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Abstract

This paper discusses identification, estimation, and inference on dynamic local average
treatment effects (LATESs) in instrumental variables (IVs) settings. First, we show that com-
pliers—observations whose treatment status is affected by the instrument—can be identified
individually in time series data using smoothness assumptions and local comparisons of treat-
ment assignments. Second, we show that this result enables not only better interpretability of
IV estimates but also direct testing of the exclusion restriction by comparing outcomes among
identified non-compliers across instrument values. Third, we document pervasive weak identifi-
cation in applied work using I'Vs with time series data by surveying recent publications in leading
economics journals. However, we find that strong identification often holds in large subsamples
for which the instrument induces changes in the treatment. Motivated by this, we introduce a
method based on dynamic programming to detect the most strongly-identified subsample and
show how to use this subsample to improve estimation and inference. We also develop new
identification-robust inference procedures that focus on the most strongly-identified subsample,
offering efficiency gains relative to existing full sample identification-robust inference when iden-
tification fails over parts of the sample. Finally, we apply our results to heteroskedasticity-based
identification of monetary policy effects. We find that about 75% of observations are compliers
(i.e., cases where the variance of the policy shifts up on FOMC announcement days), and we
fail to reject the exclusion restriction. Estimation using the most strongly-identified subsample
helps reconcile conflicting IV and GMM estimates in the literature.
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1 Introduction

Economists work hard to extract plausibly exogenous variation in order to identify causal
effects. Many identification strategies used in applied work either rely directly on instrumental
variables (IVs) or can be reframed in terms of IV identification. This holds also in dynamic
settings where, for example, external IVs may be constructed using a narrative approach or
heteroskedasticity is exploited to yield additional identifying equations. Since Imbens and
Angrist (1994), it has been well-known that IV-based approaches identify the local average
treatment effect (LATE)—the average treatment effect for the sub-population of compliers,
i.e., those whose treatment status is influenced by the policy intervention (the instrument).

In the LATE framework, the sub-population of compliers is unobserved. This means
that although a LATE can be identified, the specific sample observations this effect represents
is unknown. This limitation is often described informally as the inability to observe an
observation’s treatment status under both the intervention and non-intervention scenarios.
From a practical interpretability perspective, this presents a challenge that has been widely
discussed in the literature [see, e.g., Angrist, Imbens, and Rubin (1996), Heckman (1996),
Imbens (2010) and Robins and Greenland (1996)]. Some progress has been made by Imbens
and Rubin (1997) and Abadie (2003) who show that the proportion of compliers and some
of their statistical characteristics can be identified, provided these characteristics can be
expressed as functions of moments of the joint distribution of observed data. Using these
results, Bhuller, Dahl, Lgken, and Mogstad (2020) conduct a detailed analysis of compliers
in the context of interpreting IV estimates of the effect of incarceration on recidivism and
subsequent labor market outcomes. Their work, along with many other studies, highlights the
importance of identifying the (characteristics of) compliers when drawing policy implications.

This paper considers IV identification in dynamic settings and shows how compliers can
be identified individually in this context. We first show that the notion of compliers can
be equivalently rewritten in terms of an inequality involving the difference in means of the
potential treatment under different instrument values. Under assumptions of continuity over
time in the mean of the potential treatment assignment process—conditional on a fixed hypo-
thetical value of the instrument—it is possible to recover counterfactual values by averaging
observations in a neighborhood around a given time point.

For example, consider heteroskedasticity-based identification of the causal effects of mon-
etary policy [cf. Rigobon (2003) and Nakamura and Steinsson (2018)] where the instrument

indicates whether there was an FOMC announcement on each date in the sample and the
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treatment variable is equal to the variance of a short-term interest rate. Here compliers are
defined as observations for which the volatility of the policy variable (change in short-term
interest rate) increases if and only if there is an FOMC announcement. Suppose that there is
an FOMC announcement on a given date of interest so that we do not observe the potential
treatment assignment under the counterfactual instrument value indicating the absence of
an announcement. Although the mean treatment assignment under non-announcement is
unobserved at this date, it can be recovered if mean treatment assignments are a smooth
function of time by computing an average of nearby days without an announcement. Under
an additional assumption of deterministic complier status, the complier status of the date in
question can be estimated and tested by comparing local means of the treatment variable,
one corresponding to nearby dates for which an announcement occurred and the other corre-
sponding to nearby dates for which it did not.! Applying our identification results and tests
to the heteroskedasticity-based identification of monetary policy effects, we find that about
75% of observations are compliers while the non-compliers are primarily concentrated in the
early zero lower bound period, when the central bank could no longer lower interest rates
and forward guidance was not aggressive.

Identification of compliers is not only valuable in its own right. It also enables us to test
the exclusion restriction, a key condition for valid IV estimation that is typically untestable in
practice. By identifying compliers, and thus also non-compliers, we show that the exclusion
restriction can be tested using a t-test that compares the average outcomes of non-compliers
across different instrument values.

A key condition for identification of the LATE in the IV framework is instrument rele-
vance, entailing nontrivial correlation between the endogenous variable and the instrument.
We begin by analyzing the problem of weak instruments, entailing low correlation between
the endogenous variable and instrument, in empirical work through a survey of articles us-
ing IVs published from 2019 to 2022 in five leading journals: American Economic Review,
Econometrica, Journal of Political Economy, Quarterly Journal of Economics, and Review
of Economic Studies. Our sample includes 1,560 specifications from 18 papers, with 199
involving time series and 1361 involving panel data.? The left panels of Figure 1 show his-

tograms of full sample first-stage [F-statistics for the specifications in our survey, truncated

Even though we focus on a time series setting, our identification results immediately apply to cross-
sectional settings with spatial data provided that the temporal distance between observations is interpreted
as geographical distance, and analogous continuity assumptions are imposed over space.

2See the supplement for the full list of papers and inclusion criteria.
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above 100 for visibility. Many F-statistics concentrate around the x? critical values and fall
below the conventional thresholds of 10 and 23.1 suggested by Staiger and Stock (1997) and
Montiel Olea and Pflueger (2013), raising serious concerns about weak instruments.® These
findings align with those of Andrews, Stock, and Sun (2019), who analyze cross-sectional
studies. For example, we find that 75% of time series and 72% of panel data specifications
have first stage F'-statistics below 24. The median F-statistic is 12.63 for time series and
9.29 for panel data.*
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Figure 1: Distributions of the first-stage I (left panels) and F* statistics (right panels). The top panels apply to time
series specifications and the bottom panels apply to panel data specifications. The orange and red vertical lines correspond to
the 5% and 1% level asymptotic critical values of the first-stage F’ (Xi for left panels) and F™* statistics (8.28 and 11.63) for

right panels) under identification failure.

When identification fails or is weak, IV estimators can be severely biased for LATEs and
conventional inference methods are rendered invalid. These problems have prompted exten-
sive research on detecting weak instruments and constructing identification-robust confidence
sets.” However, there has been little work on estimation and inference in a general LATE

setting when identification may be stronger over subsamples. The second main contribution

3Indeed, Staiger and Stock (1997) derive the threshold of 10 under the homoskedasticity-only assump-
tion—the relevant thresholds for time series data are larger [see Montiel Olea and Pflueger (2013)].
4For panel data specifications we consider each cross-sectional unit individually to enable comparison to

our proposed time series test shown on the right panels.
5See, e.g., Andrews et al. (2006), Kleibergen (2002), Moreira (2003) and Staiger and Stock (1997).
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of this paper is to develop a framework for identification, estimation, and inference on LATESs
that accommodates time-varying instrument relevance. Within this framework, we propose
a first-stage F'-test to detect whether identification fails over all nontrivial subsamples. To
solve the computationally intensive problem of searching for maximal identification strength
among all possible sample partitions, we employ dynamic programming. This optimization
is more complex than that in the structural break literature since evaluating identification
strength requires more than comparing parameter changes across regimes.

In an attempt to understand the sources of weak IVs we plot the histograms of the F™*
statistic proposed in this paper (cf. Section 4) in the right panels of Figure 1. The statistic
F* searches for the subsample with maximal identification strength among all possible sub-
samples of size at least ;7. The idea is that while the IVs may appear weak in the full
sample, they may be strong in a possibly large subsample. Figure 1 shows that this is indeed
often the case. The red vertical lines in Figure 1 mark the 95 percentile of the asymptotic
distributions of the F' and F™* statistics under the null of identification failure. Although its
quantiles are larger, the ['* statistics have substantially more mass in the upper quantiles of
their null distribution. This has at least three implications. First, it confirms substantial time
variation in the instruments’ strength. Second, strong identification appears to be frequently
present in a sizeable subsample even when the instruments appear weak in the full sample.
The median F* is 27.22 for time series and 33.81 for panel data specifications. These are
substantially higher than their full sample counterparts and this difference cannot be simply
attributed to the different null asymptotic distributions of the two test statistics given that
the difference in the asymptotic critical values is relatively small while the empirical distribu-
tions of the two test statistics is markedly different. About one half of the specifications that
appear to suffer from weak IVs in the full sample seem better characterized by strong IVs
in the subsample with maximal identification strength. Third, the subsamples where instru-
ments appear strong tend to be large. From an empirical perspective, this is encouraging:
although weak instruments in the full sample are common, researchers can often succeed in
identifying large subsamples where instruments appear strong.

Motivated by this survey evidence, we construct consistent estimators of LATEs when
subsamples are strongly-identified. It is commonly believed that if IVs are strong only in
some portion of the sample, the full sample IV estimator remains consistent for a LATE.

We show that this belief is unwarranted unless the LATE of interest is time-invariant (i.e.,

5We set 77, = 0.6 in Figure 1. We discuss the choice of 7, below.
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homogeneous). If this condition fails, one can at best identify a LATE corresponding to
the strongly-identified subsample. Even when the LATE is homogeneous, the full sample IV
estimator may still be severely biased if instruments are irrelevant over parts of the sample.

Our approach differs from that of Magnusson and Mavroeidis (2014) and Antoine and
Boldea (2018), who use time variation in IV strength to add moment conditions in a GMM
context, enabling more efficient inference and estimation. In contrast, we exploit this time
variation to identify the subsample where IVs are strongest and base our estimation on this
subsample. This insight allows for consistent estimation even when subsamples suffer from
identification failure.” If the parameter of interest is heterogeneous, our estimator remains
valid but is interpretable only within the strongly-identified sub-population.

We apply our methodology to the heteroskedasticity-based identification strategy used
to estimate the causal effects of monetary policy from high-frequency data [e.g., Nakamura
and Steinsson (2018)]. The key identification condition for this strategy is that the volatility
of the daily changes in short-term interest rates is higher on FOMC announcement days
than on non-FOMC days. Lewis (2022) provides evidence of weak full sample identification
and shows that IV and GMM estimates even differ in sign. We find that identification is
substantially stronger over a subsample comprising 80-90% of the data, with the excluded
subsample centered around the financial crisis, during which volatility was high even on non-
FOMC days. Estimation using the most strongly-identified subsample yields IV and GMM
estimates that have the same sign and similar magnitudes. We recommend reporting the
most strongly-identified subsample estimates in addition to the full sample estimates when
strong full sample identification may be in question.

Although our new methods are able to find the most strongly-identified subsample,
this subsample may still fail to be strongly-identified. For our final theoretical contribution,
we develop identification-robust inference procedures using the most strongly-identified sub-
sample. We propose versions of the Anderson-Rubin, Lagrange Multiplier, and conditional
likelihood ratio tests, which depend only on this subsample. These tests are more efficient
than their full sample counterparts, which include noise from regimes suffering from iden-
tification failure. When instruments are strong throughout the sample, our tests coincide
with the conventional ones. When instruments are irrelevant over parts of the sample, our

tests achieve higher efficiency by focusing on stronger segments. In the worst case, when IVs

" Another major difference from Magnusson and Mavroeidis (2014) is that we address the computational
challenge for the case of multiple breaks in the first-stage coefficient. Magnusson and Mavroeidis (2014) did
not attempt to address this issue and refer to it as “computationally demanding”.
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are weak everywhere, our methods are no less efficient than existing ones. While there is a
trade-off between using fewer observations and more strongly identified subsamples, simula-
tions show that our tests have higher power, indicating that the efficiency loss from a smaller
sample size is outweighed by the gain in identification strength.

The paper is organized as follows. Section 2 introduces the potential outcome framework
and dynamic causal effects, and presents identification results. Section 3 discusses issues
pertaining to heteroskedasticity-based identification of monetary policy. Section 4 presents
an F-test for full sample identification failure. Estimation and inference robust to weak
identification are discussed in Sections 5-6. An empirical application is considered in Section
7. Section 8 concludes. The supplements Casini, McCloskey, Rolla, and Pala (2025b, 2025a)

include the Monte Carlo simulations, proofs and additional results.

2 Identification of Dynamic Causal Effects

A growing literature in macroeconomics uses Vs to identify dynamic causal effects when
the policy variable of interest is endogenous.® Many existing identification approaches can be
reframed in terms of IVs, either derived from the modeling approach [e.g., heteroskedasticity-
based identification as in Rigobon (2003) and Nakamura and Steinsson (2018)] or through
external IVs constructed using a narrative approach [cf., Montiel Olea, Stock, and Watson
(2021)]. For example, Romer and Romer (1989) study the FOMC minutes to pinpoint dates
when monetary policy actions were arguably exogenous. This allows the construction of
exogenous variables that can be interpreted as IVs for some structural shock of interest.’
We adopt a potential outcomes framework, as introduced by Rubin (1974) and extended
to time series settings by Angrist and Kuersteiner (2011) and Rambachan and Shephard
(2021). Let the stochastic process V; = (Vi, X, Dy, Z;) be defined on the probability space
(Q, F, P), where Y; is a vector of outcome variables, D; is a policy variable, X} is a vector
of other exogenous and/or lagged endogenous variables, and Z; is a vector of instruments.

Let X; = {..., Xi_1, Xi, } denote the covariate path up to time ¢, with analogous definitions

8See, e.g., Gertler and Karadi (2015), Jorda, Schularick, and Taylor (2015), Mertens and Montiel Olea
(2018), Mertens and Ravn (2013), Plagborg-Mgller and Wolf (2022), Ramey and Zubairy (2018) and Stock
and Watson (2012, 2018).

9See Ramey and Shapiro (1998) for unanticipated defense spending shocks, Kuttner (2001), Nakamura
and Steinsson (2018) and Romer and Romer (2004) for monetary policy shocks, Hamilton (2003), Kénzig
(2021a) and Kilian (2009) for oil market shocks, Kénzig (2021b) for carbon pricing shocks, Romer and Romer
for tax shocks, and Ramey (2011) for government spending shocks.
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for 17;, D, and Z,. Let the policy-relevant information set at time ¢ denoted by .%#; = U(f/t)
where cr(f/t) is the o-algebra generated by the history of V;, V, = (}7;_1, X}, ﬁt_l, Zt—l)-

Policy decisions depend on past observable variables and the contemporaneous outcome
through a systematic component and on idiosyncratic information available to the policy-
maker (i.e., the random component). The systematic component, denoted D(\N/}, Y:, Zi, t),
is a time-varying non-stochastic function of the observed random variables V;, contempora-
neous outcome Y;, and the contemporaneous instrument Z;. The idiosyncratic information
is represented by a scalar stochastic shock e; that is not observed by the researcher. The
policy action is determined by D; = go(D(Vt, Yi, Zi, t), e, t), where ¢ is a general mapping.
In a SVAR context, e; is the structural shock to the policy variable D;. For example, if the
monetary authority follows a simple Taylor rule for the nominal interest rate, then ¢ is linear
and V; includes inflation, output and the natural rate of interest.

We define two types of potential outcomes. The first, Y; ((€1.4), (214)), denotes the coun-
terfactual values of Y; under hypothetical sequences of the policy shocks €., and instruments

214, Where a4 = {as}izl.

Definition 2.1. A generalized potential outcome, Y; ((€14), (21.)), is defined as the value

assumed by Y; if e, =€, and Z, = 2z, for s=1,..., t.

This definition excludes dependence on future shocks or instruments. The potential out-
come process should not be confused with the observed outcome {Y;},~; = {Y; (e1:t, Z1:4) },o1-
For h > 0 and any given € and z, write the time-t + h potential outcome along the path

((61:#1, €, 6t+1:t+h>7 (Z1:t71, Z, Zt+1:t+h)) as
Yi,h (6, Z) =Y ((elzt—ly €, €t+1:t+h)7 (let—h Z, Zt+1:t+h))7

where Y, (et, Zt) = Yiin. Definition 2.1 captures the property that Y;, (e, 2) also depends
on policy shocks that occur between time ¢ + 1 and ¢ + h. The notation Y;, (e, z) focuses on
the effect of a single policy shock on current and future outcomes akin to the idea underlying
an impulse response. When the potential outcomes do not depend on the instruments,
Yin (e, 2) =Yin(e), and for € # €, Yy, (€) = Yip (€)) for h =0, 1, ... are the dynamic causal
effects of a policy shock on the outcome. In a SVAR setting, one is often interested in these
dynamic causal effects which are in fact the impulse responses.

The second potential outcome that we discuss, Y;* ((d1.¢), (21.¢)), is defined as the coun-

terfactual values of Y; under hypothetical sequences of treatments d;.; and instruments z.;.



CASINI, MCCLOSKEY, ROLLA AND PALA

The distinction with Y; (€14, z1.) is that this formulation focuses on causal effects of the pol-
icy variable D, not the policy shock e. For t > 1, we assume that d; € D, z; € Z for some sets
D and Z. In many applications outside SVARs, the causal effects of the policy are of interest.
Think about the slope of demand functions, price elasticities, response coefficients or reaction
functions of, for example, asset prices to monetary policy, and so on. Typically these causal
effects are analyzed using event-studies, quasi-experiments, IV regressions, etc. The recent
literature on causal effects in time series [e.g., Rambachan and Shephard (2021)] focuses on
the identification of causal effects of the structural shocks. In this paper, we consider iden-
tification of causal effects of the policy variable. We illustrate the difference between these

two causal effects and an application to SVAR using the following two examples.

Example 2.1. Consider the following system of simultaneous equations,
Y, = BD; +n and D; = aY; + e, (2.1)

where the first equation is the demand curve, the second is the supply curve, Y; and Dy
are the observed price and quantity, and 7, and e; are the structural shocks. The param-
eter B captures the slope of the demand function, which corresponds to the causal effect
dY; (d) /0d = . On the other hand, in a SVAR context one may be interested in the
impulse response of Y; given a shock to supply e;. Solving for the reduced-form of (2.1),

I5; 1

+ N,

Y, —
K 1—ozﬁet 1—ap

shows that the lag-0 impulse response is dY; (e) /de = 3/ (1 — af3), which differs from £.

Example 2.2. Consider the following reduced-form VAR,
‘/t = Alvt—l + AQ%,Q + ...+ Ap‘/t,p + Uy,

where V; = (Dy, Y/) is n x 1, D, is a scalar, and w; is a vector of reduced-form VAR innova-
tions. The latter are related to structural shocks, g, = (e, 77{)', via u; = Bope; where By is a
non-singular matrix. Under suitable conditions, V; admits a moving-average representation
Vi = 2,05 (A) Bogy_;, where C; (A) = X1, € (A) A, for j =1, 2,... with Cy (A) = I,

J=0
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and A; = 0 for ¢ > p. Then, the outcome variable admits a moving-average representation,
e} o
Yy = Z Cye,jCt—j T Z Cyn,jTlt—3
=0 j=0

where ¢, ; and ¢y, ; are blocks of C; (A) By partitioned conformably to Y;, e; and ;. If e; is

the policy shock, the potential outcomes here are defined as

o0 o0
Yin(€) =Yin (e, 2) = Z Cye,jCt+h—j T Z Cyn,jTht+h—j T Cye h€.
Jj=0,j#h Jj=0

The potential outcome Y, ;, (€) tells us what Y;y, would be if e; = € and it does not depend
upon z since the instrument 7, is excluded from the VAR. Here the absence of causal effects
means that ¢y, = 0 for all h, coinciding with the canonical condition that the impulse
responses are identically equal to zero.

The potential outcome framework is useful because it allows the study of nonparametric
conditions such that common statistical estimands (e.g., impulse responses) have a causal
interpretation. Montiel Olea, Stock, and Watson (2021) show how to use the instrument
Z; to identify the impulse response coefficient ¢, = 3}/;(31/ Oe; (the effect of e; on the
rth variable in Y;,5). From the moving-average representation we have ¢,.. 5 = ¢.C}, (A) Botq
where ¢, denotes the s-th standard basis vector. This shows that ¢, ., depends on the A’s and
the first column of By. The following assumptions are needed for the identification of ¢, :
(i) E(Zier) = 0 # 0 (instrument relevance) and (ii) E(Z;n;) = 0 (instrument exogeneity). By
(1)-(ii), BS"Y = By, is identified up to scale by the covariance between Z; and the reduced-
form innovations w;: I' = E(Zyu) = E(Z;Bogy) = QB(():’D. Using the scale normalization
B{"Y =1 [see Stock and Watson (2018) for a discussion] we have ') = E(Z,e,) = 6 and
BSY = /T = T/4T. Tt follows that ¢,y is identified since ¢, ., = 1.Cy, (A)T /1T,
where A can be estimated consistently from the reduced-form VAR and I" can be estimated
consistently by using the VAR residuals u; in place of u;. On the other hand, identifying the
causal effects of the policy D; here would require additional identification restrictions.

Montiel Olea, Stock, and Watson (2021) use shortfalls in OPEC oil production associated
with wars and civil disruptions as an instrument for the oil supply shock in the SVAR of
Kilian (2009) who investigates the effect of oil supply and demand shocks on oil production
and prices. This variable is plausibly correlated with the oil supply shock and, because

the shortfalls are associated with political events such as wars in the Middle East, it is
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plausibly uncorrelated with the demand shocks. Using the analog of the nonparametric
conditions we provide below, applied to the shock e; rather than the policy Dy, permits a

causal interpretation of the impulse response even when E(Z;e;) = 0 for a sub-population.

In the following, we discuss identification of causal effects of the policy via IV estimands.

2.1 Identification Conditions

We explicitly allow for endogeneity and rely on IVs. We assume that the instrument only
has a contemporaneous effect on D, so that we may write D, = D;(Z;) where Dy(z) =
©(D(V,, Yy, z, 1), e, t) is the potential treatment assignment at time ¢ when Z; is set equal
to z € Z. The instrument Z; is assumed to be (conditionally) independent of the potential

outcomes Y'; (d, z) and treatments D;(z) but correlated with the observed treatment D;.

Assumption 2.1. (Independence) For alld € D, z € Z and t > 1, we have
{9}, D@12V (29)

Assumption 2.1 states that, given V;, the instrument is as good as randomly assigned.

The second assumption is that potential outcomes Y}, (d, z) are a function of d but not
of z. In studies of causal effects of monetary policy such as Nakamura and Steinsson (2018),
Z; = 1 if there is an FOMC announcement on day ¢t and Z; = 0 otherwise. Then, potential
realizations of expected output growth respond to changes in the monetary policy variable

regardless of whether the change is associated with an FOMC announcement or not.

Assumption 2.2. (Exclusion) For alld € D,t > 1 and h > 0, we have
{Vin(d, 2) =Y (d, )} Vi, forallz, 2/ € Z. (2.3)

In a dynamic simultaneous equations model (e.g., a SVAR) the exclusion restriction
requires the instrument not to appear in the causal equation of interest. In Example 2.2,
Assumption 2.2 corresponds to condition (ii), i.e., E(Z;n;) = 0 where 1, is composed of the
structural shocks other than e;. Under Assumption 2.2 we write Y}, (d, z) = Y, (d).

Identification based on IVs requires instrument relevance or “existence of a first-stage”.
The latter means that E(D; ()| V;) is a non-trivial function of z. In cross-sectional settings,

the existence of a first-stage is typically assumed to hold for all units to guarantee strong
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identification. Strong identification of this form often fails to hold in applications involving
time series data due to temporary misspecification, bad luck, rare events or parameter insta-
bility. The analysis based on articles in five leading journals that we report earlier suggests
that there are time periods for which the first-stage exists (strong identification) and others
for which it does not (identification failure). Standard first-stage F-tests are then likely to
indicate weak identification since they are based on averaging these two sub-populations.

We provide a theoretical framework to address this identification problem by assuming
that there are two sub-populations. One comprises a fraction my € [0, 1] of the overall
population for which the first-stage exists. For the second sub-population, which comprises a
fraction 1 — 7y of the population, the first-stage does not exist. This leads to a new notion of
LATE, which we name 7-LATE, the LATE for the (unknown) 7y fraction of the population
for which the first-stage exists. If mg = 1, then one recovers LATE.

Denote by [So r| the cardinality of So 7 (i.e., the number of indices in So 7).

Assumption 2.3. (Partial first-stage) Assume there exists So.r C {1, ..., T} such that|Sor| =
|m0T| with mo € (0, 1] and for t € Sor, B(D, (2)|V;) is a non-trivial function of z, i.e., for
t € Sor, B(D; ()| Vi) —E(Dy (2)| V) # 0 for 2/, z € Z such that z # 2'.1°

Assumption 2.3 implies that there are two sub-populations: one for which the first-stage
exists and one for which it does not. An average treatment effect can only be identified via
IVs for the fraction 7y of the population for which a first-stage exists.

The next assumption is monotonicity which, under heteroskedasticity-based identifica-
tion of monetary policy (see Section 3), means that while for some days the FOMC announce-
ment does not coincide with higher volatility in the policy variable, all of those days in which

the announcement affects the volatility of the policy variable, volatility is shifted up.

Assumption 2.4. (Monotonicity) D C R. For all z, 2/ € Z and t € Sy, either D;(z) >
Dy (Z") or Dy (2') > Dy (z) with probability 1.

If 7o =1 (so |Soz| = T'), the condition reduces to that in Imbens and Angrist (1994).
Following Kolesar and Plagborg-Mgller (2025), we impose the following assumption.

Assumption 2.5. For allt > 1 and h > 0, (i) Y3, (+) is locally absolutely continuous on D
and (ii) B | [, 10Y75, (d) /0d|dd| V;] < oo.

