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Abstract
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literatures. The high-frequency event study method regresses changes in an outcome variable on a
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that, contrary to popular belief, the narrow size of the window alone is not sufficient for identification.
Rather, the population regression coefficient identifies a causal estimand when (i) the effect of the
policy shock on the outcome does not depend on the other variables (separability) and (ii) the surprise
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standard linear regression estimator is robust to general forms of nonlinearity. We provide a simple
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high-frequency event studies

1 Introduction

Randomized controlled experiments offer an ideal framework for identifying causal effects. How-

ever, in macroeconomics and finance controlled experiments cannot be run in practice. Instead,

economists often search for pseudo-experiments, that is situations in which one can extract plau-

sible exogenous variation in policy and use this variation to estimate the effect of the policy on

some economic outcome [cf. Nakamura and Steinsson (2018b)]. Recently, there has been a surge

of interest in high-frequency event study regressions for estimating causal effects in applied work

in macroeconomics, financial economics and political economy, among others. The idea behind

the event study approach based on high-frequency data is that in a narrow time window around a

policy announcement or data release [e.g., a Federal Open Market Committee (FOMC) announce-

ment, a U.S. employment report released by the Bureau of Labor Statistics, a GDP release report

by the Bureau of Economic Analysis, etc.], one can extract the unexpected change or surprise in

the policy and regress the changes in an outcome variable within the narrow window on the policy

surprises to estimate the causal effect of the policy.

Though this approach has become central to empirical work, there are no corresponding

theoretical results formally establishing identification of causal effects via this method, and the

informal identification arguments used by different authors do not always coincide. Recent infor-

mal discussions include Bauer and Swanson (2023a) and Nakamura and Steinsson (2018a), who

examine the exogeneity and relevance of monetary policy surprises typically constructed around

FOMC announcements for identifying the macroeconomic effects of monetary policy shocks. On

the one hand, Nakamura and Steinsson (2018a) express concern about confounding factors—such

as multiple overlapping shocks or information effects about fundamentals—that may influence both

the policy variable and the outcome even within very short time windows. On the other hand,

Bauer and Swanson (2023a) argue that the potential omitted variable bias generated by such con-

founders can be mitigated by appropriately controlling for economic news released prior to the

FOMC announcement. These discussions have generated an ongoing debate in both empirical

and theoretical macroeconomics. Moreover, as high-frequency identification becomes increasingly

popular in other areas of economics and finance, a wide array of event windows—often longer than

a day or even a week, and sometimes extending up to one month—are used due to researchers’

choices, institutional features, or data constraints. This naturally raises the question of under what

conditions such studies recover meaningful causal effects. It is therefore important to formalize the

high-frequency identification framework employed in event studies across different fields.

In this paper we establish precise conditions for nonparametric identification of causal effects
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by high-frequency event study regressions. We show that, contrary to popular belief, the narrow

size of the time window the event study regression is run over is not sufficient for the identification

of causal effects. Rather, the population regression coefficient identifies a causal estimand when (i)

the effect of the policy shock on the outcome does not depend on the other variables (separability)

and (ii) the surprise component of the news or event dominates all other variables that are present

in the event window (relative exogeneity). Under these conditions, we establish the causal mean-

ing of the event study estimand corresponding to the regression coefficient and the consistency

and asymptotic normality of the event study regression estimator. Notably, this standard linear

regression estimator is robust to general forms of nonlinearity.

Separability holds, for example, when the model is linear, which is often assumed in applied

work. The key condition deserving of careful scrutiny in practice, relative exogeneity, holds when

the policy shock has infinite variance while the other variables have finite variance within the

event window. More precisely, relative exogeneity holds when the ratio between the variance of

the policy shock and that of the other variables (i.e., background noise) is infinite in the event

window. Thus, relative exogeneity also holds when the variance of the policy shock is finite while

the variance of the background noise is vanishing. The latter variables correspond to factors that

are not specific to the announcement and may also be present in non-announcement periods. In

contrast, the policy shock occurs in a lumpy manner as the unexpected part of the news quickly

spreads among economic agents. It is this lumpy manner in which a disproportionate amount of

policy news is revealed that can justify relative exogeneity. Even when the policy shock does not

have infinite variance, which can be difficult to verify in practice, we show that the event study

estimator has low bias for a weighted average of causal effects when the variance of the policy

shock is large enough relative to that of other variables in the window. In this sense, relative

exogeneity can be seen as an idealized limiting case that can serve as a good approximation to

the practically-relevant case of a very large variance ratio for the policy shock relative to the other

variables in the window.

Relative exogeneity relates to the size of the event window. As the size of the window expands,

it becomes less likely that the policy shock dominates all other variables within the window,

making it more likely that relative exogeneity provides a poor approximation. Relative exogeneity

can also fail if there is information leakage about the policy news or some market anticipation

of the policy change. Information leakage or frictions result in a reduction in the variance of

the policy shock relative to the other variables in the window. The finance literature has recently

documented strong evidence of information leakage, informal communication and informed trading
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around policy announcements [see, e.g., Cieslak, Morse, and Vissing-Jorgensen (2019), Cieslak and

Schrimpf (2019) and Lucca and Moench (2015)]. However, if the extent of the information leakage

is small, then it will lead only to partial market anticipation and will not prevent the news from

coming out in a lumpy manner at the release time, thereby allowing relative exogeneity to hold.

As discussed in the literature, omitted variables and simultaneity are threats to identification

even when the event window is short. For example, in the case of FOMC announcements, the

policy variable—measured as the change in the price of futures contracts based on the federal

funds rate around the announcement—may respond to economic, market-wide, private-sector, or

geopolitical news occurring within the announcement window, which may also affect the outcome

variable (e.g., asset prices). When separability and relative exogeneity hold we show that (i) any

reverse causality from the outcome variable to the policy variable does not generate bias since the

reverse causality is dominated by the policy shock and (ii) common unobserved factors correlated

with the policy variable do not generate omitted variables bias since they are also dominated by

the policy shock. Since the event study method regresses changes in an outcome on the unexpected

changes in a policy variable at dates in the policy sample, the event study estimand is equal to the

corresponding population regression coefficient. We establish that the latter identifies a weighted

average of standardized marginal causal effects (MCEs) of the policy on the outcome. When

relative exogeneity is violated, we show that the event study estimand can be decomposed into the

same weighted average of MCEs and a selection bias factor. The magnitude of the selection bias

factor is decreasing in the variance of the policy shock so that even when relative exogeneity fails,

the event study estimator will not have substantial bias so long as the variance of the policy shock

is relatively large.

It is difficult to use statistical tests to verify relative exogeneity. Existing tests for (in)finite

variance [e.g., Trapani (2016)] require a large sample of the corresponding random variable to be

observed or residuals from a correctly-specified regression. These requirements are not satisfied in

the current context. In addition, the OLS event study estimator can still perform well when relative

exogeneity holds approximately. A test for infinite variance of the policy shocks alone, even when

feasible, is unable to detect when relative exogeneity provides a good enough approximation for

the event study estimator to perform well in practice. Instead of trying to test for infinite variance,

we introduce a simple empirical procedure that can be used for a sensitivity analysis to diagnose

whether relative exogeneity is “close enough” to holding that the OLS event study estimator should

be expected to have mean-squared error at least as small as that of an oracle estimator in a

corresponding regression with no endogeneity. This sensitivity analysis uses information available
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in the relevant control sample, e.g., days when there is no FOMC meeting, in order to obtain a

proxy for the variance of the variables that are not specific to the policy within the event window.

The procedure can accommodate nonlinearities, heteroskedasticity and serial correlation. This

procedure requires no additional data relative to that already used by existing high-frequency

event studies and can thus be applied easily. We introduce our procedure in the context of an

empirical example aimed at assessing the causal effects of monetary policy news on real interest

rates. The empirical results show that relative exogeneity is likely to approximately hold in the

analysis of Nakamura and Steinsson (2018a) based on a 30-minute or 1-day window for the outcome

and policy variable.

Under separability and relative exogeneity, we establish the super-consistency of the OLS

event study estimator for a weighted average of standardized MCEs, with a rate of convergence

equal to the square root of the sample size multiplied by the standard deviation of the policy

variable. Asymptotic bias arises when relative exogeneity is not “strong enough”—that is, when

the standard deviation of the policy variable diverges at the same rate or more slowly than the

square root of the sample size. Nonetheless, we show that under the “sharp null” hypothesis of zero

MCEs, it is possible to consistently estimate the asymptotic bias and develop inference refinements

based on bias correction, even when relative exogeneity is not “strong enough”.

Since the bias vanishes only in the limit under relative exogeneity, we consider methods to

quantify how this bias can affect the worst-case properties of the estimator by deriving a bound on

the worst-case bias. In particular, we use this bound to study the worst-case asymptotic coverage

of standard confidence intervals based on the OLS event study estimator. We then propose a

bias-aware critical value that accounts for the estimator’s potential asymptotic bias in addition to

its variance, by adjusting the standard normal critical value upward to compensate for the bias.

The resulting bias-aware inference does not rely on the imposition of the “sharp null” hypothesis.

We use our identification framework to shed light on the recent debate in the literature on

some puzzling event study regression results involving the causal effect of monetary policy on Blue

Chip forecasts of real GDP [cf. Bauer and Swanson (2023a) and Nakamura and Steinsson (2018a)].

We show that the estimates with signs opposite to the predictions from standard macroeconomic

models likely arise because relative exogeneity fails in this type of regression. Since the Blue

Chip forecast revision is constructed as a one-month change while the monetary policy surprise

is constructed as a 30-minute change, it is highly unlikely that the variance of the policy shocks

dominates the variance of the other variables that determine the Blue Chip forecast: the latter

aggregate news over a much longer time frame. Thus, any endogeneity of the policy surprise is not
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likely to be drowned out by the variation in the policy shock.

Controlling for macroeconomic and financial news that predates the FOMC announcement—so-

called orthogonalized surprises, as proposed by Bauer and Swanson’s (2023a)—can help mitigate

the omitted variables bias problem. However, it is rarely clear that any particular orthogonaliza-

tion has fully corrected for omitted variables bias. In contrast, our results are formal and based

on bias-aware inference methods which do not require any particular orthogonalization to rid the

estimator of omitted variables bias. Our proposed inference methods therefore protect against

a researcher searching across alternative control specifications. This feature of our inference ap-

proach is crucial to the credibility of inference in event study regressions: repeatedly searching

for controls to include in high-frequency regressions can give rise to p-hacking, a concern that has

recently attracted significant attention in econometrics. In addition, our results imply that when

relative exogeneity holds, high-frequency event-study regressions are robust to such practices.

Several authors have proposed different identification channels to justify high-frequency event

studies in linear models, often tailored to specific applications. Some acknowledge that high-

frequency event study regressions are valid when there are no omitted variables and no simultane-

ity. However, as discussed above, these are strong assumptions that are unlikely to hold in many

settings. Rigobon and Sack (2004) show that the bias of the estimator disappears when a special

case of relative exogeneity holds in a stylized linear model. Although this early result is insightful

and consistent with our identification logic, it does not establish identification even in the simple

linear case, let alone the more realistic nonlinear framework we study here. Further, it has of-

fered little guidance to the empirical literature—particularly in the recent debate about the “Fed

information effect” in Blue Chip forecast regressions. In addition to providing new general and

formal identification results in this setting, we further contribute to the application of event study

regressions by providing new sensitivity analyses and inference methods. These new methods have

enabled us to shed further light on the debate on the ”Fed information effect”, for example.

Before proceeding with the analysis, it is worth clarifying the estimation approach we analyze

in relation to other related approaches. We analyze the widely popular event study estimand

in order to determine the causal effects under study in empirical practice when estimating high-

frequency event study regressions. Under the conditions we provide, the high-frequency event

study estimand identifies a weighted average of MCEs of the policy variable rather than those

of exogenous shocks, which are more customary in impulse response analysis of structural vector

autoregressions (SVARs). Our approach is thus to elucidate which causal effects are being analyzed

in high-frequency event study regressions, not to take a stand on which type of MCEs are more
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or less policy-relevant. However, we note that there are many applications for which identifying

the causal effects of the policy variable is of interest. These include, for example, estimating the

slope of demand functions, price elasticities, and response or reaction coefficients—such as how

asset prices respond to monetary policy. High-frequency policy surprises used in event studies are

also employed as instruments for the policy shock in SVAR contexts to identify impulse responses.

This approach corresponds to a different estimand and identified causal effect, which are not the

focus of the present paper.

The rest of the paper is structured as follows. Section 2 reviews the high-frequency event

study literature, presents several empirical examples, introduces our identification results, and

discusses robustness to information leakage. Section 3 establishes the asymptotic properties of

the OLS event study estimator. Section 4 derives bounds on the asymptotic bias, examines the

worst-case asymptotic coverage properties of confidence intervals based on the OLS event study

estimator, and proposes bias-aware inference. Section 5 develops a sensitivity analysis to assess

the identification conditions, applies both the sensitivity analysis and our inference results to an

empirical example, and discusses identification issues in event study regressions involving Blue

Chip forecasts. Section 6 concludes.

2 Identification in High-Frequency Event Studies

We begin with a brief review of the event study methodology in empirical work in Section 2.1. We

then introduce the potential outcomes framework and provide formal conditions for nonparametric

identification of causal effects via the event study regressions in Section 2.2. We present the

identification results in Section 2.3 and relate them to the literature in Section 2.4. Robustness to

information leakage is discussed in Section 2.5.

2.1 Event Study Design

Consider a system of dynamic simultaneous equations that relate an outcome variable Yt and a

(measure of) policy action Dt to each other:

Yt = βDt + X ′
tθ + Z ′

tγ1 + ut, (2.1)

Dt = αYt + X ′
tϕ + Z ′

tγ2 + et,
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where Xt represents observed macroeconomic variables that might influence both the outcome and

policy variable, Zt represents unobserved macroeconomic factors that also might affect the outcome

and policy variable and ut and et are serially uncorrelated shocks that are mutually uncorrelated.

The parameters β and α are scalars while θ, ϕ, γ1 and γ2 are finite-dimensional vectors. Xt is a

vector that could include lags of Yt and Dt. The parameter of interest is β which captures the

response of the outcome variable to the policy action. The policy variable is endogenous, i.e., Dt

reacts to Yt. Further, since Zt is not observed there is an omitted variables problem as Zt and Dt

may be correlated. Hence, the identification of β requires one to overcome both simultaneity and

an omitted variables problem.

The event study approach based on high-frequency observations (e.g., weekly, daily and in-

tradaily frequencies) of Yt and Dt can be used to address these identification issues. The idea is

that in a narrow time window around a policy announcement or data release (e.g., FOMC an-

nouncement, U.S. employment report, GDP data release, etc.) one can extract the unexpected

change (or surprise) in the policy action to form Dt. The sample consists of observations of Yt

and Dt at the dates corresponding to the relevant policy announcement, data release or event. We

call this sample the policy sample and denote it by P. Under the identification conditions to be

discussed below, a simple OLS regression of Yt on Dt over the policy sample (i.e, over all t ∈ P)
recovers causal effects of the policy action on the outcome.

