) = K1 (−x) , ∀x ∈ R,

� ∞

−∞
|K1 (x)| dx < ∞

(N.1)� ∞

−∞
K2

1 (x) dx < ∞, K1 (·) is continuous at 0 and at all but a finite number of points

}
.

The class K1 was considered by Andrews (1991) and Casini (2023). Examples of kernels in K1

include the Truncated, Bartlett, Parzen, Quadratic Spectral (QS) and Tukey-Hanning kernels.

The DK-HAC estimators are defined as

Σ̂N1 (ST ) = T

T − q − p

T −1∑
k=−T +1

K1 (b1,T k) Γ̂DK (k, ST ) , with

Γ̂DK (k, ST ) = nT

T − nT

⌊(T −nT )/nT ⌋∑
r=0

ĉbb (rnT /T, k, ST ) ,

where nT → ∞ satisfies the conditions given below, and

ĉbb (rnT /T, k, ST ) =

(Tb2,T )−1∑T
t=k+1 K2

(
((r+1)nT −(t−k/2))/T

b2,T

)
V̂b,t (ST ) V̂ ′

b,t−k (ST ) , k ≥ 0

(Tb2,T )−1∑T
t=−k+1 K2

(
((r+1)nT −(t+k/2))/T

b2,T

)
V̂b,t+k (ST ) V̂ ′

b,t (ST ) , k < 0
,

(N.2)

with K2 being a kernel and b2,T is a bandwidth sequence. The DK-HAC estimators Σ̂∗
N2 (ST ) and

Σ̂N1N2 (ST ) are defined analogously to Σ̂N1 (ST ) after replacing ĉbb (rnT /T, k, ST ) with analogous

quantities ĉaa (rnT /T, k, ST ), and ĉab (rnT /T, k, ST ), respectively. Casini (2023) considered the

following class of kernels

K2 =
{

K2 (·) : R → [0, ∞] : K2 (x) = K2 (1 − x) ,

�
K2 (x) dx = 1, (N.3)

K2 (x) = 0 for x /∈ [0, 1] ,

� ∞

−∞
|K2 (x)| dx < ∞, K2 (·) is continuous

}
.

The QS kernel was shown to be optimal in the class K1 for HAC estimators under the mean-

squared error (MSE) criterion by Andrews (1991) and for DK-HAC estimators under a sequential

and global MSE criterion by Casini (2023) and Belotti, Casini, Catania, Grassi, and Perron (2023).

N-18



dynamic late

The QS kernel is defined as

KQS
1 (x) = 25

12π2x2

(
sin (6πx/5)

6πx/5 − cos (6πx/5)
)

.

Casini (2023) showed that the optimal kernel in the class K2 is a quadratic-type kernel, Kopt
2 (x) =

6x (1 − x) , 0 ≤ x ≤ 1.
For both HAC and DK-HAC estimators, define

Σ̂vZ (ST ) =
 Σ̂N1 (ST ) Σ̂N1N2 (ST )′

Σ̂N1N2 (ST ) Σ̂∗
N2 (ST )


Σ̂N2 (ST ) = Σ̂∗

N2 (ST ) − Σ̂N1N2 (ST ) Σ̂−1
N1 (ST ) Σ̂N1N2 (ST ) .

We now provide sufficient conditions under which the HAC and DK-HAC estimators are uniformly

consistent for ΣvZ(S), and therefore ΣN2(S), over S ∈ S. Let Vt (ST ) = vt ⊗ wt (ST ) where wt (ST )
is the tth row of w = [CT Z : X] written as a column vector.

Assumption N.C.10. ((i) {Vt (ST )} satisfies

∞∑
j=−∞

sup
t≥1

sup
ST ∈S

||E(Vt (ST ) V ′
t−j (ST ))|| < ∞,

and for all conformable a1, a2, a3, a4 ∈ Z+,
∑∞

n=1
∑∞

j=1
∑∞

m=1 supt≥1 |κ(a1, a2, a3, a4)
V,t (n, j, m, ST ) | <

∞ where κ
(a1, a2, a3, a4)
V,t (n, j, m, ST ) is the time-t fourth-order cumulant of

(V (a1)
t (ST ) , V

(a2)
t+n (ST ) , V

(a3)
t+j (ST ) , V

(a4)
t+m (ST )).