10We assume that all expectations exist.

11
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Assumption 2.5 allows D, to be either discrete, continuous or mixed. When D is discrete
or mixed, it is implicitly assumed that to deal with the gaps in the support of D; one extends
Y% (+) to D such that the extension is locally absolutely continuous. The support of Dy is
allowed to be unbounded. These conditions are weaker than counterparts imposed in the
recent literature [cf. Casini and McCloskey (2025) and Rambachan and Shephard (2021)], in
particular local absolute continuity replaces differentiability of Y%, (+) plus bounded support
of D;. It allows the application of the fundamental theorem of calculus to Y}, (-) without

requiring the support of D; to be bounded.

2.2 Identification Results
2.2.1 Identification of Causal Effects

We first discuss the case of a discrete instrument. When the first-stage does not exist for all
t, it is useful to define an IV estimand corresponding to the sub-population for which it does.
Let the generalized Wald estimand be defined for all 2/, z € Z by

E (Yenl Ze = 2, Vi=0) = E (Yun| Z = 2, Vs = D)

Brin (0) = E(Dt|Zt =2V :T)) —E(Dt|Zt =2V :17)

s for t € SO,T: (24)

where v € V. This is the ratio of a reduced-form generalized impulse response to a first-stage
generalized impulse response for ¢ € Sor. We show that for ¢ € Sy r, the estimand S, (0)
identifies a weighted average of causal effects for the compliers. Recall that ¢t € Sg 7 and 7
are related by [Sor| = [m0T"]. When 7y = 1 and there is no conditioning on V, =7, Bit.h
reduces to the Wald estimand considered by Rambachan and Shephard (2021). For ¢ ¢ Sy 7,
B+ does not identify a causal effect because the denominator of (2.4) is equal to zero.

We show that for ¢ € Sg 7, the generalized Wald estimand is equal to a weighted average
of marginal effects where the latter are the derivatives 9Y;*, (d) /dd.

Proposition 2.1. (7-LATE) Let Assumptions 2.1-2.5 hold. Fort € Sor, h >0, v € V and

2,z €7, we have

Brn (V) = /D E lw’ D;(2) <d< Dy (¢), V; = @] wy (d|7)dd, where  (2.5)

wy (d|v) = fDP(Dt(Z)gdSDt@/)‘Vt:ﬁ)dr
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Proposition 2.1 shows that .., (0) identifies a weighted average of causal effects for
compliers, characterized by D;(2’) > D,(z), for observations with a first-stage, with weights
wy (d| ) determined by the (conditional) likelihood that Dy (z) < d < Dy (2'). We refer
to the average treatment effect on the right-hand side of (2.5) as the time-t 7-LATE since
it is the LATE for the observations in this sub-population, which is a fraction my of the
whole population. In practice, the IV estimand (.., () is characterized by two types of
averaging. First, there is averaging over time. For any treatment d, the average involves
only those observations whose treatment variable can be induced to change by a change in
the instrument and is computed only over those observations that satisfy the first-stage (i.e.,
t € So,r). The second averaging is over different treatment values d at the same date ¢. This
is reflected in the weight wy (-) which is proportional to the number of observations in Sy 7
for which Dy (2) < d < D, (2'). Indeed, under regularity conditions permitting one to change

the order of differentiation and integration, viz.,

oY (d)
=[=5

%E[&«MDaagdSwa,%=ﬂ>

‘ Dy (2) <d < Dy (7)), Vt:@] =
Brin (V) can be interpreted as a local average marginal effect.

Stationarity of the conditional joint distribution of the average potential outcome and
treatment assignment functions for observations with a first-stage lends further interpretabil-
ity to the generalized Wald estimand. Specifically, if {Y}, (d), Dy(2)}|V; is identically dis-
tributed across ¢ for all t € Sg 1, d € D and z € Z, Proposition 2.1, immediately implies that
Bren is equal for all t € Sg p. Given this, we can write 3, ., = (x5, making explicit that the
generalized Wald estimand (2.4) equals a weighted average of causal effects for members of
the sub-population with a first-stage, which represents a mp-sized fraction of the total pop-
ulation. Under this assumption, we refer to the average causal effect inside of the integral
as m-LATE since it is a LATE for a member of the Sy sub-population whose treatment
variable can be induced to change by a change in the instrument.

The sample counterpart to the generalized Wald estimand (2.4) involves replacing the
conditional expectations with sample estimates based upon observations ¢ € Sy 7, yielding
an estimator of a causal effect. When Assumption 2.3 holds with 7y € (0, 1), the full
sample estimand, i.e., the ratio of the time averages of the numerator and denominator of
(2.4), is a poor representative of the full sample average treatment effects because it includes

observations for which the instrument is not relevant in the averaging. We caution that the
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usual practice of estimating the conditional expectations in (2.4) with full sample estimates
will not estimate the full sample LATE, but 7=-LATE.

Angrist, Graddy, and Imbens (2000) and Rambachan and Shephard (2021) consider
related results in cross-sectional and time series settings. The difference here is that we do
not require D, to be continuous or that the first-stage holds for all ¢. Kolesar and Plaghorg-
Moller (2025) established a similar result for the slope coefficient in the population version of
the “reduced-form” regression of the outcome Y;,; onto Z; where they imposed no restriction
on the first-stage and allowed for a continuous instrument.

A connection to program evaluation with binary policy actions arises when we map
a dynamic problem with continuous variables into one with binary policy actions and in-
struments. For example, consider the analysis of causal effects of monetary policy using
heteroskedasticity-based identification [cf. Nakamura and Steinsson (2018) and Rigobon and
Sack (2003)]. Define a binary instrument Z; with Z;, = 1 if there is a scheduled announcement
on day t and Z; = 0 otherwise. The policy Ai, typically reflects changes in short-term inter-
est rates. Identification relies on higher volatility in Aé; during announcement days (policy
sample) compared to non-announcement days (control sample). Think about mapping |Aé;|
into a binary treatment such that D, = 1 if |Ad;| > § for some threshold 6 > 0 and D, = 0 if
|Ai;] < § [ef. Rigobon and Sack (2003)]. Here m-LATE captures the average treatment effect
for the sub-population whose interest rate changes exceed d only when there is an announce-
ment (i.e., when 7, = 1). Observations where |A#;| < 0 regardless of announcements are
“never-takers,” while those with |Ai;| > 0 regardless of announcements are “always-takers.”
Under monotonicity, these groups form the non-compliers, whose responses are driven by
idiosyncratic factors other than announcement-specific effects. In Section 3 we document
regimes where the volatility of Ai; is high even in the absence of announcements.

Sojitra and Syrgkanis (2025) study dynamic treatment regimes with one-sided compli-
ance where treatments in each period may depend on past instruments, treatments, outcomes,
and confounding factors, while instruments in each period are generated based on prior in-
struments, treatments, and states. This setting encompasses applications such as digital
recommendation systems and adaptive medical trials. Their focus is on the causal effect of
treatment histories on long term outcomes, rather than of one-time shocks or single policy
shifts on outcomes at horizon h. Under binary instruments and treatments, they establish
nonparametric identification of the expected values of multi-period treatment effect contrasts

for the corresponding complier subpopulations, which they refer to as dynamic LATE.
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2.2.2 Identification of Compliers and Exclusion Restriction

A practical challenge for the 7-LATE framework, and LATE frameworks in general, is that
the sub-population of compliers is unknown. However, in time series settings with binary
instruments, we show below that one can identify the compliers individually, i.e., to determine
whether each observation ¢ is a complier. In this section, we consider a binary instrument,
e.g., Z; = 1 if t is an FOMC meeting day and Z; = 0 otherwise. Under Assumption 2.4,
assume without loss of generality that D;(1) > D,(0) for all t. Then, observation ¢, € Sp 1 is
a complier if and only if Dy, (1) > Dy, (0) with probability one—if the treatment changes in
response to the instrument.

We begin with the following assumption which states that each observation is either a

complier or a non-complier with certainty.

Assumption 2.6. (Deterministic complier status) For each t either P (D, (1) > D;(0)) =1 or
P (D, (1) > D, (0)) = 0.

Assumption 2.6 rules out cases where P (D; (1) > D;(0)) = p for some p € (0, 1).
A non-complier cannot be characterized by P (D; (1) > D, (0)) > 0. The latter probabil-
ity must be zero. Under Assumption 2.6, Lemma S.D.2 in the supplement shows that
P (Dy, (1) > Dy, (0)) = 1 is equivalent to E (Dy, (1)) > E (Dy, (0)). This equivalence implies
that compliers can be identified by comparing the expected treatment values under different
instrument values.!! Under mild smoothness assumptions that we discuss below, the latter
two expected values can be estimated consistently from the sample so that we can determine
whether ¢y is a complier in large samples by looking at the corresponding inequality based
on sample quantities.

Let P C {1,...,T} denote the “policy sample”, the set of observations for which 7, = 1
sothat D; = Dy(1) for allt € P, and let C = {1,...,T}\P denote the “control sample”, where
Dy = D;(0). It is reasonable to assume that, for a given value of the instrument, the potential
treatment assignments vary smoothly over time. Suppose we wish to determine whether an
observation ty € P is a complier. Since Dy, (0) is not observed, under time-smoothness we

approximate E (Dy, (0)) by averaging nearby observations in the control sample. Letting

"Note that this result is different from that in Lemma 2.1 in Abadie (2003) who shows that under several
assumptions the proportion of compliers can be identified by E (D; (1)) —E (D; (0)) in a cross-sectional setting.
He uses this lemma to show that any statistical characteristic that can be defined in terms of moments of the
joint distribution of (Y;, D;, Z;) is identified for compliers. He then remarks that it is not possible to identify
compliers individually under these assumptions.
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No(to) denote the ng largest indices s € C such that s < ¢y — 1, this implies

Detoime =15 Y. Dy E(Dy 1 (0))
s€Ny(to)

as ng — 0o with ng/|C| — 0 under mild conditions. In addition, it follows that E (D, (0))
is close to E (Dy, (0)). A similar argument can be applied to E (D, (1)) using adjacent days
in the policy sample: we have Dpy, ., — E (D, (1)) as ny — oo with ny/[P| — 0, where
Dpiym, = 17" Yseni(to) Ds and Ni(to) denotes the n; largest indices s € P such that s < t,.
Thus, observation ty, € P is a complier if and only if Epﬂgo’nl — EO,to—l,no 5 cas ng, N1 — 00
with ng/|C|,n;/|P| — 0 for any ¢ > 0.

Intuitively, even though Dy, (0) is not observed when ¢, € P, observations close to
to characterized by no FOMC announcement provide information about what E (D, (0))
would have been in the absence of an FOMC announcement.'? There are about six weeks
in between any two FOMC meetings, and so ng ~ 30. Alternatively, following Naka-
mura and Steinsson (2018) the control sample could include all Tuesdays and Wednesdays
that are not FOMC meeting days. Nevertheless, one can skip the observation that per-
tains to the previous meeting, say D;_, (0), whose realization is not observed, and con-
tinue averaging using the observations prior to that meeting as well to construct the average
D¢ ty—1.me POssibly applying down-weighting for observations further in time from t, i.e., use
cois Dy 1, Dy 41, Dy 49, Dyy—o, Dy,—1. Similarly, observations in P close to t, provide
information about what E (D,, (1)) would have been, though here the successive observations
are separated chronologically by the observations in the control sample C.

We now present the formal result for identification of the compliers. The following
two assumptions can be justified in large samples when the mean (potential) treatment as-
signments in both the control and policy samples vary smoothly over time. Under an infill
asymptotic embedding where the original observations indexed by t = 1,..., T are mapped
into the unit interval [0, 1] via u = t/T, if limp_,, E(Dr,(2)) is continuous in u under a fixed
instrument value z € Z, the following assumptions hold. This type of continuity accommo-

dates general forms of smoothly time-varying means but not abrupt breaks in mean.'?

Assumption 2.7. (i) For any t € C, D¢y, 5 E(D,) as n — oo with n/|C| — 0. (i) For

120ne could also use the observations to the right of ¢y to construct ﬁc’toﬂyn, ie., Degt1y. ooy Diggn.
3However, breaks in the mean of the assignment process can be estimated under some conditions as we
explain below. Then, time-smoothness is required to hold only in regimes defined by successive break dates.
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Assumption 2.8. (i) For anyt € P Dp;, 5 E(D,) as n — oo with n/|P| — 0. (i) For
t € CE(Dy (1)) = E(Ds ) (1)) where s* (t) = argmin,p|t — s|.

Assumption 2.7(i) requires a law of large numbers to apply to the rolling-window sample
average of D, at the points of continuity of E (D;). It is a minimal technical assumption.
Assumption 2.7(ii) strengthens part (i) a bit by requiring that for ¢ € P the potential treat-
ment assignment under the trajectory Z; = 0 has a locally constant mean. Assumption
2.8(i) adapts Assumption 2.7(i) to the observations in P. This is a stronger assumption since
two successive observations in the policy sample are separated by several observations in the
control sample. Assumption 2.8(ii) requires that E (D, (1)) for ¢t € C is equal to the mean
of the potential treatment assignment at the closest date in the policy sample s* (¢). This
is a first moment constancy assumption on the potential treatment assignment under the
trajectory Z; = 1. Assumption 2.7 is used to identify the compliers in the policy sample,

while Assumption 2.8 is used to identify the compliers in the control sample.

Theorem 2.1. Let Assumptions 2.6-2.8 hold and ng,nqy — oo with ng/|C|,ny/|P| — 0. Then:
(i) t € P is a complier if and only ifﬁp’tm — Eat_lm L ¢ where ¢ > 0.
(i) t € C is a complier if and only if Dp g0, — Dcitng 5 & where &> 0.

Theorem 2.1 shows that the compliers can be identified individually. To the best of our
knowledge, there is no equivalent result in the cross-sectional setting. The assumptions of the
theorem are easily satisfied in time series applications. Using Theorem 2.1 is straightforward:
one computes the difference between two sample averages and check whether it is greater
than zero. Given the sampling uncertainty associated with the two averages, one can conduct
inference using a t-statistic for the null hypothesis E (Dy, (1)) — E (Dy, (0)) = 0 (o is not a
complier) versus the alternative hypothesis that E (Dy, (1)) —E (D, (0)) > 0 (¢, is a complier).

An additional challenge specific to the 7-LATE framework is that the set of observations
with a first stage Sy is also unknown. However, as the following result states, under As-
sumption 2.4, in the absence of covariates V;, So.r is equal to the (identified) set of compliers

—i.e., observations for which the first-stage holds individually.

Proposition 2.2. Suppose Z, is binary and let Assumptions 2.3 without conditioning on V;,
2.4 and 2.6 hold. Then, the set of compliers coincide with So .

Knowledge of the compliers sub-population (and hence of the non-compliers sub-population)

can be used to test the exclusion restriction (cf. Assumption 2.2) by comparing the mean
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outcomes of groups of non-compliers across different values of the instrument. For example,
one can divide any large subset of non-compliers into two groups according to their assign-
ment status. If one can reject the hypothesis that the average outcomes in these two groups
is the same, then the exclusion restriction cannot hold.

Under Assumption 2.4 with Dy(1) > D,(0), the set of non-compliers is NC = {t €
{1,...,T} : Dy(1) = D;(0) = D;}. Let NC® be any non-empty subset of NC such that
NCp = NC°NP # () and NCE = NC°NC # . We can test the exclusion restriction in
Assumption 2.2 under the following assumption on the subsets NCp and NC¢.

Assumption 2.9. (i) E[Y*(d, 2)|t € NCp] = E[Y,*(d, 2)|r € NC&] for all t,r > 1, d € D and
2 €Z. (ii) {Dy, Vi}|t € NCp ~ {D,, V;}|r € NC& for all t,r > 1. (iii)) For R = C or P,
INCR| ™ Sienes, Vi = E[Yi|t € NC3] as [NC| — oo.

Condition (i) states that the potential outcome for non-compliers is mean-stationary
and the mean is the same across control and policy subsamples. Condition (ii) states that
the policy variable and past observables for non-compliers are distributed identically across
the control and policy subsamples. Condition (iii) states that a law of large numbers holds
for non-compliers observations in both the control and policy subsamples. As long as the
policy sample does not tend to contain systematic different values of the policy variable D,

among non-compliers than the control sample, these are relatively mild conditions.

Proposition 2.3. Suppose Z; is binary and let Assumptions 2.4 and 2.9 hold. If Assumption
2.2 holds, then as |INCyp|, INC&| — o0,

NC[E S Y- NG Y S,
teENTCE teNCE
Using Proposition 2.3 to test Assumption 2.2 is simple: since non-compliers can be
identified individually using Theorem 2.1, one can immediately compute the sample averages
specified in Proposition 2.3 and conduct inference using a t-statistic for the null hypothesis
that the population mean of ¢ € NC3p is equal to that of ¢ € NCg. The researcher has
the ability to choose the subset of non-compliers NC® when implementing this test. The
simplest choice is to set NC° = NC, however, the researcher also has the ability to direct
the power of the test toward particular types of non-compliers they may suspect of being

more likely to violate the exclusion restriction. For example, one may wish to focus on
NC* ={t e NC: Dy >d'} or NC° = {t € NC : D; < d*} for some d* value, such as
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d* = INC|7' Y ene Dy, in order to test violations of the exclusion restriction for observations

roughly corresponding to “always-takers” or “never-takers” in the case of a binary treatment.'*

3 High-Frequency Identification of Monetary Policy Effects

To study the effects of monetary policy on real variables, a large literature has relied on
high-frequency identification. This exploits the fact that at the time of an FOMC meeting a
large amount of economic news is revealed. Here we discuss Rigobon’s (2003) heteroskedas-
ticity identification approach which uses a 1-day window [see, e.g., Nakamura and Steinsson
(2018)], and can be reformulated as IV-based identification. In Section 3.1 we explain when
the resulting reduced-form estimands have a causal meaning within the potential outcome
framework of Section 2. In Section 3.2 we discuss the weak identification problem of current

approaches and show how the 7-LATE framework can be used to strengthen identification.

3.1 Heteroskedasticity-Based Identification

Consider the following system of equations:
Y, = BoDy + 1, and D, = aY, + ey, (3.1)

where Y} is the (demeaned) daily change in an outcome variable, (e.g., an asset price or a bond
yield) and D is the (demeaned) daily change in the unexpected component of a short-term
interest rate or policy news (e.g., Ai; as discussed after Proposition 2.1), 7, is a shock to Y,
e; is the monetary policy shock and a and 3 are scalar parameters. The errors 7, and e; have
no serial correlation and are mutually uncorrelated. The parameter of interest is 5, which
represents the causal effect of monetary policy on the outcome variable. The model in (3.1)
could arise from a bivariate VAR. In fact, one could add a vector X; of exogenous variables

to the model in (3.1). However, to focus on the main intuition, we follow Nakamura and

4Under an analogous assumption to Assumption 2.9 for a function of outcomes f(Y;), an analogous result
to Proposition 2.3 holds. One may use this fact, for example, to test if the variances of groups of non-
compliers are equal across different values of the instrument, which is implied by Assumption 2.2, or to test
the equality of a set of moments across different values of the instrument. Taking this logic even further,
one could invoke Gilvenko-Cantelli theorems to show that the difference between the empirical distribution
functions of observations in NCp and N'C& converge uniformly to zero under Assumption 2.2 and use a test
for the equality of distributions such as the Kolmogorov-Smirnov test. However, we focus here on testing the
equality of means across instrument values because the level of the outcomes, rather than functions of them,
are likely to be of primary importance in practice.
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Steinsson (2018) and we omit X, and lagged terms of Y; and D;. See Casini and McCloskey
(2025) for a detailed discussion of why the lags can be omitted in this setting.

The model in (3.1) is a special case of the generalized framework studied in Section 2.
It is useful because it directly motivates a particular IV estimand. However, we study the
causal interpretation of this estimand in the general case for which the linear model with
stable parameters is not the correct specification.

Heteroskedasticity-based identification requires that the variance of the monetary shock
increases in the days of FOMC announcements, while the variance of other shocks is un-
changed. Let Tp denote the number of days containing an FOMC announcement (policy
sample), and let T denote the number of days that do not contain an FOMC announcement
(control sample). Let 02, = Tp' YyepE(ef) and 02 = To' Yo E (€F) be the average
variance of the monetary policy shock in the policy and control samples. Define 07277 p and

o7 o similarly. Then, the identification condition is
Oep > OcC and On.p = OyC- (3.2)

Identification can be shown analytically by first solving for the reduced-form of (3.1):

Yt:l—aﬁo (ne + Boex) D,

:m(anﬁet)-

Let ¥; denote the covariance matrix of [Y;, D;]’ in the subsample i = P, C. Tt follows that

2 2 2 2 2
o # 0_7771' + 600—571' 600—6,1' + G/O_n,i i=P C
i = 2 2 2 2 2.2 |7 S
(1 —abp) Boos, +aoy, oo+ a0,

It is typical in the literature to assume within-regime covariance-stationarity, i.e., E (€?)
and E (n?) are constant within each subsample P and C which is, however, restrictive for
economic time series. It turns out that this is not necessary for identification. Volatilities
can be time-varying as long as the average volatilities o.; and o,,; (i = P, C) satisfy (3.2).
When (3.1) is correctly specified, i.e., the true model is linear with stable parameters,

the parameter 3y can be identified using (3.2) by taking the difference between the covariance
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matrices in the policy and control samples:

AR(2)  Tp' Yyep Cov (Y, Dy) = Tg' Siee Cov (i, D)

e - 5 . where  (33)
AN 22) To'S,cp Var ( Dt) ST Yo Var ( Dt)
Azézp_zczw B Bo
(1- alﬁo)z Bo 1

To determine which average treatment effect this approach identifies in the general framework,
we re-frame this problem in terms of instrumental variables as follows. Let Z; =1 fort € P
and Z; = 0 for t € C. Multiply both sides of (3.1) by D, to yield D,Y; = 50[7,52 + Dyn,. We
can use Z; as an instrument for Df. The first-stage is Df = 0Z; + ¢, where &, is some error

term satisfying ¢, > —60Z7;. The resulting Wald estimand is

E (DY) Z =1) —E (DY) Z = 0)

Freo = E<D3|Zt = 1) _E(DﬂZt B 0)

(3.4)

which corresponds to the Wald estimand (2.4) for h = 0, Y; = th/t, D, = [)f and no
conditioning variable V;. Under covariance stationarity within subsamples P and C, the
right-hand side of (3.4) is equal to the right-hand side of (3.3). The following corollary of

Proposition 2.1 presents the causal meaning of 5y, , under the general setting of Section 2.

Corollary 3.1. (LATE in heteroskedasticity-based identification) Let Assumptions 2.1-2.5 hold
forY; = D,Y; and D, = f)t2 with f)t(l)2 > Dt(O)Q. Fort € Sy, we have

Bjm,o =

(3.5)

Corollary 3.1 shows that the Wald estimand in (3.4) has a causal meaning because it
is the ratio of a reduced-form generalized impulse response of D,Y; to a first-stage gener-

alized impulse response of D?. More specifically, 3*

10 1dentifies a weighted average of the

derivative of the product between the potential outcome and policy variable for compliers.
Hence, contrary to popular belief, the causal interpretation of the heteroskedasticity-based
estimator (i.e., Rigobon’s estimator) estimator is not the same as that of a standard IV esti-

mator—though it remains local in nature as it averages over compliers. We continue to refer
to it as LATE with the understanding that it is a LATE for thft, not Y; itself.
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Here the compliers are the observations for which the announcement induces a higher
volatility of the policy D;. In contrast, the non-compliers are characterized by idiosyncratic
or general equilibrium factors that dominate the news specific to the announcement. That is,
regimes where Df remains low regardless of the presence of an announcement correspond to
“never-takers,” while regimes where Df remains high even in the absence of an announcement
correspond to “always-takers.” Noting that D, = ﬁf in this context, we can apply Theorem
2.1 to identify the compliers individually. We do so in the empirical application in Section 7.

It is important to consider how the interpretation of the causal effect identified by 3; ;
in Corollary 3.1 varies with the functional relationship between Y; and D;. Let us begin with
the linear case with stable parameters as in (3.1). From (3.4), simple algebra shows that
By 1o reduces to By when the denominator of (3.5) is nonzero, which means that Rigobon’s
estimator identifies the causal effect of the policy (i.e., the slope coefficient in (3.1)). This
result does not generally extend to the case where 3y is time-varying or the first-stage is zero.
At most one could identify a m-LATE provided that Rigobon’s estimator is computed over
the sub-population where the first-stage is nonzero. We will return to this in Section 3.2.

Let us turn to analyzing the consequences of nonlinearities. When D; and the shock
n are additively separable (i.e., Y; = ¢p(D;) + ¢, () for some nonlinear functions ¢p (-)
and ¢, (+)), Kolesar and Plagborg-Mgller (2025) show that the estimand resulting from a
regression of Y; on D; using Z; = (W; —E (W;))D; as an instrument for which Cov (D7, W;) #
0 identifies a weighted average of marginal effects of the policy shock e; with weights that
are not guaranteed to be positive. As a result, the researcher may infer an incorrect sign
for the marginal effects. Thus, this estimand is not weakly causal [cf. Blandhol, Bonney,
Mogstad, and Torgovitsky (2025)]. The authors also note that for the case Y; = e:p, ()
with E[g, (7:)] = 0 and e, Ln, the estimand is nonzero while the true causal effect of the
policy shock is zero since E[Yy] e;] = 0.

Corollary 3.1 provides even more negative news about the effect of nonlinearities for
heteroskedasticity-based identification than that shown by Kolesar and Plagborg-Mgller (2025):
in a general nonparametric model, Corollary 3.1 implies that Rigobon’s Wald estimand j; , ,,
which is in general different from the IV estimand examined by Kolesar and Plagborg-Mgller
(2025), does not necessarily equal a weighted average of marginal effects. The intuition is
that the instrument affects Var (D;) and not E (D;), so variation in the instrument induces
exogenous variation in D?, which has a causal effect on D;Y; not just Y;. In short, it is gen-

erally difficult to interpret 3}, ; when the true model is nonlinear. Thus, we concur with the
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recommendation of Kolesar and Plagborg-Mgller (2025) that the linearity assumption should
be checked carefully when using heteroskedasticity-based identification. This is likely even
more important in the context of SVARs and local projections than in the the current event
study setting since the former aggregates data over a month or a quarter while the latter uses
relatively higher frequency data (e.g., a 30-minute or 1-day change in policy and outcome
variables around an announcement), where linearity may be a more credible assumption since

a nonlinear function can be locally well approximated by a linear one.'”