We now present a few examples that use the model (2.1).

Example 1. [FOMC announcements: Bauer and Swanson (2023a, 2023b), Kuttner (2001), Naka-

mura and Steinsson (2018a) and Rigobon and Sack (2004)] Several authors investigated the impact

of monetary policy on the real economy using the event study approach.1 Kuttner (2001) explained

how to use Federal funds futures contracts to separate changes in the Fed funds rate (i.e., the short-

term interest rate) into anticipated and unanticipated monetary policy actions, the latter being

Dt. In Kuttner (2001) Dt is the 1-day change in the spot-month Federal funds future rate and Yt

represents a yield on a zero-coupon Treasury bill (or bond) at some maturity or a change in an asset

price. The policy sample P collects the dates of the FOMC announcements and the dates when

the Fed funds target rate was changed (if that did not coincide with an FOMC announcement).

This analysis was further elaborated by, among others, Nakamura and Steinsson (2018a) who

1See Ai and Bansal (2018), Cochrane and Piazzesi (2002), Cook and Hahn (1989), Gürkaynak, Sack, and
Swanson (2005), Lucca and Moench (2015), Bernile, Hu, and Tang (2016), Hu, Pan, Wang, and Zhu (2022),
Caballero and Simsek (2022, 2023), Cieslak, Morse, and Vissing-Jorgensen (2019), Cieslak and McMahon (2024),
Cieslak and Schrimpf (2019), Hansen, McMahon, and Prat (2018), Hanson and Stein (2015), Jarociński and Karadi
(2020), Michelacci and Paciello (2020), Neuhierl and Weber (2019) and Swanson (2021).
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used intradaily data and looked at a 30-minute window surrounding each FOMC announcement.

The authors considered 30-minute changes in the zero-coupon yields and instantaneous forward

rates constructed using Treasury Inflation Protected Security data at different maturities and

changes in survey expectations on output and inflation, as the outcome variable Yt. To construct

the monetary policy news Dt the authors extracted the first principal component of the unan-

ticipated change over 30-minute windows of five interest rates chosen among the Federal funds

futures and eurodollar futures. The latter provide a direct measure of the unexpected component

of the policy change. They estimated the causal effect of Dt on Yt by running an event study OLS

regression of Yt on Dt for dates in the policy sample:

Yt = βDt + ũt, t ∈ P, (2.2)

where ũt is an error term. The control variables Xt that could be included in this analysis are

monthly releases of major macroeconomic variables or other low-frequency variables. For example,

the consumer price index (CPI), nonfarm payrolls, producer price index (PPI), retail sales, etc.

However, in practice event study regressions do not typically involve control variables.2

It is not obvious how to justify the exclusion of either the observed or unobserved factors Xt

and Zt from (2.2). Asset prices likely react to Xt and Zt even within the event window, no matter

how small the window is. If not, a recursive argument soon would contradict asset pricing theory.

Think about splitting the regular trading hours for the U.S. stock market, 9:30am-4:00pm, into

non-overlapping small time windows of, for example, 30 minutes. If one assumes that asset prices

do not respond to observed or unobserved macroeconomic factors over such a tight window, then

applying this argument recursively to each trading day implies that asset prices never respond to

such factors. That is, the choice of a very tight window bracketing a policy announcement is not

a sufficient condition for precluding omitted variables bias from the regression (2.2) due to the

correlation of Dt with Xt and/or Zt. We will show that under our identification conditions, which

do not refer explicitly to the size of the window, the OLS event study regression (2.2) that excludes

both the observed and unobserved factors Xt and Zt can still recover causal effects of interest.

The recent literature documented evidence pointing to simultaneous determination of Dt and

Yt in FOMC announcement applications. See Section 2.4 for details. We will also show that under

our identification conditions, the OLS event study regression (2.2) recovers causal effects of interest

in the presence of simultaneity.

2See Bauer and Swanson (2023a) and Rigobon and Sack (2003) for exceptions.
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Example 2. [Macroeconomic announcements: Faust, Rogers, Wang, and Wright (2007), Gürkay-

naky, Kısacıkoçlu, and Wright (2020), Gürkaynak, Sack, and Swanson (2005) and Känzig (2021;

2025)] Several works studied the effects of macroeconomic announcements on changes in asset prices

and exchange rates in a narrow window around news releases such as the U.S. employment report,

U.S. GDP releases, Census reports on retail sales, and CPI and PPI data releases. Gürkaynak,

Sack, and Swanson (2005) also estimated the event study regression (2.2) but with a vector-valued

Dt and coefficient β, where Yt is the log-return on an asset or a change in a bond yield and Dt is a

vector of news, or unexpected, components of the considered macroeconomic announcements and

ut is a serially uncorrelated error term.3 Unlike for the FOMC announcements, there are no traded

instruments from which to infer market expectations for macroeconomic announcements. Thus,

in order to identify surprise announcements the literature relies instead on economists’ forecasts

from surveys: each element of Dt is computed as the difference between the actual macroeconomic

data release and its market expectation obtained from the most recent survey. These surveys are

the Blue Chip Economic Indicators Survey or those run by Action Economics, or alternatively by

Bloomberg. Thus, Dt captures the surprise component of each data release.

Reverse causality from Yt to Dt is ruled out by the authors’ identification argument that in a

20-minute window around news releases, changes in asset prices do not cause news. For example,

the employment report that is released on the first Friday of each month pertains to the labor mar-

ket data in the previous month. Thus, by construction changes in asset prices within the window

affect neither the news release nor the survey expectations since the latter are collected earlier.4

The exclusion of the unobserved factors Zt that can affect both asset prices and the unex-

pected component of the news is easier to justify than in the case of FOMC announcements. Since

Dt here involves economic data releases about the previous month and survey expectations are

collected in the days preceding the event window, correlation between Zt and Dt seems unlikely.

However, economic and business news and other events that occur in the hours or days before

the macroeconomic data release may require time to incorporate into financial markets and may

be subject to uncertainty with respect to how they are interpreted by other market participants.

Therefore, Zt may contain information about other news and events (e.g., company-specific news)

that occur before the announcement window and therefore influence survey expectations, and in

turn Dt, generating correlation between Zt and Dt. This issue is independent from the size of the

window used in the event study regression.

3Actually, Gürkaynak, Sack, and Swanson (2005) considered a vector of asset prices Yt. But since the cross-
sectional variation is not exploited for identification we simply take Yt to be a scalar.

4The amount of time between when the survey is given and the release of the news is typically less than a week.
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Example 3. [Political and war announcements: Acemoglu, Hassan, and Tahoun (2018), Dube,

Kaplan, and Naidu (2011), Garred, Stickland, and Warrinnier (2023) and Guidolin and La Ferrara

(2007)]. We briefly note that the high-frequency event study methodology is also applied in the

field of political economy. Guidolin and La Ferrara (2007) provided evidence that violent conflict

may be perceived by investors as beneficial to incumbent firms. They focused on the Angolan civil

war and its effects on the industry of diamond production. They exploited the sudden ceasefire of

the civil war after the announcement of the death of the rebels’ leader, Jonas Savimbi, on February

22, 2002, showing that international stock markets perceived Savimbi’s death as bad news for the

companies in the diamond industry operating in Angola.

2.2 Nonparametric Event Study Design and Identification Conditions

Although we discussed examples in the high-frequency event study literature in the context of the

linear model (2.1) in the previous section, our identification results for event study regressions

actually apply to a much more general nonparametric class of simultaneous equations models.5

Unlike the linear model (2.1), this more general class of models allows for general forms of non-

linear relationships between the variables in the system. Specifically, let Zt denote an unobserved

random vector and ut and et denote scalar-valued random shocks to the outcome Yt and policy Dt,

respectively. When the observation belongs to the policy sample P, the outcome variable Yt is an

unknown nonparametric function of the policy variable Dt, Zt, ut and the time index t while the

policy variable Dt is simultaneously an unknown nonparametric function of Yt, Zt, et and t:

Yt = φY (Dt, Zt, ut, t) and Dt = φD (Yt, Zt, et, t) , (2.3)

for all t ∈ P. The unknown structural functions φY and φD may be nonlinear in their arguments,

allow for simultaneous causality of Yt and Dt and, since Zt is unobserved, allow for omitted variables

in the system determining Yt and Dt.

In Example 1, Dt depends on the Federal Reserve’s best estimates of the strength of the

economy in the near-term and of potential inflationary pressures. Those estimates will be influenced

by the macroeconomic factors Zt and by changes in asset prices Yt. The monetary policy shock et

represents shifts in the preferences of individual FOMC members or in the manner in which their

5To simplify the exposition, we present the identification conditions and results for the case when there are
no control or pre-treatment variables Xt included in the design since they do not play an important role for the
identification analysis and are not typically included in the high-frequency event study regressions, in which case
they can be considered elements of Zt.
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views are aggregated. For example, it could include changes to policy makers’ goals and beliefs

about the economy, political factors, and the temporary pursuit of objectives other than changes

in the outcomes of interest (e.g., targeting inflation rather than unemployment or exchange rates).

The shock to the outcome equation, ut, captures any change in Yt not attributable to the common

macroeconomic factors Zt and policy action, Dt. In Example 1, ut is referred to as the asset price

shock and is primarily driven by shifts in investors’ risk preferences.

To establish the identification of causal effects we impose some structure on the system, in

particular, a partial additive separability of the structural function for the outcome variable.

Assumption 1. (Structural form separability) For all t ∈ P, Yt = φY (Dt, Zt, ut, t) = φY,D (Dt, t)+
φY,u (Zt, ut, t) for some functions φY , φY,D and φY,u.

If some smoothness on φY,D (·, ·) is assumed, then Assumption 1 implies the following restric-

tions on partial effects:

∂2Yt

∂Dt∂ut

= 0 and
∂2Yt

∂Dt∂Zt

= 0.

This means that the marginal effect of the policy on the outcome variable does not depend on the

shock to the outcome variable or the unobserved factors Zt. Without this additional smoothness,

Assumption 1 implies that the effect of the policy on the outcome does not vary with Zt or ut.

Next, we assume that the simultaneous structural equations imply a reduced-form for Dt that

is analogously additively separable so that the effect of et on Dt is not influenced by Zt or ut.

Assumption 2. (Reduced-form separability) For all t ∈ P, Dt = gD,e (et, t) + gD,u (Zt, ut, t) for

some functions gD,e and gD,u.

Assumption 2 is implied by Assumption 1, separability in φD (Yt, Zt, et, t) across (Yt, Zt) and
et and standard invertibility requirements on the system of equations. This holds trivially if the

true data-generating process is a system of linear simultaneous equations, like (2.1) under standard

rank conditions. In structural VARs, invertibility is a standard condition that is imposed to obtain

the reduced-form shocks from the structural shocks [see Plagborg-Møller (2019) for a discussion

about invertibility of impulse responses]. We directly impose Assumption 2 on the reduced-form

rather than imposing invertibility requirements to avoid introducing further notation for defining

the partial inverse of a multivariate function. Assumptions 1-2 are satisfied in the event study

applications considered in empirical work since the specification for the outcome and treatment

variables is typically a simultaneous linear equations model as in (2.1).
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Assumption 3. (Structural shocks) For all t ∈ P, ut and et have zero mean and no serial correlation,

are mutually independent, and are each independent from Zt.

Under Assumption 3, ut and et are interpreted as structural shocks, i.e., primitive, unantici-

pated impulses that are unforecastable and mutually uncorrelated.

In the assumed specification (2.3), Yt and Dt are determined simultaneously and so are en-

dogenous. Often endogeneity is overcome by using instrumental variables. This leads to the

identification of the local average treatment effect via the instrumental variables estimand [cf. Im-

bens and Angrist (1994)]. In contrast, the event study approach can identify causal effects in the

presence of endogeneity without the need to find instrumental variables.6 The key idea is that in

a narrow time window around a particular event (or change in policy) the variation in the policy

variable is dominated by the variation in the policy shock. The effect of the outcome variable on

the policy variable is still present within the time window but it is negligible relative to the effect

of the policy shock. Similarly, the effect of the omitted variables Zt on Dt is negligible relative to

that of et. This idea is formalized by the following assumption.

Assumption 4. (Relative exogeneity) For all t ∈ P,

(i) σ2
e,t = Var(et)→∞,

(ii) Var(gD,e (et, t)) is increasing in σ2
e,t,

(iii) E(φY,u (Zt, ut, t)2) and E(gD,u (Zt, ut, t)2) are finite.

Assumption 4 requires that within the event window the policy shock has infinite variance

(condition (i,ii)) while the other variables have finite variance (condition (iii)) and so the policy

shock dominates the changes in the policy variable in the window. Assumption 4(iii) is implied by

a correspondence between the boundness of the second moments of et, Zt and ut with those of Dt

and Yt. This easily holds for (2.1) since the second moments of Yt and Dt depend on the second

moments of et, Zt and ut and on the moments of their products. Altogether, Assumption 4 implies

that at periods immediately surrounding a policy announcement (i.e., t ∈ P) the policy shock et

dominates the other shock ut and the omitted factors Zt. The latter involve shocks and factors that

are not related to the announcement and are also present in non-announcement periods. Hence, it

is reasonable to expect these variables to have finite variance. In contrast, the policy news shock

6It is well-known that it is hard to find valid instruments in macroeconomics applications. Considering Example
1, it is difficult to find any instrument that would affect asset price returns (Yt) without changing short-term interest
rates (Dt) as any variable related to the macroeconomic outlook would not satisfy this criterion. Neither would
variables related to corporate revenues and profits since they would likely contain information about the economic
outlook and be correlated with interest rate changes.
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is much more pronounced in the announcement window and occurs in a lumpy manner as it is

completely unexpected. Consequently, the market reacts leading to realized volatility and trading

volume to significantly decline before the announcement and then jump at the announcement [see,

e.g., Lucca and Moench (2015) and Hu, Pan, Wang, and Zhu (2022)]. It is this lumpy manner

in which a disproportionate amount of policy news is revealed that can make the policy variable

Dt relatively exogenous. When this occurs we show that within the event window: (i) the reverse

causality problem disappears (changes in the outcome variable do not affect changes in the policy

variable since the latter are entirely driven by the policy shock);7 (ii) the common unobserved

factors Zt do not generate omitted variables bias. Note that the endogeneity problem is overcome

only in the policy sample P. In the control sample C, defined as the collection of all t such that

t /∈ P (e.g., days with no FOMC announcement), the endogeneity remains.

Based on Assumption 4, we establish our identification results by taking the limits as

σ2
e,t →∞, (2.4)

and refer to this limiting case as relative exogeneity.8 The condition (2.4) makes clear one point

that has been overlooked by the empirical literature. Namely, it requires that the “large” variance

condition for the policy shock has to hold for all t ∈ P. For example, suppose that it is satisfied only

for a few announcements in the policy sample. Since the variance cannot be negative, an estimate

of the average variance computed in the policy sample could still be very large. This could be

misleadingly interpreted as support for relative exogeneity. However, the endogeneity in most of

the policy sample would not be overcome and relative exogeneity would fail. Hence, verifying that

the sample variance of Dt is large does not allow one to conclude that relative exogeneity holds.

