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Abstract

I propose a new type of confidence interval for correct asymptotic inference after

using data to select a model of interest without assuming any model is correctly

specified. This hybrid confidence interval is constructed by combining techniques

from the selective inference and post-selection inference literatures to yield a short

confidence interval across a wide range of data realizations. I show that hybrid

confidence intervals have correct asymptotic coverage, uniformly over a large class of

probability distributions that do not bound scaled model parameters. I illustrate the

use of these confidence intervals in the problem of inference after using the LASSO

objective function to select a regression model of interest and provide evidence of

their desirable length and coverage properties in small samples via a set of Monte

Carlo experiments that entail a variety of different data distributions as well as an

empirical application to the predictors of diabetes disease progression.
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1 Introduction

A large portion of the statistics literature in recent years has been dedicated to advancing

inference methods that are valid after using data to select a model of interest without

assuming the correct specification of any model in the selection set. Many, if not most,

of these methods can be roughly broken down into two strands: methods that are valid

for a selected parameter conditional on the model that is selected using a particular model

selection criterion and methods that are unconditionally valid irrespective of the particular

model selection criterion used. The former is often referred to as “selective inference”

(e.g., Lee et al., 2016) and the latter is often referred to as “post-selection inference” (PoSI)

(e.g., Berk et al., 2013), terms I will use throughout this paper.

Apart from the differences in coverage guarantees from confidence intervals (CIs)

constructed from these two approaches, they also feature complementary strengths and

weaknesses in terms of informativeness. While selective CIs tend to be short when the model

selected by the data is selected with (unconditional) high probability, they can become

exceedingly wide when this selection event occurs with low probability. Indeed, standard

selective CIs approach naive CIs (with incorrect coverage for the selected parameter) based

upon inverting t-tests while ignoring data-driven model selection when the selection event

occurs with high probability (Andrews et al., 2020). On the other hand, their expected

length may be infinite (Kivaranovic and Leeb, 2021). PoSI CIs do not suffer this latter

drawback but can be very conservative in scenarios where the model selection criterion

is known and the model selected by the data is selected with high probability, leading to

coverage probabilities well in excess of their nominal levels and unnecessarily wide CIs.

In this paper, I propose a new class of hybrid (HySI, short for “hybrid selective infer-

ence”) CIs for inference after model selection that aims to draw on the complementary

informativeness strengths of selective and PoSI CIs. Motivated by the fact that selective

CIs can become extremely wide when the model selected by the data is selected with low

(unconditional) probability, by relaxing the conditional coverage requirement it may be

possible to attain CIs with guaranteed unconditional coverage and better length properties.

Although PoSI CIs have guaranteed unconditional coverage, selective CIs are substantially

shorter when the model selected by the data is selected with high probability. In order

to use the relative strengths of these two CIs in terms of their lengths, the HySI approach

to CI construction uses the data to transition a PoSI CI toward a selective CI when the

latter is short. The HySI CIs introduced here make use of similar reasoning to the hybrid
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CIs of Andrews et al. (2020) and Andrews et al. (2021), but applied to a model selection

framework that generalizes that of Andrews et al. (2020) to incorporate many popular

model selection criteria used in linear regression.

Like selective CIs, but unlike PoSI CIs, HySI CIs require knowledge of the model selec-

tion criterion used by the researcher and the model selected by the data. The HySI approach

relaxes the conditional (on the selected model) coverage requirement of standard selective

CIs to produce CIs that are unconditionally valid. This unconditional coverage guarantee

is analogous to the unconditional coverage guarantee of PoSI CIs with one difference: since

we know the model selection criterion being used when constructing HySI CIs, we attain

validity “on average” across the models potentially selected using this particular model

selection criterion, rather than across all possible model selection criteria.1 The relaxation of

the conditional coverage requirement can be viewed as an alternative approach for improv-

ing the length properties of selective CIs to standard sample splitting, the “data-carving”

approach of Fithian et al. (2017) or the randomized response approach of Tian and Taylor

(2018). However, in contrast to these latter approaches, the HySI approach does not discard

or add noise to the data in the model selection stage. It therefore yields valid inference on

an object of interest that is selected from the full set of data rather than a fraction of it.

The HySI approach to CI construction improves upon the typical length properties

of both the selective and PoSI CIs by modifying the conditioning event of selective CIs

to restrict the selected parameter of interest to lie within a PoSI CI with a higher coverage

probability. Since this latter addition to the conditioning event is not necessarily satisfied

by the data, the HySI approach takes the selective CI based upon this event but modifies

which truncated normal quantiles are used in its constructoin to maintain correct coverage.