3.2 Weak or Lack of Identification and the Usefulness of 7-LATE

The key identification condition that the volatility of the policy variable is higher during
FOMC announcement days appears reasonable in principle, since each announcement day is
likely to be associated with substantial monetary news. However, the volatility of monetary
policy variables can be high for other reasons. There are multi-year periods during which
the volatility of several macroeconomic variables is elevated. In this case, general equilibrium
factors dominate the news specific to the announcement. For example, during the 2007-09
financial crisis and the Covid-19 pandemic, volatility was high across many macroeconomic
and financial variables. These facts pose serious challenges for identification, as the first-stage
condition may not hold for all ¢. To see this, examine the denominator of gy in (3.3). If the

first-stage does not hold for all ¢, we may have

Tp' Y Var (Dy) = T; Y Var (D) = 0, (3.6)
teP teC
which would render the estimate of the average treatment effect highly imprecise.

Using an F-test for weak identification, Lewis (2022) shows that the monetary policy
effects based on a 1-day window in Nakamura and Steinsson (2018) appear to be weakly-
identified. We show that this arises from significant time variation in the volatility of the
policy variable within both policy and control samples. Figure 2 plots D; (2-Year Treasury
yields) for the control and policy samples. The policy sample includes all regularly scheduled
FOMC meeting days from 1/1/2000 to 3/19/2014. The control sample includes all Tuesdays

5The differences between our results on identification via heteroskedasticity and those in Kolesar and
Plagborg-Mgller (2025) are: (i) they consider the causal effect of the policy shock e; while we consider the
causal effect of the policy variable Dy; (ii) they consider an IV estimand while we explicitly consider Rigobon’s
estimand motivated by AX(12) /A¥(22) in (3.3) and as usually implemented in empirical work based on event
studies; (iii) they consider specific nonlinear restrictions and allow the instrument to be continuous whereas
we allow for a general nonlinear model and consider a binary instrument as motivated by (3.3).
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and Wednesdays that are not FOMC meeting days between 1/1/2000 and 12/31/2012.
There appear to be multiple volatility regimes. Using the structural break test from
Casini and Perron (2024), which allows for stable or smoothly varying volatility under the null
and abrupt breaks under the alternative, we detect three breaks in the control sample. The
first break (April 24, 2007) marks the start of the 2007-09 financial crisis. The second (July
28, 2009) captures the crisis period itself, characterized by the highest volatility. Afterward,
volatility returns to pre-crisis levels until the third break (February 2, 2011), which aligns
with the zero lower bound (ZLB) period and the start of unconventional monetary policy.
The final regime shows the lowest volatility, reflecting initial policy effects and stabilization.'®
These findings show significant time variation in Var(D;). In the second regime, control-
sample volatility is close to the policy-sample average, contributing to the weak identification
in (3.6). Nakamura and Steinsson (2018) find their estimates imprecise and not economically
meaningful for some of the interest rates they use as outcome variables. Lewis (2022) reports a
first-stage F-statistic of 8.11—well below the 23 critical value—suggesting weak identification.
We propose to focus on m-LATE. The fraction m of the sample (i.e., all t € Sqr)
that has a first-stage corresponds to the regimes in the control sample where Var([?t) is low
(relative to its average level). For example, it is likely that the regime [T} 4 1, T3] does not
belong to Sy r since Var(f)t) within this regime appears close to the average volatility in the
policy sample. By construction, it is easier to identify 7-LATE than full sample LATE. The
usefulness of 7-LATE depends on the magnitude of 7y: a small 7wy implies that identification
is achievable only in a small portion of the population, whereas a large 7y indicates that the

identified 7-LATE is representative of a substantial part of the population.'”

The 7-LATE parameter is the same as the LATE parameter (3.3) in Section 3.1 but
instead of supposing that a first-stage exists, only uses observations with a nonzero first-stage.
Let Tp g denote the number of days in Sy that contain an FOMC announcement, and let
Tc,s the number of days in Sy that do not contain an FOMC announcement. This means

Trs + Tos = mT."® Let ;5 denote the covariance matrix of [}7,5, Dt]’ in the subsample

16We do not test for breaks in the policy sample due to small size (Tp = 74), treating it as a single regime.

1Tt is possible that in practice the my fraction of the sample contains a mixture of strong and weak
identification. We discuss weak identification in the context of m-LATE formally in Section 6.

18For notational simplicity we assume that 7oT is an integer so that we avoid using the notation |[moT|,
where || denotes the largest smaller integer function.
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2 — Year Treasury Yields and Structural Breaks
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Figure 2: Plot of 2-years Treasury yields in control (top panel) and policy sample (bottom panel). Vertical broken lines are
the estimated break dates using Casini and Perron’s (2024) test.

t = P, C using only observations ¢ € Sy 7. We have

AE(SI’2) B Tp_’é ZtGPs Cov (ﬁ, Dt) - T&g ZtGCs Cov (yta Dt)

gmo B _ - - " _ , where  (3.7)
ASET T TR S, Ve (D) ~ Tk Siee, Var (D)
olp—0io |83 B
A¥Y.s =Y¥ps—Ycos = ’Pig - ’
(1—aifBo)” |Bo 1

with Pg = P N Spr and Cg = CN Sy p. Proceeding as for LATE, the Wald estimand is

_ E(DYi|t € Ps) —E (DYt € Cs)
Brio = = =
E (Dt € Ps) — E (D}t € Cs)

(3.8)

to which Corollary 3.1 immediately applies without the (now redundant) qualifier “for ¢ €
Sor.” Under within subsample covariance stationarity, the right-hand side of (3.8) is equal
to that of (3.7), implying Bmo = B;vt,o. Therefore, Bw,o identifies the same m-LATE, as defined
explicitly in Corollary 3.1. 7-LATE is the average treatment effect for the sub-population
for which a first-stage holds: observations for which D? is induced to be higher by the

announcement (i.e., the sub-population of compliers in Sy 7).
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If the treatment effect is constant across the population [e.g., as in (3.1)], then the 7-
LATE for the sub-population Sy is equal to both the LATE and ATE in the full population.
To determine which treatment effect is identified, we must determine which parts of the

sample belong to Sy 7.We discuss this in Sections 4-5.

4 Testing for Full Population Identification Failure

In this section, we introduce a test of the null hypothesis that no subpopulation exists for
which a LATE can be identified, even weakly. In other words, the test assesses whether
identifying a sub-population LATE is possible at all. However, we strongly caution against
using this as a pretest before estimation or inference, as doing so may introduce pretest bias
and invalidates standard inference unless the inference method is modified to account for
the pretest [see, e.g., Andrews (2018)]. Instead, the test should be viewed as a diagnostic
tool for evaluating whether there is evidence of identifiable sub-population LATESs in a given
application. We apply it for this purpose to several existing studies that appear to face
identification challenges. Notably, such a pretest is unnecessary for conducting identification-
robust inference on sub-population LATEs, which we discuss in Section 6.

In accord with the analysis of Section 2, consider an IV regression model with a single

endogenous variable and multiple instruments. In matrix format, the structural equation is
Y =Dp+ X + u, t=1,..., T, (4.1)

where Y is a T' x 1 vector of outcome variables, D is T x 1 vector of endogenous variables,
X is a T x p matrix of p exogenous regressors, u is a T' x 1 vector of error terms, and g € R

and v; € RP are unknown parameters. The reduced-form equation is
D, = Zg@l{t € S(],T} + Xé’YQ + e, (42)

where Z; is a ¢ x 1 vector of instruments, e; is an error term, and § € R? and v, € R?
are unknown parameters. For ¢ ¢ Sor, the instrument Z; is irrelevant. For ¢t € Sy, the
instrument Z; is relevant if § # 0. We assume that |Sy 7| = mT" for some my € (0, 1], noting

that this is without loss of generality since it does not rule out complete identification failure
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which occurs when 6 = 0 for any 7y € (0, 1]. The hypothesis testing problem is
Hpo: 0=0 wversus Hp;: 0#0.

We discuss both the cases for which the sub-population Sy 1 is known and unknown. For the
sake of the exposition, we focus on homogeneous 6 in Sy 7.""

Consider the (77" x T') selection matrix Sr that selects the 71" rows of a matrix corre-
sponding to the indices in Sy. That is, for an arbitrary 7' x k matrix A, SpA is the (77T x k)
matrix whose elements are the rows of A that correspond to the indices in S7. For example,
it Sqp ={1,...,0.257, 0.75T + 1,..., T},

SpA = {A(L:)’ o AO25TL L AOTSTHL L A (T ”

where A denotes the r** row of the matrix A. Using the standard projection matrix
notation, Py = A(A’A)~tA" and My = I — Py, let A(ST) = Mg, xSt A for any arbitrary
T x k matrix A. The following F' test statistic is useful for testing whether § = 0 in the

regression (4.2) when the sub-population Sy is known:

D (S7) Z(Sy) J(Sr)*Z (Sr) D (Sr)

F S = )
 (8r) q (7T —p—q)
for Sy = Sor and Z = [Zy ¢ --- : Zp| and j(ST) a consistent estimate of the long-run
variance,
. -1 7 l
T1520<T7T> Var(Z(Sr)'Sre)
with e = [e; : -+ : er). HAC or DK-HAC estimators can be used to estimate the long-run

variance [cf. Andrews (1991), Casini (2023) and Newey and West (1987)].

For the case of an unknown sub-population, we follow the structural break literature and
search for maximal identification strength over all sub-populations of minimal size ;7T that
can be partitioned into m distinct smaller sub-populations, where 77, > 0 and 1 < m < m,

for some upper bound on the number of regimes m, > 0:

F:;‘i = sup max sup Fr (ST) )

TI'E[ﬂ'Ly 1} lsmsmy STEEG,w,m,T

19We could allow for 6; # 0 for t € So 1 at the expense of additional notation and longer proofs, though
the key insights would not change. Actually, the computational procedures we develop to implement our
methods allow 6; # 0 for t € Sp 7.
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where Z ;1 denotes the set of all possible partitions of a fraction 7 of {1,...,7'} that
involve m regimes ((Ap17T, Ag1T), ..., AT, AgmT)) for Ari, Ari € [0, 1] such that (i)
Ari < Agy for all ¢, (ii) Ag; < Aps4q for ¢ =1,...,m —1, (iii) |Ag; — Aps| > € for all 4
and some (small) € > 0 and (iv) >7*,(Ag; — Ar;) = 7. Conditions (i) and (ii) correspond to
TALi (T'Ag;) denoting the start (end) date of regime ¢ within the sub-population Sy while
condition (iii) implies that each regime involves a non-negligible fraction of the sample. The
statistic F7 thus implicitly searches for maximal identification strength over all possible sub-
populations of size ;T and larger with less than m_ distinct regimes that are at least a ¢
fraction of the overall sample size.

The tuning parameters 7, and e determine the types of sub-populations for which the
test can detect identification: smaller values of 7, allow detection in smaller sub-populations,
while smaller values of € enable detection in sub-populations with shorter regimes. The
choice of these lower bounds should be guided by the empirical context, reflecting the small-
est sub-population and regime sizes for which LATE inference remains meaningful in the
application.? In our simulations and empirical applications we set 7, = 0.6 and e = 0.05.

For X the t" row of X, let w, = (X}, Z})" and W, (-) denote a r-vector of independent
Wiener processes on [0, 1]. We derive the asymptotic null distributions of Fr (Sr) and F.
under the following standard high-level assumptions that permit both heteroskedastic and

serially correlated errors. Sufficient conditions for them can be found in the supplement.
Assumption 4.1. 7! Zt 1 wyw, L sQ, uniformly in s € [0, 1] for some p.d. matriz Q.
Assumption 4.2. T-1/2 ZLTS wee; = QY 2Woiq (8) for some p.d. variance matriz Qye.

Assumption 4.3. j(ST) is p.d. for all T, Sy € Zcxmr and j(ST) L limp oo T Var(
'Sy Z(Sr)) uniformly in Sp € Zep .-

Theorem 4.1. Let Assumptions 4.1-4.53 hold. Under Hyy,

Fr(Sr)=F(S) if Sr€Zcimmr, and Fi= sup max sup F(S),

w€lrp, 1] 1<m<my SEZc n,m

where S = limp_,oo T 'S, Eerm = M7 o0 T_lEm,m,T and

*ZII ¢ Ora) = Wy Q)|

20Tn the structural break literature, common recommendations for e are 0.05, 0.10 and 0.15. See Casini
and Perron (2019) for a review.
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When 7 = 1 (r, = 1 and my = 1), Fr(Sr) (F}) reduces to the usual first-stage F-
statistic for § = 0 in (4.2). For m € (0, 1) (7, € (0, 1)), the consistency of tests against Hy,
using Fr (Sor) (F5) follows from similar arguments as for the my = 1 case. The asymptotic
null distributions of both F'(S) and F; are free of nuisance parameters. The critical values

are obtained via simulations and reported in Table 4 for up to m, = 6 and up to ¢ = 6.

5 Estimation of LATE and Identified Sub-Populations

We discuss estimation of the LATE parameter /5 in (4.1) in both the cases of a known and
unknown sub-population Sg 7, as well as estimation of Sop itself in the latter case. When
So.r is known, estimation of 3 is an application of IV estimation for which Z,1{t € Sor} is
treated as the vector of instruments. Let this estimator be denoted as 3 (So7r)-

On the other hand, when the sub-population Sy r is unknown, we must estimate it first.
Although Sy 7 can be estimated consistently in the special case of a binary instrument under
the conditions of Proposition 2.2 and Theorem 2.1, it can also be estimated more generally.
We discuss two methods. The first is more computationally straightforward but the second is
more efficient because it uses the information in both structural and reduced-form equations
(4.1)-(4.2). We follow the structural change literature and assume that 7y and mg are known,
i.e., the practitioner has previously used the tests from Section 4 to determine 7y and my.

We begin with the first estimator. Consider the T' x T" matrix Cp that selects the 7T
rows of a matrix corresponding to the indices in Sy while setting the remaining (1 — 7)7T
rows to zero. For example, for a T' x k matrix A, if Sp = {1,..., 0.257, 0.757 + 1,..., T},

CrA= {A(l,:)/ s A025T ) Okt t -2 Opxey AT+ A(T*)’},‘

Let A(C7) = MxCrA so that for a given Sy, the OLS estimators of # and 75 in (4.2) can be ex-
pressed as gOL.S'(ST) = (7(CT)/7(CT))_1Z(CT)/D and ?Q’OLS(ST) = (X/MCTzX)_lleCTzD.

Our first estimator of Sy 7 minimizes the sum of squared residuals of the reduced-form:

Srors = argmin (D — C1Z0o1s(Sr) — X%,OLS(ST)) (D — C1Z0o1s(Sr) — X%,OLS(ST)) -

ST 655,7\'0 ;mq,T

Correspondingly, we estimate 8 with 3 (ST,O LS)-
For the second estimator of the sub-population Sy, we propose a GLS criterion that

minimizes an efficiently weighted combination of the sum of squared residuals of both the
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reduced-form representation of the structural equation (4.1) and the reduced-form equation

(4.2). That is, the system of equations (4.1)-(4.2) can be written in reduced-form as
g=WI(Sr)§ +e, (5.1)

where g = (Y,7 Dl)lv W(SO,T) =L ® [CO,TZ : X]a § = (6&’,71 + 67%79/775)/ and ¢ =
(v + Be',e’) with Cor defined as Cr but corresponding to the indices in Sor. This is a

system of two seemingly unrelated regressions. Let
Erars(Sr) = (W(Sr)'Qe(Sr) ™' W (S1)) ™' W (S1)'Qe(S1) 717

denote a feasible GLS estimator of £, where Q.(S7) is a consistent estimator of E[ee’|W (Sr)].

Our second estimator of Sor minimizes the following GLS criterion based upon (5.1):

SrroLs = argmin (?j— W(ST)EFGLS(STD/Q;é (?7— W<ST)€FGLS(ST)) -

ST EEE,WO ,mq,T

Correspondingly, we estimate 8 with 3 (gT rcLs)- Inorder for B (§T raLs) to be provably more
efficient than 3(St.oLs), Q-.s must be a consistent estimator of Eee’|W (Sor)]. When &; does
not exhibit conditional serial correlation or heteroskedasticity, i.e., Elee’|W (Sor)] = £ ® Ir,
this is feasible since one could simply use Q. g = 2. ® Iy, where EAJEM- = (T —q—p)~te"& for
i,j = 1,2 with &' (%) equal to the first (last) T elements of §— W(§T70L5)50L5(§T70L5), as is
standard in seemingly unrelated regression. For serially dependent &;, consistent estimation
of Elee’|W(Sor)] requires a correctly-specified model for the dependence in &;, a strong
assumption in some empirical applications. In the supplement Casini et al. (2025b) we
present the consistency results about §T7OL5, B(gT’OLS), §T7FGL5 and B(gT’FG’LS).

In model (4.1) the LATE parameter § is constant, so 7-LATE is the full population
LATE and 3 (éTyoLS) and 3 (§T rcrs) are consistent for the LATE parameter S. They can
be precise estimates even when a first-stage F' test detects full sample weak identification
because they use the most-strongly identified subsample of the data. When the model (4.1)
is misspecified, so that LATEs may be nonlinear and time-varying, the estimators B (gT,O Ls)
and B(gT,FGLS) are still consistent for a weighted average the of the LATEs in the Sy r
subsample if the Sy 1 subsample exhibits strong identification.

The estimators §T,OL5 and §T7FGL5 and the test statistic Fj solve an optimization

problem over many partitions. This is computationally more complex than problems in

30



DYNAMIC LATE

the structural breaks literature, as it involves optimizing both over sample partitions and
identification strength. We address this challenge by proposing an efficient algorithm based

on dynamic programming, extending the approach of Bai and Perron (2003) to our setting.?!

6 Identification-Robust Inference

We consider tests on 3 in (4.1) that are robust to weak identification in both the cases for
which the sub-population Sy is known and unknown. The hypothesis testing problem is
Hy : B = By versus Hy : B # (. Here we present results for the case of unknown sub-
population Spr and weak instruments. We also briefly discuss the case of known Sy and

strong instruments and defer their formal treatment to the supplement. We rewrite (5.1) as
y=Z(Cor)fa + Xn+v, where y=[Y : D], v=[vi:¢e],a=(B,1),n=[y:¢], (6.1

with v; = u+ fe, v =7 + @B and ¢ = 7o + (X' X) ' X'CyrZ60. When Sqr is known, it is
straightforward to use existing tests in the identification-robust linear IVs literature to test
Hy [cf. Anderson and Rubin (1949), Andrews, Moreira, and Stock (2006), Kleibergen (2002)
and Moreira (2003)]. However, Proposition S.B.1 in the supplement shows that Z'Myy is
not a sufficient statistic for (3,0')" but Z(Cor)'y is, implying that existing tests suffer a loss
in efficiency because they treat Z rather than CyprZ as the matrix of IVs. Efficient tests are
therefore functions of Z(Cyr)'y. Magnusson and Mavroeidis (2014) consider a model similar
0 (6.1). Our model specifies that ¢ is nonzero in the sub-population So 7 and is zero in S,
where S ;- is the complement of Sp 7. Magnusson and Mavroeidis (2014) allow the first-stage
coefficient #; to be generally time-varying for some of their tests. Their tests are based on
the full sample of observations whereas our tests are based on a lower-dimensional statistic
since we do not use the sub-population S§ ;. This allows us to obtain gains in efficiency.
When Sg 7 is known we can apply the results of Andrews, Moreira, and Stock (2006) to
form identification-robust tests of Hy vs H; that are functions of Z(Cy )"y and are robust to
both heteroskedasticity and autocorrelation (HAR) in the reduced-form errors {v;}. Suppose

iNl(SO,T), f]Nl,NQ(Sg,T) and f]NQ(SO,T) are consistent estimators of Xy, (So), X, n,(So) and

2'While Antoine and Boldea (2018) consider the case of a single break, and Magnusson and Mavroei-
dis (2014) study a related context, neither provide a computational solution—referring to the problem as
“computationally demanding.”
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YN, (So) under Hy, where these latter quantities are defined by

S (So) S (So)
ZNlNZ (SO> Z*Ng (SO)

ENQ (SO) = E*Ng (SO) - ENINQ (SO) E?V} (SO) ENINQ (SO)/

Ev? (SO) = 5 (62)

for va (So> = EU7 (So, So), with

Ugb()Zt (OT)
v tagZy (Cr)

vibo Zy (C7)
vi¥, tagZy (Cr)

T
’ T—1/2 Z

T=o0 =1 =1

T
¥,7(S,8) = lim Cov (T_1/2Z

|

for S = limy 00 TSy, S’ = limg oo T7'Sh by = (1,—fy)" and ag = (By, 1), where and v,
and Z,; (Cy) are the tth rows v and Z(Cr).2% Let 5, (So.r) = (T —q—p) 9 (Sor) ¥ (So.r)
with 9 (Sor) =y — PZ(COT)y — Pxy. Define

NI,T (SO,T) = 2&1/2 (SO,T) T_I/ZZ (CO,T), ybo and (63)
Nor (Sor) = Sxa’ (Sor) (T72Z (Cox) yE," (Sorr) ao — Swm, (Sor) Sny” (Sor) N (Sor)) -

Consider the following HAR versions of the Anderson-Rubin (AR), Lagrange multiplier (LM)
and likelihood ratio statistics based on the sufficient statistic Z(Cor)'y:

M1,2,T(SO,T)2
Ms 1(So.r) ’
1

LRr(Sor) = 2 (Ml,T(So,T) — M1 (Sor) + \/(Ml,T(So,T) — My (Sor))* + 4M1,2,T(SO,T)2> ,

AR7(Sor) = M1 r(So,r), LM7(Sor) = (6.4)

where Ml,T(So,T) = N1,T (SO,T),NI,T (SO,T), M1,2,T(SO,T) = NLT (SO,T)/ NQ,T (SO,T) and MQ,T(
So.r) = Naor (Sor) Noz (Sor). The conditional likelihood ratio (CLR) test of level a rejects
Hy when LRr(Sor) > Ka(Nor(Sor)), where the critical value function k() is defined such
that ko (n2) is the 1 — a quantile of the large-sample conditional distribution of LRz(Sor)

under Hy, given Nor(Sor) = no:

1
5 (Z;Zq — ngng + \/(Z&Zq — nén2)2 + 4(21/1”2)2) 7

22Gee the supplement for details on how to construct these estimators and for consistency results.
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where Z, ~ A4(0,1,). The critical value function k,(-) is approximated in Moreira (2003).
The LM and AR tests reject Ho when LMy > xi(1 — a) and ARy > x2(1 — «), where
xﬁ( 1 — ) denotes the 1 — a quantile of a chi-squared distribution with ¢ degrees of freedom.

When Sy is known the results of Andrews et al. (2006) imply that the CLR, LM and
AR tests have limiting null rejection probabilities equal to o under weak IV asymptotics,
§ = ¢/T"/? for some nonstochastic ¢ € R?, under a weakening of Assumptions 6.1-6.4 below
for which these assumptions need only hold pointwise in Sy. These tests are asymptotically
similar and therefore have asymptotically correct size in the presence of weak IVs.

For the case of an unknown sub-population, the identification-robust tests in the extant
literature no longer apply because the set of instruments CyrZ is unknown and must be
estimated. In this section, we show how to form HAR CLR, LM and AR tests with correct
asymptotic null rejection probabilities under both weak and strong IV asymptotics. To

estimate the true sub-population Sy when constructing these tests let
Sr = M. h = = : :
St = arg max 2.7(ST1), where S 1gm%m+ ﬂEL(JG’ j SemmT (6.5)
Proposition S.B.2 in the supplement shows that the process {Z(Cr)'y}s,es is sufficient for
(8,0') in a canonical Gaussian setting analogous to that in Andrews et al. (2006) so that there
is no loss in efficiency from using the unknown sub-population AR, LM and LR statistics,
LRy (St), LMy(Sy) and ARy (Sr), which are only functions of the process {Z(Cr)'y}s,es-
We establish the asymptotic validity of the HAR CLR, LM and AR tests in the un-

known sub-population setting under a weak set of high-level sufficient conditions on the IVs,

exogenous variables and errors. Define w (Sr) = [CrZ : X].

Assumption 6.1. T~ 'w (S7) w (S}) = Q (S, S') uniformly in Sy, Sy € S for S = limy_,oo T~ 'S,
S’ = limy_,o, T'SL and some p.d. (q+p) X (¢ + p) matriz Q (S, S’).

Assumption 6.2. T~ vy 5 Y for some 2 X 2 p.d. matriz ¥,.

Assumption 6.3. ForSr, S, € S and S = limy_,oo T7'S7, 8" = limqp_oo T7'Sh, T 2vec(w (St) v) =
9 (S), where 9(-) is a mean-zero Gaussian process indexed by S C (0,1] with 2(q+ p) X
2 (q+p) covariance function W (S, S') = limp_,o. T Cov(vec(w (St) v), vec(w (S4) v)).

In Assumption 6.3, vec (+) denotes the vec operator. The quantities @ (-), X, and ¥ (+)
are assumed to be unknown. Assumptions 6.1-6.2 hold under suitable conditions by a (uni-

form) law of large numbers. Assumption 6.3 holds under suitable conditions by a functional

33



CASINI, MCCLOSKEY, ROLLA AND PALA

central limit theorem. Assumptions 6.1-6.3 are consistent with non-normal, heteroskedastic,
autocorrelated errors and IVs and regressors that may be random or non-random.??

We assume that we can consistently estimate X 5 (S) = X7 (S, S) uniformly in Sr.