2.2.1 Potential Outcomes Framework

To conduct our identification analysis, we introduce the relevant potential outcomes framework,

which is useful for determining nonparametric conditions under which the OLS event study esti-

7The same conclusion holds when observable factors are included in the analysis since these are typically low-
frequency variables that are dominated by the policy shock et.

8More precisely, relative exogeneity holds when the ratios between the variance of the policy shock and the
variances of the other variables in the event window diverge. Thus, one may instead frame relative exogeneity as
the condition for which the variance of the policy shock is finite and the variance of the background noise vanishes in
the event window in analogy with a continuous time jump-diffusion model being sampled at high frequency, where
the diffusion component corresponds to background noise and the jump component corresponds to the policy shock.
See, e.g., Bandi and Nguyen (2003). We show that the same identification results hold under this latter condition
in Appendix B.
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mands have a causal interpretation. We define causal effects using the notion of potential outcomes

introduced by Rubin (1974) and extended to time series settings by Angrist and Kuersteiner (2011)

and Rambachan and Shephard (2021). Potential outcomes are defined as the counterfactuals of Yt

that would arise in response to a hypothetical value of the policy variable Dt.

Definition 1. The potential outcome, Yt (d), is defined as the value taken by Yt if Dt = d.

We assume that d ∈ D for an appropriate set D. A potential outcome Yt (d) describes

which value the outcome would have taken at time t under treatment value d. The definition

implies that the potential outcome Yt (d) does not depend on future treatments. Rambachan and

Shephard (2021) described this property as “non-anticipating potential outcomes”. The definition

also implies that the potential outcome Yt (d) does not depend on past treatments (unless they are

elements of Zt). This is realistic in the high-frequency event study setting for two reasons. First, Yt

typically measures a change in an asset price or a survey forecast within a narrow window around

a policy announcement. Thus, market efficiency or rational expectations, respectively, imply that

market participants or professional forecasters use all public information available at the start of

the window and so Yt is constructed by conditioning on that information. Second, for t ∈ P the

latest past treatment is Dt−1 ({t− 1} ∈ C) which captures the surprise change in a policy within

a 30-minute window that does not involve any policy announcement and so the change is very

small or equal zero. The potential outcome should not be confused with the outcome Yt = Yt (Dt).
Finally, note that in terms of the structural function in (2.3), Yt(d) = φY (d , Zt , ut , t).

The notation Yt (d) focuses on the effect of the current treatment d on the current outcome.

In our context, the hypothesis of no causal effects of the policy means that Yt (d) = Yt (d′) for all

d, d′ ∈ D. To analyze the causal effect of the policy variable, it is useful to define the effect of a

marginal change in the policy variable on the potential outcome, the MCE. Define the normalized

variables Ỹt (d) = σ−1
D,tYt (d), D̃t = σ−1

D,tDt and ẽt = σ−1
D,tet for all t, where σ2

D,t = Var(Dt). We

impose two technical assumptions to enable MCEs to be well-defined under relative exogeneity

(2.4). The first is on the support of the normalized policy variable and the second is on the

smoothness of the normalized potential outcome process.

Assumption 5. For all t ∈ P, D̃t ∈ D = [d, d] with d < d.

Assumption 6. (Differentiability) For all t ∈ P, Ỹt (d) is continuously differentiable in d ∈ (d, d).

Under these assumptions, the MCE of the time t policy on the time t normalized potential

outcome is defined as ∂Ỹt (d) /∂d. Assumptions 5-6 involve the normalized quantities instead of
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the actual quantities since we analyze estimands and estimators under relative exogeneity (2.4),

for which the support of et and Dt necessarily become unbounded. Following Rambachan and

Shephard (2021), to apply basic tools such as the fundamental theorem of calculus we need the

argument of the relevant function to have support on a closed interval.

2.3 Identification Results

The simple event study regression approach regresses the outcome variable Yt on the policy variable

Dt at dates in the policy sample t ∈ P. Thus, the corresponding event study estimand at time

t ∈ P is the linear projection estimand:

βES,t = Cov (Yt, Dt)
Var (Dt)

. (2.5)

We begin by establishing the value of this estimand in the general nonparametric model (2.3)

without imposing relative exogeneity (cf. Assumption 4) and successively obtain corresponding

results under relative exogeneity and then linear homogeneous treatment effects implied by (2.1),

the linear model commonly assumed in practice. In empirical applications, an event-study estimate

corresponds to an empirical time average of the components of the individual coefficients βES,t,

where the right-hand side of (2.5) is computed as the ratio of the sample covariance to the sample

variance. To establish the first result we use the following assumption in place of Assumption 4.

Assumption 7. For all t ∈ P, E(gD,e (et, t)2), E(φY,u (Zt, ut, t)2) and E(gD,u (Zt, ut, t)2) are finite,

and E(gD,e (et, t)2) is increasing in σ2
e,t.

The event study estimand can be decomposed into a weighted average of MCEs and a selection

bias factor.

Theorem 1. Let Assumptions 1-3 and 5-7 hold. Then for t ∈ P,

βES,t =
�

D

∂Ỹt (d)
∂d

E (Ht (d)) dd + ∆t,

where Ht (d) = 1{d ≤ D̃t}(D̃t − E(D̃t)) with E(Ht (d)) ≥ 0, and
�

D E (Ht (d)) dd = 1,

∆t = E
[
Ỹt (d)

(
D̃t − E

(
D̃t

))]
= Cov

(
Ỹt (d) , D̃t

)
,

and |∆t| is decreasing to zero in σ2
e,t.
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The bias ∆t depends on the covariance between the policy variable and the potential outcome

Yt(d). This bias would be zero if the policy Dt were randomly assigned, i.e., when there is no

reverse causality and no omitted variables. Unfortunately, this is quite unrealistic in practice.

However in Theorem 2, we show that as σ2
e,t grows large, this bias term disappears. This implies

that the event study estimand and the event study regression estimates can have small enough

bias to remain meaningful so long as σ2
e,t is large enough.

The following theorem establishes that βES,t identifies a weighted average of MCEs of the time

t policy on the time t outcome when relative exogeneity holds.

Theorem 2. Let Assumptions 1-6 hold. Then for t ∈ P, as σ2
e,t →∞

βES,t → lim
σ2

e,t→∞

�
D

∂Ỹt (d)
∂d

E (Ht (d)) dd,

where Ht (d) = 1{d ≤ D̃t}(D̃t − E(D̃t)) with E(Ht (d)) ≥ 0,
�

D E (Ht (d)) dd = 1.

For the weighted average of the MCEs in Theorem 2, a higher weight

E (Ht (d)) = E
(
D̃t − E(D̃t)| d ≤ D̃t

)
× P

(
d ≤ D̃t

)
is not necessarily given to large values of d because large values of d may be associated with

small tail probabilities of the distribution of D̃t, P(d ≤ D̃t). The intuition on how βES,t is able to

recover a weighted average of MCEs under relative exogeneity is as follows. Relative exogeneity,

in combination with Assumptions 1-3, imply that when appropriately normalized, the potential

outcome Yt (d) and the policy variable Dt behave as if they are uncorrelated. Intuitively, the effect

of the policy shock on Dt is not influenced by Yt (separability) and so changes in the policy are

entirely determined by changes in the policy shock (relative exogeneity). In addition, as σ2
e,t →∞

the relative bias generated by the omitted variables Zt becomes negligible since the correlation

between Zt and Dt is an order of magnitude smaller than the variation in Dt generated by et.

It is noteworthy that the event study estimand obtained from a standard linear regression is

able to recover a nonparametric causal effect in this case. The event study empirical applications

in the literature most often assume a linear simultaneous equations model. Our assumptions on

the structural and reduced-form as well as the moment conditions [cf. Assumptions 1-4(ii,iii)] are

easily satisfied in those contexts. Under the linear model (2.1) and relative exogeneity, Theorem 2

implies that βES,t → β since ∂Ỹt (d) /∂d = β.

The key identification condition is relative exogeneity, which also relates to the size of the time
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window surrounding an announcement or event. As the size of the window expands, it becomes less

likely that the policy shock dominates all other variables within the window. Given that the narrow

size of the window is not a sufficient condition for identification, our results suggest that empirical

work using the high-frequency event study regression approach should be very careful to isolate the

surprise component of the policy news so that the policy shock dominates the other variables in

the event window. Hence, our theoretical results support the concerns expressed recently by Bauer

and Swanson (2023a, 2023b) on the credibility of some high-frequency event study estimates when

the outcome variable is the Blue Chip forecast revision that is based on a one-month window.

Note that the high-frequency event study method is different from heteroskedasticity-based

identification [cf. Lewis (2022) and Rigobon (2003)], sometimes referred to as Rigobon’s method.

The latter also uses information from the control sample, which includes windows (either 30-minute

or 1-day windows) that do not bracket an announcement or event. The main heteroskedasticity-

based identification condition is that the volatility of the policy shock is larger in the event windows

than in the control windows. This is different from relative exogeneity for two reasons. First, the

required increase in volatility of the policy shock is not relative to the other variables in the event

window but relative to the policy shock in the control windows. Second, the increase in volatility

need not be infinite. Thus, heteroskedasticity-based identification requires neither stronger nor

weaker conditions than the relative exogeneity condition. In addition, Rigobon’s estimator is an

instrumental variables estimator and therefore different from the OLS high-frequency event study

estimator. Since these two estimators correspond to different estimands, they identify different

causal effect in general.

2.4 Relation of the Theoretical Results with the Empirical Literature

There are essentially no formal identification results about high-frequency event studies in the

literature. Empirical works have often mentioned that changes in the policy variable in the event

windows are dominated by the information about future monetary policy contained in the FOMC

announcements [see, e.g., Nakamura and Steinsson (2018a)]. However, precise conditions have not

been provided. Rigobon and Sack (2004) noted that the bias of the OLS event study estimator

disappears in a stylized linear model when relative exogeneity holds. However, this result does not

suffice to prove identification of a causal estimand. Further, the model they analyzed is admit-

tedly a “clear oversimplification”. As such, this stylized model does not enable practically-relevant

identification analysis or econometric results. Nevertheless, we credit Rigobon and Sack’s heuris-

tic analysis as an early insight into understanding the validity of the OLS event study estimator.
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Gürkaynak and Wright (2013) surveyed the empirical literature and presented useful discussions.

They also argued that the event study regression works even when the variance of the policy shock

is not large relative to the variance of the other variables because in a narrow window around an

FOMC announcement the policy news can depend on lagged changes in asset returns but not on

contemporaneous changes. That is, they wrote Dt = αYt−j + Z ′
t−jγ2 + et, where j ≥ 1. However,

as we explain in Example 1, the choice of a narrow window is not sufficient for ruling out omitted

variables bias. Further, when Yt is the change in an asset price and Dt is, for example, the price

change in the Federal funds or eurodollar futures, assuming that Yt does not contemporaneously

affect Dt constitutes a strong empirical restriction.

In recent work, Bauer and Swanson (2023a, 2023b), Cieslak (2018) and Miranda-Agrippino

and Ricco (2021) provided empirical evidence for some predictability of Dt with publicly available

macroeconomic or financial market information that predates the FOMC announcement. This

implies that Dt does not correctly isolate the unexpected component of the policy surprise and

may be in fact simultaneously determined with the outcome variable Yt.
9 Bauer and Swanson

(2023a) proposed to take the residuals from a regression of those surprises on the economic and

financial variables that predate the announcements. So in Bauer and Swanson (2023a) Dt is

actually the orthogonalized monetary policy surprise rather than the surprise itself. However,

Bauer and Swanson (2023a) showed that the orthogonalized policy variables yield the same results

as the unadjusted policy variables when Yt is measured as the change in a 30-minute window, as

for the case of asset prices or Treasury yields. This corroborates our result that some endogeneity

of Dt does not preclude the validity of the approach if the variance of the unadjusted policy shocks

is much larger than that of the other variables in the system.

Evidence of nonlinearities is often documented in the empirical literature [cf. Bauer and

Swanson (2023a)]. Our results establish the causal meaning of the event study estimand when the

relationship between the outcome and the policy variable is potentially nonlinear as long as the

additive separability conditions hold.

As we explain more in detail below, the finance literature has recently documented strong

evidence of information leakage, informal communication and informed trading around policy an-

nouncements [Bernile, Hu, and Tang (2016), Cieslak, Morse, and Vissing-Jorgensen (2019), Cieslak

and McMahon (2024), Cieslak and Schrimpf (2019) and Lucca and Moench (2015)]. For example,

government agencies routinely allow pre-release access to information to accredited news agencies

9This simultaneity follows from the plausible correlation between the publicly available macroeconomic and
financial market information prior to the announcement and the macroeconomic factors at the time of the an-
nouncement that may affect Yt.
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under embargo agreements. Bernile, Hu, and Tang (2016) found evidence consistent with informed

trading during embargoes of the FOMC announcements. They documented significant abnormal

order imbalances that are in the direction of the subsequent policy surprises and showed that the

information contained in lockup-related trading activity (i.e., the window immediately before the

scheduled release) predicts the market reaction to the actual FOMC announcement. Here the

information leakage may arise from the news media with pre-release access or from other FOMC

insiders with incentives to mimic such behavior.

Lucca and Moench (2015) documented large average excess returns on U.S. equities in an-

ticipation of monetary policy decisions made at scheduled FOMC meetings.10 This pre-FOMC

drift is not found for fixed-income assets. They noted that the pre-FOMC drift cannot be ex-

plained by changes in the public information set in the twenty-four hours ahead of the FOMC

meeting as FOMC members refrain from providing monetary policy information through speeches

and interviews in the week before FOMC meetings. They were more inclined to attribute the

pre-FOMC drift to informational frictions. This is empirically supported by Cieslak, Morse, and

Vissing-Jorgensen (2019) who showed that large pre-FOMC drift is the result of news leakage prior

to the announcement of unexpectedly accommodating monetary policy. They provided evidence

of systematic informal communication, including both outright leaks emerging in the media and

private newsletters and systematic preferential access to the Fed enjoyed by some private financial

institutions. The subsequent literature [see, e.g., Hu, Pan, Wang, and Zhu (2022)] found that

other major U.S. macroeconomic news announcements give rise to pre-announcement drifts in ex-

cess returns. Here the sources of the leakage depend on the specific context. Another implication

of leakage, serial dependence, is also documented empirically [see, e.g., Bernile, Hu, and Tang

(2016), Cieslak, Morse, and Vissing-Jorgensen (2019) and Lucca and Moench (2015)]. Overall, the

literature contains substantive evidence of information leakage and informal public communication.

As we discuss below, the leakage documented in the literature does not necessarily imply that

relative exogeneity is violated. Intuitively, as long as the key news is revealed with the actual

announcements, the high-frequency event study is still characterized by the lumpy manner with

which a disproportionate amount of information is unveiled to the public.11

10More specifically, Lucca and Moench (2015) looked at unconditional excess returns in the twenty-four hours
before scheduled FOMC announcements while Hu, Pan, Wang, and Zhu (2022) looked at the overnight excess
returns before the same announcements.