By construction, the maximum length of the HySI CI is bounded above by the length of

the corresponding higher coverage PoSI CI, yielding finite expected length and breaking

the negative result of Kivaranovic and Leeb (2021). At the same time, HySI CIs can be

configured to nearly approach naive CIs when the model selected by the data is selected with

high probability in the sense that they approach naive CIs of a slightly higher coverage level.2

Under a strengthening of the general model selection framework of Markovic et al.

(2018) and an assumption implying the existence of a uniformly asymptotically valid PoSI

CI, I establish the uniform asymptotic validity of the HySI CIs I propose. Standard uniform

1Selective CIs posess the same unconditional coverage properties as HySI CIs. For brevity, we refer
the interested reader to Tibshirani et al. (2016) and Tibshirani et al. (2018) for detailed discussions on
the interpretation of unconditional coverage when the model selection criterion is known.

2See the discussion at the end of Section 4 for details.
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laws of large numbers and central limit theorems (CLTs) and results in e.g., Kuchibhotla

et al. (2018) and Bachoc et al. (2020) can be used to verify these assumptions in linear

regression model selection contexts. In the absence of knowledge of a “true” model, these

assumptions typically require the empirically-relevant setting of random, rather than fixed,

regressors. As an illustration, I show how to verify these assumptions in the context of

performing inference on a population regression coefficient for a predictor of interest after

using the LASSO objective function to select the control variables that enter the regression.

Importantly, this framework does not impose distributional assumptions on the data or

that any parameters are known a priori.

The uniform asymptotic validity results can be applied to many other examples such as

inference in a linear regression model selected by LASSO with randomized cross-validation,

a randomized information criterion, a fixed number of steps along the forward stepwise (FS)

and least angle regression (LAR) algorithms and along the solution path of LASSO. Unlike

the point-wise asymptotic results of e.g., Tian and Taylor (2017), the uniform asymptotic re-

sults I establish in this paper provide better approximations to finite sample coverage across

a broad range of data-generating processes (DGPs). And unlike the results of e.g., Tibshi-

rani et al. (2018) or Andrews et al. (2021) but in line with e.g., Bachoc et al. (2020), the

uniform asymptotic validity results I establish in this paper do not require one to bound

the magnitude of various parameters such as (scaled) population regression coefficients.

Finally, I investigate the finite-sample performance of the HySI CIs relative to the

selective CIs of Lee et al. (2016), standard CIs formed after sample splitting and the

PoSI CIs of Bachoc et al. (2020) when using LASSO as the model selection criterion in

a set of Monte Carlo experiments and an empirical data application. In the Monte Carlo

experiments, I draw data from a variety of distributions in a small sample setting to examine

how well the uniform asymptotic results translate to challenging finite-sample settings that

significantly depart from Gaussianity. Under a wide range of values for the LASSO penalty

parameter, I find that the length distribution of HySI CIs compares very favorably to those

of selective and PoSI CIs. The length gains relative to selective CIs are acutely pronounced

at higher quantiles of the relative length distributions. As a stark example, the 95th quantile

of the length distribution of the selective CIs can be more than 34 times larger than that of

the HySI CIs under the Monte Carlo designs I examine. In addition, I find that the HySI

CIs exhibit approximately correct finite-sample coverage. In the empirical application, I

analyze the diabetes dataset from Efron et al. (2004) that was used to study selective CIs

in Lee et al. (2016) and again find favorable empirical performance for the HySI CIs.
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The remainder of this paper is organized as follows. Section 2 introduces the basic

intuition for and construction of HySI CIs. Section 3 lays out the general model selection

framework and assumptions under study involving an affine constraint on a vector of

statistics. Section 4 details the general construction of HySI CIs and includes the main

theoretical results of this paper on their correct uniform asymptotic coverage. In Section 5,

I show how the general framework of Sections 3 and 4 specialize to constructing a HySI CI

for a regression coefficient after using the LASSO objective function to select the regression

model of interest. Sections 6 and 7 present Monte Carlo simulation results and an empirical

application for this post-LASSO model selection exercise. Finally, Section 8 concludes while

proofs of the theoretical results in the paper are contained in a supplemental appendix.

All tables and figures are collected at the end of this document.