Assumption 6.4. We have an estimator EA]UZ(ST) such that in(ST) 5 X,7(S) uniformly in
ST eS fO’I" S = hmT_mo T_IST.

Note that this assumption immediately implies the uniform consistency of 3 N, (St) =
f]’j%(ST) — f]NINQ(ST)EJ;,}(ST)EJMNZ(ST)/ as well. Consistent estimators of ¥ » are HAC and
DK-HAC estimators.?!

Finally, we impose a second-order stationarity condition for v,byZ; (C7) and vj%, tagZ; (Cr).

Assumption 6.5. Let w(S) equal the Lebesgue measure of S C (0,1]. Assume that® 5 (S, S') =
m(SNS') X, 5 where S, S" C (0,1] and ¥ 5 is p.d.

Assumption 6.5 is implied by a uniform law of large numbers and functional central
limit theorem for partial sum processes under second-order stationarity. Under weak IV
asymptotics, T—1S7 is not consistent for Sp. Assumption 6.5 is needed in order to show that
Nir(-) and Nor(-) are asymptotically independent processes. Under strong IV asymptotics
we can dispense with Assumption 6.5 because T-'Sr 5 Sp and the limit of the processes
Nyr(-) and Nor(-) have zero covariance when evaluated at a fixed Sp.

Define the LR, LM and AR statistics in this context according to (6.4), replacing So
with S7. We now establish the correct asymptotic null rejection probabilities of the sub-
population-estimated plug-in HAR CLR, LM and AR tests under weak identification.

Theorem 6.1. Let Assumptions 6.1-6.5 hold and suppose 0 = c/T*/? for some nonstochastic
c € R%. We have: (i) ARr(Sr) % X2 under Hy; (ii) LMr(St) % X2 under Hy; (iii)
Ps, (LR (St) > Ko(Nax(St)) — o where Pg,(-) is the probability computed under Hy.

The key to establishing these asymptotic validity results is to show that each of the above
statements hold conditional on the realization of Ny r(-). This can be readily established from
the facts that the stochastic processes Ny r(-) and Ny p(-) are asymptotically independent by
construction, Sy is a function of Ny 7(-) and Ny 1(Sr) = A (0, I,) under Hy.?

23In the supplement we provide primitive sufficient conditions for Assumptions 6.1-6.3.

24In the supplement we provide weak sufficient conditions, even allowing for certain forms of nonstation-
arity, that ensure this assumption holds.

25Tn addition to identification-robust tests of Hy vs Hi, since the causal interpretation of 8 depends upon
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7 Empirical Evidence on LATE of Monetary Policy

We illustrate our methods by revisiting the identification of monetary policy effects in the
framework of Nakamura and Steinsson (2018), introduced in Section 3. They use a bi-
variate model (3.1) to estimate the causal effect of D, on Y, employing both event-study
and heteroskedasticity-based identification approaches. The dependent variable is the daily
change in instantaneous U.S. Treasury forward rates. For the policy news D, they use three
variables: the daily change in nominal 2-Year Treasury yields, and the 30-minute or 1-day
change in a “policy news” series—constructed as the first principal component of the unan-
ticipated 30-minute changes in five selected interest rates. Heteroskedasticity-based identi-
fication assumes the variance of the monetary shock rises on FOMC announcement days,
while the variance of other shocks remains constant [cf. eq. (3.2)]. FOMC dates define the
policy sample P, and analogous non-FOMC dates define the control sample C. We consider
specifications where D, is either the 30-minute policy news series or 1-day change in Trea-
sury yields, and Y; is either the nominal or real 2-Year instantaneous Treasury forward rate.
Nakamura and Steinsson’s instrument for b? is defined as Z; = 1{t € P}, corresponding to
the model in Section 3. We focus on the same period: January 1, 2004, to March 19, 2014.
Lewis (2022) recently analyzes this problem by developing a first-stage F-test for weak
identification. He finds that weak identification is not rejected when D, is the 1-day change
in nominal 2-Year Treasury yields, but is strongly rejected when D, is the 30-minute policy
news series. This supports Nakamura and Steinsson’s (2018) observation that the daily policy
variable may suffer from weaker identification. Unlike Nakamura and Steinsson (2018), Lewis
(2022) estimates the model using GMM and does not impose the assumption that the non-
monetary policy shock 7, has equal variance across the treatment and control samples.
Section 7.1 reports results of our test for full sample identification failure. Section 7.2
presents causal effect estimates based on the most strongly-identified subsample. Section 7.3
provides identification-robust inference results, and Section 7.4 estimates compliers at the

individual level and tests the exclusion restriction.

the sub-population Sy 7, practitioners may wish to simultaneously report the result of these tests along with
a corresponding estimate of the sub-population. More specifically, failure to reject Hy should be interpreted
as failure to reject that the estimand is equal to f, where the estimand is interpreted as a weighted average
of the LATEs for the estimated sub-population St. Given that the tests of Hy remain asymptotically valid
conditional on the realization of Nor(-) and the fact that Sy is a function of Ny p(-), the tests remain

asymptotically valid when interpreted conditional on the value of Sr.
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7.1 Testing for Identification Failure

We present the results of our test for identification failure over all sub-populations from
Section 4 in Table 1 considering values of 77, from 0.6 to 1. For the 30-minute policy news
variable, the F7 statistic is very large and identification failure is rejected at any common
significance level. This supports the finding in Lewis (2022) and intuition in Nakamura and
Steinsson (2018) that the 30-minute policy news variable leads to stronger identification in
the full sample. In contrast, for the 1-day change in nominal Treasury yields, identification
failure cannot be strongly rejected in the full sample: the F7 statistic at 7, = 1 (i.e.,
full sample) is only slightly larger than the 1% critical value. The F} statistic increases
substantially as 7, decreases and it is very far from the critical values. This is clear evidence
that identification is much stronger over subsamples. At 7, = 0.9 it reaches 33.87, clearly
rejecting identification failure in the m-subsample (with 7 = 0.9 or 0.95) over which the
supremum of Fr (Sr) is computed. The Fj statistic increases monotonically with smaller
7, due to the increasing number of partitions considered. For example, at 7, = 0.8, F;.
is 54.78—nearly seven times the full sample value. Overall, the results indicate that strong
identification may hold when using a 1-day window, but only within subsamples comprising
at most 90% of the data. The weak identification reported by Lewis (2022) using a 1-day
window around FOMC announcements likely does not stem solely from volatility returning
to normal after announcements. Rather, a small subsample (10-20% of the data) exhibits

weak or failed identification, contributing to the weaker identification exhibited in the full

sample.
Table 1: Tests for Identification Failure over all Sub-Populations
F7 statistic and critical values
F}
D\7p, 0.6 0.7 0.8 0.9 1
30-minute 102 x 95.36  10* x 56.50 10% x 32.45 10% x 18.75 10% x 7.42

“policy news”

1-day nominal 155.69 88.22 54.78 33.88 8.09

Treasury yields
1% critical values 11.63 10.94 9.73 8.68 6.68
5% critical values 8.28 7.55 6.84 6.04 3.85

Fy. statistics for first-stage identification failure. D is either the 30-minute policy news series or 1-day change in nominal
Treasury yields. 7z is the minimum fraction of the sample over which the supremum of the F' (St) is computed. Maximum
number of breaks is set to my = 5.
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7.2 Estimation in Strongly-Identified Subsample

We turn to estimation of 7y and Sy 7 using the methods from Section 5, and then to estimating
the LATE of monetary policy based on the strongly-identified subsample, B(§T70L5>, or
simply, 7-sample, where # = |Sy ors|/T. We focus on 5(S1.0rs); results using 5(Sq paLs) are
similar. Figure 3 plots the 1-day changes in 2-Year yields for the control and policy samples
and highlights the regimes included in the strongly-identified subsample gT,O rs- The estimate
7 = 0.8 implies that in 80% of the sample, the first-stage is strong and identification holds.
In the control sample, the excluded periods include the first seven months of 2005 and the
regime surrounding the financial crisis (2007-2009). As shown in the figure, volatility during
the crisis period is much higher than in the rest of the control group and higher than the
average volatility in the treatment group. This subsample appears to drive the apparent full
sample weak identification. Since our method searches for maximum identification strength, it
correctly excludes this period when computing 7-LATE.?° The interpretation is that in both
excluded regimes—especially during the financial crisis—market uncertainty was elevated

even on non-FOMC days, violating the identification assumption.

Strongly Identified Subsample © = 0.8

Control Sample

I I I I I
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Policy Sample

0.2

0

-0.2

1 1 1 1 1 1
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 3: Plot of D; (2-Years Treasury yields) in the control sample (top panel) and policy sample (bottom panel). The red

rectangles indicate subsamples included in the strongly-identified subsample §T,O s where 7 = 0.8.

26The other excluded period (January to July 2005) does not display obviously high volatility but shows
some persistence, with a short-duration cluster below the mean toward the end.
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We now estimate the causal effect of monetary policy using the 7-sample, where by
construction the LATE is most strongly-identified. We compare these results with full sample
estimates obtained using two-stage least squares (TSLS) and GMM, following Nakamura and
Steinsson (2018) and Lewis (2022), respectively. Table 2 presents the results. Starting with
the full sample estimates: when the policy variable is the 30-minute policy news series, TSLS
and GMM yield very similar point estimates for both nominal and real forward rates, and
both are statistically significant using standard and robust confidence intervals.?”

As noted by Lewis (2022), the assumption that non-monetary shocks have equal vari-
ance across treatment and control groups does not bias the TSLS estimates, as they closely
match the GMM ones. One explanation is that the GMM estimate of a (capturing reverse
causality from forward rates to policy news) is both near zero and statistically significant
(not reported). Since potential bias from this assumption is proportional to a(o; p — 07 ),
and a is close to zero, the resulting bias is negligible even if the variances 027 p and 072770 differ.

Turning to the case where the policy variable is the 1-day change in 2-Year Treasury
yields, the TSLS and GMM estimates differ markedly from each other and from those based on
the 30-minute policy news series. Notably, the GMM estimate of 3 is negative for nominal for-
wards and positive for real forwards, but in neither case is it statistically significant—whether
using standard or robust confidence intervals.

As discussed by Lewis (2022), these estimates are difficult to interpret in economically
meaningful terms. He also shows that the GMM estimates of a are nonzero and proposed a
second dimension of policy news to account for the findings. However, the opposing signs of
B across nominal and real forwards complicate this interpretation. Ultimately, he concludes
that these results are inconsistent with Nakamura and Steinsson’s (2018) “background noise”
view of the non-monetary shock 7; which assumes that its volatility remains unchanged
between FOMC and non-FOMC days.

We contribute to this discussion by presenting TSLS and GMM estimates based on the
most strongly-identified 7-sample. We focus first on standard confidence intervals and defer
weak identification-robust inference to Table 3. The bottom panel of Table 2 shows that, for
the 30-minute policy news variable, the TSLS and GMM estimates, including their statistical

significance, are virtually unchanged. As expected—given the apparent strong identification

2TThe robust confidence intervals for the GMM estimates are based on the subset K-test in Lewis (2022).
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in the full sample—results are broadly similar when using the 7-sample.?

Table 2: Estimation of

30-minute Policy News 1-day 2-Year Yield
dep. var. Nominal Real Nominal Real
Full Sample
TSLS
I5; 1.10%* 0.96%** 1.14%%* 0.97+%*
standard CI  [0.17, 2.02] [0.41, 1.51]  [0.83, 1.45] [0.40, 1.565]

GMM

B 1.07** 0.94%** -0.27 1.31

standard CI  [0.17, 1.98] [0.36, 1.51]  [-4.90, 4.36] [-3.74, 6.35]
robust CI ~ [0.27, 3.25] [0.44, 2.38] [-77.27, 0.94] [-253.70, 1.92]
m-sample based on St ors with 7 = 0.8

TSLS
3 1.11% 0.97%+* 1.13%%% 0.92%+
standard CI  [0.19, 2.02] [0.42, 1.51]  [0.92, 1.30]  [0.56, 1.28]
GMM
3 1.07%* 094+ 0.65* 0.86%*
standard CI  [0.17, 1.96] [0.38, 1.50]  [-0.02, 131]  [0.29, 1.43]

TSLS estimates of 8 and GMM estimates of 8/(1 —af). The GMM estimates allow for changes also in
the variance of n; across regimes. The dependent variable is the 1-day change in either nominal or real
2-Year instantaneous Treasury forward rate. The policy variable is either the 30-minute changes in
the “policy news” variable or 1-day changes in the 2-Year nominal Treasury yield. The standard 95%
confidence interval is based on the standard normal critical values. For the GMM estimates, the robust
95% confidence interval is based on the subset K-test in Lewis (2022). Asterisks indicate statistical
significance at the 10%, 5%, or 1% level based on standard intervals.

Finally, we turn to the 7w-sample estimates using the 1-day window for the policy. The
GMM estimates differ sharply from those in the full sample: for both nominal and real
forwards, they now have the same sign and are statistically significant. This suggests that the
opposite signs reported by Lewis (2022) likely stemmed from weak identification, rendering
those estimates unreliable.?” Notably, the GMM estimates are now similar in magnitude to

those based on the 30-minute policy variable, supporting a more meaningful interpretation.®”

28The confidence intervals in the 7-sample are even slightly tighter.

29While the TSLS estimates are nearly unchanged from the full sample, this should not be taken as evidence
of their reliability. Under weak IVs, their similarity to the T-sample results may simply be coincidental.

30We also verified that the GMM estimate of a is 0.70 for nominal forwards and -0.91 for real forwards. It
is intuitive that the estimate of a is close to zero when using a 30-minute window but significantly different
from zero with a 1-day window. In the narrow 30-minute window around an FOMC announcement, reverse
causality from Y; to D, is limited, as monetary news is more pronounced than other shocks—though some
endogeneity may still arise from omitted factors affecting both. In contrast, over a full day, asset price
movements can influence short-term interest rates, making reverse causality more likely.
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Overall, this analysis highlights the advantage of using the most strongly-identified 7-
sample. Given weak identification in the full sample when using 1-day Treasury yields as
the policy variable, the corresponding estimates should be discarded. In contrast, evidence
from the 7-sample shows that TSLS and GMM produce similar, positive estimates for (3,
consistent with monetary policy affecting real forward rates, as predicted by New Keynesian

models, and supporting the existence of a forward guidance channel.?!

7.3 Weak Identification-Robust Inference

We apply the weak identification-robust tests proposed in Section 6 and compare them to
existing full sample tests LMy and LRp.*> We test the the null hypothesis Hy : 3 = 0
against Hy :  # 0, and extend the analysis to include 5-Year forward rates, in addition to
the 2-Year forwards. Results are shown in Table 3. When the policy variable is the 30-minute
policy news, identification is strong in the full sample. Accordingly, both the proposed and
existing tests yield similar results: all tests reject at the 5% level for both nominal and real
forwards. Nakamura and Steinsson (2018) showed that the effect of policy news peaks at the
2-Year maturity and declines with longer maturities. Consistent with this, we find weaker
statistical significance for the 5-Year. In line with theoretical predictions, the long-run impact
of monetary policy shocks on real interest rates (i.e., the 10 Year forwards) approaches zero
(not reported). Our proposed tests confirm this, showing some rejection for the 5-Year real
forwards but not for the 10-Year.

Let us instead consider the 1-day change in 2-Year yields as the policy variable. The
existing LMr and LRr tests do not reject the null at any standard significance level for
nominal forwards, and at the 1% level for real forwards. In contrast, our proposed tests
based on Sy show much stronger rejections, aligning with the results using the 30-minute

policy news series, which indicate a positive causal effect on 2-Year forwards.

31However, the results do not yet support a second meaningful dimension of news, as proposed by Lewis
(2022), since the sign of the GMM estimate of a is unstable across nominal and real forwards. Regarding
Nakamura and Steinsson’s (2018) “background noise” interpretation of non-monetary shocks, we find no clear
evidence against it: in the 7-sample, identification appears strong, and TSLS and GMM estimates consistently
share the same sign and similar magnitudes.

32We do not report the ARz test since for ¢ = 1 it is equivalent to the LMz test.
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Table 3: Identification-Robust Inference on

30-minute Policy News 1-day change in 2-Year Yields
2-Year Forwards Nominal Real Nominal Real
Q 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01
LMy v v X v v v X X X v v X
CLRy v v X v v v X X X v v X
LMy (Sy) N S N S S O S S O
CLR7(Sr) N N S S O S O S
5-Year Forwards Nominal Real Nominal Real
Q 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01
LMy X X X X X X X X X X X X
CLRy X X X X X X X X X X X X
LMp(Sy) X X X X X X v X X v v X
CLR7(Sr) X X X X X X v v X v v X

Weak identification-robust tests on 3. The dependent variable Y; is either the 2-Year forward rates (top panel) or the 5-Year
forward rates (bottom panel). D is either the 30-minute policy news series or the 1-day nominal Treasury yields. Significance
levels are @ = 0.10, 0.05, 0.01. A v' means indicates rejection Hp; a X non-rejection.

7.4 Identification and Estimation of Compliers, and Exclusions Restriction

We now identify compliers individually by applying Theorem 2.1. Under heteroskedasticity-
based identification, the sample rolling window averages in Theorem 2.1 correspond to rolling
window variances, i.e., Dpyn, and Dgyp, are equal to 3, , and o¢,, in this context,
where @3, ,, and 7%, are defined analogously but using D} for D,.** We use two-sided
rolling windows with ny = 101 and n; = 15. For each ty we test the null hypothesis Hy :
E(D; (1)) — E(D? (0)) = 0 (fo is a non-complier) versus the one tailed alternative H; :
E(D? (1)) —E(DZ (0)) > 0 (to is a complier). We use the t-statistic

=2 =2
v no(UPﬁtoym 7007750*17710)
\/JHAC,tO—l
—2 )
V1o (UP,S*(to%m Uc,tomo)
\/JHAc,zO

theP
tt():

to € C,

where Jgac,, is the Newey-West estimator with {né/ 3J lags applied to D2—ng' Yreny(to+1) Di-

The results are shown in Figure 4. Approximately 75% of observations are classified

as compliers. The non-compliers are mostly concentrated in the period from 2010 to mid-

33 - =2 _ 1 2 =2 _ 1 2
More specifically, we have T¢ ;) 1 ) = 70 2 oseng(to) Pss @0 Tp 1y n, = 57 Dosen (o) Ds -
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Strongly Identified Subsample © = 0.8
Control Sample

. Compliers
eNon-Compliers

I I I I
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Policy Sample

-Compliers )
«Non-Compliers

4 ! ! ! !
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Figure 4: Plot of Dy (2-Years Treasury yields) in the control sample (top panel) and policy sample (bottom panel). The
orange rectangles indicate subsamples included in the strongly-identified set /S\T70L5 where 7 = 0.8. Green filled circles indicate
compliers; red filled circles indicate non-compliers. Time points without colored markers correspond to cases where rolling

sample variances could not be computed due to proximity to the start or end of the sample.

2011, which corresponds to the early phase of the zero lower bound (ZLB) period following
the 2008-09 recession. During this time, the Fed relied primarily on qualitative forward
guidance—e.g., stating that economic conditions were "likely to warrant exceptionally low
levels of the federal funds rate for some time.” In August 2011, the Fed shifted to more explicit,
calendar-based guidance, stating that such conditions were "likely to warrant exceptionally
low levels of the federal funds rate at least through mid-2013.” Thus, the non-complier period
aligns with the phase of the ZLB when forward guidance was less aggressive as the policy
announcements by then only imply a near zero-rate horizon for the following three to four
quarters, significantly shorter than what the ZLB constraint would actually have implied.?*

Finally, we use Theorem 2.1 and Proposition 2.3 to test the exclusion restriction (cf.

Assumption 2.2). We consider the whole set of compliers NC. We test the null hypothesis

34The set of compliers does not coincide with the set of observations in the strongly-identified 7-sample.
However, this does not necessarily imply a violation of monotonicity [cf. Proposition 2.2]. First, the com-
plier status is determined via a ¢-test whereas the strongly-identified w-sample is determined via estimation.
Second, the complier status is determined by the rolling window variances at each ¢, whereas inclusion in the
m-sample depends on how these variances contribute to the average volatility in the control sample relative
to that in the policy sample.
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that the exclusion restriction holds by using the following t-statistic:

JINCol (Vey, — Ve

Zfexclusion - \/Ji
HAC,NC®

where Ye, = i) Zreney Yo YNee = [weg) Leeneg Yo Vi = D,Y; and Juaces is the
Newey-West estimator applied to Y e, — Y ac,,. For the real (nominal) 2-Year forward rate,

we find fexetusion = 0-91 (fexclusion = 1.02), and thus fail to reject the exclusion restriction.

8 Conclusions

This paper discusses identification, estimation and inference on dynamic LATE. We show
that compliers can be identified individually and the exclusion restriction can be tested
using a t-test. While weak identification is common in the full sample in practice, strong
identification often appears to hold in a sizable subsample. We propose a method to isolate

this strongly-identified subsample, enabling consistent estimation and inference.

Supplemental Materials: The online supplement [cf. Casini et al. (2025a)] includes Monte
Carlo simulations, proofs of the results of Sections 2-4 and 6. The non-online supplement
[cf. Casini et al. (2025b)] contains the theoretical results and corresponding proofs for the

estimators in Section 5 and additional results.
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S.A Critical Values of F7

Table 4: Critical values of F7

a=0.10
m\¢ 1 2 3 4 5 10

0.50 7.44 5.18 4.20 3.70 3.35 2.53
0.60 6.92 4.76 3.94 3.46 3.14 2.40
0.70 6.19 4.44 3.71 328 296 231
0.80 5.51 4.02 3.37 279 2.77 2.18
0.90 4.81 3.59 3.08 2.78 2.52 2.04
1.00 270 232 2.09 194 1.80 1.59
a = 0.05

T \q 1 2 3 4 5 10

0.50 8.90 6.03 4.75 4.14 3.714 274
0.60 828 5.60 4.49 391 3.51 2.62
0.70 7.55 521 4.26 3.70 3.31 2.53
0.80 6.84 4.71 3.83 343 3.13 2.39
0.90 6.04 4.31 3.58 3.19 2.89 2.25
1.00 3.85 3.00 257 237 216 1.82

a=0.01

mL\¢ 1 2 3 4 5 10

0.50 1227 791 6.08 5.12 4.56 3.19
0.60 11.63 7.28 5.73 4.81 4.37 3.08
0.70 1094 6.97 5.56 4.67 4.19 3.04
0.80 9.73 6.41 5.06 4.34 3.89 2.84
0.90 8.68 594 4.62 4.15 3.65 2.69
1.00 6.68 4.60 3.70 3.31 299 231

S.B Additional Results on Identification-Robust Inference

We present the sufficiency results referenced in Section 6 as well as other results.

S.B.1 Known Sub-Population

When Sy is known, it is straightforward to use existing tests in the identification-robust
linear IVs literature to test Hy with known optimality properties under certain conditions.
However, one must be careful in defining the appropriate statistics when applying existing

tests in this setting in order to maintain efficiency.
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With fixed regressors X and Z and reduced-form errors v that are i.i.d. across rows with
each row being bivariate normally distributed with a mean of zero and a known nonsingular
covariance matrix 3, careful application of the results of Andrews, Moreira, and Stock (2006)
imply that Z(Co7)'y is a sufficient statistic for (3, 0’)". This implies that there can be no loss
in efficiency from focusing on tests that are functions of only Z(Cor)'y. On the other hand,
the following proposition implies a loss in efficiency from tests that are functions of only
Z'Mxy, which a casual user may be tempted to use when constructing identification-robust
tests for (.

Proposition S.B.1. For the model in (6.1) with fized regressors X and Z and reduced-form
errors v that are i.1.d. across rows with each row being bivariate normal with a zero mean

and known p.d. covariance matriz ¥, Z'Mxy is not sufficient for (3, 0')" if my < 1.

This result implies that existing tests (i.e.,., CLR, LM and AR tests) and extensions
thereof are not efficient when Z is treated as the matrix of IVs rather than CyrZ.

The results of Andrews, Moreira, and Stock (2006) imply that the CLR, LM and AR
tests have limiting null rejection probabilities equal to a under weak instrument asymptotics.
In addition, results in Andrews, Moreira, and Stock (2006) imply asymptotic near-optimality
properties of the CLR test under a stronger set of assumptions that may not hold in the

presence of serial correlation in {v;}.

S.B.2 Unknown Sub-Population

In Section 6 we propose CLR, LM and AR statistics where we plug-in the estimate for the
unknown sub-population: CLRy(Sr), LMy (Sy) and AR (Sr). To motivate their use in the
unknown sub-population setting, we establish the analog of the sufficiency result of Andrews,
Moreira, and Stock (2006) in this setting.

Proposition S.B.2. For the model in (6.1) with fized regressors X and Z and reduced form
errors v that are 1.1.d. across rows with each row being bivariate normal with a zero mean,

known p.d. covariance matriz X, and an unknown sub-population Sor € S, the Gaussian
process {Z(Cr)'y}s,es is a sufficient statistic for (3,0').

Since the AR, LM and CLR statistics are only functions of {Z(Cr)'y}s,cs, this result

implies that these tests entail no loss in efficiency relative to tests using the entire data.
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We finally show that under weak IV asymptotics, St is the maximum likelihood esti-
mator of Sy under Hy, so that the sub-population estimate we use when constructing and

interpreting the identification-robust tests is efficient.

Proposition S.B.3. For the model in (6.1) with fized regressors X and Z and reduced form
errors v that are i.i.d. across rows with each row being bivariate normal with a zero mean,
p.d. covariance matriz 3, and unknown sub-population Sy € S, if Assumptions 6.1 and
6.3-6.4 hold and 6 = ¢/T"? for some nonstochastic ¢ € R, Sy is asymptotically equivalent

to the maximum likelihood estimator of St under Hy.

The result in Proposition S.B.3 continues to hold under strong IVs, i.e., 8 # 0 is fixed.
See Casini, McCloskey, Rolla, and Pala (2025b).