11This argument applies to the effects of President Trump’s tweets that criticize the Federal Reserve on financial
markets documented by Bianchi, Kind, and Kung (2020). They showed that those tweets had a negative effect
on the expected Fed funds rate with the magnitude growing by horizon. If the tweet occurs in between the time
the survey is collected and the scheduled macroeconomic announcement, then Dt does not isolate the expected
component of the news correctly. This challenges relative exogeneity. However, if the key macroeconomic data
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With regards to the choice of the length of the event window, the early literature commonly

used a 1-day window while the more recent literature recommended to use narrower windows with

the goal of reducing the background noise. In addition, it is common in the literature to use the

same window for both Yt and Dt. Nakamura and Steinsson (2018a) is an exception as they used a

1-day window for Yt and a 30-minute window for Dt.

Although a narrower window is associated with a smaller probability of including news about

events other than the policy announcement, it also has disadvantages relative to using a longer

window for Yt. First, with some information leakage, asset prices Yt may respond before the

announcement is actually made. Second, with learning or sluggish market adjustments, asset

prices may take some time to incorporate the news and so changes in Yt may occur also in the

hours after the announcement.12 Our analysis shows that the key identification condition (relative

exogeneity) does not explicitly refer to the size of the window, it only requires that, whatever

window length is chosen, the policy shock dominates any other shock within that window.

Theorem 1 allows us to provide a formal explanation for a recent debate on some puzzling event

study regression results documented in the literature. It has been shown that regressions of private-

sector macroeconomic forecast revisions on monetary policy surprises often produce coefficients

with signs opposite to those of standard macroeconomic models.13 Campbell, Evans, Fisher, and

Justiniano (2012), Nakamura and Steinsson (2018a) and Romer and Romer (2000) argued in favor

of the“Fed information effect” for which these puzzling results are due to monetary policy surprises

revealing private information held by the Federal Reserve. Bauer and Swanson (2023a) challenged

these views, arguing that these event study estimates suffer from omitted variables bias. In Section

5, we analyze this puzzle in detail and show that in the event study regressions involving the

Blue Chip forecasts, it is unlikely that relative exogeneity holds because the forecast revisions are

evaluated at a much lower frequency than the policy variable. Intuitively, while the policy surprise

Dt is constructed as a 30-minute change, Yt is the one-month change in the Blue Chip forecasts

and so the latter likely has a large variance relative to the former as it aggregates all news and

information is revealed in the announcement, then Dt is primarily driven by the infinite variance policy shock et

and so missing the effect of the tweets on the updates of the expectations is negligible.
12Note that the complications arising from the effect of information leakage and learning on Yt are different from

those we discuss in Section 2.5 for proper construction of Dt. Intuitively, the impact of information leakage on Yt

depends on the potential causal effect of the policy news on Yt. In the linear model (2.1) this is captured by β. If
β = 0, then information leakage has no effect on Yt while it does complicate the proper construction of the surprise
Dt irrespective of the value of β.

13For example, a surprise monetary policy tightening is associated with a statistically significant upward revision
in the Blue Chip consensus forecasts for real GDP growth. This is inconsistent with the standard macroeconomic
view that a monetary policy tightening should cause future GDP to fall.
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factors that are relevant over the month. Thus, it becomes important to control for macroeconomic

and financial variables that predate the announcements in this context. This explains why using

the orthogonalized shocks indeed allowed Bauer and Swanson (2023a) to overturn the documented

puzzling estimates. In contrast, when Yt is a 30-minute or 1-day change in an asset price or Treasury

yield, the variance of Dt is much larger in relative terms and can eliminate the endogeneity arising

from omitted variables that predate the FOMC announcement.

2.5 Robustness to Information Leakage

It is interesting to analyze when relative exogeneity may or may not fail due to information leakage

about the policy news or some market anticipation of the policy change. Leakage is highly relevant

in applications as documented recently in the finance literature discussed above. Leakage has

the following empirical features. First, it leads to market anticipation of the news that is to be

revealed at the event time. This may reduce the variance of et substantially for t ∈ P, possibly

making the policy shock on the same order of magnitude as the other random variables in the

system, failing to dominate them in the event window. Second, leakage can be associated with

learning and sluggish market adjustments since the news may initially reach a small number of

market participants and, through their reactions, may slowly spread into the market. This is likely

to generate serial dependence in the policy shock over the hours or days prior to the scheduled

announcement. We introduce these features into the model and discuss how this can alter the

identification results. The introduction of leakage into the model depends on the specific context

of the event under consideration. Here we focus on FOMC announcements.14

Consider two successive FOMC announcement dates T0, T1 ∈ P where T0 < T1. There are

usually six weeks between any two successive FOMC announcements.15 Consider splitting the

regular trading hours within these six weeks into non-overlapping 30-minute windows indexed by

t = T0 + 1, . . . , T1. The following model for the policy shock is useful for describing some of the

14Information leakage also changes the interpretation of the potential outcomes. One should define
Yt (Dt, Dleak,t) = φY (Dt, Dleak,t, Zt, ut, t) as the potential outcome under leakage Dleak,t and treatment Dt. One
may also define a new MCE as ∂Yt (d, Dleak,t) /∂d which captures the treatment effect measured during the event
window that only pertains to the non-anticipated information of the announcement. However, in this section we
are concerned with the consequences of information leakage on relative exogeneity and thus we avoid introducing
further notation and we postpone a more formal treatment to future research.

15To be precise, there are eight regularly scheduled FOMC announcements per year that are spaced roughly six
to eight weeks apart.
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empirical features of leakage:

et = ϕtσtvt + (1− ϕt) (ϑ1vt−1 + . . . + ϑqvt−q) , (2.6)

where vt is a white noise process with zero mean and unit variance, |ϑj| < ∞ for all j = 1, . . . , q

and q > 0 is a finite integer. Assume that σ2
t →∞ if t ∈ P and |σ2

t | <∞ if t ∈ C. The parameter

ϕt is the leakage parameter:

ϕt =

1, no leakage

σ−1
t , leakage

.

When ϕT1 = 1 there is no leakage as we have eT1 = σT1vT1 , E (eT1) = 0, Var(eT1) = σ2
e,T1 = σ2

T1

and E (etet−j) = 0 for j > 0. Then, relative exogeneity holds (σ2
e,T1 → ∞ since T1 ∈ P) and the

identification results of Section 2.3 apply. On the other hand, when ϕT1 = σ−1
T1 there is leakage and

relative exogeneity fails. To see this, note that

eT1 = vT1 + (1− σ−1
T1 ) (ϑ1vT1−1 + . . . + ϑqvT1−q) ,

E (eT1) = 0, Var(eT1) <∞ since 1− σ−1
T1 → 1, |ϑj| <∞ for all j = 1, . . . , q, and E (etet−j) ̸= 0 for

j = 1, . . . , q and E (etet−j) = 0 for j > q. Thus, when ϕT1 = σ−1
T1 the variance of the policy shock

eT1 is not an order of magnitude larger than the variances of Zt and ut. Intuitively, the market has

anticipated the content of the FOMC announcement. Further, eT1 exhibits serial dependence up

to q lags. This captures the idea that information leakage is associated with learning and sluggish

market adjustments so that the information content of the announcement can be predicted.16 The

model also implies that the leakage cannot start in the q periods following an FOMC announcement,

i.e., ϕt = 1 for t = T0 + 1, . . . , T0 + q. Otherwise, the information leakage would be correlated with

the news from the previous announcement, contradicting the idea behind leakage.

The model (2.6) suggests several testable empirical implications. Relative exogeneity implies

that the variance of the policy variable is unbounded at each announcement window. Statistically,

this corresponds to a jump in Dt at the time of the announcement. Preliminary inspection of the

high-frequency time series data on Dt can be useful. A formal test involves testing for infinite

variance or testing for jumps [see, e.g., Trapani (2016) and Li, Todorov, and Tauchen (2017)].

Apart from the assumptions involved, a limitation of these tests for our purposes is that they do

16We use a moving-average specification for et here because the dependence that stems from leakage is limited
to a few periods prior to the FOMC announcement [see, e.g., Lucca and Moench (2015)].
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not provide information on whether a particular application may be characterized by a value of

σ2
e,t that, although possibly finite, is relatively large enough to imply low bias in the event study

estimand (see Theorem 1). We introduce a simple procedure in Section 5 to diagnose whether

relative exogeneity is “close enough” to holding that the event study estimator should be expected

to perform well in practice.

A second implication of leakage is the serial dependence in et prior to the announcement.

Unfortunately, et is not observable and is not recoverable in the presence of endogeneity. However,

serial dependence in et implies serial dependence in Dt, which is observed. A test for leakage can

thus be obtained from testing for autocorrelation in Dt in sub-samples close to the announcement.

If the extent of the information leakage is small, then it will lead only to partial market

anticipation and will not prevent the news from coming out in a lumpy manner at the release time.

Thus, relative exogeneity can hold in this case. However, Yt will not capture the overall effect of the

policy news as asset prices respond also during the lockup window (i.e., the window immediately

before the scheduled release), leading to attenuation bias in the event study estimator. One way

to address this issue would be to take Yt to be the change in the relevant asset price in a wider

window (e.g., a 1-hour or 1-day window) around the FOMC announcement than in the 30-minute

window used for Dt.

Finally, information leakage could also have negative consequences for obtaining good mea-

sures of market expectations about the policy news thereby making it difficult to accurately con-

struct the surprise component of the policy action Dt. Failure to isolate the expected component

of the news leads to attenuation bias as asset prices have already responded to the expected part

of the policy news. Whether this attenuation bias is important or not depends on how large the

information leakage is relative to the unexpected part of the policy news that is driven by et in

the event window. When the leakage is small, one does not need to extend the event window to

bracket the pre-release embargo when computing Dt since the policy shock during the 30-minute

window is still an order of magnitude larger than the other variables.

3 Properties of the OLS Event Study Estimator

In this section we establish the asymptotic properties of the OLS event study estimator. Theorem

2 shows that a weighted average of MCEs can be identified by the ratio of the covariance between

Yt and Dt and the variance of Dt. This is exactly what the OLS event study estimator estimates
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under homogeneous treatment effects and covariance-stationarity of the normalized processes.17

However, when βES,t varies with t, it is infeasible to estimate each βES,t separately. In this section,

we seek to obtain the limiting behavior of the OLS event study estimator generally, without

imposing homogeneous treatment effects or covariance-stationarity. We show that the OLS event

study estimator estimates a time-average of the βES,t’s under relative exogeneity. Let TP denote

the number of observations in P. The event study estimator is defined as

β̂ES =
∑TP

t=1

(
Dt −D

) (
Yt − Y

)
∑TP

t=1

(
Dt −D

)2 ,

where D = T −1
P

∑TP
t=1 Dt and Y = T −1

P

∑TP
t=1 Yt, and an intercept is added to the regression.

Let σ2
D = limTP →∞ T −1

P

∑TP
t=1 Var (Dt), D∗

t = σ−1
D Dt, Y ∗

t = σ−1
D Yt and Y ∗

t (d) = σ−1
D Yt (d) for

all t ∈ P. We make the following assumption in order to study the asymptotic properties of β̂ES.

Assumption 8. As TP →∞ we have

(i) T −1
P

∑TP
t=1(D∗

t −D
∗)(Y ∗

t − Y
∗) P→

� 1
0 c(D∗, Y ∗, s)ds,

(ii) T −1
P

∑TP
t=1(D∗

t −D
∗)2 P→ 1,

where D
∗ = T −1

P

∑TP
t=1 D∗

t , Y
∗ = T −1

P

∑TP
t=1 Y ∗

t , and c(D∗, Y ∗, s) = limTP →∞ Cov(D∗
⌊TP s⌋, Y ∗

⌊TP s⌋).

Assumption 8 requires that a law of large numbers holds in an infill asymptotic embedding where

the observations originally defined on the time span t = 1, . . . , TP are mapped into the unit interval

[0, 1] through s = t/TP . We refer to the index s ∈ [0, 1] as the rescaled time index. This is a mild

assumption. It allows the observations to be heterogeneous, i.e., to have time-varying moments.

If one assumes covariance-stationarity, then c (D∗, Y ∗, s) = c (D∗, Y ∗) and the infill asymptotic

embedding is no longer required. Additionally, D∗
t = D̃t, Y ∗

t = Ỹt and c(D∗, Y ∗) = c(D̃, Ỹ ) since

σ2
D,t = σ2

D for all t ∈ P by covariance-stationarity of the normalized processes.

Theorem 3. Let Assumptions 1-3 and 5-8 hold. As TP →∞ we have β̂ES
P→ βES where

βES = lim
TP →∞

� 1

0

�
D

∂Y ∗
⌊TP s⌋ (d)

∂d
h (d, s) ddds + ∆, and

h (d, s) = lim
TP →∞

E
(
1{d ≤ D∗

⌊TP s⌋}(D∗
⌊TP s⌋ − E(D∗

⌊TP s⌋))
)

17Technically speaking, Dt and Yt cannot be said to be covariance-stationary because their second moments
may diverge under relative exogeneity. In contrast, it is meaningful to say that the normalized processes are
covariance-stationary.
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with h (d, s) ≥ 0,
�

D h (d, s) dd = 1 and |∆| = | limTP →∞
� 1

0 E(Y ∗
⌊TP s⌋(d)(D∗

⌊TP s⌋−E(D∗
⌊TP s⌋)))ds| is

decreasing to zero in limTP →∞ σ2
e,⌊TP s⌋ for all s ∈ [0, 1].

Theorem 3 shows that the OLS event study estimator is consistent for a weighted average of stan-

dardized MCEs, plus the bias term ∆. The former is characterized by two types of averaging. First,

there is averaging over time for a given treatment d. Second, there is averaging over different treat-

ments for a given rescaled time s. These treatment effects are said to be standardized because they

involve the standardized outcome Y ∗
⌊Tps⌋ rather than the original outcome Y⌊Tps⌋. Yitzhaki (1996)

discusses the related nonparametric interpretation of the OLS estimand in a cross-sectional setting

without selection bias. In contrast, our result extends this interpretation to settings characterized

by endogeneity and time-varying moments.

When Yt is the change in an asset price, it is interesting to note that in the special case for

which relative exogeneity fails, Zt is absent and ut is driven solely by financial microstructure noise,

the OLS event study estimator suffers from attenuation bias so that it can be used to bound a

true causal effect from below. Microstructure noise typically appears in ultra high-frequency data

[e.g., 5 minutes and less, see Andersen, Bollerslev, Diebold, and Labys (2003)]. Since the common

size of the window in event study regressions is 20 or 30 minutes, microstructure noise may be less

relevant in this context, though its presence ultimately depends on the liquidity of the asset under

consideration.

The following theorem establishes the consistency of the OLS event study estimator under

relative exogeneity (cf. Assumption 4). Moreover, since |∆| is decreasing in σ2
e,t, the large-sample

bias of β̂ES for estimating the weighted average of standardized MCEs is small when σ2
e,t is large.