(ii) supt≥1 supST ∈S E||Vt (ST ) ||2 < ∞.

Assumption N.C.11. b1,T → 0 with Tb2
1,T → ∞ and K1 (·) ∈ K1.

Assumption N.C.10 imposes conditions on the temporal dependence of the instruments and

errors. It is a standard assumption in the literature, see Andrews (1991) and Casini (2023). Note

that Assumption N.C.10 allows for nonstationary random variables (i.e., time-varying moments).

The condition on the bandwidth in Assumption N.C.11 is from Andrews (1991). Assumptions

N.C.10-N.C.11 are sufficient for the consistency of HAC estimators.

Assumption N.C.12. b1,T , b2,T → 0, nT → ∞, nT /T → 0, 1/Tb1,T b2,T → 0,
√

Tb1,T → ∞,

K1 (·) ∈ K1 and K2 (·) ∈ K2.
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The conditions on the bandwidths b1,T , b2,T and on nT are from Casini (2023). Assumptions

N.C.10 and N.C.12 are sufficient for the consistency of the DK-HAC estimators.

Lemma N.C.2. Let Assumptions 6.1-6.3 hold. We have: Σ̂vZ (ST ) P→ ΣvZ (S) for S = T −1ST

uniformly in ST ∈ S under Assumptions N.C.10-N.C.11 for the HAC estimator and under As-

sumptions N.C.10 and N.C.12 for the DK-HAC estimator.

The proof of Lemma N.C.2 is omitted. For the HAC estimator the proof follows from the

discussion in Section 8 in Andrews (1991) who extended the consistency result in Theorem 1 in

Andrews (1991) to nonstationary random variables. See also Casini (2022) who provided a solution

to some issues in Section 8 in Andrews (1991). The proof for the DK-HAC estimator follows from

Theorem 4.2 in Casini and Perron (2024). □

N.C.4 Strong IV and Local Alternative (SIV-LA) Asymptotics for Identification-

Robust Tests

We analyze the strong IV asymptotic properties of the tests considered above for local alternatives.

Under strong IV asymptotics, θ ̸= 0 is fixed. For local alternatives, β is local to β0.

Assumption N.C.13. (SIV-LA) (i) β = β0 + r/T 1/2 for some constant r ∈ R; (ii) θ is a fixed

non-zero q-vector; (iii) There exists an estimator ŜT such that T −1ŜT
P→ S0.

Under strong IVs, part (iii) is satisfied by, for example, ŜT in (6.5), ŜT,OLS and ŜT,F GLS where

the optimization is over Ξϵ,π0,m0,T . Under SIV-LA asymptotics, N1,T (ST ) and N2,T (ST ) depend

asymptotically on ζN1 (S) ∼ N (αN1 (S) , Iq), αN1 (S) = Σ−1/2
N1 (S) ΣZ (S, S0) θr, and αN2 (S) =

Σ−1/2
N2 (S) ΣZ (S, S0) θ (a′

0Ω−1a0)−1/2
.

We now determine the asymptotic distributions of the LR, LM and AR test statistics.

Theorem N.C.1. Let Assumptions 6.1-6.4 and N.C.13 hold. We have: (i) ART (ŜT ) d→ ζN1 (S0)′ ζN1 (S0) ∼
χ2

q(αN1 (S0)′ αN1 (S0)); (ii) LMT (ŜT ) d→ (αN2 (S0)′ ζN1 (S0))2/||αN2 (S0) ||2 ∼ χ2
1((αN2 (S0)′ αN1 (S0))2

/||αN2 (S0) ||2); (iii) LRT (ŜT ) = LMT (S0)+oP (1) d→ (αN2 (S0)′ ζN1 (S0))2/||αN2 (S0) ||2 ∼ χ2
1((αN2 (S0)′

αN1 (S0))2/||αN2 (S0) ||2).