Magnusson and Mavroeidis (2014) propose tests for § that are robust to changes in
0 whether through persistent time variation or breaks. For the latter case, they assumed
the number of breaks is known, whereas our approach does not require this prior knowl-
edge. For the weak IVs case, Magnusson and Mavroeidis (2014) consider a single break
and build split-sample tests based on the sufficient statistic {Z (7)' y},ep,1) where Z (1) =
[[{Z{}ttl? 00 {Z}] =711} |- This high-dimensional statistic effectively uses the full data
sequence evaluated at all potential split points. In contrast, our framework focuses on sub-
samples where 6 is nonzero, allowing us to construct a lower-dimensional sufficient statistic.
In other words, their statistic is not minimal sufficient [cf. Lehmann and Romano (2005)],

whereas ours is—making our tests more efficient in this setting.

S.C DMonte Carlo Simulations

S.C.1 Finite-Sample Size and Power of F’;

We study the finite-sample rejection frequencies of the F7}: test using a simulation experiment
calibrated to real data from the analysis in Nakamura and Steinsson (2018) introduced in
Section 3. We use the same sequences of policy dates and control dates, P and C, to construct
the instrument as

7 — 7o teP
—%, teC.
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Under heteroskedasticity-based identification the first-stage equation can be equivalently
written as D, = 6Z,D; + e; for some 6 and e; [cf. Rigobon and Sack (2003) and Lewis
(2022)]. Hence, we generate D, according to the following data-generating process (DGP):

oz t<I(T/4
Dy =157, [T/A]+1<t<|T/4]+[(1—m0)T] (S.C.1)
oz /4] +[1-—m)T]+1<t<T,

where 7y = 0.4, 0.6, 0.8 and T" = 400. We set Tp and T equal to the number of policy
and control dates that occur in the first 7" observations in Nakamura and Steinsson’s (2018)
sample. We specify e; = pee;_1 + vey, where p. € {0, 0.25, 0.5, 0.75}, vy ~ i.i.d. A (0, 02)
and o2 is set equal to the sample variance of the policy variable (2-years nominal Treasury
yields). We set ; = 03 = 05 = 0 under the null hypothesis. Under the alternative, ; = 63 > 0
and 6 = 0.

We also consider the following DGP:*°

Y; = ﬁDt + ’YIXt + Uy, (SC2)
where X; = 1 for all ¢t and

612 + 2 Xi + e, t < |T/4]
Dy =162+ X, +e, |T/4)+1<t<|T/4]+ (1 —m)T] (S.C.3)
037 + 72X, +e, |T/4)+|(1—m)T]+1<t<T,

Zy ~iid. A (1, 1), and u; and e; are i.i.d. jointly normal with mean zero and covariance

Zue = [1 p] ) (SC4)

with p € {0.25, 0.75} and 73 = 72 € {0, 1}. Under the null hypothesis we set 0; = 0y = 03 =
0. Under the alternative hypothesis we set 6; = 03 = dT~/? with d € {4, 16, 32} and 6, = 0.
We also consider two additional specifications for #,. In the first, 8, = —0.5dT~/2, so 0, has

the opposite value to 6; and 63. In the second, 6, = —0.5. In both cases the instrument is

35This is also used to compare the performance of the estimators of 8 discussed in Section 5 and of the
identification-robust tests discussed in Section 6.
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relevant throughout the sample (no identification failure). However, in the second regime the
first-stage effect tends to offset instrument relevance in the other regimes because of the sign
reversal. We set mo € {0.6, 0.8} and 7" = 200. We also consider a variant of the DGP with
serially correlated data. We assume w; = p,us—; + v, and e, = pee;—1 + ve ¢ with v, and v,
being jointly normal with mean zero and covariance ¥, as in (S.C.4) with p € {0.25, 0.75}.

Throughout the simulation study, F; is implemented with 7, = 0.6, € = 0.05, m4 = 5.
For both Fj} and the full sample Fr we use the Newey-West estimator with bandwidth
equal to the popular rule LT‘l/ 3J for J(-).¢ The significance level is 5% and the number
of simulations is 5,000. Figure 5 plots the rejection rates of Fj: and the full sample F; for
the calibrated DGP in (S.C.1). Fj yields accurate rejection rates whereas Fr is undersized,
providing evidence for the reliability of our empirical results in Section 7. F7 is more powerful

than Frp by about 10% across all values of p,.

Power Curves of F' Tests

0.8+

0.6 -

0.4+

0.2+

— F}. statistic
— =Full sample Fr statistic

0

0.025 0.05 0 0.025 0.05

0, and 63 0, and 63
pe = 0.5

pe = 0.75

0 0.025 0.05 0 0.025 0.05
6; and 03 6; and 03

Figure 5: Power curves of F} and Fr for the DGP calibrated to Nakamura and Steinsson’s (2018) sample with 7" = 400.

Moving on to the DGP specified in (S.C.2)-(S.C.3), Table 5 presents the size and size-
adjusted power of the F' tests for the case ; = —0.5 under the alternative. The F7; statistic
is more oversized than Fr for p = 0.25 and its size improves for p = 0.75, possibly due to
small-sample bias in the long-run variance estimator. However, the over-sizing is relatively

modest. The size-adjusted power of F}: is much higher than that of the the full sample £ for

36We also consider data-dependent bandwidths. The results are similar and not reported.
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all values of d. Power gains are larger when my = 0.6 than when 0.8 since in the former case
the strongly-identified subsample is smaller, making the full sample Frr rely more heavily on

subsamples that suffer from identification failure.

Table 5: Size and size-adjusted power of F' tests under alternative hypothesis with 6, = —0.5
p=0251m=06 6 =0,=03=0(null) d=4 d=8 d=12 d=16 d=20 d=24

full sample Fr 0.061 0.023 0123 0478 0.797 0933  0.981
F 0.110 0.167 0.441 0847 0973  0.991  1.000
p=075,m=06 0 =0,=0,=0(mul) d=4 d=8 d=12 d=16 d=20 d=24
full sample Fr 0.063 0.034 0.107 0394 0712 0879  0.957
F} 0.083 0.163 0410 0791  0.946  0.991  0.999
p=0257m=08 0 =0=0=0(mull) d=2 d=6 d=10 d=14 d=18 d=22
full sample Fr 0.061 0.038 0.642 0969 0998 1.000  1.000
F 0.110 0.107 0.872 0994 1.000 1.000  1.000
p=0751m=08 0 =0=0=0mull) d=2 d=6 d=10 d=14 d=18 d=22
full sample Fr 0.063 0.049 0468 0907 0993 0999  1.000
F 0.083 0.091 0.709 0984  0.999  1.000  1.000

Figure 6 plots the size-adjusted power of the F tests for the specification ; = —0.5d7~/2.37
In this specification, under the alternative the instrument is relevant throughout the sample.
However, because 6, has opposite sign to 6; and 63 the contribution of the second regime
tends to offset those of the first and third. Consistent with this, the plots show that F7 is
substantially more powerful than the full sample Fr. The resulting power gains exceed those

obtained when #, shares the same sign as 6; and 65.

S.C.2 Finite-Sample Properties of S’T,OLS, S”T’FGLS, B(§T7OLS) and B(§T7FGLS)

We study the finite-sample bias and mean-squared error (MSE) of the proposed estimators
of So,r and 3. For the latter, we compare them with BFS, the full sample IV estimator of .
We consider the same DGP as in (S.C.2)-(S.C.3) where X; ~i.i.d. .4 (1, 1). We set 8 = 1.%
The number of simulations is 5,000.

Table 6 reports the MSE of §T7OLS and §T,FGLS for the case 0 = 0y = 05 = dT /2,

where §T7 raLs 1s constructed using QE(ST) = ig ® Ir, which is misspecified in the presence

37Note that the size of the tests is that reported in Table 5 since the DGPs for the two specifications are
the same under the null.
38The results do not change with other values of J3.
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Power Curves of F' Tests

79 = 0.6 |

1 1.5

d/NT

Figure 6: Power curves of F7 and full sample Frr for 62 = —0.5dT~1/2 under the alternative hypothesis with 7" = 200.

of serial correlation. Under i.i.d. errors, FGLS yields a lower MSE when the endogeneity is
high (p = 0.75) and the instrument is not weak (d = 16 and 32). This is intuitive, as FGLS
expolits information from the cross-equation correlation in the errors. However, when the
errors are serially correlated (p. = p, > 0), FGLS exhibits a higher MSE than OLS except for
a few instances (e.g., p = 0.75 and d = 32). This pattern arises because the relative efficiency

gains of FGLS over OLS are not guaranteed in the presence of a misspecified covariance.

Table 6: MSE of gT,OLS and §T,FGLS

Pe=pu=0 pe = pu = 0.50
p=025,m=06 d=4 d=16 d=32 d=4 d=16 d=232
MSE(St.ors) 3158 224 071 3744 403  1.07
MSE(Sr.rcrs) 5520 283 076 5597 921 1.2
Pe=pu=70 pe = pu = 0.50
p=075,1=06 d=4 d=16 d=32 d=4 d=16 d=232
MSE(Sr.ors) 3158 224 071 3744 403 1.07
MSE(Sr rars) 5271 1.84 047 5469 456  0.64
Pe=pu=0 pe = pu = 0.50
p=025,m=08 d=4 d=16 d=32 d=4 d=16 d=232
MSE(Srors) 2261 226 092 2670 3.84  1.21
MSE(Sr.pcrs) 3043 281  1.02 3256 881  1.53
Pe=pu=70 pe = pu = 0.50
p=075,m=08 d=4 d=16 d=32 d=4 d=16 d=232
MSE(Srors) 2244 227 096 2670 3.84 121
MSE(Srrcrs) 2424 155 077 3163 342  0.92

To facilitate readability each value is multiplied by 102.
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Next, we examine the bias and MSE of B(gT@LS), B(§T7FGLS) and Bps for the case
0, = 0y = 05 = dT /2, where gT,FGLS is again constructed using QE(ST) = is ® Ip. Table 7
reports the results. When the instrument is weak throughout the sample (d = 4) no estima-
tor uniformly dominates in terms of bias or MSE, and the results vary considerably across
settings. In contrast, when the instrument is strong in parts of the sample (d = 16, 32),
B(gT’OLS) generally exhibits lower bias and MSE than both 3(§T7FGL5) and BFS. The re-
duction in bias and MSE can be substantial—often at least 50% in many configurations.
Moreover, B (§T rcLs) tends to outperform BFS when d = 16 or 32, and occasionally even
when d = 4. The results for the cases 0, = —0.5d7 /2 and 0y = —0.5 are similar and omitted.

We now evaluate the performance of the estimators of 3 in a setting where the instrument
is strong in the subsample Sy but weak in the remainder of the sample. This allows us to
assess whether the full sample estimator—which combines the strongly identified subsample
with the weakly identified subsample—outperforms estimators based solely on the strongly
identified subsample. We consider the DGP specified in (S.C.2)-(S.C.3), setting 6y = dy/v/T
with dy € {4, 8} and 6y = 05 = d/\/T with d € {16, 24, 32}.

The results are reported in Table 8. When the instrument is weak in the remaining
part of the sample (dy = 4), 3(Sr.oLs) and 3(St rars) consistently yield lower MSE for both
p = 0.25 and 0.75. The bias of the full sample estimator is smaller than that of B(gT,OLS>
and B(gT,FGLS) only when d = 16. For larger values of d, E(éT,OLS) and B(§T7FG’L5) exhibit
lower bias.

When the instrument has intermediate identification strength in the remaining sample
(dy = 8), BFS delivers lower bias and MSE than B(gT,OLS> and B(§T7FGLS) when d = 16.
However, for d = 24 and 32, B(éT,OLS) exhibits lower bias and MSE than both BFS and
B (gT,FG’LS)-

Overall, the results indicate that when the instrument is weak in the remaining part
of the sample, B(ST@LS) and B(§T7FGLS) outperform the full sample estimator that also
incorporates the weakly identified subsample, provided that the instrument is sufficiently

strong in the strongly identified subsample.
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Table 7: Bias and MSE of S, B(§T7OL3) and B(§T7FGL5)

0y = dT~1/? pe=pu=0 pe = pu = 0.50
p=0257m=06 d=4 d=16 d=32 d=4 d=16 d=32
Bias(Brs) -12.00 018 -0.09  -46.77  -024  -0.08
Bias(B(St.0Ls)) 18.70 021  -0.08 8.75 0.13  -0.01
Bias(B(Sr.raLs)) -2.16 033 -0.18 -8.13 070 -0.18
MSE(Brs) 2801.97 119 029  71860.15 157  0.38
MSE(B(Sr.ors)) 486816  0.70  0.16  26217.10  0.92  0.22
MSE(B(Sr.rars)) 17984584  7.90 018  25547.87 122 0.25
Pe = pu =70 pe = pu = 0.50
p=075,1=06 d=4 d=16 d=32 d=4 d=16 d=32
Bias(Brs) -18.00 0.82  -0.22 29.23 113 -0.29
Bias(3(Sr.015)) 30.88 019  -0.07  54.22 022  -0.11
Bias(B(Sr.rars))  126.40 0.64  -0.18 9.22 -1.04  -0.29
MSE(Brs) 6879.05 127 029 11415248 1.68  0.40
MSE(B(Sr.0ns)) 1240854 071 017  98469.13 098  0.23
MSE(B(Sr.rars)) 397451.09  0.79 019  38287.46 118  0.25
Pe=pu=20 Pe = pu = 0.50
p=0257=08 d=4 d=16 d=32 d=4 d=16 d=32
Bias(Brs) -16.50 0.07  -0.05 0.58 0.08  -0.03
Bias(3(Sr.0L5)) 13.51 011  -0.07 2.60 020  -0.00
Bias(B(Sr.rars))  -11.13 0.30  -0.13  -34.74  -041  -0.12
MSE(Brs) 7589.57  0.64  0.16 19.70 083  0.21
MSE(B(Sr.0Ls)) 893470 051  0.12 290.25 067  0.17
MSE(3(Sr.raLs)) 117415 056 0.13 5297488  0.80  0.18
Pe:Pu:0 pe:pu:0o50
p=0757=08 d=4 d=16 d=32 d=4 d=16 d=32
Bias(Brs) -11.70 043 -0.06 -6.43 058 -0.16
Bias(B(St.ors))  -11.75 011 003  -145 025  -0.07
Bias(3(Sr rars))  -24.69 050  -0.13  -49.61  -0.77  -0.23
MSE(Brs) 607.85 062 016 380863 086 021
MSE(B(Sr.0rs))  4083.34 0.50 013 157748  0.70  0.17
MSE(B(Sr.rars)) 802784 054 014 33900.00  0.77  0.18

To facilitate readability each value is multiplied by 102.
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Table 8: Bias and MSE of BFS, B (§T,OLS) and B (§T7FGL5)

p=0.25 p=0.75
dy=4,m0=06 d=16 d=24 d=32 d=16 d=24 d=32
Bias(Brs) 0.13 -012 -0.14 -055 -0.26  -0.25

Bias(8(St.ors)) 045 003 005  1.02 012  -0.05
Bias(B(Sr.rars)) -0.34 019 -0.16  -043  -0.31  -0.21

MSE(Brs) 087 040 024 089 040  0.24
MSE(B(Sr.oLs))  0.68 030 017 070 030  0.17
MSE(B(Sr.rars)) 081 035 019 078 034 0.8

p =025 p=0.75
dy=8,m =06 d=16 d=24 d=32 d=16 d=24 d=32
Bias(Brs) 0.09 -0.10 -0.13 -040 -0.21  -0.22

Bias(B(Sr.oLs)) 100 009  -0.03 -270  0.36  0.08
Bias(B(Sr.rars)) 028  -0.22  -0.16 055  -0.26  -0.20

MSE(Brs) 065 033 020 067 033 020
MSE(B(Sr.ors)) 071 030 017 075 030  0.17

MSE(3(Sr.pers)) 096 035 019 082 034 0.8
To facilitate readability each value is multiplied by 102.

S.C.3 Finite-sample Size and Power of Weak Identification-Robust Tests

We study the finite-sample rejection frequencies of the proposed tests and compare their
performance to the tests analyzed by Andrews, Moreira, and Stock (2006) and Magnusson
and Mavroeidis (2014). The analysis is based on the same DGP described in (S.C.2)-(S.C.3)
with parameters p € {0.25, 0.5, 0.75}, v = v € {0,1}, 6, = ;s = dT~Y/? with d €
{4, 8, 10, 16, 24} and 6, = 0. We consider values of my € {0.4, 0.6, 0.8} and 7" = {200, 400}.
Under the null hypothesis we set g = 0.

We compare the performance of our proposed test statistics AR7(Sr), LMz (Sr) and
CLRT(gT) with their full sample counterparts and with the test statistics Split-S, Split-CLR,
qLL-S, ave-S and exp-S analyzed by Andrews, Moreira, and Stock (2006) and with the tests
statistics Split-S, Split-CLR, qLL-S, ave-S and exp-S proposed by Magnusson and Mavroeidis
(2014). For all tests, we consider heteroskedasticity and autocorrelation-robust versions using
the Newey-West estimator with bandwidth equal to the popular rule {T‘l/ 3J 39 For qLL-S,
the tuning parameters ¢ and ¢ are set to 10, following the recommendation in Magnusson
and Mavroeidis (2014). The significance level is fixed at 5%, and the number of Monte Carlo
replications is set to 10,000 throughout the analysis.

39We also experiment with data-dependent bandwidths, though results are similar and therefore omitted.
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Tables 9-10 report the null rejections frequencies of the various test statistics. In Table
9 the sample size is set to T = 400, p = 0.25 and the errors are assumed to be i.i.d.*® The
results show that qLL-S and exp-S tests systematically yield rejection rates below the nominal
significance level, while the Split-CLR is systematically oversized. LMp and LMT(gT) show
accurate null rejection frequencies for all values of d, whereas C' LRy and CLRT(gT) tend
to produce slightly oversized rejection rates when the instrument is weak (i.e., d = 4 and
d = 8). We note that LMp(Sr) and CLRr(Sr) have often more accurate rejection rates
than their full sample counterparts. These findings are consistent across values of my. In
Table 10 we consider a smaller sample size of T = 200 and p € {0.25, 0.50, 0.75}. The
qualitative patterns remain similar. As p increases LMy (Sr) and CLR7(Sr) become slightly
more oversized than their full sample counterparts for d = 4, although the opposite occurs
for larger d. Thus, the proposed tests demonstrate good size control, even in small samples.

In the supplement, we examine the impact of serial correlation on the null rejection rates.
Under strong serial dependence (p. = p, = 0.75) all tests exhibit rejection rates that exceed
the nominal significance level. Specifically, LMy (S7) and CLRy(Sr) are a bit more oversized
than LM7 and C' LRy but similar to qLL-S. Under weak serial dependence p. = p, = 0.25,
the proposed tests LMy (Sy) and CLRy(Sr) are only slightly more oversized than their full
sample counterparts, LMr and C'LRy.

Finally, we turn to the comparison of size-adjusted power, as reported in Figures 7-8.
Neither test achieves unit power when the instrument is weak. The results indicate that the
proposed tests consistently achieve the highest size-adjusted power across all specifications
considered. The power gains are substantial, averaging around approximately 20-30% and
reaching 40-50% in the most favorable cases. The latter coincide with the specifications
0y = —0.5dT~'/? and 0, = —0.5. Consistent with the theoretical predictions, the gains are
more pronounced for smaller values of my, provided that 7 is not too small. Overall, these

finite-sample results support our theoretical relative efficiency results.

40When the number of instruments is one, the AR tests are not reported, as they are numerically equivalent
to the LM tests. For results with serially correlated errors, see the supplement. The conclusions are similar
to i.i.d. errors.
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Table 9: Finite-Sample Null Rejection Frequencies of Tests

T =400 7 =72 =0and pc =p, =0 11 =7 =1and p. =p, =0
p=025m=06 d=4 d=8 d=12 d=16 d=4 d=8 d=12 d=16
LMy 0.057 0.057 0.053 0.056 0.059 0.060 0.058  0.056
CLRr 0.078 0.065 0.060 0.062 0.083 0.074 0.067  0.065
LM (St) 0.061 0.052 0.049 0.050 0.065 0.055 0.054  0.048
CLR7(St) 0.072 0.054 0.051  0.050 0.079 0.074 0.055  0.049
split — S 0.039 0.038 0.036 0.036 0.042 0.042 0.038 0.034
split — CLR 0.115 0.122 0.117 0.115 0.110 0.130 0.122  0.123
qqlL — S 0.027 0.031 0.028 0.056 0.031 0.029 0.031  0.026
ave — S 0.044 0.039 0.043 0.038 0.043 0.043 0.042 0.038
exp — S 0.019 0.020 0.017 0.019 0.017 0.022 0.021  0.019
p=025,m=04 d=4 d=8 d=12 d=16 d=4 d=8 d=12 d=16
LMy 0.058 0.058 0.058  0.058 0.059 0.058 0.056  0.060
CLRr 0.087 0.079 0.073  0.072 0.083 0.081 0.072 0.073
LMz (St) 0.061 0.060 0.065 0.064 0.065 0.065 0.062 0.066
CLRr(St) 0.081 0.071 0.073  0.071  0.079 0.076 0.070  0.072
split — S 0.036  0.036 0.038  0.037 0.042 0.039 0.039 0.038
split — CLR 0.104 0.119 0.120 0.121 0.110 0.119 0.119  0.122
qqL — S 0.027 0.028 0.029 0.031 0.028 0.030 0.032  0.032
ave — S 0.040 0.043 0.047  0.043 0.044 0.043 0.037  0.044
exp — S 0.015 0.017 0.017  0.018 0.017 0.020 0.020  0.019
p=025m=08 d=4 d=8 d=12 d=16 d=4 d=8 d=12 d=16
LMy 0.055 0.056 0.057  0.058 0.056 0.060 0.058  0.060
CLRr 0.069 0.061 0.060 0.060 0.076 0.067 0.062  0.062
LM (St) 0.060 0.061 0.053  0.049 0.061 0.059 0.056  0.052
CLRr(St) 0.068 0.063 0.054 0.049 0.071 0.062 0.058  0.053
split — S 0.038 0.041 0.047  0.045 0.043 0.047 0.044  0.041
split — CLR 0.117 0.128 0135  0.135 0.122 0.133 0.133  0.128
qql. — S 0.028 0.032 0.029 0.030 0.025 0.030 0.032  0.031
ave — S 0.045 0.044 0.047  0.040 0.042 0.046 0.044  0.041
exp — S 0.028 0.019 0.017  0.020 0.018 0.022 0.019  0.018

Model M1 and M2. The null hypothesis is Hy : 8 = 0.
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Table 10: Finite-Sample Null Rejection Frequencies of Tests

71 =72 =0and p. =p, =0

p =025 p=0.50 p=0.75
T=200,m=06 d=4 d=10 d=16 d=4 d=10 d=16 d=4 d=10 d=16
LMy 0.061 0.061  0.061 0.062 0.062 0.059 0.062 0.062 0.062
CLRy 0.084 0.073  0.070 0.085 0.073  0.063 0.080 0.071  0.070
LM7(St) 0.068 0.054 0.053 0.075 0.057 0.059 0.082 0.057  0.054
CLRr(St) 0.081 0.057 0.054 0.086 0.059 0.059 0.090 0.058  0.054
split — S 0.034 0.035 0.034 0.035 0.034 0.035 0.036 0.035 0.034
split — CLR 0.105 0.113  0.111 0.106 0.115 0.115 0.110 0.115 0.115
qqL — S 0.015 0.017 0.017 0.019 0.019 0.014 0.017 0.018  0.018
ave — S 0.035 0.038 0.035 0.038 0.036 0.039 0.036 0.039  0.042
exp — S 0.012 0.012 0.012 0.012 0.012 0.014 0.012 0.012 0.012

71 =72 =1and p. =p, =0

p =025 p=0.50 p=0.75
T=200,1=06 d=4 d=10 d=16 d=4 d=10 d=16 d=4 d=10 d=16
LMy 0.066 0.066  0.066 0.064 0.064 0.064 0.069 0.069  0.069
CLRr 0.089 0.077  0.075 0.089 0.075 0.073 0.089 0.080  0.078
LM (St) 0.070  0.060 0.056 0.082 0.061 0.056 0.095 0.058  0.056
CLR7(St) 0.085 0.063  0.057 0.094 0.064 0.056 0.105 0.060  0.057
split — S 0.040 0.040 0.039 0.041 0.040 0.038 0.040 0.037  0.038
split — CLR 0.110 0.123 0.121 0.112 0.112 0.119 0.118 0.119  0.120
qqL — S 0.020 0.021  0.021 0.024 0.019 0.024 0.025 0.023 0.024
ave — S 0.041 0.040 0.039 0.042 0.036  0.037 0.040 0.041  0.038
exp — S 0.014 0.015 0.015 0.015 0.016 0.015 0.014 0.016 0.014
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Size-Adjusted Power for Identification-Robust Tests
p =025 p=0.75

® CLR1(Sy)
LM;(Sr)

u CLR; (AMS)
LMy (AMS)

[1*q¢LL-58

x split—S

- e

Figure 7 Size-adjusted power of identification robust tests for o = dT'~/2 with T' = 200 and mo = 0.6.