For technical reasons inherent to the proof, to establish this result we take the limits as TP →∞
and mint∈P σ2

e,t →∞ sequentially.

Theorem 4. Let Assumptions 1-6 and 8 hold. Then as TP →∞, then mint∈P σ2
e,t →∞,

β̂ES
P→ lim

mint∈P σ2
e,t→∞

lim
TP →∞

� 1

0

�
D

∂Y ∗
⌊TP s⌋ (d)

∂d
h (d, s) ddds. (3.1)

Under covariance-stationarity the event study estimand on the right-hand side of (3.1) reduces

to the estimand in Theorem 2:

lim
mint∈P σ2

e,t→∞
lim

TP →∞

�
D

h (d)
� 1

0

∂Ỹ⌊TP s⌋ (d)
∂d

dsdd = lim
σ2

e,t→∞

�
D

∂Ỹt (d)
∂d

E (Ht (d)) dd,

since h (d, s) = E (Ht (d)), Y ∗
t = Ỹt and ∂Ỹt (d) /∂d is invariant to t by stationarity.
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Finally, we analyze the asymptotic distribution of the event study estimator.

Assumption 9. Let εt = Y ∗
t − Y

∗ − βES(D∗
t −D

∗). As TP →∞ we have

σD√
TP

TP∑
t=1

(
D∗

t −D
∗)

εt
d→N (0, J) ,

where

J =
� 1

0
J (s) ds, and J (s) = lim

TP →∞
E
[
ε2

⌊TP s⌋

(
D∗

⌊TP s⌋ − E(D∗
⌊TP s⌋)

)2
]

.

Assumption 9 requires a central limit theorem to hold in an infill asymptotic embedding. The

asymptotic variance J allows for heteroskedasticity but not serial correlation. This is implied by

Assumption 3 and no serial correlation in Zt. The assumption of no serial correlation in high-

frequency event studies is standard since the observations are in first-differences and the original

series are often asset prices. When there is serial correlation in either ut, et or Zt the asymptotic

variance in the assumption should be modified to

J = lim
TP →∞

1
TP

TP∑
t=1

TP∑
l=1

E [εtεl (D∗
t − E(D∗

t )) (D∗
l − E(D∗

l ))]

=
� 1

0

� 1

0
lim

TP →∞
E
[
ε⌊TP s⌋ε⌊TP r⌋

(
D∗

⌊TP s⌋ − E(D∗
⌊TP s⌋)

) (
D∗

⌊TP r⌋ − E(D∗
⌊TP r⌋)

)]
dsdr.

Theorem 5. Let Assumptions 1-3 and 5-9 hold. As TP →∞ we have

√
TP σ2

D

(
β̂ES − βES

)
d→ N (0, J) .

Theorem 5 shows that heteroskedasticity-robust standard errors suffice for valid inference

when there is no serial correlation in ut, et and Zt. Under covariance-stationarity J (s) does not

depend on s, and so J = E[ε2
t (D∗

t − E(D∗
t ))2]. However, heteroskedasticity-robust standard errors

are still required as εt may not be homoskedastic.

Theorem 5 establishes the asymptotic normality of β̂ES as an estimator for the biased quantity

βES. To conduct unbiased inference on the weighted average of standardized MCEs in (3.1) using

β̂ES, we require a strengthening of relative exogeneity as formalized in the following corollary.
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Corollary 1. Let Assumptions 1-6 and 8-9 hold. Then if
√

TP /σD → c ∈ [0,∞) as TP →∞,

√
TP σ2

D

(
β̂ES − (βES −∆(TP ))

)
d→ N

(
aBias

(
β̂ES

)
, J
)

as TP →∞, where ∆(TP ) ≡
� 1

0 E[Y ∗
⌊TP s⌋(d)(D∗

⌊TP s⌋ − E(D∗
⌊TP s⌋))]ds→ ∆ and

aBias
(
β̂ES

)
= c · lim

TP →∞

� 1

0
E
[
φY,u

(
Z⌊TP s⌋, u⌊TP s⌋, ⌊TP s⌋

)
×
(
gD,u

(
Z⌊TP s⌋, u⌊TP s⌋, ⌊TP s⌋

)
− E

(
gD,u

(
Z⌊TP s⌋, u⌊TP s⌋, ⌊TP s⌋

)))]
ds.

Clearly, if relative exogeneity is “strong enough” in the sense that c = 0, aBias(β̂ES) = 0 and

β̂ES is asymptotically unbiased. In addition, β̂ES is super-consistent, with a faster than standard
√

TP rate of convergence since σD → ∞ under relative exogeneity. Under the conditions of the

corollary, it is also possible to bias-correct β̂ES in case c ̸= 0 under the “sharp null” of zero MCEs

at all time periods, providing a further inference refinement. Specifically, if Yt(d) does not depend
upon d, Assumption 1 implies Yt = φY,u(Zt, ut, t) so that

E [Yt (Dt − E(Dt))] = E [φY,u(Zt, ut, t) (gD,u (Zt, ut, t)− E (gD,u(Zt, ut, t)))] ,

by Assumptions 2-3. Therefore, aBias(β̂ES) can be consistently estimated by

√√√√√ TP

T −1
P

∑TP
t=1

(
Dt −D

)2 T −1
P

TP∑
t=1

Yt

(
Dt −D

)

under Assumption 8. In the following section, we discuss bias-aware inference that does not rely

upon the imposition of the “sharp null”.

4 Bias Bounds, Worst-Case Coverage and Bias-Aware Inference

The bias in the high-frequency event study estimator vanishes in the limit under relative exogeneity.

We consider methods to quantify how this bias can affect the worst-case properties of the estimator

using a bound on the bias, and we propose a bias-aware critical value that accounts for the potential

asymptotic bias of the estimator in addition to its variance.
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4.1 Worst-Case Bias

We begin with deriving the worst-case (unscaled) bias ∆ from Theorem 3. The following proposi-

tion produces a useful expression for this.

Proposition 1. Under Assumptions 1-3 and 5-8,

∆ = 1
σ2

D

lim
TP →∞

� 1

0

√
Var

(
φY,u (s)

)√
Var

(
gD,u (s)

)
ρZu,TP

(s) ds, (4.1)

where φY,u (s) = φY,u(Z⌊TP s⌋, u⌊TP s⌋, ⌊TP s⌋), gD,u (s) = gD,u(Z⌊TP s⌋, u⌊TP s⌋, ⌊TP s⌋) and ρZu,TP
(s) =

Corr(φY,u(Z⌊TP s⌋, u⌊TP s⌋, ⌊TP s⌋), gD,u(Z⌊TP s⌋, u⌊TP s⌋, ⌊TP s⌋)) is the correlation coefficient between

the two terms in the parentheses.

If the two variances on right-hand side of (4.1) were known, we could obtain an upper bound

on the magnitude of the asymptotic bias by bounding |ρZu,TP
(s) | ≤ ρmax ≤ 1 for all s ∈ [0, 1]:

|∆| ≤ ρmax

σ2
D

lim
TP →∞

� 1

0

√
Var

(
φY,u (s)

)√
Var

(
gD,u (s)

)
ds.

With this result in hand, we can immediately derive the worst-case scaled bias under the same

strengthening of relative exogeneity as that in Corollary 1: under Assumptions 1-8 and
√

Tp/σD →
c ∈ [0,∞) as TP →∞,

sup
|ρZu,TP

(s)|≤ρmax ∀s∈[0,1]

√
TP σ2

D

∣∣∣E (β̂ES
)
− (βES −∆(TP ))

∣∣∣ (4.2)

→ cρmax lim
TP →∞

� 1

0

√
Var

(
φY,u (s)

)√
Var

(
gD,u (s)

)
ds.

The worst-case bias depends on cρmax and on the variances of components that are functions of

the shock ut and omitted variables Zt.

4.2 Worst-Case Asymptotic Coverage

We use the worst-case scaled bias to study the worst-case asymptotic coverage of the standard

confidence intervals:

CI
(
β̂ES

)
=
[
β̂ES ± z1−a/2

√
J/(TP σ2

D)
]

,
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where z1−a/2 is the 1− a/2 quantile of the standard normal distribution. The asymptotic variance

J can be estimated consistently as suggested in Section 3, without affecting the results.

Corollary 2. Let Assumptions 1-6 and 8-9 hold,
√

TP /σD → c ∈ [0, ∞) and Z ∼ N (0, 1). Then:

inf
|ρZu,TP

(s)|≤ρmax ∀s∈[0,1]
P
(
(βES −∆(TP )) ∈ CI

(
β̂ES

))
→ P

(∣∣∣∣∣Z + cρmax√
J

lim
TP →∞

� 1

0

√
Var

(
φY,u (s)

)√
Var

(
gD,u (s)

)
ds

∣∣∣∣∣ ≤ z1−a/2

)
.

We can study how the worst-case asymptotic coverage varies as cρmax and the ratio involving

Var(φY,u (s)), Var(gD,u (s)) and
√

J change. The asymptotic variance J can be estimated con-

sistently. To estimate Var(φY,u (s)) and Var(gD,u (s)) we assume stationarity, under which these

expressions reduce to Var(φY,u) and Var(gD,u), respectively. Since φY,u and gD,u are functions

of the shock ut and of omitted variables Zt—both unobserved factors that are also present in

non-announcement windows—we propose estimating Var(φY,u) and Var(gD,u) using the sample

variance of the outcome and policy variables in the control sample. Specifically, we use σ̂2
Y,C for the

outcome variable and σ̂2
D,C for the policy variable, where the control sample includes time windows

on days without announcements. Under stationarity, it is reasonable to assume that the variance

of Yt on control days provides an upper bound for Var(φY,u), and similarly, the variance of Dt on

control days provides an upper bound for Var(gD,u). The rationale is that, on control days, policy

shocks are much less pronounced than non-policy shocks, as there are no policy announcements.

Consequently, the contribution of policy shocks to the variances of Yt and Dt is expected to be

very small. See Section 5 for further details and for an application of Corollary 2 to the setting in

Nakamura and Steinsson (2018a).

4.3 Bias-Aware Inference

An alternative way to deal with a vanishing bias is to adjust the critical value upward to compensate

for this bias, as suggested by Armstrong and Kolesár (2021). Using the bound from Proposition

1, we define the bias-aware confidence interval as

CIBA
(
β̂ES, cρmax

)
=

β̂ES ± cv1−a/2

cρmax

limTP →∞
� 1

0

√
Var

(
φY,u (s)

)√
Var

(
gD,u (s)

)
ds

√
J

√J/(Tσ2
D)

 ,

29



alessandro casini and adam mccloskey

where cv1−a/2 (B) is the bias-aware critical value defined as the number such that P(|Z + B| ≤
cv1−a/2 (B)) = 1 − a. By construction the bias-aware confidence interval has correct asymptotic

coverage probability but it can be conservative.

Corollary 3. Let Assumptions 1-6 and 8-9 hold and
√

TP /σD → c ∈ [0, ∞). We have:

lim
TP →∞

inf
|ρZu,TP

(s)|≤ρmax ∀s∈[0,1]
P
(
(βES −∆(TP )) ∈ CIBA

(
β̂ES, cρmax

))
= 1− a.

5 Empirical Analysis of Identification and Inference

In Section 5.1 we present a simple procedure that can be used as a sensitivity analysis to determine

whether relative exogeneity provides a good approximation in practice and apply it to the analysis

of interest rate responses to monetary policy shocks. In Section 5.2 we examine the worst-case

asymptotic coverage of the standard confidence interval and compare the length of the bias-aware

confidence interval to that of the conventional one. In Section 5.3 we discuss some identification

issues in the event study regressions that involve Blue Chip forecasts about real GDP growth.

5.1 Response of Interest Rates to Monetary Policy News

We consider the regression of Nakamura and Steinsson (2018a) which is a special case of (2.1),

Yt = βDt + ũt, t ∈ P, (5.1)

where Yt is the 1-day change in the 2-Year or 5-Year U.S. Treasury instantaneous real forward

rate, Dt is the policy news surprise constructed by the authors as a change over a 30-minute

window (see Example 1 above) and ũt is an error term. The policy variable can be endogenous,

i.e., E (ũt|Dt) ̸= 0. However, Theorem 4 implies that if relative exogeneity (2.4) holds then the

OLS event study estimator β̂ES in (5.1) is consistent for β. Moreover, even if σ2
e,t is finite but much

larger than the variance of ũt, Theorem 3 implies that β̂ES has low bias.

We propose a simple empirical procedure to check if σ2
e,t is relatively large enough that β̂ES has

low bias. We apply our analysis to the setting of Nakamura and Steinsson (2018a) for concreteness,

noting that it can be straightforwardly applied to any other event study regression. While it is

possible to estimate Var (Dt) using the sample variance of Dt in the policy sample, this could

be very large even when relative exogeneity is satisfied only for a few announcements since the

variance cannot be negative, as discussed above. Additionally, it is more difficult to estimate σ2
ũ,t
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since ũt is not observed and the OLS residuals may not be close in probability to the corresponding

true errors ũt given that E (ũt|Dt) ̸= 0. The key idea to our procedure is that since ũt includes

macroeconomic news or factors that are present even when there is no announcement, the order of

magnitude of its variance can be retrieved from the order of magnitude of the variance of Yt in the

control sample C. In fact, in the control sample the variance of Dt and ũt have the same order of

magnitude and given that |β| < ∞, the order of magnitude of the variance of Yt for t ∈ C is the

same as that of ũt so long as (5.1) also holds for t ∈ C. Thus, we can proxy the average variance

of ũt for t ∈ P by the average variance of Yt for t ∈ C.

We initially simulate the regression (5.1) calibrated to the corresponding regression in Naka-

mura and Steinsson (2018a) for the control sample, making the draws of Dt and ũt independent,

and in each draw we estimate β by OLS. We repeat this many times and compute bias, mean-

absolute error (MAE), and mean-squared error (MSE) for this idealized OLS estimator. We name

it the “oracle” estimator since it is obtained in the absence of endogeneity and it is efficient by the

Gauss-Markov Theorem.

The performance of the oracle estimator is compared to that of the corresponding OLS event

study estimator when we allow for correlation between Dt and ũt. In the latter regression, we

successively increase the variance of Dt and record how much the performance of the event study

estimator approaches that of the oracle estimator in the idealized regression. In particular, we

determine the threshold value for the variance of Dt that ensures that the event study estimator

performs as well as the oracle. Lastly, we verify whether the sample variance of Dt in Nakamura

and Steinsson (2018a) is larger than this threshold. If it is, relative exogeneity likely holds and

we can interpret σ2
e,t as being large enough relative to the variance of ũt for the OLS event study

estimator to have low enough bias to perform well in practice.

The procedure below relies on linearity for expositional clarity and tractability. However,

the linear specification is not essential to the logic of the approach. If one wishes to apply the

same sensitivity analysis to a nonlinear approximation, each step of the procedure can be modified

by replacing the linearity assumption with the corresponding nonlinear parametric specification

governing the relationship between the policy and outcome variables.