2 Basic Ideas Behind the HySI Approach

To impart intuition, I focus on a particular application for the construction of CIs after

model selection, noting that a general approach that covers a wide range of applications

is given in the following section. In particular, consider the standard linear regression

framework for which a response variable yi is modeled as a linear function of a predictor

variable of interest zi and some subset of the control variables X1i,...,Xpi for i=1,...,n.

Without imposing any assumptions about the true underlying relationship between the

response, predictor of interest and controls, the researcher chooses a model M⇢{1,...,p}
as the subset of indices corresponding to the controls of interest. The researcher’s target

parameter of interest is equal to the population linear regression coefficient ✓M defined by

(✓M ,�M)=argmin
✓2R,bM2R|M|Eky�z✓�XMbMk2,

where y = (y1, ... ,yn)0, z = (z1, ... ,zn)0 and XM is the submatrix of the design matrix

X=(x1,...,xp) corresponding to model M with xk=(Xk1,...,Xkn)0.

To establish the basic arguments, let us temporarily assume we have CIs with correct

finite-sample coverage, regression coefficient estimators that are normally distributed in

finite samples and that variance parameters are known.3 There is now a large literature

enabling the construction of selective CIs with (asymptotically) correct coverage for a pop-

ulation regression coefficient conditional on the modelcM⇢{1,...,p} selected by the user for

a variety of model selection criteria (e.g., Lee et al., 2016; Tibshirani et al., 2016; Tibshirani

3These assumptions will all be relaxed to more realistic asymptotic assumptions in the following sections.
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et al., 2018). That is, we have at our disposal a level 1�↵ selective CI CIS,↵cM
such that

P
⇣
✓cM 2CIS,↵cM

|cM=M
⌘
�1�↵ (1)

for all M ⇢{1,...,p} (or some other relevant subset of the universe of models). On the

other hand, there is a growing literature enabling the construction of PoSI CIs with correct

unconditional coverage for a regression coefficient chosen by any model selection technique

(e.g., Berk et al., 2013; Kuchibhotla et al., 2020; Bachoc et al., 2020). That is, for any

potentially data-dependent cM⇢{1,...,p}, we have at our disposal a level 1�↵ PoSI CI

CIP,↵cM
such that

P
⇣
✓cM 2CIP,↵cM

⌘
�1�↵ (2)

for all cM⇢{1,...,p} (or some other relevant subset of the universe of models).

Selective CIs are typically constructed by expressing the model selection event {cM=M}
in terms of a data-dependent truncation interval for the OLS estimator b✓cM of ✓cM , where

(b✓M ,b�M)=argmin
✓2R,bM2R|M|ky�z✓�XMbMk2.

This truncation interval depends upon a sufficient statistic ZcM for the unknown nuisance

parameter �cM that is independent of b✓cM after conditioning on the realization of cM, i.e.,

{cM=M}={b✓M 2 [V�
M
(ZM),V+

M
(ZM)]}.4 The typical construction of a selective CI then pro-

ceeds by invoking the fact that b✓cM |cM=M is distributed according to a normal distribution

with mean ✓M truncated to the interval [V�
M
(ZM),V+

M
(ZM)], and collecting all null hypothe-

sized values of ✓M for which a test based upon this distribution evaluated at the realized value

of ZM would fail to reject at level ↵. On the other hand, PoSI CIs typically take the form

CIP,↵cM
=b✓cM±�cMK↵,

where �M is the standard deviation of b✓M and K↵ is a constant that guarantees (2) holds.

My proposal in this context is to form a level 1�↵ HySI CI CIH,↵

cM
that is constructed

in analogy with the selective CI after modifying the conditioning event and appropriately

adjusting the corresponding coverage level. More specifically, this modified conditioning

event is equal to the intersection of the model selection event expressed in terms of the suffi-

4There is an additional element of the conditioning set V0
M(ZM)�0 that is suppressed in this section

for simplicity of exposition.
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cient statistic ZM and the (potentially false) event that ✓cM lies inside of a level 1��>1�↵

PoSI CI:

n
cM=M

o
\
n
✓cM 2CIP,�cM

o
=
n
b✓M 2 [V�

M
(ZM),V+

M
(ZM)]

o
\
n
b✓cM 2 [✓cM��cMK�,✓cM+�cMK�]

o

=
n
b✓M 2 [V�,H

M
(ZM ,✓M),V+,H

M
(ZM ,✓M)]

o
,

where

V�,H

M
(ZM ,✓M)=max

�
V�
M
(ZM), ✓M��MK�

 
,

V+,H

M
(ZM ,✓M)=min

�
V+
M
(ZM), ✓M+�MK�

 