Since T −1ŜT
P→ S0 under strong IVs, the test statistics above are evaluated at S0 asymp-

totically. Akin to the case of known partition, the LM and LR test statistics are asymptotically

equivalent under SIV-LA asymptotics for any value of q. When q = 1, ART (S0) , LMT (S0) and

LRT (S0) are the same and so the three tests are asymptotically equivalent.
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Under SIV-LA asymptotics and i.i.d. normal errors with unknown covariance matrix Σv and

known S0, the model for y is a regular parametric model in the sense of standard likelihood the-

ory. Hence, LRT (S0) and LMT (S0) are asymptotically efficient. This means they have standard

large-sample optimality properties such as uniformly maximizing asymptotic power among asymp-

totically unbiased tests. Adapting the proof of Theorem 7 in Andrews, Moreira, and Stock (2006)

while using T −1ŜT
P→ S0 it follows that LMT (ŜT ) and LRT (ŜT ) are asymptotically efficient under

SIV-LA asymptotics and i.i.d. normal errors.

N.C.5 Strong IV and Fixed Alternative (SIV-FA) Asymptotics for Identification-

Robust Tests

We now consider strong IV-fixed alternative (SIV-FA) asymptotics to determine the consistency,

or lack thereof, of the tests.

Assumption N.C.14. SIV-FA. (i) β ̸= β0 is fixed; (ii) θ is a fixed non-zero q-vector; (iii) There

exists an estimator ŜT such that T −1ŜT
P→ S0.

Let ΣZ (S0) = ΣZ (S0, S0) . Define φN1 (S0) = Σ−1/2
N1 (S0) ΣZ (S0) θ (β − β0),

φN2 (S0) = Σ−1/2
N2 (S0)

(
ΣZ (S0) θa′Σ−1

v a0 − ΣN1N2 (S0, S0) Σ−1
N1φN1 (S0)

)
, ςq ∼ N (0, Iq) . (N.4)

We now determine the asymptotic behavior of the test statistics under SIV-FA asymptotics.

Theorem N.C.2. Let Assumptions 6.1-6.4 and N.C.14. We have: (i) ART (ŜT )/T
P→ φN1 (S0)′ φN1 (S0) >

0, (ii) LMT (ŜT )/T
P→ (φN1 (S0)′ φN2 (S0))2/φN2 (S0)′ φN2 (S0) > 0 provided φN2 (S0) ̸= 0; (iii)

2LRT (ŜT )/T
P→ φN1 (S0)′ φN1 (S0) − φN2 (S0)′ φN2 (S0)

−
√

(φN1 (S0)′ φN1 (S0) − φN1 (S0)′ φN1 (S0))2 − 4
(
φN1 (S0)′ φN2 (S0)

)2
.

The theorem shows that the test ART (ŜT ) is consistent against any alternative β ̸= β0,

LMT (ŜT ) is consistent against any alternative β ̸= β0 such that φN2 (S0) ̸= 0, and LRT (ŜT ) is

consistent against any alternative for which the limit value given in the theorem is non-zero.

N.C.6 Proofs of Section N.C.4 and N.C.5

N.C.6.1 Proof of Theorem N.C.1

We begin with the following lemma.
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Lemma N.C.3. Let Assumptions 6.1-6.4 and N.C.13 hold. We have: (i) (N1,T (ŜT ), T −1/2N2,T (ŜT )) d→
(ζN1(S0), αN2(S0)) and (ii) (M1,T (ŜT ), T −1/2M1,2,T (ŜT ), T −1M2,T (ŜT )) d→ (ζN1(S0)′ζN1(S0), αN2(S0)′

ζN1(S0), αN2(S0)′αN2(S0)).

Proof of Lemma N.C.3. Part (i) for N1,T (ŜT ) follows from

N1,T

(
ŜT

)
= Σ̂−1/2

N1

(
ŜT

)
T −1/2Z

(
ĈT

)′
yb0

= Σ̂−1/2
N1

(
ŜT

)
T −1/2Z

(
ĈT

)′ (
Z (C0,T ) θa′ + v

)
b0

= Σ̂−1/2
N1

(
ŜT

)
T −1Z

(
ĈT

)′
Z (C0,T ) θr + Σ̂−1/2

N1

(
ŜT

)
T −1/2Z

(
ĈT

)′
vb0

= Σ̂−1/2
N1 (S0) T −1Z (C0,T )′ Z (C0,T ) θr + Σ̂−1/2

N1 (S0) T −1/2Z (C0,T )′ vb0 + oP (1)