Let TC denote the sample size of the control sample t ∈ C. The policy sample consists of all

regularly scheduled FOMC meeting days from 1/1/2000 to 3/19/2014. The control sample includes

all Tuesdays and Wednesdays that are not FOMC meeting days over the same period. This yields

TP = 74 and TC = 762 when the dependent variable is the 2-Year real yield, and TP = 106 and

TC = 1130 when it is the 5-Year real yield.
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Consider the following steps:

1. Estimate the mean, variance and autoregressive coefficient of order 1 from all Dt in the

control sample (t ∈ C). Denote these by DC , σ̂2
D,C and ρ̂D,C,1. Similarly, obtain σ̂2

Y,C and

ρ̂Y,C,1 from all Yt in the control sample (t ∈ C). Test whether ρ̂D,C,1 and ρ̂Y,C,1 are statistically

significant different from zero.

2. Obtain the sample variances, σ̂2
D,P and σ̂2

Y,P , from all Dt and Yt in the policy sample (t ∈ P).

3. If Yt is constructed as a change over a substantially longer frequency than Dt, compute

σ̂2
ũ

= σ̂2
Y,P σ̂2

D,C/σ̂2
D,P . Note that σ̂2

ũ
is a proxy for the variance of Yt in the control sample.

Since Yt is the 1-day change in the forward rate while Dt is the change in a 30-minute

window, the variance of Dt is substantially smaller than that of Yt in the control sample and

the variance of Yt and ũt are very similar. So we choose σ̂2
ũ
such that the ratio of the variances

of Yt in the policy and control sample is the same as that of Dt, i.e., σ̂2
Y,P /σ̂2

ũ
= σ̂2

D,P /σ̂2
D,C .18

Otherwise, compute σ̂2
ũ

= σ̂2
Y,C − β2σ̂2

D,C with β set equal to 0.99, which is the OLS estimate

in Nakamura and Steinsson (2018a).19

4. For t = 1, . . . , TP generate D̃t ∼ i.i.d. N (DC , σ̂2
D,C) if ρ̂D,C,1 is not statistically different

from zero. Otherwise, generate D̃t = (1 − ρ̂D,C,1)DC + ρ̂D,C,1D̃t−1 + uD,t where uD,t ∼
i.i.d. N (0, (1− ρ̂2

D,C,1)σ̂2
D,C) for t = 1, . . . , TP and D̃0 = 0.

5. For t = 1, . . . , TP generate ũt ∼ i.i.d. N (0, σ̂2
ũ
) if ρ̂Y,C,1 is not statistically different from zero.

Otherwise generate ũt according to ũt = ρ̂Y,C,1ũt−1 + ṽt where ṽt ∼ i.i.d. N (0, (1− ρ̂2
Y,C,1)σ̂2

ũ
)

and ũ0 = 0.

6. Generate Ỹt = βD̃t + ũt for t = 1, . . . , TP where D̃t is generated in 4., ũt in 5. and β is set

equal to 0.99 as explained in 3. Run OLS for the regression of Ỹt on D̃t to obtain the OLS

estimator β̂oracle.

7. Repeat 4-6. 5,000 times and compute the bias, MAE and MSE of β̂oracle.

8. Repeat the regression in 6. but now allow for correlation ρ between ũt and D̃t. For a given

ρ ∈ [−1, 1], generate ũt = ρ(σ̂ũ/σ̂D,C)(D̃t −DC) +
√

1− ρ2ηt, where ηt ∼ i.i.d. N (0, σ̂2
ũ
) for

18Note that σ̂2
ũ
approximates the variance of ũt for t ∈ P when Dt and ũt are independent and the variance of

ũt is similar across the policy and control samples.
19We could choose any other value for β, the intuition behind the procedure and the results would not change.
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t = 1, . . . , TP .
20 The case ρ = 0 corresponds to the regression in 6. Generate Ỹt = βD̃t + ũt

for t = 1, . . . , TP with β as in 6. and D̃t as in 4. Run OLS for the regression of Ỹt on D̃t and

label this estimator β̂ES (ρ). Repeat this 5,000 times and compute its bias, MAE and MSE.

9. Consider the regression in 8. but start to raise the variance of D̃t. That is, define D̃δ,t =
DC +(D̃t−DC)

√
1 + δ for some δ ≥ 0 where D̃t is generated in 4.21 Generate Ỹt = βD̃δ,t + ũt

for t = 1, . . . , TP with β and ũt as in 8. Run OLS for the regression of Ỹt on D̃δ,t and label

this estimator β̂ES (ρ, δ).22 Repeat this 5,000 times and compute its bias, MAE and MSE.

10. Find the value of δ such that MSE(β̂ES (ρ, δ)) = MSE(β̂oracle) [or MAE(β̂ES (ρ, δ)) = MAE(β̂oracle)]
and label it δ∗ (ρ). Define σ̂2

D,∗ (ρ) = σ̂2
D,C (1 + δ∗ (ρ)) .

11. Repeat 8.-10. for a grid of ρ values in [−1, 1].

Steps 1.-11. provide a detailed sensitivity analysis that computes the values of the variance of Dt

that allows the event study estimator to perform as well as the oracle estimator over a range of

values of endogeneity ρ, namely σ̂2
D,∗ (ρ). If σ̂2

D,P ≥ σ̂2
D,∗ (ρ) one can be confident that the variance

of the policy shock in Nakamura and Steinsson (2018a) is relatively large enough for a degree of

endogeneity that satisfies |Corr (ũt, Dt) | ≤ |ρ| for the event study estimator to have low enough bias

for its MSE (MAE) to be as low as in the oracle regression with no endogeneity. If one is interested

in directly evaluating a specific value of ρ for which the policy shock in Nakamura and Steinsson

(2018a) is large enough to produce a credible event study estimator, one could replace 1 + δ in

9. by σ̂2
D,P /σ̂2

D,C and instead of 10., find the value of ρ such that MSE(β̂ES(ρ, σ̂2
D,P /σ̂2

D,C − 1)) =
MSE(β̂oracle) [or MAE(β̂ES(ρ, σ̂2

D,P /σ̂2
D,C − 1)) = MAE(β̂oracle)].

The validity of the sensitivity analysis relies on the following two properties: (i) the model

in (5.1) is correct also in the control sample, i.e., for t ∈ C and (ii) the order of magnitude of σ̂2
ũ

is a good proxy for the order of magnitude of T −1
P

∑
t∈P σ2

ũ,t
. Property (i) is implicitly assumed in

typical VAR estimation of simultaneous equations models since typically the relationship between

monetary policy and real economic variables is estimated with VARs at monthly, quarterly, yearly

frequencies and each observation aggregates both FOMC announcement and non-announcement

days. Property (ii) is reasonable since ũt for t ∈ P represents news and latent factors that are not

specific to the announcement and would be present even if there were no FOMC announcements.

20Note that the correlation between ũt and D̃t is equal to ρ and ũt has variance σ̂2
ũ
.

21Note that D̃δ,t is a rescaled version of D̃t with variance σ̂2
D,C (1 + δ).

22β̂ES (ρ) in 8. corresponds to β̂ES (ρ, 0).
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Thus, its variation is expected to be similar to that in non-announcement days which in turn has

the same order of magnitude as that of Yt in non-announcement days.

Table 1 shows the bias, MAE and MSE of β̂oracle and β̂ES (ρ, δ) for different values of ρ and δ.

We first compare β̂oracle and β̂ES (ρ, δ) for ρ = 0, 0.25, . . . , 1 and δ = 0. As we raise the endogeneity
parameter ρ from 0 to 1 the bias, MAE and MSE of β̂ES increases substantially.

To provide numerical support for the theoretical results of Theorem 1-4, we look at the change

in the bias, MAE and MSE of β̂ES (ρ, δ) as δ increases for a given ρ ̸= 0 when looking at the 2-

Year real yields. The results show that these summary statistics decrease quickly as δ grows. For

example, for a small degree of endogeneity ρ = 0.25, it is sufficient to increase the variance of the

policy variable in the announcement windows nine-fold (δ = 8) for the event study estimator to

exhibit an MSE that is as small as that of the oracle estimator. A similar feature applies to MAE,

though a slightly larger δ is needed. As we raise δ further, the MAE and MSE of β̂ES become

smaller and smaller relative to those of β̂oracle. In particular, both the MAE and MSE of β̂ES

converge to zero quickly as δ increases for ρ = 0.25.
For a larger value of ρ it takes larger values of δ to decrease the MAE and MSE of β̂ES to

those of β̂oracle. For example, for ρ = 0.5 increasing the variance of the policy variable in the policy

sample nine-fold is not sufficient, while increasing it roughly thirty three times is. Similar features

are found when the dependent variable is calibrated to the 5-Year real yield.

The bias of β̂oracle is always smaller than that of β̂ES. This follows because for β̂oracle positive

and negative deviations from the true value β cancel each other across simulation replications,

while for β̂ES these deviations tend to be positive since ρ > 0. On the other hand, these deviations

for β̂ES tend to be smaller in magnitude, making its variance smaller than that of β̂oracle for large

values of δ. Focusing only on bias does not account for the higher precision of β̂ES. A user concerned

about both accuracy and precision should rather focus on performance measures such as MSE or

MAE, which incorporate both bias and variance.

We now turn to the most important step of our sensitivity analysis. Given that the regression

is calibrated to that in Nakamura and Steinsson (2018a), we can verify up to which degree of

endogeneity ρ the variance of the policy shock is large enough for the event study estimator to be

expected to perform well in this setting. This entails finding for each ρ > 0 the value δ∗ (ρ) such

that MSE(β̂oracle) = MSE(β̂ES(ρ, δ∗ (ρ))) and then determining whether the estimate σ̂2
D,P from

Nakamura and Steinsson (2018a) is larger than σ̂2
D,∗ (ρ) = σ̂2

D,C (1 + δ∗ (ρ)) .
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Table 1: Bias, MAE and MSE of β̂oracle and β̂ES

2-Year U.S. Treasury instantaneous real forward rates

β̂oracle β̂ES (ρ, δ = 0) β̂ES (ρ, δ = 1) β̂ES (ρ, δ = 8)
ρ Bias MAE MSE Bias MAE MSE Bias MAE MSE Bias MAE MSE
0. -0.004 0.158 0.039 0.000 0.155 0.037 -0.004 0.126 0.025 0.000 0.069 0.008
0.25 0.294 0.302 0.128 0.278 0.282 0.101 0.177 0.179 0.039
0.50 0.580 0.580 0.367 0.550 0.550 0.322 0.349 0.349 0.128
0.75 0.869 0.869 0.777 0.826 0.826 0.696 0.524 0.524 0.278
1 1.167 1.163 1.362 1.098 1.098 1.211 0.699 0.699 0.490

β̂ES (ρ, δ = 16) β̂ES (ρ, δ = 32) β̂ES (ρ, δ = 40) β̂ES (ρ, δ = 48)
ρ Bias MAE MSE Bias MAE MSE Bias MAE MSE Bias MAE MSE
0 0.000 0.052 0.004 0.000 0.038 0.002 -0.001 0.034 0.002 0.000 0.031 0.002

0.25 0.133 0.134 0.022 0.098 0.099 0.012 0.091 0.091 0.000 0.081 0.082 0.008
0.50 0.267 0.267 0.074 0.197 0.179 0.041 0.177 0.177 0.032 0.163 0.164 0.028
0.75 0.401 0.401 0.163 0.296 0.296 0.088 0.266 0.266 0.072 0.245 0.245 0.061
1 0.534 0.534 0.285 0.398 0.398 0.155 0.355 0.355 0.126 0.326 0.326 0.107

5-Year U.S. Treasury instantaneous real forward rates

β̂oracle β̂ES (ρ, δ = 0) β̂ES (ρ, δ = 1) β̂ES (ρ, δ = 8)
ρ Bias MAE MSE Bias MAE MSE Bias MAE MSE Bias MAE MSE
0 0.0017 0.1171 0.0217 -0.002 0.119 0.022 0.000 0.095 0.014 -0.002 0.052 0.004

0.25 0.268 0.272 0.093 0.249 0.250 0.076 0.159 0.159 0.029
0.50 0.529 0.530 0.299 0.502 0.502 0.263 0.319 0.319 0.108
0.75 0.796 0.796 0.646 0.750 0.751 0.572 0.478 0.478 0.231
1 1.061 1.061 1.131 1.002 1.002 1.006 0.638 0.637 0.407

β̂ES (ρ, δ = 16) β̂ES (ρ, δ = 32) β̂ES (ρ, δ = 40) β̂ES (ρ, δ = 48)
ρ Bias MAE MSE Bias MAE MSE Bias MAE MSE Bias MAE MSE
0 0.000 0.040 0.003 0.000 0.029 0.002 0.000 0.025 0.001 0.000 0.023 0.000

0.25 0.123 0.123 0.017 0.090 0.090 0.009 0.081 0.081 0.008 0.074 0.074 0.006
0.50 0.243 0.243 0.061 0.179 0.179 0.033 0.162 0.162 0.027 0.149 0.149 0.023
0.75 0.367 0.364 0.134 0.269 0.269 0.073 0.243 0.243 0.059 0.223 0.223 0.050
1 0.487 0.487 0.237 0.359 0.359 0.129 0.324 0.324 0.105 0.297 0.297 0.088

The bias, MAE and MSE of β̂oracle and β̂ES (ρ, δ). In the top panel, the dependent variable in each regression is calibrated to the 2-Year
real forward rate and TP = 74. In bottom panel, the dependent variable in each regression is calibrated to the 5-Year real forward rate
and TP = 106. The number of replications is 5,000.

We report this information in Table 2. As ρ rises the value of δ∗ increases since stronger

endogeneity requires higher variance in the policy variable to make the event study estimator less

biased. From Nakamura and Steinsson (2018a) σ̂2
D,P = 32.43σ̂2

D,C . Thus, when Yt is the 2-Year real

yield we have σ̂2
D,P ≈ σ̂2

D,∗ (0.50) while when Yt is the 5-Year real yield we have σ̂2
D,P ≈ σ̂2

D,∗ (0.40).
These imply that the event study estimator can be expected to perform well for all degrees of

endogeneity no larger than roughly ρ = 0.50 (ρ = 0.40) for the 2-Year (5-Year) real yield.

Values of ρ = 0.50 and 0.40 represent quite strong empirical contemporaneous correlation
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Table 2: Values of δ∗ for each ρ

2-Year real forward 5-Year real forward
ρ δ∗ δ∗

0.10 0.78 1.50
0.15 2.50 4.00
0.20 4.60 7.30
0.25 7.60 11.9
0.30 11.40 17.80
0.35 15.80 24.80
0.40 21.00 32.40
0.45 26.80 41.20
0.50 33.50 50.80
0.55 40.80 61.50
00.60 49.30 73.50
0.65 56.80 86.50
0.70 66.00 100.50
0.75 75.90 115.30
0.80 86.50 132.10
0.85 97.80 148.20
0.90 109.7 166.50
0.95 122.3 186.70
1 135.5 207.50

The Values of δ∗ for each ρ = 0.10, . . . , 1.. The dependent variable
is the 2-Year real forward rate (first column) and the 5-Year real
forward rate (second column). The number of replications is 5,000.

for any pair of 30-minute or 1-day changes in common macroeconomic and financial variables.