Size-Adjusted Power for Identification-Robust Tests

® CLR(Sr)
LM;(Sr)

u CLRr (AMS)
LMy (AMS)

+qLL-S

x split—S
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d=132,0,=—-05 3
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S

Figure 8: Size-adjusted power of identification robust tests for 8 = —0.5d7~1/2 and 5 = —0.5 wirh T' = 200 and p = 0.25.
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S.D Mathematical Proofs

S.D.1 Proofs of the Results of Sections 2-3
S.D.1.1 Preliminary Lemmas

Lemma S.D.1. Let Assumption 2./ hold, g, (-) be locally absolutely continuous on D C R and
E[fp [0g:(d )/0d|dd|V;] < co. Fort € Sox, U in the support of V;, and z, 2’ € Z, we have

E (g: (D (') = 90 (Dy (2)) | Vi = 0)

9 - -
:/ E(adgt(d)]Dt(z) <d< D (7)), 14:5)1@(@(2) <d< Dy (¢)|V,=75)dd,
D
Proof of Lemma S.D.1. Suppose that Assumption 2.4 holds with D; (') > D, (z). We have

E (g0 (Dy () = 90 (D () | Vi = 7)

Dy(z )ag
E(/ t<>dd|vt—v)
Dy(2) od

:Eﬂ( (?)Zt( )1{D, (2 )gngt(z’)}dd|‘7t:17>

/E(igc;( )1{D, (= )gsm(znmza)dd

=/1E<%Zt( )| Dy (2 )Sdsmz’),v;za)P(DAz)Sdsmz’)l%:%)dd,

where the first equality follows from local absolute continuity and the fundamental theorem

of calculus and the third equality follows from Fubini’s theorem and integrability. [

S.D.1.2 Proof of Proposition 2.1

Consider first the denominator of 5, (). We appeal to Assumption 2.1 and apply Lemma
S.D.1 with g, (d) = d to obtain for ¢t € Sy 7,

E(Dt\zt:z',f/t:a)—E(Dt\Zt:z,f/t:a):/P(Dt(z)gngt(z’)thza)dd.
D
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Noting that Y;, is a function of D; = d, we appeal to Assumptions 2.1-2.2 and 2.5(i) and
apply Lemma S.D.1 with g; (d) = Y, (d) to the numerator of 3., (¥) to obtain,

E(Yn| Zo =2, Vi =0) = E (Yign| Zo = 2, Vi = D)

oY " ~ N

- [ (G2 @10 <a< D), V=) x P (D) << D)= 1) da.
D

Using the derived expressions for the numerator and denominator of ;. (v) yields the

expression given in the proposition, which is well-defined by Assumption 2.3. Note that by
definition w; (d|v) > 0 and [ w; (d|0)dd = 1. O

S.D.1.3 Proof of Theorem 2.1

Lemma S.D.2. Let Assumption 2.6 hold. For each t, D; (1) > D, (0) with probability one if
and only if E (Dy (1)) > E (D, (0)).

Proof of Lemma S.D.2. First, note that P (D; (1) > D, (0)) = 1 immediately implies E (D; (1)) >
E (D;(0)). To see the reverse implication, suppose E (D, (1)) > E (D;(0)). Then it must
be the case that P (D;(1) > D;(0)) > 0. But then Assumption 2.6 immediately implies
P(D:(0) < Dy(1)) =1. O

Consider first the policy sample. Given t € P we have Z; = 1 and D; = D, (1). By
Lemma S.D.2 ¢t € P is a complier if and only if E (D, (1)) > E(D;(0)). By Assumption
2.7(ii) we have E (D, (0)) — E(D;—1 (0)) = 0. The latter implies ¢t € P is a complier if and
only if

By Assumption 2.7(i), D10, LE (D;-1(0)) as ng — oo. By Assumption 2.8(i), Dpy.n, L

E (D; (1)) as ny — oo. Thus, Dpypn, — Det—1.ng L ¢ as ng, ny — oo, where ¢ > 0 if and only
if t € P is a complier.
Now consider the control sample. Since ¢t € C we have Z; = 0 and D, = D, (0). Using

Assumption 2.8(ii) and Lemma S.D.2 we have ¢ € C is a complier if and only if

E (Dy-y (1)) — E(D, (0)) = E (D, (1)) — E (D (0))
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~E (D, (0)) — E (D, (0)) = 0.

By Assumption 2.7(1), D¢y, 5 E (D, (0)) as ng — co. By Assumption 2.8(i), Dp sty 5
E(Dg) (1)) as ny — 0o. Thus, Dpst)n, — Dcitng 5 zas ng,n1 — oo, where ¢ > 0 if and
only if ¢t € C is a complier. [J

S.D.1.4 Proof of Proposition 2.2

Under Assumption 2.4 with D;(1) > D;(0), non-compliers are characterized by P(D;(1) =
D,(0)) = 1 using Assumption 2.6 so that any non-complier cannot belong to Sgr. On the
other hand, if ¢ is a complier, E[D;(1)] # E[D;(0)] since P(D¢(1) > D;(0)) = 1 by the
definition of a complier so that ¢t € Sg . U

S.D.1.5 Proof Proposition 2.3

For t € NC&, Z; = 0 so that Y, = Y;*(D;(0),0) and Assumption 2.9(iii) implies

INCL™ Y Y 5 B[Vt € NC] = E[Y;(Dy(0),0)|t € NCg] = E[Y;(Dy, 0)|t € NCgJ,
teNCE

as |NC&| — oo since t is a non-complier. Similarly, Assumption 2.9(iii) implies

INCa[™H S Y, S E[Y) (D, 1)|t € NC)

teNCp

as [NCp| — oco. But Assumption 2.9(i)—(ii) implies E[Y;*(Dy,0)|t € NCg] = E[Y*(Dy,0)|t €
NC%], which is in turn equal to E[Y;*(D;, 1)|t € NCp] under Assumption 2.2. [J

S.D.2 Proofs of the Results of Sections 4, 6 and S.B
S.D.2.1 Proof of Theorem 4.1

Suppose that Sy € Z 1. Note that 7 (St) = Mg, xSrZ and

5(8]‘) = MSTXSTD = MSTXST (X’}/Q —I— 6) = MSTXSTG
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under Hy . Thus,
D (S7) Z (Sr) = (Spe)' Mg, x Ms, xSrZ = (Sre) Mg, xSrZ = (Sre)' Z(Sr).
By Assumptions 4.1-4.2 we have

T72Z(St)' D (Sr) =T 3" Ziey = B(Ap1, Aram) »
teST
where B (AL 1, Arm) is ¢-dimensional Brownian motion with covariance J(S) = Tlim (7)™
—00

Var((SrZ) Mg, xSre) and S = Tlim Sr. Since J(Sy) < J (S) uniformly by Assumption 4.3,
—00

we have

B (/\L,h /\R,m), J(S)le (/\L71a /\Rm . 72 H )\R - W ()\L ))HQ
A q )t '

qm qm i3

Fr (ST) =

The result then follows from the continuous mapping theorem. [J

S.D.2.2 Proof of Theorem 6.1

Lemma S.D.3. Let Assumptions 6.1-6.3 hold and suppose 6 = ¢/T*? for some nonstochastic
c € R:. We have 3, (St) LN Y, uniformly in Sy € S.

Proof of Lemma S.D.5. Recall that C7 is the selection matrix that corresponds to Sy. Using
Z (Cor)0ad + Xn+v, PxZ (Cr) =0 and P70 X =0, we have

v(Sy)=y—P5 ZemY — Pxy =y — Pzcy — Xn— Pxv (S.D.1)
Z(COT) Qa +v— Pf(CT)y — PXU
Z (Cor)bad’ +v — PgyZ (Cor)0a’ — Py yv — Pxv

MZ(CT)Z (C&T) ea/ _|’ v — PZ(CT)U - PXU.

Then, using Z (Cr) X = 0, we have

9 (S7) 0 (Sy) (S.D.2)
= (Mi(CT)Z (C() T) (9@/ +v— P?(C )’U — P)d))
X(M C)Z(C()T)@CL +U—PZ(C P)d])
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=ab'Z (C{) T) Z(Cr) (CO T) fa’ + ab'Z (CO T) Z(Cr )U
—l—vM Z (Cor) 0d’ —l—UU—UP( CmV — v’ Pxw.

Using Assumptions 6.1, 6.3 and § = ¢~/ we have

T_l"U/M*( )Z(Coj) Ha’ (SDS)
=T %WZ (C, >7 ~T™WZ(Cr) (Z(Cr)' Z (CT)) Z(Cr) Z (Cor) ——= ﬁ
=T 20 (1 )ﬁa'_rlﬂ (T-%Z (Cr)) (T2 (Cr) Z ) TZ(Cr) Z (Cox)
= Op (T_l) , and

T CLQI (C()T) 7 )7 (CO,T) 0(1, (SD4)

A N A (Co,T) Z(Cor)bd — T ad'Z (Cor) Z (Cr) (Z(CT)/Z(CT))_lZ(CT)Z(CO,T) Oa’

/
c /

= aﬁT_IZ (Cox)' Z (Cor) N
~a =T 7 (Cox) Z(Cr) (T 7 (Co) Z(Cr)) ™ T2 (Cr) 7 (Cor) e’ = O (T7)
so that

S (Sr) 0 (Sr) — By = (T v = %,) = TPy v — T/ Pxv+ Op (T71) . (S.D.5)

By Assumption 6.2, the first term on the right-hand side of (S.D.5) converges in probability

to zero. The second term satisfies

T Z(emV S T ' Po,zv
= 77 (T2 Cy 2) (T (Cr2) Cr2Z) " (T™2(Cr2) v) = 0p (1),
where the inequality holds because the span of Z (Cr) = MxCrZ is contained in the span

of CrZ and the op (1) result follows from Assumptions 6.1 and 6.3. All convergence results

above hold uniformly in S;. The argument for the third term of (S.D.5) is analogous. [

Lemma S.D.3 shows that 3, (Sg) is consistent for ¥, for all S € S. The convergence

in the lemma occurs uniformly over all true parameters 3, ¢, v, ¢ and over Sy € S. Thus,
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estimation based on any partition Sy € S leads to residuals {0 (Sr)} that can be used to
construct a consistent estimate 3, (St) for ¥, under weak instruments.

For some partitions S, S" C (0, 1}, partition @ (S, S’) conformably with

w(Sr)w(Sy) =

Z(Cr)'Z(Cr) Z(Cr)'X
X'Z(C4) xX'x |’

where Z(Cr) = CrZ, so that

o= 03 auio).

Qa1 (S') Q2

and let Q(S) = @ (S, S). In addition, note that

Y, (S,8)
¥y, (S,8)

J(S)ByV (S,8)ByJ (S)), B, (S,8) =J(S) AW (S,S") B,J (S,
J(S) Ag¥ (S,8') AyJ (S (S.D.6)

for J (8) = [I, : Q12 (S) Q2] Bo = (6 © Ip1,) and Ay = (S;a0)' © Ly
Finally, let N (-) and No o (+) be independent g-dimensional Gaussian processes in-
dexed by S C (0,1] with

Nioo (8) ~ A (S3,% (8) £4(8, So)ea'bo, 1) , (S.D.7)
Nao (8) ~ A (53,2 (8) (22(S, So)ca’S,  ag — Sn, (S) Bt (8) (S, So)ed'bo ), Iy)
where X#(S,S") = Q11 (S,S) — Q12 (S) Q2 Qa1 (S').

Lemma S.D.4. Let Assumptions 6.1-6.5 hold and suppose 6 = ¢/T? for some nonstochastic
c € RY. Then, for Sy € S and S = limr_,oo T™'Sy, we have (N1 (St), Nor (S7)) =
(Ni,00 (8), Moo (S).

Proof of Lemma S.D.4. By Assumption 6.1,

T'Z(Cp) Z(CL) =T ' Z(Cr) Z(Ch) — T ' Z(Cr) Px Z(Ch) 5 $4(S,S"),  (S.D.8)

41Gee (S.D.9) and (S.D.12) for details.
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uniformly in Sz, S/ € §. By Assumptions 6.1 and 6.3, we have uniformly in Sy € S,

T=Y2Z (Cr) wby = T2 (Z (Cp) — Px Z (Cr)) wby (S.D.9)
= T2 (Z(Cr) — XQ33Qan (S1)) wbo + 0z (1)
= {Iq : —Q12 (St) Q2_21} T~w (Sr) vbo + 0p (1)
= Iy : =Qu2 (S7) Qx| (B @ Iyp) T~/ vec (w(Sy)'v),
J(S)Bo¥(S).

Using (S.D.6), (S.D.8), (S.D.9) and Assumption 6.4,

Nir (Sr) = S/ (Sr) T7Y?Z (Cr) (T72Z (Cor) ca’ +v) by (S.D.10)
= S /?(S) £4(S, So)ea'by + Xy '? (S) J(S)Be#(S) ~ Ny (S)

since J(S)Bo9(S) ~ A(0,Xn,(S)). Similarly, using Lemma S.D.3, Assumptions 6.1, 6.3
and 6.4, (S.D.6) and (S.D.10), we have

Nor (Sp) (S.D.11)
=54/ (Sr)
X (T_I/QZ (CT)/ (T_I/QZ (C(),T) ca' + U) Z (ST) ag — ZN1Nz (ST) 2_1/2 (ST) NLT (ST))

Z(Cr)' Z (Cox) cd' + T*Z (Cr)' v) S7ag — Sy, (S1) Sny’* (S1) Nir (S1)) + 0p (1)
= 2‘1/2 (2 (S, So)ca'S; a0> + X2 (S) T (S) A(S)

(8) (S, (S) S (8) B(S, So)ca'by )

() (Snvw, (S) 41 (8) T (S) By#(S)) ~ Nao (8),

where T=YZ (Cr)' Z (Co 1) i ¥~(S,So) uniformly over Sy € S by (S.D.8) and
T7PZ(Cr) vSy ag = |1, - —Q12 (8) Q5| (463, ® Iyyy) 9(S) (S.D.12)

in analogy with the arguments that show (S.D.9). The distributional equivalence of the limit
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in (S.D.11) can be seen after noting

Var (J (S) Ao(S) — z:NlM (S) S (8) J (S) B#(9)) (S.D.13)
= J(S) Ag¥ (S,8)) Ay (S) — J(S) A ( S)) ByJ (S)' Xy, (S) Zwiw, (S)
—Enn, (S) (S ) (S) Bo¥ (S, )) o] (S)
+ 3N, (S) X, (S)J(S) Bo¥ (S,8)) ByJ (S) 2y (S) v, (S) (5.D.14)
=33, (S) = Zmn; (S) 23, (S) Emin: ()" = S, (S) B (S) Sy, (S)
+Snn, (S) By (S) X, (S) Xy, (S) Sy, (S)
=2}, (S) = Znw, (S) 2y (S) Zaw, (S)' =2, ().

The weak convergence in (S.D.9) occurs jointly with that in (S.D.11) since Ny (-) and No p(+)
are functions of the same data. And finally, they are asymptotically independent since they

are asymptotically Gaussian and

Cov (23, (8) J(8)Bo#(S), X,/ (8') (J (') Ao — Snw, (S)) Bt (8)) T (8) Bo) 4(S))
S) J(S)BoW(S,8') (4)J (S') — ByJ (S') Sik (8) Swm, (81)) Zaa? (8)
S) (Znyw, (8,8) = T, (S,8) Tt (8) Sayw, (8) ) S (8)

= (SN SNTn"* (S) (Shyw, — ZMENEa, ) By (8) =

1/2
:le/

~—~~

—1/2
=5

for any S, S" C (0, 1] by Assumption 6.5. [

Inspection of the proof shows that the results hold uniformly over compact sets of true

values of 5 and ¢ (including the zero vector) and over arbitrary sets of true v and ¢ values.

Proof of Theorem 6.1. Let

MOO (S> = [Nl,oo (S) : N2,oo (S>], [Nl,oo (S) N2 00 ( )] ) (SD15)
Mic (8) = (Nioe (8) Nie (S), N (S) Mo (S))
Mjoo (S) = Nooo (S) Nooo (S);, Migee (S) = Niow (S) Moo (S), My (S) = Nioo (S) N1 (S).

By Lemma S.D.4 Ny 7 () and Ny 7 () are asymptotically independent. S depends on Nor(+)
only. Thus, Ny (-) and Sy are asymptotically independent. Using Lemma S.D.4 we yield
that under Hy Njo(Sy) is Gaussian with zero mean and variance I,. Thus, M; . (S7) ~

M,  for all Sy € S. Part (i) follows by using the continuous mapping theorem.
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For part (i), note that conditional on Ny o (-) Lemma S.D.4 implies that M; 5 o (Sy) is
Gaussian with zero mean and variance Ny oo (S7) Ny oo(St). The result then follows from the
continuous mapping theorem.

We now move to part (iii). By Lemma S.D.4 N;p(-) and Nyp(-) are asymptotically
independent and Sy depends on Ny r(-) only. S, is inconsistent and converges in distribution

to a random variable S.,. Thus, LRT(gT) has asymptotically the same distribution as

C’LRoo (Ml,oo<Soo)a M2,oo(soo)> Eva ﬂo)

1

= 5 (M1(80) = Moe(80) + V(M (8) = VoS + 4317, (80) ).

Conditional on Nor(-) St is fixed. Define koLra(Mi0o(Se), Ma, Ly, Bo) to be the 1 — «
quantile of the null distribution of C LR (M (Swo), ma, Xy, Bo). Since under Hy RCLR,Q(éT)
has asymptotically the same distribution as Kcrr.a(Mi.00(Soo);, Maoo(Seo)s Lw, Bo), we have
that the distribution of LR7(Sy) — kerra(St) is asymptotically the same distribution as

CLROO (Ml,oo(Soo)7 M2,oo(soo)7 Ev; 60) - "QC’LR,a(Ml,oo<Soo)7 M2,oo(soo)7 Ev» 50)

Conditional on Ny so(-), Nioo(S)~ A (0, I,) under Hy. This implies that the conditional
null distribution of CLR, given N3 «(-) does not depend on # or c¢. Thus, the test that
rejects Hy when LRT(QT) — /QOLR@(gT) > (0 is similar at significance level «. [J

S.D.2.3 Proof of Proposition S.B.1

The distribution of y is multivariate normal with
E(y) = Z(Cor)fd + Xn, (S.D.16)

independence across rows, and covariance matrix ¥, for each row. Thus, the density of y is

— — 1 d 177 / / - 17 /
2m) 2 |2, T exp <_2 > (v — a0 Zy(Cox) — 1/ Xi) 5y (i — abZi(Cox) —n Xt)>

t=1

(S.D.17)

T T
Sy ty — 20 <Z Zt(CO,T)y1/t> ¥, a
t=1

t=1

_ _ 1
= 2m) 2B, exp (—2
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t=1 t=1

T T , o
— 2Tr ((Z Xty;> z;ln’> +> (a0 Zi(Cor) =0 X:) £, (a6 Zu(Corr) — n’Xt)] ) .

By the Fisher-Neyman factorization theorem N (y) is a sufficient statistic for v = (3, ¢, v/, ¢')’
if and only if the density .Z (y; 3, 0, v, ¢, Sor) can be factorized as .Z (y; 8, 6, v, ¢, Sor) =
fu (N (y)) h (y) for nonnegative functions fy (-) and h (). Note that Z(Cor) = MxCorZ #
MxZ it mp < 1 and so £ (y; 5, 0, v, ¢, Sor) cannot be factorized as above for N(y) =
[V MxZ :y' X]. Thus, Z'Mxy and X'y are not sufficient statistics for ¢ if mp < 1. Therefore
when 7y < 1, Z'Mxy cannot be sufficient for (3, ') if (i) Z'Mxy and X'y are independent,
(ii) the distribution of X'y does not depend on (3, ¢')" and (iii) the distribution of Z’'Mxy
does not depend on (v, ¢')".

To complete the proof, we verify that (i)—(iii) above hold. For (i), note that Z'Mxy and

X'y are (jointly) multivariate normal random matrices and for any by, by € R?, we have
Cov (Z/Mxybl, X/ybg) = Z,MXcOV(ybl, ybg)X = Z/bellzvbQITX = bIIZUbQZ/MxX = 0,

where the second equality uses the independence of the rows of y. Lemma 1(c) of Andrews,
Moreira, and Stock (2006) implies (ii) and for (iii), note that the normality of Z’'Mxy has

E(Z'Mxy) = Z'MxE (y) = Z'Mx (Z(Cor)ba’ + Xn) = Z'Z(Cox)0d,
Var (Z' Myyb) = Z'MxVar (yb) Mx Z = Z' Mxb'S,bly My Z,

for any b € R?, which do not depend on (v/, ¢')’. O

S.D.2.4 Proof of Proposition S.B.2

The density of y is given by .Z (y; 8, 0, 7, ¢, St), where Z(-) is defined in (S.D.17) and Sr
is an unknown parameter. Using the same logic as in the proof of Proposition S.B.1, by the
Fisher-Neyman factorization theorem {Z (Cr) y}s,cs is a sufficient statistic for (3, ¢')" if
(i) {Z (C7) y}syes and X'y are independent, (ii) the distribution of X’y does not depend
on (B, #") and (iii) the distribution of {Z (Cr) y}s,es does not depend on (v, ¢'). For (i),
note that Z (Cr) y and X'y are (jointly) multivariate normal random matrices and for any
b1, by € R?, we have

Cov (Z (Cr)' yby, X'yba) = Z'C-MxCov(yby, yba) X = Z'CpMxb,SuboIr X = by 5,0y 2’ Mx X =0,
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where the second equality uses the independence of the rows of y. Lemma 1(c) of Andrews,
Moreira, and Stock (2006) implies (ii) and for (iii), note that

E(Z'CpMyy) = Z'CpMxE (y) = Z'CypMy (Z(Cor)ba’ + Xn) = Z'CyZ(Cox)bd,
Var (Z/C%M)dﬂ)) = Z’C”TMXVar (yb) MXCTZ = Z/C}be/zvbITMXCTZ,

for any b € R?, which does not depend on (v/, ¢')’. O

S.D.2.5 Proof of Proposition S.B.3

Under the conditions of the proposition, the log-likelihood of y is given (up to a constant) by

g (67 07 v, ¢ ) ST) (SD18>
1 — / —
= —§Tr (Zv_l <<y —Z(Cr)ba — Xn) (y — Z(Cr)bd — Xn)))
-1 _nl77 / 1 -1 _nir7 I ! 1 -1 /
=Tr (Zv ab'Z (Cr) y) — §Tr (ZU ab'Z (Cr) Z (Cr) Ga) — §Tr (ZU (y —Xn)(y — Xn)) .
Maximizing this log-likelihood with respect to 6 under Hy yields
Y 7 ! 7 -1 / — / — —
0(Cr) = (Z(Cr)'Z (Cr))  Z(Cr) yS, an(apS, ao) ™,

so that the concentrated likelihood function under H is

(?/ Bo, 6(Cr), v, Cb,ST) (S.D.19)
= (apX; ag) ' Tr (E;laoagﬁgly'Z (Cr) (Z(CT)/Z(C'T))_IZ(C’T)/y)

1 - 2 I —l= / _ /
- §(agE;1ag)_2Tr <z;1a0agz;1y'2 (Cr) (Z(Cr) Z(Cr)) Z(Cr) y2v1a0a0>

- ;Tr (5w - Xn))
_ ;(%E;lag) 4= YZ (Cr) (Z(Cr) Z(Cr)) ' Z (Cr) yE; ag
- ;Tr (Ev_l(y - )

Maximizing (S.D.19) with respect to St is equivalent to maximizing
(@, a0) a5,y Z (Cr) (Z(Co) Z(Cn)) " Z (Cr) yE, M ao, (5.D.20)
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making the MLE of Sy equal to the maximizer of (S.D.20) over Sy € S.
To complete the proof, we show that maximizing My 1(S7) = Nor (St)’ Nor (St) over
St € S is asymptotically equivalent to maximizing (S.D.20) over S; € S under the conditions

of the proposition. To see this, first note that

Snin(S) = lim T 1ZE[vtboZt (Cr)' Z: (Cr) aps, vy (S.D.21)

0 t=1

T
= lim T_l Zzt (CT)IZt (OT) G/OE IE [Utvt] b()

T—o00 —

T
= TIEI;O T ; +(Cr)' Zi (Cr) agby =0
for S = limy_,oc T~ 'S7, where the first equality follows from the i.i.d. assumption, the sec-
ond from the assumption of fixed regressors, the third from E [v;v;] = ¥, and the fourth
from ayby = 0. Thus, applying Lemma S.D.3, Ny (Sr) is asymptotically equivalent to
E;Viﬂ (Sy) T~2Z (Cr) y¥; ag under Assumption 6.4, implying that M (Sz) is asymptot-
ically equivalent to T-'ay,'y'Z (Cr) 5t (St) Z (Cr) y,  ag. The result then follows from

Sn,(S) = lim T~ IZE[utz ‘a0 Z: (Cr)' Z: (Cr) ap S, ')

T—o00 )

= lim 7 1ZZt (Cr)' Z, (Cr) ap S, ' E [vjv] £ tag = hm T'Z (Cr) Z (Cr) a3, ag

T—oo

for S = limg_,o, T7'Sy, in analogy with (S.D.21). O
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Abstract

This supplemental material is structured as follows. Section N.A describes the collection of articles
and specifications for the figure reported in the Introduction of the main article. Section N.B includes
the theoretical results about the estimators of the true sub-population proposed in Section 5. Section
N.C presents additional results on testing for full sample identification failure under homoskedasticity,
primitive conditions for the assumptions of Section 6, results on consistent covariance matrix estimation
for the tests introduced in Section 6 and results about identification-robust inference under strong IV
and local or fixed alternatives. Section N.D presents additional Monte Carlo simulations.

N.A Publication Selection Criterion

We select recent publications from the following five economics journals: American Economic
Review, Econometrica, Journal of Political Economy, Quarterly Journal of Economics and Review
of Economic Studies. We first identify articles published in these journals between January 2019
and December 2022 that contain the keyword “instrument” in their text. We then exclude articles
that do not estimate linear instrumental variables (IV) models or that are based solely on cross-
sectional data. This results in 18 articles, listed in Table 1. From these 18 articles, we collect all
IV specifications reported in their main text. Articles 1-3, 6-7, 9-12, and 14-16 use time series
data, while articles 4-5, 8, 13, and 17-18 use panel data. Since the F*statistic requires time series
data, for panel data applications we treat each cross-sectional unit separately. In cases where an
application includes thousands of cross-sectional units, we select only a subset to prevent a single
panel application from dominating the distribution of the F' statistics. The median cross-sectional

size across applications is 34, so for panel specifications with more than 34 units we randomly
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select 34 units, while for those with fewer than 34 units we include all available units. When a
specification involves multiple endogenous regressors, we run separate first-stage regressions for
each endogenous regressor. This yields a total of 214 time series specifications and 1,346 panel

data specifications.
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N.B Theoretical Results on Estimation of LATE and Sub-populations

In this section we establish theoretical results about the estimator §T7 rarns from which we deduce
the same results for QT,OLS as a special case with y = D and Q&s = Ir. We first rewrite the
model in matrix format as follows. We have 2 equations and T observations, excluding the initial
conditions if lagged dependent variables are included among the regressors. The number of regimes
that define the 7 sub-population is m, while the total number of regimes in the full sample is
m > m. For example, if 7 = 1 then m = m, else m > m. The break dates are denoted by the
m vector (T1,..., T;) and we use the usual convention that 7y = 1 and T, = T. A subscript
i indexes a regime (i = 1,..., m + 1), a subscript ¢ indexes a temporal observation (t =1,..., T)
and a subscript j indexes the equation (j = 1, 2) to which a scalar dependent variable y;; belongs.
According to our model in Section 5 y1; = Y; and yo = D;. ¢ + p is the number of regressors and
2 is the set that includes the regressors from all equations z; = (214, . . -, Zgips) = (Z1, X}). The

model considered in (5.1) can be written as
yr = (I ® ;) i + vy, (N.1)

where v; has mean zero and covariance matrix . The parameters in regime ¢ are the p + ¢ vector
a; = (B0, v + 0, 0, ), where §; = 6 for T, +1 < t < T, with t € Spr and 6, = 0 for
T,1+1<t<T,witht¢ Sor. Let a = (af,..., agﬁﬂ)’.