(using the convention that [a,b]=; if b<a). A HySI CI is then constructed by invoking the

fact that b✓cM |{cM=M}\{✓cM 2CIP,�cM
} is distributed according to a normal distribution

with mean ✓M truncated to the interval [V�,H

M
(ZM ,✓M),V+,H

M
(ZM ,✓M)]. It is defined as all

null hypothesized values of ✓M for which a test based upon this distribution evaluated at

the realized value of ZM would fail to reject at the adjusted level of (↵��)/(1��).

When P(cM=M) is small, one (or both) of the bounds of the truncation interval used to

form a selective CI [V�
M
(ZM),V+

M
(ZM)] tends to be very close to b✓M so that a test based upon

the distribution of b✓M |{cM=M} fails to reject for many hypothesized values of the mean ✓M

of b✓M , including very large ones. Since it is based upon inverting such a test, this induces

the selective CI to become very long. The additional condition ✓cM 2CIP,�cM
used to form the

HySI CI bounds the value ✓M can take from above and below so that by conditioning on

{b✓M 2 [V�,H

M
(ZM ,✓M),V+,H

M
(ZM ,✓M)]} rather than {b✓M 2 [V�

M
(ZM ,✓M),V+

M
(ZM ,✓M)]}, the

values of ✓M under consideration in the formation of the HySI CI are bounded above and be-

low by b✓M±�MK�. In contrast to the selective CI, this fact implies that the level 1�↵ HySI

CI lies inside of the level 1�� PoSI CI CIP,�cM
so that the former is never longer than the lat-

ter. In addition, the latter CI is not much wider than the level 1�↵ PoSI CI CIP,↵cM
by virtue

of the fact that the length of CIP,↵cM
depends upon ↵ as a constant times

p
log(↵�1).5 On the

other hand, when P(cM=M) is large, the truncation interval used to form the selective CI

tends to be very wide so that the distribution of b✓M |{cM=M} is close to the unconditional

distribution of b✓M and the selective CI is very close to its short naive counterpart. Since

V�
M
(ZM) is large and negative and V+

M
(ZM) is large and positive in this case, the HySI trun-

cation interval [V�,H

M
(ZM ,✓M),V+,H

M
(ZM ,✓M)] becomes very close to the selective truncation

5This is shown by Bachoc et al. (2018) under Gaussian errors with a fixed design matrix but the
argument can be extended via the CLT (see Bachoc et al., 2020 and Kuchibhotla et al., 2021).
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interval yielding a HySI CI that is very close to the (1�↵)/(1��) selective and naive CIs.

The reason behind inverting tests at the adjusted level (↵��)/(1��) (rather than ↵)

is to account for the fact that the modified conditioning event is not necessarily satisfied

by a given realization of the data since P(✓cM 2CIP,�cM
)<1. To see why this adjusted level

yields correct unconditional coverage of the HySI CI, note that analogous arguments to

those used to guarantee correct conditional coverage (1) can be used to guarantee

P
⇣
✓cM 2CIH,↵

cM

���cM=M,✓cM 2CIP,�cM

⌘
� 1�↵

1��
(3)

for all M⇢{1,...,p} so that

P
⇣
✓cM 2CIH,↵

cM

⌘
�P
⇣
✓cM 2CIH,↵

cM

���✓cM 2CIP,�cM

⌘
P
⇣
✓cM 2CIP,�cM

⌘
� 1�↵

1��
(1��)=1�↵

for all cM⇢{1,...,p}, where the final inequality follows from (2), (3) and the law of iterated

expectations.

3 General Asymptotic Model Selection Framework

In this section I introduce a set of very general assumptions to incorporate several forms

of model selection and post-selection targets of inferential interest. I discuss how these

assumptions apply in many model selection settings. In Section 5, I provide more detail

about how these assumptions hold in the context of inference on a regression coefficient

of interest after using LASSO to select controls variables.

Suppose we use a data set of n observations that is realized from an unknown probability

measure P2Pn to select a model M from a finite set of models M={1,...,|M|}. I require
the set of probability measures Pn to satisfy a uniform version of the model selection

condition of Markovic et al (2018). Letting cMn denote the (random) model selected by

the data, suppose that the event that a given model M2M is selected is equivalent to a

random vector Dn(M) satisfying an affine constraint according to the following assumption.