These high-frequency contemporaneous correlations should not be that large in practice for two

reasons. First, it is well-known that taking first-differences of trending variables reduces their

variability and their contemporaneous correlation is smaller than that corresponding to the series

in levels. Second, many relationships between macroeconomic and financial variables are in the

form of lead-lag which implies that significant portions of dependence between any two variables

is not contemporaneous. We verify this empirically by computing the pairwise contemporaneous

correlations between all the time series used by Nakamura and Steinsson (2018a) and the main

macroeconomic time series available from FRED. Even though these pairwise correlations are

typically larger than zero in absolute value, they never exceed 0.5 and they average about 0.2.

To analyze whether the variance of the policy shock is relatively large only for some announce-

ment days and not for others, we compute the sample variance of the policy variable V̂ar (Dt) over
disjoint sub-samples. We consider the full sample from 1/1/2000 to 3/19/2014 and the sample post-

2004.23 The sample sizes are T = TP +TC = 1, 236 (TP = 106, TC = 1130) and T = TP +TC = 836

23We consider the sample after 2004 because the data for 2-year forward rates, are available from 2004 onward.
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(TP = 74, TC = 762), respectively. For each sample we construct several sub-samples with different

window lengths according to the rule nP =
⌊
T

4/5
P

⌋
and mP = ⌊TP /nP ⌋ where nP is the number

of observations in each window and mP is the number of windows in the policy sample.2425 The

number of windows in the control sample is set equal to that in the policy sample, i.e., mC = mP ,

and we set nC = ⌊TC/mC⌋ so that each corresponding window in the policy and control sample

brackets the same period.

The evidence in Table 3 shows that there is some time-variation in V̂ar (Dt) in both the policy

and control sample, though it does not deviate much from the average value computed over the

policy and control sample, respectively. In particular, the ratio of V̂ar (Dt) in the corresponding

policy and control sub-samples displays some time-variation even though it does not fall substan-

tially below the ratio computed over the full policy and control sample. For example, for the

period 2004-2012 the rule selects two windows. In the first window, the ratio of V̂ar (Dt) in the

policy and control sample is 26.27. This is not much smaller than that corresponding to the sample

2004-2012, 36.72.

We also compute the variance of the policy variable in the sub-sample that includes the last

two non-announcement days prior to an FOMC meeting that are available from the control sample.

That is, we estimate the variance of the 30-minute changes in the policy variable across all Tuesdays

and Wednesdays of the week before the announcement, two weeks before the announcement and

three weeks before the announcement, labeling these as V̂ar(←−D t,1), V̂ar(←−D t,2) and V̂ar(←−D t,3). The
results do not show any significant evidence of leakage occurring in the 30-minute window of the

three preceding weeks of an FOMC announcement: V̂ar(←−D t,1) is even smaller than V̂ar(←−D t,2) and

V̂ar(←−D t,3). Of course, this does not exclude the possibility that there is some leakage outside the

30-minute window [2:05pm-2:35pm] or in the other days that precede the announcement. This can

be analyzed by applying the same approach to additional high-frequency data (e.g., for Thursdays,

Fridays and Mondays). Here we only consider the data from Nakamura and Steinsson (2018a).

As discussed in Section 2.5, an implication of leakage is serial dependence in Dt in the days

prior to the FOMC announcement. We evaluate this and consider policy variables constructed both

as 30-minute and 1-day changes. For any given announcement day, we estimate the autoregressive

coefficients in the regressions,

Dt−j = c + ρj+1Dt−j−1 + vt−j, t ∈ P and j = 0, . . . , 5.

24The available data for the control sample is up to and including 2012. Thus, in constructing the sub-samples
we consider all announcement and non-announcement days until the end of 2012.

25The choice of the window length nP =
⌊
T

4/5
P

⌋
is optimal for nonparametric smoothing under an MSE criterion.
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Table 3: Estimates of Var (Dt) and of ρj

Panel A. 2004-2014 2000-2014 2004-2012 2000-2012

V̂ar (Dt) V̂ar (Dt) V̂ar (Dt) V̂ar (Dt)
Policy 0.000808 0.001200 Policy, 1st window 0.000725 0.002011
Control 0.000022 0.000037 Control, 1st window 0.000028 0.000054
Ratio 36.72 32.43 Policy, 2nd window 0.001374 0.001259

Control, 2nd window 0.000016 0.000020
Ratio 1st window 26.27 37.24
Ratio 2nd window 87.85 62.95

Panel B . 2000-2014 Panel C. 30-Minute 1-Day

V̂ar
(←−

D t,1

)
V̂ar

(←−
D t,2

)
V̂ar

(←−
D t,3

)
ρ̂1 0.14 0.03

0.000025 0.000052 0.000040 (0.84) (0.18)
ρ̂2 0.05 -0.19

(0.12) (0.15)
ρ̂3 0.18** 0.03

0.08 (0.11)
ρ̂4 -0.22 0.07

(0.19) (0.12)
ρ̂5 0.12 -0.11

(0.18) 0.16
ρ̂6 0.07 -0.01

(0.05) (0.12)
The estimates of the average variance of the policy variable Dt in different samples or sub-samples (Panel A and B), and the estimates

of ρr for r = 1, . . . , 6 (Panel C). The samples considered are from 1/1/2004 to 3/19/2014 and from 1/1/2000 to 3/19/2014. The

sub-samples are constructed within each of the latter two samples using window lengths according to the MSE criterion. For the sample

2004-2014, mP = 2, nP = 27 and nC = 381. For the sample 2000-2014, mP = 2, nP = 38 and nC = 565.

The results in Table 3 show that only ρ̂2 is significantly different from zero when Dt is the 1-day

change. For the 30-minute change, none of the ρ̂j’s are statistically significant. Overall, there is

little evidence of leakage in the available data. Again, this does not exclude the possibility that

there is some leakage on the Thursdays, Fridays and Mondays that precede an FOMC meeting.

We conclude with a final remark. The sensitivity analysis discussed above allows for endo-

geneity in the form of correlation between D̃t and ũt. Although this is a natural specification, it is

possible that corr(D̃t, ũt) = 0, yet E(ũt| D̃t) ̸= 0.26 This is possible with a nonlinear relationship

between D̃t and ũt. To accommodate this, one could change step 6. above. For example, one could

specify ũt = ρ(σ̂ũ/σ̂D,C)(D̃t − DC)2 +
√

1− ρ2ηt with ρ ∈ (−1, 1) so that Cov(D̃t, ũt) = 0 and

E(ũt| D̃t) ̸= 0. Then, one could proceed with the other steps as above where now higher values of ρ

correspond to stronger nonlinear relationship between ũt and D̃t, and would require a larger δ for

relative exogeneity to hold. The case of zero correlation and nonlinear dependence is likely extreme

26Of course this would require non-normality of either ũt or D̃t.
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in practice, so the original sensitivity analysis above should suffice for most empirical applications.

5.2 Worst-Case Asymptotic Coverage and Bias-Aware Confidence Intervals

We consider the high-frequency event study regression of the 2-Year real forward rates on 30-

minute monetary policy surprises. We first use the bound on the bias from Proposition 1 to assess

the worst-case asymptotic coverage of standard confidence intervals for the causal effect of policy

surprises on real forward rates.

Table 4: Worst-case asymptotic coverage

a = 0.90
√

Var
(
φY,u

)
Var

(
gD,u

)
/J

M 0 0.00001 0.0001 0.001 0.01 0.1 1

0.0001 0.900 0.900 0.900 0.900 0.900 0.900 0.900
0.1 0.900 0.900 0.900 0.900 0.900 0.900 0.898
0.5 0.900 0.900 0.900 0.900 0.900 0.900 0.858
1 0.900 0.900 0.900 0.900 0.900 0.898 0.737
10 0.900 0.900 0.900 0.900 0.898 0.737 0.000
100 0.900 0.900 0.900 0.898 0.737 0.000 0.000
300 0.900 0.900 0.900 0.885 0.088 0.000 0.000
1000 0.900 0.900 0.898 0.737 0.000 0.000 0.000

Worst-case asymptotic coverage probability of the 90% confidence interval. The out-
come variable is the 2-Year U.S. Treasury instantaneous real forward rate and the policy
variable is the 30-minute policy news surprise.

Assuming stationarity, Table 4 reports the worst-case asymptotic coverage probability of the

confidence interval CI(β̂ES) across values of M = cρmax and of the variance ratio

√
Var

(
φY,u

)
×√

Var
(
gD,u

)
/J . As M or the variance ratio increases, the coverage probability deteriorates. For

the regression under consideration with ρmax = 1, we have M ≈
√

TP /σ̂D,P = 303 and variance ratio

σ̂Y,C σ̂D,C/
√

Ĵ = 0.00013, which corresponds to a coverage probability of 0.8998. This suggests that

the asymptotic bias in this high-frequency regression is small enough that it does not significantly

distort the coverage probability of the conventional confidence interval, even under a worst-case

scenario. It would seem to take an unrealistically large bias to reduce the worst-case coverage

probability significantly below the nominal level in this application.

Next, we analyze the relative length of the bias-aware confidence interval compared to the

conventional confidence interval in the high-frequency event study regression of 2-Year real forward

rates on 30-minute policy surprises. Table 5 shows that the bias-aware and conventional confidence

intervals often have the same length. The bias-aware interval is wider only for a few combinations
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of M and the variance ratio. It would take an unrealistically large asymptotic bias for the bias-

aware confidence interval to be significantly wider than the conventional one. For the values

M =
√

TP /σ̂D,P = 303 and variance ratio σ̂Y,C σ̂D,C/
√

Ĵ = 0.00013, which are relevant in this

application, the two confidence intervals have the same length.

Table 5: Relative length of CIBA versus CI√
Var

(
φY,u

)
Var

(
gD,u

)
/J

M 0 0.00001 0.0001 0.001 0.01 0.1 1

0.0001 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.1 1.000 1.000 1.000 1.000 1.000 1.000 1.005
0.5 1.000 1.000 1.000 1.000 1.000 1.001 1.118
1 1.000 1.000 1.000 1.000 1.000 1.005 1.389
10 1.000 1.000 1.000 1.000 1.005 1.389 6.869
100 1.000 1.000 1.000 1.005 1.389 6.869 61.581
300 1.000 1.000 1.000 1.044 2.603 19.027 183.161
1000 1.000 1.000 1.005 1.389 6.869 61.581 608.693

Relative length of bias-aware confidence interval versus standard confidence interval.
Significance level is a = 0.10. The outcome variable is the 2-Year U.S. Treasury instan-
taneous real forward rate and the policy variable is the 30-minute policy news surprise.

5.3 Response of Blue Chip Forecasts on Output to Monetary Policy News

We consider the high-frequency event study regression in Nakamura and Steinsson (2018a):

BCrevt = β0 + βDt + ũt, (5.2)

where BCrevt is the monthly change in Blue Chip survey expectations about real GDP and

Dt is the policy news shock that occurs in that month. See Bauer and Swanson (2023a) and

Nakamura and Steinsson (2018a) for details on how to construct BCrevt and Dt. It is likely that

Dt is endogenous for several reasons. As shown by Bauer and Swanson (2023a) Dt is correlated

with publicly known macroeconomic and financial market data, say Xt, that predate the FOMC

announcement.27 Since Xt is omitted from the regressors, ũt and Dt are correlated. Nevertheless,

the event study regression is valid provided that relative exogeneity holds. The latter requires the

policy shock to dominate any other variable in the event window. This means that the variance of

Dt cannot be an order of magnitude smaller than the variance of BCrevt.
28 BCrevt is constructed

27The index t of Xt should not create confusion. Since these data releases occur before the FOMC announcement,
Xt collects information that is known before date t but is still observable at date t or is correlated with variables
or news that are realized or occur at time t.

28Note that both BCrevt and Dt are measured as level changes in rates, expressed in percentage points. Thus,
they share the same units of measurement, and it is meaningful to compare their variances.
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as the change in the average of the 1-, 2-, and 3-quarter ahead consensus forecasts. We denote the

latter as BCrevt−1q, BCrevt−2q and BCrevt−3q, respectively.
Table 6 reports the sample variances of Dt, BCrevt, BCrevt−1q, BCrevt−2q and BCrevt−3q,

and of the Treasury yields over the full-sample 1995-2014 as well as over the sub-samples 2000-2014,

2000-2007 and 1995-2000. Strikingly, the variance of Dt is much smaller than that of BCrevt. For

example, in the sample 2000-2014 the variances of BCrevt and BCrevt−1q are thirteen and thirty

four times larger than the variance of Dt. This is likely due to the fact that the event window for

the dependent variable is one month but it is 30 minutes for the policy variable. Intuitively, while

the policy surprise Dt is constructed as a 30-minute change, when Yt is the one-month change in the

Blue Chip forecasts, it may have too large a variance relative to the policy shock as it aggregates

all news and factors that are relevant over the month.29 This implies that relative exogeneity does

not provide a good approximation when Yt is a much lower-frequency change than Dt, and any

correlation between Dt and ũt is not overwhelmed by the high variance of the policy shock.30

This explanation is consistent with the evidence in Bauer and Swanson (2023a) who showed

that once macroeconomic and financial data that predate the FOMC announcement are controlled

for, the coefficient estimates revert back to having signs consistent with standard macroeconomic

models. The authors attributed this to the correlation between Dt and Xt. To see this, assume that

the true model is linear and the treatment effect is homogeneous. Then, standard macroeconomic

theory suggests that β < 0 when Yt is the one-month change in the Blue Chip forecasts for real

GDP. The correlation estimates in Bauer and Swanson (2023a) suggest that the omitted economic

news that predate the announcement are positively correlated with Dt. Given that the variance of

Dt is not substantially larger than the variance of Yt, the bias ∆t is positive and so the resulting

event study estimate β̂ES is an upward biased estimate of the causal effect of Dt on real GDP

forecast revisions up to even having the wrong sign.

29An alternative explanation could be that relative exogeneity holds and β is very large in absolute value. We
rule out this possibility as β would need to be implausibly large in order to generate such a large difference.

30Even in the presence of measurement error, the relative exogeneity condition remains essential. While indepen-
dent measurement error or idiosyncratic shocks may inflate the variance of the outcome variable without affecting
the event-study estimand itself, such additional noise does not remove the bias arising from confounding factors.
The latter can be eliminated only when the variance of the policy shock becomes infinitely large relative to that of
other disturbances—that is, only under relative exogeneity.
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Table 6: The sample variances of Dt, BCrevt and Treasury yields

1995-2014 2000-2014 2000-2007 1995-2000

Dt 0.0012 0.0012 0.0017 0.0012
BCrevt 0.0134 0.0158 0.0132 0.0095

BCrevt−1q 0.0334 0.0411 0.0346 0.0207
BCrevt−2q 0.0152 0.0176 0.0147 0.0116
BCrevt−3q 0.0096 0.0089 0.0084 0.0105

2-Year Forward 0.0065 0.0051
5-Year Forward 0.0054 0.0026

The sample variance of Dt, BCrevt and Treasury yields over different sub-samples.
BCrevt−1q, BCrevt−2q and BCrevt−3q denote the 1-, 2-, and 3-quarter ahead Blue
Chip forecast revisions about real GDP, respectively. For the Treasury yields the sample
starts in January 2004.