To ease notation, define the (¢ + p) x 2 matrix z; by z; = (I ® z;) and rewrite (N.1) as

Yr = Ty + vy, (N.2)

for T, 1 +1 <t < T, (i=1,...,m+1). We now express the model in matrix form. Let
Y = (y,,...,y;) be the 2T vector of dependent variables, let V = (v},..., v}) be the error
vector, and let the 27" x 2 (g + p) matrix of regressors be X = (z1,..., zp). For a given parti-
tion S with associated breaks (77,..., 1), we define the block partition of the matrix X as the
2T x 2(q+ p) (M + 1) matrix X (S) = diag(X1,..., X;.,), where X; (i=1,..., m+1) is the
2(T; — Ti—1) X 2(q + p) subset of X that corresponds to observations in regime i. We also define
the subvector V; of V similarly. Then the regression (N.2) can be written as ¥ = X (S)a + V.
The true values of the parameters are denoted with a 0 superscript so that the data generating
process is assumed to be Y = X (So1) g + V, where X (Sor) is the diagonal partition of X
using the partition Sor, i.e. (T7,..., T2). Let Qg be the rearrangement of {).g in the main text

corresponding to the rearrangement 7 of 7 We make the following assumptions.
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Assumption N.B.1. supg || X (S) Qg'"*|| = Op(TY/2), Supg g/ IX (S) Q5'X (S)/T|| = Op (1) and
sups ||V'Qs' X (S) || = Ox(T/?).

Assumption N.B.2. There exists an ly > 0 such that for all | > ly, the minimum eigenvalues

TO 41 TO41 A TO 41 TO41 ~_
of (1/1) Zt;;?—i—l Zsl:;;hrl 2 [Q5" .92l and (1/1) Zti;‘fﬂ ESZ:JTZOH 2[5 1,9y, are bounded away
from zero uniformly overi=1,..., m and S where [le](t,s) denotes the (t, s)-th element of le.

Assumption N.B.3. The matriz Y\, S'_, xt[ﬁgl](tvs)x’

% 1s wnvertible for | — k > ko for some

0< k() < Q.
Assumption N.B.4. We have 0 < X) < --- <AL <1 with T = |T\].

Assumption N.B.5. The minimization search is taken over all partitions that satisfy |Niy1 — A\i| > €,
M| > € [N\ <1—e

Assumption N.B.6. For O = E[VV'|X (Sor)], supgg 7' X (S') Qs —Q HX (S) = 0, supg T
X(S) (Q5' =YV 50 and T-V'/(Q5' — Q@ HV 5 0.

N.B.1 Consistency Under Fixed Shifts

Let A be the estimate of the break fractions Ay = (A2 A9, .., /\%) that corresponds to §T7FGL5.

The following proposition states the consistency of A for Ao.
Proposition N.B.1. Let Assumptions N.B.1-N.B.6 hold. Then, \; — Noi=1,...,m.
We now consider the rate of convergence of .

Proposition N.B.2. Let Assumptions N.B.1-N.B.6 hold, for every n > 0, there exists a C < o0,
such that for all large T,

P (7 (3 )

>C)<n, (i=1,...,m).

Let a(-) be defined in analogy with £pgrg(+) in the main text upon rearrangement of i/ to
Y. The T rate of convergence of i allows us to obtain the asymptotic equivalence between the
estimated slope coefficients with the estimated subpopulation &(grﬂ rors) and the estimated slope
coeflicients with known subpopulation @ (Sg 1) so that standard results feasbilbe generalized least
squares results implying /7' asymptotic normality for the latter also immediately apply to the

former.

Proposition N.B.3. Let Assumptions N.B.1-N.B.5 hold. We have ﬁ(@(gT,FGLS) —ap) = Op (1).
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N.B.2 Proofs
N.B.2.1 Proof of Proposition N.B.1

We first outline the main steps of the proof using a few lemmas that are proved below. By the

definition of §T, rars and Assumption N.B.6,

V'QTly, (N.3)

with probability approaching one, where V(g) =Y -X (g) Q (g) with S = §T7FGLS. Note that

v (S) 05'V (8) (N.4)
~ (V=X (8) (a(8) — ) - (X (8) - X Som) o) 0
(V=X (8) (a(8) ~ ) ~ (X () - X 501)) o)
VO (V05 -V Y) + (a(8) - a0) X (8) 85X () (a (8) — )
+ (Y <§) - X (SO,T))/ Qg (7 (g) — X (So T)) Qg
+2(a(8) —a0) X (8) 05" (X (8) - X (So))
2V'05'X (8) (a(8) — ap) — 2'05" (X (8) - X (Sox)) ag
=V'Q'V + zﬁj E;
=
The proof of Proposition N.B.1 uses (N.3)-(N.4) and the limit of E, ..., Fg. By Assumption

N.B.6, T 1E, £ 0 and we show that T-'E; £ 0 for J =5 and 6, in Lemma N.B.1 below. These
results combined with (N.3) imply that T~ (Ey + F3 + Ej) £ 0. The proof follows by showing
that the latter imply PR Ao via Lemma N.B.2. We proceed with a couple of lemmas.

Lemma N.B.1. Let Assumptions N.B.1 and N.B.3 hold. We have T~'E} 50 for 3 =5 and 6.
Proof of Lemma N.B.1. To prove the lemma, it suffices to show that
1 ~
sup - V'Q5'X (8) (@(S) — ao)| = Op (T71?) = 0p (1), (N.5)
S

sgp; ’V’le (7 (S)— X (SQT)) ao‘ =Op (T‘l/z) =op(1). (N.6)
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First consider (N.5). We can rewrite

V'Q5'X (S)a(S) — V'Q5' X (S) g

= V05X (8) (X <s>ﬂsﬁx<sn X (8) 05X (Sor) ag
+ V05X (S) (X (8) 05'X (8)) X (S O5'V
—V'Q5'X (S) .

Using Assumptions N.B.1 and N.B.3, the first term on the right-hand side is Op(T"/?) Op(T~)Op (T) =
Op(T*/?) uniformly over all partitions. The second term is Op(T/2)Op (T~1) Op(T"?) = Op (1)
and the third term is Op(7"/?), both uniformly over all partitions. Then, (N.5) follows. Next,
consider (N.6). Using Assumption N.B.1, we have

V'Os" (X (8) = X (Sor)) a0 = V'Q5' X (8) ao — V'O X (Sorr)
= Op (T"%) + 0 (T"?).
This implies (N.6). O

Lemma N.B.2. Let Assumptions N.B.2-N.B.5 hold. If i EA A\ for some i, then
lim infP (T (B2 + Es+ Ex) > ¢) > &

for some ¢ > 0 and €y > 0.

Proof of Lemma N.B.2. We have for T;,_1 +1 <t < T;,

. Y, 7', - X7 7104,
5, (S) _ |t Vil |8 Vs,
Dt

i A X7, Z16;
(2 (055, z)] N [Xt' (78 — 78)
z@i%) X (12 — )

B + 0
Z10; t

Xivs
Xé’Yz

| XA
X2

+Ut7

where a; = (054, 73, 0%, 75, &; = (é\ﬁ’g, Y8, HA;, A4) and 7 corresponds to a regime in S.

By Assumptions N.B.4 and N.B.5, if there exists a break, say A\?, which cannot be consistently
estimated, then with some probability ¢y > 0 there exists a n > 0 such that no estimated break
falls in the interval [T'(X} —7), T'(AJ +n)] for a subsequence of T'. Suppose this interval is classified
into the k-th regime, ie., Tp_1 < T(A0 —n) and T (N0 +17) < Ti. Let d, denote the difference
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between the fitted residuals and true errors. Then,

(2 (05— 05.)
a0
_Zt' (95,i+1 - éﬁ,k)
L Z (‘9i+1 — ék)

X{ (v — 9s)
X{ (72 — )
Xi (v —7s)
X{ (72— 2)

] fort € [T (N) —n), TN

2.
&
Il

fort € [TA?, T (\) +n)].

For t € [T(\0 —n), T\,

di =035 —Osp 0= O Zi+ |15 =35 12— 2] Xo

= a1 %,
where x; = (Z!, X})" while for t € [TA), T (AY + )],

d; = [95,i+1 — O i1 — ék} Zy + [’Yﬁ —V8 2 ’72} X

— 1/
= bﬁ7i7kwt-

We have

= Z Z d; {le}( 5) ds + Z Z d; [le}(t )d

t=T(\0—n) s=T(A0-n) t=TA0+1 s=TA0+1

X! X! -~ TO+n) TO+)
= CL/Ig,i,k Z Z x; {le}(t 3 xlapk+ b’ﬁlk Z Z T, [le}(t ) x.bs ik
t=T(X)—n) s=T(\0—n) ’ t=TA0+1 s=TA0+1 ’
(N.7)

> r |6 = Ba| + s =31l + 0 = Bl + o2 = %I

7 B = O]+ 175 — Aol + [|Bsr — B[+ 17z — %n?}

2 min (7, 153 ([0 = Bl + 0= Ol + [Bces = B+ s~ B)

> 27 min {yr, ¥3} (1055 — Op.a | + 116: — O1a[*)
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~

where D(S) = [d} d}, - - - d}]', yr and ~} are the smallest eigenvalues of the first and second matrices

on the left-hand side of the second inequality, and the last inequality follows from

(r—a)A(x—a)+ (x—b)A(x—b)>=(a—b) A(a—1D)

DN | —

for an arbitrary positive definite matrix A and for all . Now, the first matrix in (N.7) can be

written as

0 0
TX; TS

(Tn) Tln T(;ﬁ) S:T%,;n) T [le](t,s) w, = (Tn) Ar.

By Assumption N.B.2, the smallest eigenvalue of A7 is bounded away from zero. Thus, vz is of

the order (T'n). A similar argument can be applied to ;.. Therefore,

4
ST E; > Tneymin{||0s; — s [° 5 16 — 0t ||’} = TCmin{||05; — 0p,1]1% . 116: — Oia|1*},

j=2
for some C' = nc; > 0 with probability no less than ¢ > 0 as T' — oo. [

Proof of Proposition N.B.1. Using (N.4), T71E, 5 0 and Lemmas N.B.1-N.B.2, and under the

supposition that some break date is not consistently estimated, we have the inequality
SV (8) 05V (8) = 21V 4 C 4 op (1)
T S =T v

for some C' > 0 holding with probability no less than some ¢y as T' — oco. This is in contradiction

with (N.3). Hence, all break fractions are consistently estimated. [J

N.B.2.2 Proof of Proposition N.B.2

Without loss of generality, we assume there are only three regimes (m = 3) and provide an explicit
proof of T-consistency for Ao only. The analysis for A and A is virtually the same and is omitted.

By Proposition N.B.1, for each € > 0 and T large, we have ]ﬁ — T?| < €T with probability
approaching one. For each ¢ > 0, let T, = {(T}, Ty, T3) : |T; — T°| < €T fori = 1,...,3} so
that P({T}, Ty, T3} € T.) — 1. Therefore we only need to examine the behavior of the objective
function, Qr (T, Ty, Ty) = V (S) Qg'V (S), for those T} corresponding to S that are close to the

true breaks such that |T; —T?| < €T for all 7. Also using an argument of symmetry, we can without
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loss of generality, restrict attention to the case Ty < T%. For C' > 0, define

T (C) = {(Tl, Ty, Ts) : |T; = T7

<eT,1§i§3,T2—T20<—C’}.

Note that T, (C') C T.. Because Qr (T, Ty, Ts) < Qr(Ty, T?, Ty) with probability 1, to prove the
proposition it is enough to show that for each n > 0, there exist C' > 0 and € > 0 such that for

large T,
P (%néél) {Qr (Th, Ty, Ts) = Qr (Ty, T8, T3) } < 0) <, (N.8)
or equivalently,
P ({p(lg) {|Qr (Ty, T, T3) = Qr (Th, T, T3)| / (19 - To) } < o) <. (N.9)

That would imply that for a large C', global minimization cannot be achieved on T, (C). Thus
with probability approaching one, |Ty — T9| < C. Now denote

Qv = Qr (T, Tz, T3)
Qur = Qr (T, 1Y, T)
Qs = 1% (SB,T), leff (S3.7)

where S3 r is the partition based on (71, Ty, T3, T3). Subtracting and adding Q3 7, we have

Ql,T - Q2,T = Ql,T - QB,T - (Q2,T - Q3,T) .

This latter relation is useful because it allows us to perform the analysis in terms of two problems
involving a single break. Indeed, Q17 — @31 is the difference in the objective function allowing
an additional fourth break at time 7Y between the breaks T, and Ts. Similarly, Q21 — Q31 is
the difference in the objective function allowing an additional fourth break at time 75 between
the breaks T} and T3. Consider Qi r — Qs r first. Let (af, a3, @i, a5, aj) denote the estima-
tor of (¥, a9, a9, a3, a9). In particular, @; is an estimate of af associated with the regressors
0, ...0, xp 41, -, T, 0, ... 0)', @i is the vector of estimated coefficients associated with the

regressors Xa = (0, ...0, 27,41, .-, 9, 0, ...0).
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From the argument on p. 31 in Amemiya (1985),

Qir— Q31 = (Sl T) Qslv(sl T) — V(S3T)/Q§1‘7(S3,T)

5—1/2 5—1/2 PO
= (45 — L)) XAQs / M@;l/?y(sl )Q / Xa (a3 —aj),

where My = I — X (X’X)"" X' for a matrix X and &% is the vector of estimated coefficients

associated with the regressors (0, ...0, Tr941s-- -5 T13, 0, - 0)’. Similarly, we have for Q27— Qs r,
Qar = Qur = (@ = G1) Xa05" Mg vag(s, )05 X (@5 — 83).
Thus,
Ql,T - Qz,T > (&; - a*A)/ X/AQ;/QMﬁ;l/Qy(SLT)Q§I/2XA (&’5 - a*A) (N.lO)
— (@3 — ax) XAQ5" X4 (@5 — ak),
where we used
—1 2

~—1/2 ~—
52) 28 PXa < X005 XA,

From the definition of M§§1/2y(sl,T)7 we have

Q7 — Qa1 y / XlAﬁngA P
ﬂ > (Olg_OéA) W(ag_aA) (N.ll)

— (& —a )’ XlAﬁgly (Sl,T) X (Sl T) QS (Sl T)

’ 4 TQO — T T
X(Sir) Q' Xa ., .,
X T S (QB - @A)
. X4\Q5 XA
— (a3 — O‘A)%( an)+ Qa1 — Qar
= Ll — L2 — L3.

Consider the limiting behavior of L;. Note first that for small €, the estimates @ will be close to
af with high probability for large T given that, on the set T, (C), the distance between T; and T
can be made small by choosing a small e. Further, &} is estimated using observations from the

second true regime only and it is close to a9 in probability on T, (C) for a large enough C. Hence,
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for large C, large T" and small ¢, L; is larger than

ey XAO XA ' X005 Xa
(a3 —an) % (@5 —aj) = B (Oég - 048) ﬁ (Oég - 048)
with high probability.
Next consider Lo. It is easy to see that on T, (C), @ and aj are Op (1) uniformly. Also on

TE (C)7

and

by Assumption N.B.1 since X ’Aﬁg "X (Sy.7) involves less than Ty — Ty observations. Furthermore,

S EO]p (1) .

X (S1r) Q5' XA
T

X (S1r) QT XA TY T
B T9 — T, T

Thus Ly is no larger than ¢Op (1) . Consider finally Ls. Because both @3 and @’ are close to ad,

|as — a\|| < p with probability approaching one for any given small number p > 0. We also have

HX(SLT)/ WXl o, (1)

9 — T,

uniformly on T, (C). Thus Lj is no larger than pOp (1). In summary, the following inequality
holds with probability approaching one on T, (C):

Qur—Qr _ 1,4 o XAQ'Xa
ST, =5 (0 = a3) T, (af — af) — €Op (1) = pOp (1) . (N.12)

By Assumption N.B.2,

X505'X s
9 — T,

has its minimum eigenvalue bounded away from zero on T, (C). Thus, the first term on the right-

hand side of (N.12) is positive and larger in absolute value than the other two terms. Thus, we
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have

Qv — Qar <

0
9 — Ty

with probability approaching one. This proves (N.9) and the proposition. [J

N.B.3 Proof of Proposition N.B.3

Begin by noting that
05" (X (8) - X (Sor))

involves 21@1 |ﬁ —T?| = Op (m) nonzero observations by Proposition N.B.2 so that, after applying

Assumption N.B.1,
T'X (8) Q5'X (8) = T7'X (Sor) 05X (Sor) + Op (T12).
Similarly,
72X (S) 05'X (Sor) ap — ag = T7V2X (8) Q5" (X (Sor) — X (S)) ap = O (T712)

and

! ~

T12X (§) OV —T7V2X (Sor) Q5'V =T/ (Y (é) -X (SOVT)), Q5'V = Op (T‘1/2>

so that another application of Assumption N.B.1 yields

VT (@ (Srrazs) - @ (Sor)) = ((T7'X (Sor) 95'X (Sor)  +0x (1))

<712 (X (8)' 051X (Sur) a0 — ag + X (8) 05"V = X (Sox) Q'V) = 0 (T72). O

N.C Additional Results

N.C.1 Identification of Compliers for Continuous Instrument
N.C.1.1 Identification of Compliers

We say that observation t € So is a complier if and only if E(D; (z)|V}) is strictly increasing in

z almost surely. In the present case of a continuous instrument, the policy and control samples P
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and C need to be redefined relative to the simpler case of a binary instrument in the main text.
Let P C {1,...,T} and C C {1,...,T} satisfy PN C = ) and mingep Z; > maxec Z;. Let Zp
denote the values in Z such that Z;, € Zp is equivalent to ¢t € P and similarly for Zc. Construct
P and C such that zp = inf(Zp) > sup(Zc) = Zc. For example, a simple way to define the policy
and control samples is P ={t e {1,....,7}: Z; > 24+ e and C={t € {1,.... T} : Z, < Z — ¢}
for some Z and small € > 0. With these definitions, we impose the continuous instrument-analogs

of Assumptions 2.7 and 2.8 in the main text.

Assumption N.C.1. (i) For any t € C, D¢y B E(D(Z)|Z, € Zc) as n — 0o with n/|C| — 0.
(ii) For t € P, E[D,_(Zi_1)|Zi—1 € Z¢| = E[D,(Z,)|Z; € Zd).

Assumption N.C.2. (i) For anyt € P, Dp;, 5 E(Dy(Zy)|Z: € Zp) as n — oo with n/|P| — 0.
(ii) For t € C, E[Dy(Z;)|Z; € Zp| = E[Dg+)(Zs+1))| Zs+t) € Zp)|, where s*(1) = arg mingep |t — s|.

Proposition N.C.1. Let Assumptions 2.1, N.C.1 and N.C.2 hold and ng,ny — oo with ny/|C|,n,/|P| —
0. We have:

(i) if t € P is a complier, then Dpy,, — Doy1ng L ¢ where ¢ > 0.

(i) if t € C is a complier, then Dps(ty.n, — Dt ng 5 & where &> 0.

Proof of Proposition N.C.1. Consider first the policy sample. Suppose t € P is a complier. Then,
by Assumptions N.C.1(i) and N.C.2(i), as ng,n; — oo,

Dpiny — Detrng — B(Di(Z)| 2, € Zp) — B(Dy—1(Z4-1)| Zi—y € Zc)
= E(Dt(Zt)|Zt € Zp) — E(Dt(Zt)|Zt € ZC)

_ [E(Dt(Zt)|Zt € Zp, Vi = )dFy (7) - []E(Dt(Zt)|Zt € Zc, Vi = )dFy (1)

v v

_ / / E(Di(2)|Vi = 0)dF, 5,y 5,cz0 (2)AF5 (D)
v Jz2EZp
_ / / E(Di(2)|V; = 0)dF,, 5,_, 5 pe (2)4F5 (0)
0 Jz2€Zc
> / / Do)V = 0E 5 e (VAP (5)
v JzeLlp

_[/ . E(Dt(fc)ﬂz:f/)dFZt|‘~/t:ﬁ7Zthc(Z)dp‘z(f))
v J 2€ZLc

= E(Di(zp)) — E(Di(zc)) > 0,

where F\Z() is the distribution function of V;, F is the conditional distribution

Zt|‘7t:1~),Zt€Zp (>

function of Z, given V; = ¢ and Z; € Zp, F (+) is the conditional distribution function

Zt\‘7t=17,Zt€ZC
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of Z, given V, = ¥ and Z; € Zg, the first equality follows from Assumption N.C.1(ii), the third
equality follows from Assumption 2.1 and the inequalities follow from the definition of a complier.

The proof for the control sample is entirely analogous and therefore omitted. [
Assumption N.C.3. (Continuous Case Monotonicity) E(D; ()| V;) is monotonic in z almost surely.

Under Assumption N.C.3, assume without loss of generality that E(D; (z)|V;) is increasing
in z almost surely. We obtain the following characterization of compliers under monotonicity for

the continuous instrument case.

Corollary N.C.1. Let Assumptions 2.3 and N.C.3 hold. Then, the set of compliers coincides with
So.r-

Proof of Proposition N.C.1. Assumption N.C.3 rules out defiers, i.e., E(D, (z)|V;) being strictly
decreasing in z almost surely, so that non-compliers are characterized by E(D; (z) | V;) being con-
stant in z almost surely. Therefore, a non-complier cannot belong to Spr by definition. And any

complier belongs to Sp 1 by definition. U

N.C.2 Primitive Conditions on IVs, Exogenous Regressors and Errors for the

Assumptions of Section 6.2

Assumptions 6.1-6.3 of Section 6.2 are implied by any one of the following assumptions:

Assumption N.C.4. {(v;, wy) : t > 1} are i.i.d., E (v; @ wy) = 0, El|vg| > +E||we||* + E||v; @ wy||* <
00, B, = E(vv}) is positive definite, and uniformly in Sy,Sy € S, for S = limp_,oo T7'S7 and
S = limg_,oo TSy, TV L E(w; (Sz) wy (S5)) — Q(S,S') for some (q+ p) x (¢ + p) matriz
Q(S,S") for which Q(S,S) is positive definite and TSI E((v; ® wy (S7)) (v, @ wy (S))) —
U (S,S) for some 2(q+ p) x 2(q+ p) matriz ¥ (S,S’).

Assumption N.C.5. {(v;, wy) : t > 1} are independent, E (vy @ wy) = 0 for allt > 1, sup, (E||ve| [>T+
E||ws| [>T + E| v, @ wy|[>75) < 00 for some ¢ >0, TS L E (vv)) — %, for some positive definite

2 X 2 matriz ¥, and uniformly in St,Sh € S, for S = limy_,oo T7'Sy and S’ = limp_,, TS},
T-YSL  E(w (Sr) we (S5)) — Q(S,S') for some (q + p) x (¢ + p) matriz Q(S,S’) for which
Q(S,S) is positive definite and TS E((vy @ wy (St)) (v @ wy (Sh))) — W (S,S') for some
2(q+p) x2(q+p) matriz ¥ (S,S’).

Assumption N.C.6. {(v; ® wy, F;) : t > 1} is a martingale difference sequence, where %, = o(vy, wy, vy_1,

Wi, ...), {(vy @wy) : t > 1} is an ergodic sequence, sup,, (E||ve| >+ E||we| [?+E||v, @wy|[?) < o0,
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¥, = E(vwv}) is positive definite, and uniformly in Sy, Sy € S, for S = limp_,oo T 'St and S’ =
limy_yoo TS5, TS E(wy (S7) wy (S5)) — Q(S,S') for some (q+p) x (g+p) matriz Q(S, S’)
for which Q(S,S) is positive definite and TS 1_, E((v, @ w; (St)) (v: @ wy (S5))) — ¥ (S, )
for some 2 (q+ p) x 2 (q + p) matriz ¥ (S,S’).

Assumption N.C.7. {(v;, wy) : t = ...0,1,...} is a doubly infinite ergodic sequence with E(v, ®
we) = 0, supgs (Bl |vg|[* + Elfw]|* + E| v @ wi|[?) < 00, supysy 52 (B|[E(v, @ we| Fy)|[*)!/? < 00
where F, = o (v, wy, Vi1, Wy_1,...), TP E(vw)) — X, for some positive definite 2 x 2
matriz ¥,, and uniformly in Sp,Sy € S, for S = limr_oo T 'Sy and S’ = limp_ o TS,
TS E(w, (Sr)we (S5)) — Q(S,8') for some (q + p) x (¢ + p) matriz Q(S,S’) for which
Q(S,8S) is positive definite and T3, 32 E (v, @ wy (S1)) (vi—j ® we—j (S7)) — ¥ (S,8) =
fol U, (S,S') du, where W, (S,S') is the local long-run covariance matriz of vy @ wy (St) and v, ®
wy (S7T).