Assumption 1

For all M 2M, cMn=M if and only if AMDn(M)baM,n, where AM is a fixed matrix

and baM,n is a random vector such that for all ">0,

lim
n!1

sup
P2Pn

P(kbaM,n�aM,n(P)k>")=0
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for some vector-valued sequence of functions aM,n(P) such that for some finite �̄, kaM,n(P)k
�̄ for all P2Pn and n�1.

Several papers in the selective inference literature have shown that the model selection

event {cMn =M} is equivalent to the event that an affine constraint holds on a lower-

dimensional statistic Dn(M) that is a function of the underlying data in accordance with

Assumption 1. These affine constraints typically arise from Karush-Khun-Tucker (KKT)

necessary and sufficient conditions from optimizing the objective function determining

which model is selected, by comparing the values of different statistics across the steps of

an iterative selection procedure and/or by comparing the values of statistics evaluated at

different tuning parameters when model selection tuning parameters are data-dependent.

For example, Lee et al. (2016) show that for a fixed LASSO penalty parameter �, the

LASSO model selection event characterizing the set of non-zero regression coefficients and

their signs is equivalent to {AMDn(M)baM,n} for which AM is a matrix of zeros, ones

and negative ones, Dn(M) is a vector of scaled least squares regression estimates and inner

products of regressors and residuals and baM,n is a vector that is a function of � and the

design matrix. This vector baM,n naturally satisfies the uniform convergence in probability

in the assumption by a uniform law of large numbers and standard moments conditions

on the underlying design matrix.

As another example, Tibshirani et al. (2016) show that for a fixed number of steps along

the FS and LAR algorithms, the selection event characterizing the active regressors and their

signs is equivalent to {AMDn(M)baM,n} for which AM is a matrix of ones and negative

ones,Dn(M) is a vector with elements that are functions of inner products of orthognally pro-

jected regressors and dependent variables and baM,n=0. Using the equivalence between the

solution path of LASSO and a modified version of LAR (Efron et al., 2004), Tibshirani et al.

(2016) provide a similar affine characterization for models chosen along the solution path of

LASSO (rather than for a fixed LASSO penalty parameter). Finally, Markovic et al. (2018)

and Tian and Taylor (2018) show the affine characterization of the selection event holds for

various selection procedures when random noise is added to the selection criterion and/or the

selection criterion uses a data-dependent tuning parameter (such as LASSO with � chosen

via cross-validation). Describing the various quantities for these latter cases is rather in-

volved and I refer the interested reader to Markovic et al. (2018) and Tian and Taylor (2018).

I am interested in constructing a CI for a scalar parameter that is chosen based upon the

selected model cMn. I denote this target parameter as µT,n(cMn).6 For any M , assume that

6To streamline notation I slightly abuse it by using µT,n(M) to denote µT,n(M ;P), the Mth element
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in the absence of data-dependent selection, there is an asymptotically Gaussian statistic

Tn(M) centered around µT,n(M). Further assume that the full vectors of statistics Tn(M)

and the statistics determining selection Dn(M) are uniformly jointly asymptotically normal

under P2Pn with centering vectors µT,n and µD,n and limiting covariance matrix ⌃ that

may depend upon P. I use the following strengthening of Markovic et al. (2018) to full

joint convergence of all statistics because I focus on unconditional inferential statements

that do not condition on the selected model. For any matrix A, let �min(A) and �max(A)

denote its minimum and maximum eigenvalues.

Assumption 2

For Tn = (Tn(1),...,Tn(|M|))0 2 R|M| and Dn = (Dn(1)0,...,Dn(|M|)0)0 and the class of

Lipschitz functions that are bounded in absolute value by one and have Lipschitz constant

bounded by one, BL1, there exist sequences of functions µT,n(P) and µD,n(P) and a function

⌃(P) such that for (T ⇤0
P ,D

⇤0
P )

0⇠N (0,⌃(P)) with

⌃=

 
⌃T ⌃TD

⌃DT ⌃D

!
,

lim
n!1

sup
P2Pn

sup
f2BL1

�����EP

"
f

 
Tn�µT,n(P)
Dn�µD,n(P)

!#
�EP

"
f

 
T ⇤
P

D⇤
P

!#�����=0.