This argument should also apply to the event study regression with Treasury yields as depen-

dent variable. However, Bauer and Swanson (2023a) found that in regressions where the dependent

variable is the change in an asset price or Treasury yield, controlling for macroeconomic and fi-

nancial data that predate the FOMC announcement does not change the point estimates and their

statistical significance. This difference likely arises because the changes in Treasury yields are con-

structed using a 30-minute or 1-day window around the announcement so that relative exogeneity

is likely to provide a good approximation. As can be seen from Table 6, the changes in Treasury

yields based on a 1-day window have an order of magnitude similar to those of the policy variable.

Since relative exogeneity provides a good approximation in this case, controlling for Xt does not

result in a change in the point estimates even though Dt and Xt are correlated. The same omitted

economic news that predate the announcement do not generate bias when Yt is the change of an

asset price or Treasury yield over a similarly-sized narrow window used to construct the policy

surprise. The key point here is that the validity of the event study approach does not require the

absence of endogeneity. Rather, it requires that the policy shock dominates any other variable that

is present in the event window. When this condition holds, identification of causal effects from an

event study does not require the inclusion of controls in the event study regression. It is interesting

to note that this implies that, when the identification conditions are met, event study regressions

are immune to forms of p-hacking that involve searching through different control specifications, a

potential strength of the high-frequency event study method.

This discussion suggests that the event study approach is more credible when a narrow window

is used for both the dependent and independent variable. Both 30-minute and 1-day windows are

good choices as relative exogeneity is more likely to hold. This was also informally discussed on p.

1289 in Nakamura and Steinsson (2018a). If longer windows (e.g., one-month windows) are used

to form the outcome variable, as is the case for Blue Chip forecasts, then relative exogeneity is
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less likely to hold and the researcher should make more effort to appropriately control for omitted

variables and simultaneity. For example, orthogonalizing surprises rather than using the original

surprises as suggested by Bauer and Swanson (2023a) could provide a solution in these contexts.

6 Conclusions

We establish nonparametric conditions for identification of casual effects in high-frequency event

studies. We show that identification can be achieved via a separability condition on the policy shock

from the other variables present in the window, and relative exogeneity which refers to the variance

of the policy shock being an order of magnitude larger than that of the other variables. Under these

conditions we establish the causal meaning of the event study estimand, the super-consistency

and asymptotic distribution of the event study estimator and its robustness to nonlinearities.

We provide bounds on the bias and use them to study the worst-case coverage properties of

standard confidence intervals and to construct bias-aware inference procedures. We propose a

simple procedure that can be used to assess relative exogeneity as an approximation and apply it

to Nakamura and Steinsson’s (2018a) analysis on the real effects of monetary policy.
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Supplemental Appendix

A Mathematical Proofs

We begin with the following lemma.

Lemma A.1. Let Assumptions 1-4 hold. Then, for all t ∈ P and all d ∈ D,

E
(
Ỹt (d)

(
D̃t − E

(
D̃t

)))
and E (Y ∗

t (d) (D∗
t − E (D∗

t )))

are monotonically decreasing to zero as σ2
e,t →∞, where Y ∗

t (d) = σ−1
D Yt(d) with σ2

D = limTP →∞ T −1
P∑TP

t=1 Var (Dt) and TP is the number of observations in the policy sample.

Proof. We only provide the proof for E(Ỹt (d) (D̃t−E(D̃t))) since the proof for E (Y ∗
t (d) (D∗

t − E(D∗
t )))

is nearly identical. Using the structural and reduced forms for Yt and Dt in Assumption 1-2, we

have

E
(
Ỹt (d)

(
D̃t − E(D̃t)

))
= E

(
σ−1

D,t (φY,D (d, t) + φY,u (Zt, ut, t))
(
D̃t − E(D̃t)

))
= σ−2

D,tE [(φY,D (d, t) + φY,u (Zt, ut, t))

× (gD,e (et, t) + gD,u (Zt, ut, t)− E (gD,e (et, t) + gD,u (Zt, ut, t)))]

= σ−2
D,tφY,D (d, t)E (gD,e (et, t) + gD,u (Zt, ut, t)− E (gD,e (et, t) + gD,u (Zt, ut, t)))

+ σ−2
D,tE (φY,u (Zt, ut, t) (gD,e (et, t) + gD,u (Zt, ut, t)− E (gD,e (et, t) + gD,u (Zt, ut, t))))

= 0 + σ−2
D,tE (φY,u (Zt, ut, t) (gD,e (et, t)− E (gD,e (et, t)))) (A.1)

+ σ−2
D,tE (φY,u (Zt, ut, t) (gD,u (Zt, ut, t)− E (gD,u (Zt, ut, t)))) .

By Assumption 3, et is independent of (Zt, ut) and so

σ−2
D,tE (φY,u (Zt, ut, t) (gD,e (et, t)− E (gD,e (et, t)))) = 0. (A.2)

By Assumption 4(iii),

σ−2
D,tE (φY,u (Zt, ut, t) (gD,u (Zt, ut, t)− E (gD,u (Zt, ut, t)))) (A.3)

= σ−2
D,tC,
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for some C <∞. Thus, (A.1)-(A.3) imply the statement of the lemma since σ2
D,t →∞ as σ2

e,t →∞
by Assumption 4(ii). □

A.1 Proof of Theorem 1

Recall that Ỹt = Ỹt(D̃t). By the fundamental theorem of calculus and Assumption 5-6, we have

Ỹt = Ỹt (d) +
� D̃t

d

∂Ỹt (d)
∂d

dd

= Ỹt (d) +
� d

d

∂Ỹt (d)
∂d

1
{
d ≤ D̃t

}
dd.

Using this and the fact that Var(D̃t) = 1, we have

βES,t = Cov(Ỹt, D̃t)
Var(D̃t)

= Cov(Ỹt, D̃t)

= Cov(Ỹt (d) , D̃t) + E

� d

d

∂Ỹt (d)
∂d

1
{
d ≤ D̃t

} (
D̃t − E(D̃t)

)
dd


= ∆t +

� d

d

E
(

∂Ỹt (d)
∂d

1
{
d ≤ D̃t

}
dd
(
D̃t − E(D̃t)

))

= ∆t +
� d

d

∂Ỹt (d)
∂d

E
(
1
{
d ≤ D̃t

} (
D̃t − E

(
D̃t

)))
dd,

where the fourth equality holds by Fubini’s Theorem and Assumption 5-6 and the final equality

follows from Assumption 1 since ∂Ỹt (d) /∂d = ∂φY,D(d, t)/∂d, proving the first statement of the

theorem.

To see that the weights are non-negative, note that for d ∈ [d, d] we have

E
(
1
{
d ≤ D̃t

} (
D̃t − E(D̃t)

))
= E

(
1
{
d ≤ D̃t

}
D̃t

)
− E

(
1
{
d ≤ D̃t

})
E
(
D̃t

)
= E

(
D̃t| d ≤ D̃t

)
E
(
1
{
d ≤ D̃t

})
− E

(
1
{
d ≤ D̃t

})
E
(
D̃t

)
=
(
E
(
D̃t| d ≤ D̃t

)
− E

(
D̃t

))
P
(
d ≤ D̃t

)
≥ 0,
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since E(D̃t| d ≤ D̃t)−E(D̃t) ≥ 0 for d ∈ [d, d]. To see that the weights integrate to one, note that

D̃t = d +
� D̃t

d

dd̃ = d +
� d

d

1
{
d̃ ≤ D̃t

}
dd̃.

Using this we have,

1 = Var
(
D̃t

)
= E

[(
D̃t − d

) (
D̃t − E

(
D̃t

))]
− E

E
� d

d

1
{
d ≤ D̃t

}
dd

(D̃t − E
(
D̃t

))
= E

[(
D̃t − d

) (
D̃t − E

(
D̃t

))]
− E

� d

d

1
{
d ≤ D̃t

}
dd̃

E
(
D̃t − E

(
D̃t

))
= E

[(
D̃t − d

) (
D̃t − E

(
D̃t

))]
= E

� d

d

1
{
d ≤ D̃t

}
dd̃
(
D̃t − E

(
D̃t

))
=

� d

d

E
(
1
{
d ≤ D̃t

} (
D̃t − E

(
D̃t

)))
dd.

Finally, the fact that ∆t is decreasing in σ2
e,t follows directly from (A.3) which continues to hold

when Assumption 4 is replaced by Assumption 7. □

A.2 Proof of Theorem 2

The result follows directly from Theorem 1 and Lemma A.1. □
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A.3 Proof of Theorem 3

We have

β̂ES =
σ−2

D T −1
P

∑TP
t=1

(
Dt −D

) (
Yt − Y

)
σ−2

D T −1
P

∑TP
t=1

(
Dt −D

)2

=
T −1

P

∑TP
t=1

(
D∗

t −D
∗) (

Y ∗
t − Y

∗)
T −1

P

∑TP
t=1

(
D∗

t −D
∗)2

P→
� 1

0
c (D∗, Y ∗, s) ds

by Assumption 8. Given the definition of c (D∗, Y ∗, s), the statements of the theorem then follow

from the same arguments as in the proof of Theorem 1. □

A.4 Proof of Theorem 4

Note that Theorem 3 is obtained under Assumption 7 while the current theorem uses Assumption

4. The difference between the two assumptions is that E(gD,e (et, t)2) <∞ in Assumption 7 while

E(gD,e (et, t)2)→∞ as σ2
e,t →∞ in Assumption 4. Given that we take the limits sequentially, we

can use the limiting result from Theorem 3 before taking the limit as σ2
e,t →∞. Thus, the theorem

follows directly from Theorem 3 and Lemma A.1. □

A.5 Proof of Theorem 5

We have

β̂ES − βES =
T −1

P

∑TP
t=1

(
D∗

t −D
∗) (

Y ∗
t − Y

∗ − βES
(
D∗

t −D
∗))

T −1
P

∑TP
t=1

(
D∗

t −D
∗)2 =

T −1
P

∑TP
t=1

(
D∗

t −D
∗)

εt

T −1
P

∑TP
t=1

(
D∗

t −D
∗)2 .

Using Assumption 8(ii) and Assumption 9, we obtain the statement of the theorem. □

A-4



high-frequency event studies

A.6 Proof of Corollary 1

Note that
√

TP σ2
D(β̂ES − βES) d→ N (0, J) by the same argument as in the proof of Theorem 5.

The statement of the corollary then follows after noting

√
TP σ2

D∆(TP ) =
√

TP

σD

� 1

0
E
[
φY,u

(
Z⌊TP s⌋, u⌊TP s⌋, ⌊TP s⌋

)
×
(
gD,u

(
Z⌊TP s⌋, u⌊TP s⌋, ⌊TP s⌋

)
− E

(
gD,u

(
Z⌊TP s⌋, u⌊TP s⌋, ⌊TP s⌋

)))]
ds

by the same arguments used in Lemma A.1. □

A.7 Proof of Proposition 1

Using Assumptions 1-2,

E [Y ∗
t (d) (D∗

t − E (D∗
t ))]

= 1
σ2

D

E [Yt (d) (gD,e (et, t) + gD,u (Zt, ut, t)− E (gD,e (et, t) + gD,u (Zt, ut, t)))]

= 1
σ2

D

√
Var (φY,u (Zt, ut, t))√
Var (φY,u (Zt, ut, t))

E [(φY,u (Zt, ut, t)) (gD,u (Zt, ut, t)− E (gD,u (Zt, ut, t)))]

= 1
σ2

D

√
Var (φY,u (Zt, ut, t))

√
Var (gD,u (Zt, ut, t))E [(φY,u (Zt, ut, t)) (gD,u (Zt, ut, t)− E (gD,u (Zt, ut, t)))]√

Var (φY,u (Zt, ut, t))
√

Var (gD,u (Zt, ut, t))

= 1
σ2

D

√
Var (φY,u (Zt, ut, t))

√
Var (gD,u (Zt, ut, t))ρZu,TP

(t/TP ) .

The result follows by the expression for ∆ in Theorem 3. □
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A.8 Proof of Corollary 2

By construction,

P
(
(βES −∆(TP )) ∈ CI

(
β̂ES

))
= P

(
β̂ES − z1−a/2

√
J

TP σ2
D

≤ βES −∆(TP ) ≤ β̂ES + z1−a/2

√
J

TP σ2
D

)

= P

 |
√

TP σ2
D(β̂ES − (βES −∆(TP )))|

√
J

≤ z1−a/2


→ P

(∣∣∣∣∣Z + limTP →∞
√

TP σD∆(TP )√
J

∣∣∣∣∣ ≤ z1−a/2

)
,

where Z ∼ N (0, 1) and the convergence follows from the same arguments as in the proof of

Theorem 5. The statement of the corollary then follows from
√

TP /σD → c, the same arguments

in the proof of Proposition 1 and the fact that P(|Z + r| ≤ x) is decreasing in r.

A.9 Proof of Corollary 3

It follows by direct analogy with the proof of Corollary 2. □

B Identification Under Shrinking Variance of Background Noise

In this appendix, we briefly discuss why the identification results of Section 2.3 continue to hold

under the alternative framing of relative exogeneity as a policy shock with finite variance and

vanishing variance of the other variables in the event window. Replace Assumption 4 with the

following assumption.

Assumption 10. For all t ∈ P,

(i) σ2
u,t = Var(ut)→ 0 and σ2

Z,t = Var(Zt)→ 0,
(ii) Var(gD,e (et, t)) ̸= 0 is finite,

(iii) E(φY,u (Zt, ut, t)2) and E(gD,u (Zt, ut, t)2) are decreasing to zero as σ2
Z,t, σ2

u,t → 0.

Under this alternative framing of relative exogeneity, Lemma A.1 can be modified to the

following.

Lemma B.1. Let Assumptions 1–3 and 10 hold. Then, for all t ∈ P and all d ∈ D, E(Yt (d) (Dt −
E(Dt))) is monotonically decreasing to zero as σ2

u,t, σ2
Z,t → 0.
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Proof. The proof is essentially identical to that of Lemma A.1 since the proof of Lemma A.1 up

until (A.3) does not rely upon the normalization of Yt(d) or Dt by σD,t or σD and

E (φY,u (Zt, ut, t) (gD,u (Zt, ut, t)− E (gD,u (Zt, ut, t))))

decreases to zero as σ2
Z,t, σ2

u,t → 0 under Assumption 10(iii). □

With Lemma B.1 in hand, the analogs of Theorems 1-2 that do not normalize Yt(d) or Dt

and replace Assumption 4 with Assumption 10 (for Theorem 2) immediately follow by identical

arguments.
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