= Σ−1/2
N1 (S0) ΣZ (S0) θr + Σ−1/2

N1 (S0) T −1/2Z (C0,T )′ vb0 + oP (1)

⇒ Σ−1/2
N1 (S0) ΣZ (S0) θr + Σ−1/2

N1 (S0)
[
Iq : −Q12 (S0) Q−1

22

]
(b′

0 ⊗ Iq+p) G (S0)

∼ ζN1 (S0) ,

where the third and fourth equalities hold by Assumption N.C.13, the final equality holds by

Assumptions 6.1 and 6.4 and the convergence holds by Assumption 6.3. Under Assumptions 6.2

and N.C.13(iii), Σ̂v(ŜT ) P→ Σv by the same arguments as when S0 is known. Then, part (i) for

N2,T (ŜT ) holds using

T −1/2N2,T

(
ŜT

)
= Σ̂−1/2

N2

(
ŜT

) (
T −1Z

(
ĈT

)′
yΣ̂−1

v

(
ŜT

)
a0 − T −1/2Σ̂N1N2

(
ŜT

)
Σ̂−1/2

N1

(
ŜT

)
N1,T

(
ŜT

))
(N.5)

= Σ̂−1/2
N2

(
ŜT

) (
T −1Z

(
ĈT

)′
yΣ−1

v a0 − T −1/2Σ̂N1N2

(
ŜT

)
Σ̂−1/2

N1

(
ŜT

)
N1,T

(
ŜT

))
+ oP (1)

= Σ̂−1/2
N2 (S0)

(
T −1Z (C0,T )′ yΣ−1

v a0 − T −1/2Σ̂N1N2 (S0) Σ̂−1/2
N1 (S0) N1,T (S0)

)
+ oP (1)

= Σ−1/2
N2 (S0)

(
T −1Z (C0,T )′ yΣ−1

v a0 − T −1/2ΣN1N2 (S0) Σ−1/2
N1 (S0) N1,T (S0)

)
+ oP (1)

= Σ−1/2
N2 (S0)

(
T −1Z (C0,T )′

(
Z (C0,T ) θa′ + v

)
Σ−1

v a0
)

+ oP (1)

= Σ−1/2
N2 (S0) ΣZ (S0) θa′

0Σ−1
v a0 + oP (1) ,

where the third equality follows from Assumption N.C.13(iii), the fourth by Assumption 6.4, the

fifth by part (i) for N1,T (ŜT ) and the final equality holds by Assumption 6.1. Part (ii) holds by

part (i) and the continuous mapping theorem. □

Proof of Theorem N.C.1. Parts (i) and (ii) of the theorem follow immediately from Lemma

N.C.3(ii). Part (iii) of the theorem is established as follows. Following the argument based on
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a mean-value expansion of the LRT statistic in the proof of Theorem 9 in Andrews, Moreira, and

Stock (2004) (see eq. (14.50)-(14.53)) with references to Lemma 9-(b) there replaced by references

to Lemma N.C.3, we have

LRT (ŜT ) = 1
2

(
2M1,T

(
ŜT

)
− 2

(
M1,T

(
ŜT

)
− M1,2,T

(
ŜT

)2
/M2,T

(
ŜT

)))
+ oP (1) (N.6)

= M2
1,2,T (S0) /M2,T (S0) + oP (1)

= LMT (S0) + oP (1) ,

where we used Assumption N.C.13(iii). □

N.C.6.2 Proof of Theorem N.C.2

We begin with the following lemma.

Lemma N.C.4. (i) Under Assumptions 6.1-6.4 and N.C.14, (i) (N1,T (ŜT )/T 1/2, N2,T (ŜT )/T 1/2) P→
(φN1 (S0) , φN2 (S0)) and (ii) (M1,T (ŜT )/T, M1,2,T (ŜT )/T, M2,T (ŜT )/T ) P→ (φN1(S0)′φN1(S0), φN1(S0)′

φN2 (S0) , φN2 (S0)′ φN2 (S0)).