The random vectors {(vg, wy) : t =...0, 1,...} are uncorrelated under Assumptions N.C.4-
N.C.6, but are (possibly) correlated under Assumption N.C.7. Assumptions N.C.5-N.C.7 allow for
nonstationarity (i.e., time-varying moments). In particular, they are satisfied by segmented local
stationarity [see Casini (2024, 2023)].

If the errors are conditionally homoskedastic and {(v;, w;) : t > 1} are uncorrelated, the fol-

lowing assumption holds.

Assumption N.C.8. ¥ (S,S') =%, ® Q(S,S’), where Q(-) is defined in Assumption 6.1 and U (-)
is defined in Assumption 0.35.

This assumption is implied by any one of Assumptions N.C.4, N.C.5, and N.C.6 plus the

following.
Assumption N.C.9. E((vv]) ® (w; (St) we (S5)) = 8, ® Q (St, S%) for allt > 1 and Sy, S € S.

By iterated expectations, a sufficient condition for Assumption N.C.9 is E(vv;| wy (St) , wy (%)) =
E(vv;) = %, a.s. for all Sy, S’ € S and all £ > 1. Note that Assumptions N.C.6 and N.C.7 allow
for intertemporal conditional heteroskedasticity even when Assumption N.C.9 holds. The following

lemma summarizes the relations between the assumptions.

Lemma N.C.1. (i) Any one of Assumptions N.C.4, N.C.5, N.C.6 and N.C.7 implies Assumptions
6.1-6.53;

(i) Any one of Assumptions N.C.4, N.C.5, N.C.0 plus Assumption N.C.9 imply Assumption
N.C.8.
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Proof of Lemma N.C.1. Although w (St) is a function of the partition S, we do not need to rely
on laws of large numbers for partial sum processes or functional central limit theorems. The reason
is that Assumptions 6.1-6.3 and N.C.9 involve full-sample averages. Thus, the lemma follows from
Lemma 4 in Andrews, Moreira, and Stock (2004). These authors required stationarity in their
Assumptions INID, MDS and CORR but this is not required for the lemma to hold. [J

N.C.3 Consistent Covariance Matrix Estimation

Let Vi (St) = vjboZ, (Cr) and V., (St) = v;X,  agZ, (Cr). We have

Yy, (S) = lim T~ XT; XT; E (Vi (S7) Vor (S1)')

T—o0 =1 r—1

T T
Svin, (8) = lim T 373 E (Vi (S1) Var (S1)')

t=1r=1

T T
S, (8) = Jim T 3737 E (Vi (S1) Vs (S2))
t=1r=1
Let Vi (St) = 0 (Sp) boZ, (Cr) and V,, (s) = 0, (St) S5 agZ, (Cr). We consider both HAC
and double-kernel HAC (DK-HAC) estimators of ¥ - (S). Here we discuss the HAC estimators of
Newey and West (1987) and Andrews (1991). The DK-HAC estimator was recently proposed by
Casini (2023). It is consistent under both the null and the alternative so that tests based on it do
not suffer from power losses induced by nonstationarity [cf. Casini, Deng, and Perron (2025)].
The HAC estimators are defined as
T T-1

S Ky (biok)Tw (k, St),
T'—q—p,- 7,

T! ZthkH ‘7b,t (St) ‘7b,,t7k (Sr), k=0
T 5, i Vi (S7) Vi (S7), k<0

iNl (ST> =

with fbb (k‘, ST) =

and i}‘VQ (Sr) and )y NN, (St) are defined analogously to 3 N, (S7) after replacing Ty (k, St) with

analogous quantities T,. (k, St) and T, (k, St), respectively. We consider the following class of
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kernels

Klz{Kl(-): R—[-1,1]: K;(0) =1, Kl(:v):Kl(—as),VxE]R,/_oo | K (2)| dr < oo

0

(N.1)
/ K} (v)dr < oo, K;(-) is continuous at 0 and at all but a finite number of points} :
The class K; was considered by Andrews (1991) and Casini (2023). Examples of kernels in K

include the Truncated, Bartlett, Parzen, Quadratic Spectral (QS) and Tukey-Hanning kernels.
The DK-HAC estimators are defined as

N T T-1 .
k=—T+1
. ny [(T—nr)/nr]
I'pk (k, S7) = T nr > Gw(rng/T, k, St),
r=0

where np — oo satisfies the conditions given below, and

Cop\TN /L, Ky, O1) = )
(sz,TY1 ZtT:_kH K (WH)nTb (Hk/Q))/T) Vbt+k: (ST) V! bt (ST) k<0
(N.2)

with K being a kernel and by p is a bandwidth sequence. The DK-HAC estimators S}‘VQ (S7) and
S v, (S7) are defined analogously to Sy, (Sy) after replacing éy (rnp /T, k, S7) with analogous
quantities o (rnr /T, k, St), and ¢y (rnr/T, k, St), respectively. Casini (2023) considered the
following class of kernels

K, = {Kg(-) R = [0, 00]: Ky (2) =Ky (1 —1x), /KQ([L‘)dZEZ 1, (N.3)

Kﬂ@zObrm%MlL/m

— o0

| Ky (z)]| dx < 00, Ky(+) is continuous}.

The QS kernel was shown to be optimal in the class K; for HAC estimators under the mean-
squared error (MSE) criterion by Andrews (1991) and for DK-HAC estimators under a sequential
and global MSE criterion by Casini (2023) and Belotti, Casini, Catania, Grassi, and Perron (2023).
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The QS kernel is defined as

25 sin (672 /5)
K® (z) = 3252 ( ey cos (6mt/5)> :

Casini (2023) showed that the optimal kernel in the class K is a quadratic-type kernel, K3 (1) =
6r(l—x),0<z<1.
For both HAC and DK-HAC estimators, define

ivf (ST) =

i\]Nl (ST) i]\th (ST),
Ynn, (S7) X4, (Str)

We now provide sufficient conditions under which the HAC and DK-HAC estimators are uniformly
consistent for ¥ (S), and therefore £y, (S), over S € S. Let V; (St) = v ® w; (St) where w; (St)

is the tth row of w = [CrZ : X| written as a column vector.

Assumption N.C.10. ((i) {V; (St)} satisfies

> sup sup [[E(V; (S7) V/"; (S1))l| < oo,

oo t>1 S7€ES

and for all conformable ay, ag, az, ay € Zy, 3071 32521 01 SUDy>q |m$;’a2’a3’a4) (n, j, m,Sr)| <

oo where /ﬁ%’”’%’a“) (n, j, m, St) is the time-t fourth-order cumulant of

(V) (1) Vi) (S2), Vi) (S1) ., Vs (80).

(1) supys, sups,.es B[V (S1) ||* < o0.

Assumption N.C.11. by — 0 with Tb; » — oo and K, (-) € K.

Assumption N.C.10 imposes conditions on the temporal dependence of the instruments and
errors. It is a standard assumption in the literature, see Andrews (1991) and Casini (2023). Note
that Assumption N.C.10 allows for nonstationary random variables (i.e., time-varying moments).
The condition on the bandwidth in Assumption N.C.11 is from Andrews (1991). Assumptions
N.C.10-N.C.11 are sufficient for the consistency of HAC estimators.

Assumption N.C.12. bl,T7 b27T — O, nr — 09, TLT/T — O, 1/Tb1,Tb27T — 0, \/Tbl,T — 00,
Kl () € Kl and K2 () S KQ.
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The conditions on the bandwidths by 7, bo 7 and on ny are from Casini (2023). Assumptions
N.C.10 and N.C.12 are sufficient for the consistency of the DK-HAC estimators.

Lemma N.C.2. Let Assumptions 6.1-6.3 hold. We have: ¥ (St) 5 Y7 (S) for S = TSy
uniformly in Sy € S under Assumptions N.C.10-N.C.11 for the HAC estimator and under As-
sumptions N.C.10 and N.C.12 for the DK-HAC estimator.

The proof of Lemma N.C.2 is omitted. For the HAC estimator the proof follows from the
discussion in Section 8 in Andrews (1991) who extended the consistency result in Theorem 1 in
Andrews (1991) to nonstationary random variables. See also Casini (2022) who provided a solution
to some issues in Section 8 in Andrews (1991). The proof for the DK-HAC estimator follows from
Theorem 4.2 in Casini and Perron (2024). O

N.C.4 StrongIV and Local Alternative (SIV-LA) Asymptotics for Identification-
Robust Tests

We analyze the strong IV asymptotic properties of the tests considered above for local alternatives.

Under strong IV asymptotics, 6 # 0 is fixed. For local alternatives, 3 is local to .

Assumption N.C.13. (SIV-LA) (i) B = By + r/T"? for some constant v € R; (ii) 0 is a fized

non-zero q-vector; (iii) There exists an estimator St such that T'Sy 5 S,.

Under strong I'Vs, part (iii) is satisfied by, for example, Srin (6.5), gT,OLS and §T7 raLs wWhere
the optimization is over Zc y m, 7. Under SIV-LA asymptotics, Ny 7 (Sz) and Nor (Sr) depend
asymptotically on (n, (S) ~ A (an, (S), 1), an, (S) = E;,i/Q (S)X5(S,Sp) Or, and an, (S) =
Sn/? (S) T (S, So) 0 ()2 ag) 2.

We now determine the asymptotic distributions of the LR, LM and AR test statistics.

Theorem N.C.1. Let Assumptions 6.1-6.4 and N.C.13 hold. We have: (i) ART(éT) N ¢y (So) Cvy (So) ~
X2(an, (So) an, (80)); (1) LMx(Sr) % (o, (S0)' ¢ (S0))*/llen, (So) [1* ~ X3 ((a, (So)" ey, (S0))?
/lleeny (So) II2); (iii) LRr(St) = LMr(So)+op (1) % (a, (So)' ¢, (80))2/[ln, (So) II2 ~ x3 (e, (So)’
an; (S0))?/ e, (So) [17)-

Since T-'S; 5 Sp under strong IVs, the test statistics above are evaluated at Sy asymp-
totically. Akin to the case of known partition, the LM and LR test statistics are asymptotically
equivalent under SIV-LA asymptotics for any value of g. When ¢ = 1, ARr (So), LMz (Sp) and

LRt (So) are the same and so the three tests are asymptotically equivalent.

N-20



DYNAMIC LATE

Under SIV-LA asymptotics and i.i.d. normal errors with unknown covariance matrix >, and
known Sy, the model for y is a regular parametric model in the sense of standard likelihood the-
ory. Hence, LR7(Sy) and LM (So) are asymptotically efficient. This means they have standard
large-sample optimality properties such as uniformly maximizing asymptotic power among asymp-
totically unbiased tests. Adapting the proof of Theorem 7 in Andrews, Moreira, and Stock (2006)
while using T*1§T L Sy it follows that LMT(gT) and LRT(gT) are asymptotically efficient under

SIV-LA asymptotics and i.i.d. normal errors.

N.C.5 StrongIV and Fixed Alternative (SIV-FA) Asymptotics for Identification-
Robust Tests

We now consider strong IV-fixed alternative (SIV-FA) asymptotics to determine the consistency,

or lack thereof, of the tests.

Assumption N.C.14. SIV-FA. (i) B # Py is fized; (ii) 0 is a fived non-zero q-vector; (iii) There

exists an estimator §T such that T‘lgT L So.

Let 35 (So) = 25 (So, So) - Define ¢n, (So) = Ex’? (So) 25 (S0) 0 (8 — Bo),
o, (So) = Zna"? (So) (EZ(SO) 0a'S; ag — By, (So. So) Sy vy (So)) ;S (0, 1) (N.A)

We now determine the asymptotic behavior of the test statistics under SIV-FA asymptotics.

Theorem N.C.2. Let Assumptions 6.1-6.4 and N.C.14. We have: (i) ARy (Sy)/T L on (So) o, (So) >
0, (it) LMr(S1)/T = (¢n, (So) ¥, (S0))2/ o (S0)' ¢ (So) > 0 provided o, (So) # 0; (i)

2LRr(St)/T 5 on, (So) ¢ (So) — ¢, (So) @, (So)

- \/(WNl (S0) ¢, (So) — ¢, (So) @, (So))? — 4 (90N1 (So) ¢, (So))2-

The theorem shows that the test ART(ST) is consistent against any alternative [ # [y,
LMT(QT) is consistent against any alternative § # [y such that pn, (So) # 0, and LRT(gT) is

consistent against any alternative for which the limit value given in the theorem is non-zero.

N.C.6 Proofs of Section N.C.4 and N.C.5
N.C.6.1 Proof of Theorem N.C.1

We begin with the following lemma.
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Lemma N.C.3. Let Assumptions 6.1-6.4 and N.C.13 hold. We have: (i) (N1,T(§T)7 T_1/2N27T<§T>) N
(€ (So), any(So)) and (ii) (Myo(St), T~Y2 My 27(St), T~ Mo (St)) % (Civy (S0)Can (So), any (So)’
Cny (So), an, (So) an, (So)).

Proof of Lemma N.C.3. Part (i) for Ny (Sr) follows from

Nz (Sr) = 5372 (87) T712Z (Cr) who
=S (Sr) 17177 (éT) (Z (Coz) 0a’ +v) bo
=S (S2) TZ (Cr) Z (Cox) 0r + 372 (S1) T712Z (Cr) who
TYZ (Cox) Z (Cox) 0r + S (So) TY?Z (Co ) who + 0p (1)
S (So) 0 + Sx"? (So) T~2Z (Co.r) vbo + 08 (1)
= 3/ (80) ¥z (So) 0r + Sy ”2 (So) [Z : = Q12 (S0) Q3| (b © L) ¥ (S0)

where the third and fourth equalities hold by Assumption N.C.13, the final equality holds by
Assumptions 6.1 and 6.4 and the convergence holds by Assumption 6.3. Under Assumptions 6.2
and N.C.13(iii), £,(Sy) = %, by the same arguments as when S is known. Then, part (i) for
N27T(§T) holds using

T2 Nyr (Sr) = Sxa" (Sr) <T—1Z (Cr) y=5 (Sr) a0 — T72Sw,m, (Sr) Sht/” (Sr) Mur (Sr ))
(N.5)
=5, (Sr) (T‘lZ(AT)/yZ;lao — TSy, n, (Sr) S5 (éT) Nip (§ )) +op (1)
= £/ (80) (T2 (Co) y=2 a0 = T, (S0) Sy (S0) Nur (S0) + o (1)
= 3% (S0) (T7'Z (Cox) yE5 a0 — T™*Sx, v, (S0) Exy”? (S0) Nir (S0)) + 0 (1)
=502 (80) (T7'Z (Cox) (Z (Cor) 0a’ +v) 7 a0) + 0p (1)
(So)

27 (S[)) HCLOZU ap + op (]_) s

where the third equality follows from Assumption N.C.13(iii), the fourth by Assumption 6.4, the
fifth by part (i) for Ny 7(Sy) and the final equality holds by Assumption 6.1. Part (ii) holds by

part (i) and the continuous mapping theorem. [J

Proof of Theorem N.C.1. Parts (i) and (ii) of the theorem follow immediately from Lemma
N.C.3(ii). Part (iii) of the theorem is established as follows. Following the argument based on
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a mean-value expansion of the LRy statistic in the proof of Theorem 9 in Andrews, Moreira, and
Stock (2004) (see eq. (14.50)-(14.53)) with references to Lemma 9-(b) there replaced by references

to Lemma N.C.3, we have
~ 1 ~ ~ ~ \2 ~
LRr(Sr) = 5 (QMLT (Sr) -2 (MLT (S1) = Mo (Sr) /Mo (ST)>> os(1)  (N.6)
= M7y 7 (So) /Masr (So) + op (1)
= LMT(SQ> + op (1) s

where we used Assumption N.C.13(iii). O

N.C.6.2 Proof of Theorem N.C.2

We begin with the following lemma.

Lemma N.C.4. (i) Under Assumptions 6.1-6.4 and N.C.14, (i) (Ny7(S1)/T"2, Nyr(Sy)/TY?) 5
(om (So), o, (So)) and (i) (Myr(St) /T, Myar(St)/T, Mar(S)/T) = (o (So)n (So), o (So)
©ns (S0) s N, (So) ons (So))-

Proof of Lemma N.C.4. Part (i) of the lemma is established as follows:

T‘lZ(@T)/be :T_17 (GT) ( COT (9& +X77+U)b
777 (éT) Z (Cox)0d'by +T'Z (éT) by = X7 (So) fa'by,

using Assumptions 6.1, 6.3, N.C.14(iii) and 7(6’T)’X = 0. Hence, by Assumptions 6.1, 6.4 and
N.C.14(iii), we have

bo (N.7)
§T> 717 CT Z (Co T) 9@ bo + Z 1/2 (ST> 17 (CT)/ Ubo
A (CO T) (CO,T> Oa’ bg + 2N1/2 (SO) T-'Z (CO,T), Ubo + op (1)

(So) T
= 53" (So) £ (So) 0a'by + S5 (So) T™'Z (Co.z) wbo + 0 (1)
(So) X7 (S0) 0 (8 — Bo) +or(1).
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Similarly,

172Ny (S1) = S5 (Sr) (T—lz(@T)’yigl (Sr) a0 — 778y, y, (S1) S3t/? (1) N (Sr ))

=S5 (8) (177 (€0) vt TS (82) 557 (8) Vo (81)) e ()

= 53/ (80) (777 (Cour) 4%, ao — T~ v, (S0) Efvi/? (So) Nur (S0)) + oe (1
=37 (80) (T7'Z (Cox) yE5 a0 — T™2Sx, v, (S0) Exy’? (S0) Nir (S0)) + e (1
=5/ (80) (T7Z (Cor) <00T> ba’ + ) S aq)

— 2 (S0) i, (S0) % (So) o (So) + 0p (1)
— S (S0) T (S0) 0a'S5 ag — Sn? (S0) Eavi (S0) Tn’? (So) o (So) + 0p (1)
= PNy (So) —+ op 1) .

(
(
Part (ii) of the lemma follows from part (i) and Slutsky’s Theorem. [J

Proof of Theorem N.C.2. Parts (i)-(iii) of the theorem hold by Lemma N.C.4 and simple calcula-
tions. In the case of LMz (Sy), the convergence only holds if 3 is such that ¢ N, (So) # 0 because

©n,(So) appears in the denominator. [

N.D Additional Monte Carlo Simulations

We consider the performance of the identification-robust tests under serial correlation in the errors.
Specifically, we examine DGP (S.C.2)—(S.C.3) and model the error terms as u; = p,u¢—1 + v, and
€t = Pe€i—1+ ey, Where v, ; and v, are jointly normally distributed with mean zero and covariance
matrix 2, as in (S.C.4) with p € {0, 0.25, 0.5, 0.75} and p. = p, € {0.25, 0.5, 0.75}. We set the
significance level to 5% and number of Monte Carlo replications to 10,000. Table 2 and Figure
1 report the null rejection frequencies and size-adjusted power of the tests, respectively. Under
strong serial dependence (p. = p, = 0.75) all tests exhibit rejection rates that exceed the nominal
significance level. Specifically, LMT(gT) and C’LRT(gT) are a bit more oversized than LM and
C' LRy but similar to qLL-S. Under weak serial dependence (p. = p, = 0.25), the proposed tests
LMT(éT) and C’LRT(éT) are only slightly more oversized than their full sample counterparts,
LMyp and CLRy. Figure 1 shows that the size-adjusted power of the proposed tests is higher than

that of the existing tests, similar to the i.i.d. case.
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Finally, we consider a model with multiple instruments:
}/; = /BDt + Ug, (Nl)
where

b1 (Z14+ Zoy) + §IZ3,t e, t<|T/4]
Dy =405 (Z1 4+ Zoy + Zsy) + e, |T/4] +1 <t < [T/4] + [(1 —mo) T (N.2)
Os (214 + Zoy) + 0325y + e, |T/A] + (1 —m)T)+1<t<T,

Ziy ~iid. A (1,1) for i =1, 2, 3, and u; and e, are i.i.d. jointly normal with mean zero and

covariance
1
%, = { p] : (N.3)

with p € {0.25, 0.75}. Under the null hypothesis we set 6, = 0y = 03 = 0, = 03 = 0. Under the
alternative hypothesis we set 6, = 03 = dT~/? with dB {2, 4, 8}, 6, = 0 and 0, = 65 = 16//T.
We set 7y € {0.6, 0.8} and T" = 200.

Table 3 reports the null rejection frequencies. The ARy, ART(gT), Split-S, qLL-S, ave-S and
exp-S are severely undersized across all values of d and p. LM, LMT(QT), CLRr, CLRT(gT) lead
to quite accurate null rejection rates whereas Split-CLR displays null rejection rates substantially
beyond the nominal level. Figure 2 plots the power functions. LMp(Sy) and CLR7(Sy) are the
most powerful, followed by ART(gT) and then by the full sample counterparts of these tests. qLL-S
displays the lowest power across all configurations. The power gains of LMT(gT) and C’LRT(QT)

are substantial across all configurations.
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Table 2: Finite-Sample Null Rejection Frequencies of Tests

p =0.50 Pe = pu = 0.25 Pe = pu = 0.50 pPe = py = 0.75
T=200,17=08 d=10 d=16 d=24 d=10 d=16 d=24 d=10 d=16 d=24
LMy 0.073  0.073  0.073  0.089  0.089  0.089  0.158 0.158  0.158
CLRr 0.079  0.077  0.076  0.096  0.094 0.093 0.179 0.169 0.166
LMT(gT) 0.086  0.081  0.078 0.118 0.107 0.101  0.204 0.185  0.176
C’LRT(gT) 0.088 0.082 0.078 0.126  0.108 0.101 0.214 0.191  0.179
split — S 0.054  0.055  0.055  0.071  0.074  0.076  0.139  0.148  0.155
split — CLR 0.146  0.149  0.150  0.174  0.18  0.187 0.278  0.291  0.300
qqL — S 0.028  0.028 0.028 0.047 0.052 0.052 0.191  0.198  0.199
ave — S 0.047  0.046  0.047 0.068 0.071  0.070 0.153 0.161 0.171
exp — S 0.019 0.020 0.020 0.034 0.034 0.034 0.109 0.109 o0.107

p = 0.50 Pe = pu = 0.25 Pe = pu = 0.50 Pe = pu = 0.75
T=400,17=06 d=10 d=16 d=24 d=10 d=16 d=24 d=10 d=16 d=24
LMr 0.061  0.061  0.061  0.074 0.074 0.074 0.124 0.124  0.124
CLRr 0.070  0.067  0.067  0.088 0.083 0.083 0.153 0.142  0.136
LMT(gT) 0.076  0.068  0.068  0.109  0.091 0.091 0.174 0.158  0.142
CLRT(§T) 0.081  0.070  0.069  0.106 0.093 0.093 0.190 0.166  0.145
split — S 0.046  0.044 0.043  0.060  0.059 0.059 0.113 0.113 0.113
split — CLR 0.133 0.134 0.134  0.150  0.154  0.154  0.234  0.240 0.243
qqL — S 0.042  0.043 0.039 0.042 0.063 0.063 0.169 0.177  0.180
ave — S 0.048  0.050  0.048 0.048 0.073 0.068 0.130 0.133  0.137
exp — S 0.0243 0.023 0.024 0.023 0.034 0.037 0.098 0.098  0.095
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Table 3: Finite-Sample Null Rejection Frequencies of Tests for the model (N.1)-(N.2)

p =025 p = 0.50 p=0.75
T=200,m=06 d=2 d=4 d=8 d=2 d=4 d=8 d=2 d=4 d=38
ARy 0.000 0.000 0.001 0.008 0.000 0.001 0.001 0.000 0.001
LMy 0.063 0.062 0.061 0.059 0.064 0.062 0.060 0.069 0.060
CLRy 0.070 0.070 0.056 0.070 0.073 0.068 0.066 0.076 0.067
AR (S7) 0.002 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001
LM (Sy) 0.074 0.067 0.072 0.067 0.064 0.073 0.064 0.072 0.070
CLRr(S7) 0.075 0.068 0.071 0.067 0.073 0.073 0.065 0.072 0.070
split — S 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.015 0.016
split — CLR 0.0906 0.090 0.086 0.094 0.092 0.082 0.091 0.094 0.087
qql — S 0.008 0.009 0.008 0.008 0.009 0.010 0.010 0.009 0.009
ave — S 0.020 0.025 0.023 0.020 0.024 0.023 0.021 0.027 0.023
exp— S 0.004 0.034 0.005 0.005 0.004 0.004 0.005 0.004 0.004
p =025 p = 0.50 p=0.75

T=200,m=08 d=2 d=4 d=8 d=2 d=4 d=8 d=2 d=4 d=
ARy 0.000 0.000 0.000 0.001 0.004 0.001 0.001 0.000 0.001
LMy 0.061 0.063 0.058 0.056 0.066 0.059 0.060 0.066 0.059
CLRy 0.048 0.050 0.062 0.059 0.070 0.061 0.063 0.068 0.062
AR (S7) 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.004 0.002
LM (St) 0.064 0.061 0.065 0.067 0.072 0.067 0.070 0.079 0.055
CLRr(S7) 0.064 0.062 0.065 0.067 0.073 0.068 0.069 0.079 0.054
split — S 0.020 0.017 0.021 0.022 0.019 0.021 0.018 0.018 0.020
split — CLR 0.102 0.098 0.086 0.103 0.100 0.098 0.103 0.108 0.098
qql — S 0.009 0.074 0.009 0.010 0.008 0.011 0.010 0.008 0.009
ave — S 0.020 0.022 0.018 0.023 0.022 0019 0.019 0.025 0.018
exp — S 0.004 0.026 0.004 0.005 0.003 0.005 0.005 0.005 0.004
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Size-Adjusted Power with Serial Correlation
p=0.25 p=0.75

Figure 1: Size-adjusted power of identification robust tests for T' = 400 and w9 = 0.6 and p = 0.25.

Size-Adjusted Power for Identification-Robust Tests
7o = 0.60 m = 0.80

® CLR/(Sy)
LMy(Sr)

A ARr(Sr)

m CLRy (AMS)
LMy (AMS)

w AR (AMS)

*gLL—S

0.4

0.4

Figure 2: Size-adjusted power of identification robust tests for T = 200 for model in (N.1)-in(N.2).
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