Proof of Lemma N.C.4. Part (i) of the lemma is established as follows:

T −1Z
(
ĈT

)′
yb0 = T −1Z

(
ĈT

)′ (
Z (C0,T ) θa′ + Xη + v

)
b0

= T −1Z
(
ĈT

)′
Z (C0,T ) θa′b0 + T −1Z

(
ĈT

)′
vb0

P→ ΣZ (S0) θa′b0,

using Assumptions 6.1, 6.3, N.C.14(iii) and Z(ĈT )′X = 0. Hence, by Assumptions 6.1, 6.4 and

N.C.14(iii), we have

N1,T

(
ŜT

)
/T 1/2 = Σ̂−1/2

N1

(
ŜT

)
T −1Z

(
ĈT

)′
yb0 (N.7)

= Σ̂−1/2
N1

(
ŜT

)
T −1Z

(
ĈT

)′ (
Z (C0,T ) θa′ + v

)
b0

= Σ̂−1/2
N1

(
ŜT

)
T −1Z

(
ĈT

)′
Z (C0,T ) θa′b0 + Σ̂−1/2

N1

(
ŜT

)
T −1Z

(
ĈT

)′
vb0

= Σ̂−1/2
N1 (S0) T −1Z (C0,T )′ Z (C0,T ) θa′b0 + Σ̂−1/2

N1 (S0) T −1Z (C0,T )′ vb0 + oP (1)

= Σ−1/2
N1 (S0) ΣZ (S0) θa′b0 + Σ−1/2

N1 (S0) T −1Z (C0,T )′ vb0 + oP (1)

= Σ−1/2
N1 (S0) ΣZ (S0) θ (β − β0) + oP (1) .
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Similarly,

T −1/2N2,T

(
ŜT

)
= Σ̂−1/2

N2

(
ŜT

) (
T −1Z

(
ĈT

)′
yΣ̂−1

v

(
ŜT

)
a0 − T −1/2Σ̂N1N2

(
ŜT

)
Σ̂−1/2

N1

(
ŜT

)
N1,T

(
ŜT

))
(N.8)

= Σ̂−1/2
N2

(
ŜT

) (
T −1Z

(
ĈT

)′
yΣ−1

v a0 − T −1/2Σ̂N1N2

(
ŜT

)
Σ̂−1/2

N1

(
ŜT

)
N1,T

(
ŜT

))
+ oP (1)

= Σ̂−1/2
N2 (S0)

(
T −1Z (C0,T )′ yΣ−1

v a0 − T −1/2Σ̂N1N2 (S0) Σ̂−1/2
N1 (S0) N1,T (S0)

)
+ oP (1)

= Σ−1/2
N2 (S0)

(
T −1Z (C0,T )′ yΣ−1

v a0 − T −1/2ΣN1N2 (S0) Σ−1/2
N1 (S0) N1,T (S0)

)
+ oP (1)

= Σ−1/2
N2 (S0)

(
T −1Z (C0,T )′

(
Z (C0,T ) θa′ + v

)
Σ−1

v a0
)

− Σ−1/2
N2 (S0) ΣN1N2 (S0) Σ−1/2

N1 (S0) φN1 (S0) + oP (1)

= Σ−1/2
N2 (S0) ΣZ (S0) θa′Σ−1

v a0 − Σ−1/2
N2 (S0) ΣN1N2 (S0) Σ−1/2

N1 (S0) φN1 (S0) + oP (1)

= φN2 (S0) + oP (1) .

Part (ii) of the lemma follows from part (i) and Slutsky’s Theorem. □

Proof of Theorem N.C.2. Parts (i)-(iii) of the theorem hold by Lemma N.C.4 and simple calcula-

tions. In the case of LMT (ŜT ), the convergence only holds if β is such that φN2(S0) ̸= 0 because

φN2(S0) appears in the denominator. □

N.D Additional Monte Carlo Simulations

We consider the performance of the identification-robust tests under serial correlation in the errors.

Specifically, we examine DGP (S.C.2)–(S.C.3) and model the error terms as ut = ρuut−1 + vu,t and

et = ρeet−1 +ve,t, where vu,t and ve,t are jointly normally distributed with mean zero and covariance

matrix Σue as in (S.C.4) with ρ ∈ {0, 0.25, 0.5, 0.75} and ρe = ρu ∈ {0.25, 0.5, 0.75}. We set the

significance level to 5% and number of Monte Carlo replications to 10, 000. Table 2 and Figure

1 report the null rejection frequencies and size-adjusted power of the tests, respectively. Under

strong serial dependence (ρe = ρu = 0.75) all tests exhibit rejection rates that exceed the nominal

significance level. Specifically, LMT (ŜT ) and CLRT (ŜT ) are a bit more oversized than LMT and

CLRT but similar to qLL-S. Under weak serial dependence (ρe = ρu = 0.25), the proposed tests

LMT (ŜT ) and CLRT (ŜT ) are only slightly more oversized than their full sample counterparts,

LMT and CLRT . Figure 1 shows that the size-adjusted power of the proposed tests is higher than

that of the existing tests, similar to the i.i.d. case.
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Finally, we consider a model with multiple instruments:

Yt = βDt + ut, (N.1)

where

Dt =


θ1 (Z1,t + Z2,t) + θ̃1Z3,t + et, t ≤ ⌊T/4⌋

θ2 (Z1,t + Z2,t + Z3,t) + et, ⌊T/4⌋ + 1 ≤ t ≤ ⌊T/4⌋ + ⌊(1 − π0) T ⌋

θ3 (Z1,t + Z2,t) + θ̃3Z3,t + et, ⌊T/4⌋ + ⌊(1 − π0) T ⌋ + 1 ≤ t ≤ T,

(N.2)

Zi,t ∼ i.i.d. N (1, 1) for i = 1, 2, 3, and ut and et are i.i.d. jointly normal with mean zero and

covariance

Σue =
1 ρ

ρ 1

 , (N.3)

with ρ ∈ {0.25, 0.75}. Under the null hypothesis we set θ1 = θ2 = θ3 = θ̃1 = θ̃3 = 0. Under the

alternative hypothesis we set θ1 = θ3 = dT −1/2 with dß {2, 4, 8}, θ2 = 0 and θ̃1 = θ̃3 = 16/
√

T .

We set π0 ∈ {0.6, 0.8} and T = 200.
Table 3 reports the null rejection frequencies. The ART , ART (ŜT ), Split-S, qLL-S, ave-S and

exp-S are severely undersized across all values of d and ρ. LMT , LMT (ŜT ), CLRT , CLRT (ŜT ) lead
to quite accurate null rejection rates whereas Split-CLR displays null rejection rates substantially

beyond the nominal level. Figure 2 plots the power functions. LMT (ŜT ) and CLRT (ŜT ) are the

most powerful, followed by ART (ŜT ) and then by the full sample counterparts of these tests. qLL-S

displays the lowest power across all configurations. The power gains of LMT (ŜT ) and CLRT (ŜT )
are substantial across all configurations.
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Table 2: Finite-Sample Null Rejection Frequencies of Tests

ρ = 0.50 ρe = ρu = 0.25 ρe = ρu = 0.50 ρe = ρu = 0.75
T = 200, π0 = 0.8 d = 10 d = 16 d = 24 d = 10 d = 16 d = 24 d = 10 d = 16 d = 24

LMT 0.073 0.073 0.073 0.089 0.089 0.089 0.158 0.158 0.158

CLRT 0.079 0.077 0.076 0.096 0.094 0.093 0.179 0.169 0.166

LMT (ŜT ) 0.086 0.081 0.078 0.118 0.107 0.101 0.204 0.185 0.176

CLRT (ŜT ) 0.088 0.082 0.078 0.126 0.108 0.101 0.214 0.191 0.179

split − S 0.054 0.055 0.055 0.071 0.074 0.076 0.139 0.148 0.155

split − CLR 0.146 0.149 0.150 0.174 0.186 0.187 0.278 0.291 0.300

qqL − S 0.028 0.028 0.028 0.047 0.052 0.052 0.191 0.198 0.199

ave − S 0.047 0.046 0.047 0.068 0.071 0.070 0.153 0.161 0.171

exp − S 0.019 0.020 0.020 0.034 0.034 0.034 0.109 0.109 0.107

ρ = 0.50 ρe = ρu = 0.25 ρe = ρu = 0.50 ρe = ρu = 0.75
T = 400, π0 = 0.6 d = 10 d = 16 d = 24 d = 10 d = 16 d = 24 d = 10 d = 16 d = 24

LMT 0.061 0.061 0.061 0.074 0.074 0.074 0.124 0.124 0.124

CLRT 0.070 0.067 0.067 0.088 0.083 0.083 0.153 0.142 0.136

LMT (ŜT ) 0.076 0.068 0.068 0.109 0.091 0.091 0.174 0.158 0.142

CLRT (ŜT ) 0.081 0.070 0.069 0.106 0.093 0.093 0.190 0.166 0.145

split − S 0.046 0.044 0.043 0.060 0.059 0.059 0.113 0.113 0.113

split − CLR 0.133 0.134 0.134 0.150 0.154 0.154 0.234 0.240 0.243

qqL − S 0.042 0.043 0.039 0.042 0.063 0.063 0.169 0.177 0.180

ave − S 0.048 0.050 0.048 0.048 0.073 0.068 0.130 0.133 0.137

exp − S 0.0243 0.023 0.024 0.023 0.034 0.037 0.098 0.098 0.095
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Table 3: Finite-Sample Null Rejection Frequencies of Tests for the model (N.1)-(N.2)

ρ = 0.25 ρ = 0.50 ρ = 0.75
T = 200, π0 = 0.6 d = 2 d = 4 d = 8 d = 2 d = 4 d = 8 d = 2 d = 4 d = 8

ART 0.000 0.000 0.001 0.008 0.000 0.001 0.001 0.000 0.001

LMT 0.063 0.062 0.061 0.059 0.064 0.062 0.060 0.069 0.060

CLRT 0.070 0.070 0.056 0.070 0.073 0.068 0.066 0.076 0.067

ART (ŜT ) 0.002 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001

LMT (ŜT ) 0.074 0.067 0.072 0.067 0.064 0.073 0.064 0.072 0.070

CLRT (ŜT ) 0.075 0.068 0.071 0.067 0.073 0.073 0.065 0.072 0.070

split − S 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.015 0.016

split − CLR 0.096 0.090 0.086 0.094 0.092 0.082 0.091 0.094 0.087

qqL − S 0.008 0.009 0.008 0.008 0.009 0.010 0.010 0.009 0.009

ave − S 0.020 0.025 0.023 0.020 0.024 0.023 0.021 0.027 0.023

exp − S 0.004 0.034 0.005 0.005 0.004 0.004 0.005 0.004 0.004

ρ = 0.25 ρ = 0.50 ρ = 0.75
T = 200, π0 = 0.8 d = 2 d = 4 d = 8 d = 2 d = 4 d = 8 d = 2 d = 4 d = 8

ART 0.000 0.000 0.000 0.001 0.004 0.001 0.001 0.000 0.001

LMT 0.061 0.063 0.058 0.056 0.066 0.059 0.060 0.066 0.059

CLRT 0.048 0.050 0.062 0.059 0.070 0.061 0.063 0.068 0.062

ART (ŜT ) 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.004 0.002

LMT (ŜT ) 0.064 0.061 0.065 0.067 0.072 0.067 0.070 0.079 0.055

CLRT (ŜT ) 0.064 0.062 0.065 0.067 0.073 0.068 0.069 0.079 0.054

split − S 0.020 0.017 0.021 0.022 0.019 0.021 0.018 0.018 0.020

split − CLR 0.102 0.098 0.086 0.103 0.100 0.098 0.103 0.108 0.098

qqL − S 0.009 0.074 0.009 0.010 0.008 0.011 0.010 0.008 0.009

ave − S 0.020 0.022 0.018 0.023 0.022 0.019 0.019 0.025 0.018

exp − S 0.004 0.026 0.004 0.005 0.003 0.005 0.005 0.005 0.004
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Figure 1: Size-adjusted power of identification robust tests for T = 400 and π0 = 0.6 and ρ = 0.25.

Figure 2: Size-adjusted power of identification robust tests for T = 200 for model in (N.1)-in(N.2).
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