Furthermore, for some finite �̄> 0, 1/�̄⌃T (M,M;P) �̄ and 1/�̄�min(⌃
(M)
D

(P))
�max(⌃

(M)
D

(P)) �̄ for all M 2M and P2Pn, where ⌃(M)
D

is the covariance matrix of

D⇤(M).

The statistics Tn(M) typically take the form of scaled (linear functionals of) sample

regression coefficient estimates under the imposed model M with µT,n(M) being equal to

the scaled (linear functionals of) population regression counterparts. As discussed following

Assumption 1, the statistics Dn(M) typically take the form of scaled sample regression

parameter estimates and functions of inner products of dependent variables, regressors

and residuals (with the additon of noise terms for applications involving randomization).

Thus, Tn and Dn naturally satisfy joint uniform CLTs under standard assumptions on

the data. Indeed, Markovic et al. (2018) verify marginal CLTs on (Tn(M),DN(M)0)0 for a

given M for inference on regression coefficients after LASSO model selection with a fixed

penalty parameter and a penalty parameter chosen via randomized cross-validation and

of µT,n(P) defined in Assumption 2.
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after randomized information criteria-based selection. It is straightforward to extend these

results to show that the joint uniform CLT in Assumption 2 holds for these problems.

Similarly, Tibshirani et al. (2018) show that both linear functionals of sample regression

coefficient estimates and the selection events involved in models selected for a fixed number

of steps along the FS and LAR algorithms and along the solution path of LASSO are

functions of a “master statistic”, enabling a joint uniform CLT of the form given in

Assumption 2.7 It is important to note that Assumption 2 does not impose eigenvalue

bounds on the full covariance matrix ⌃, allowing this matrix to be singular.

In order to form asymptotically valid HySI CIs, I require the use of uniformly consistent

estimators b⌃T,n and b⌃DT,n for the covariance matrices in Assumption 2. Let k·k denote

the Frobenius norm.

Assumption 3

There exist estimators b⌃T,n and b⌃DT,n such that for all ">0,

lim
n!1

sup
P2Pn

P
⇣
kb⌃T,n�⌃T (P)k>"

⌘
=0 and lim

n!1
sup
P2Pn

P
⇣
kb⌃DT,n�⌃DT (P)k>"

⌘
=0.

Unlike the PoSI CIs of Bachoc et al. (2020), using an inconsistent “conservative” es-

timator of ⌃T that consistently overestimates its diagonal values will not lead to HySI CIs

with correct asymptotic coverage. As will become more apparent in the following section

detailing the HySI CI construction, consistent estimation of ⌃T and ⌃DT is crucial to

forming a random vector ZM,n that is asymptotically independent of the statistic Tn(M).

In the context of selection in the linear regression model, the (co)variances ⌃T and ⌃DT

are possible to consistently estimate when (i) the regressors are either random or constant

(corresponding to an intercept term) or (ii) the “true” model is known a priori. The former

has been shown by, e.g., Kuchibhotla et al. (2018) and references therein and the latter

is well known. Although much of the selective inference and PoSI literature has focused

on the case of a fixed design matrix, case (i) is arguably more relevant for most practical

applications. For typical applications, Kuchibhotla et al. (2018) show how the elements

of ⌃T and ⌃DT can be estimated consistently using standard heteroskedasticity-robust

methods in linear regression contexts with iid data under standard moment conditions,

applying to both homoskedastic and heteroskedastic data. Freedman (1981) and Buja

et al. (2016) show how the elements of ⌃T and ⌃DT can be estimated via pairs bootstrap

7Although these latter results impose a fixed design matrix, they easily extend to random designs
under suitable assumptions.
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(see also Markovic et al., 2018). The consistency arguments can be strengthened to the

uniform consistency requirement of Assumption 3 straightforwardly.

I make one final high-level assumption on the existence of a PoSI CI with correct

unconditional uniform asymptotic coverage of the parameter of interest µT,n(cMn).

Assumption 4

For any ↵2(0,1), we have a CI of the form

CIP,↵
n,cMn

=Tn(cMn)±
q
b⌃T,n(cMn,cMn)Kn,↵

that satisfies liminfn!1infP2PnP
⇣
µT,n(cMn;P)2CIP,↵

n,cMn

⌘
�1�↵ and for any ">0

lim
n!1

sup
P2Pn

P(|Kn,↵�K↵(P)|>")=0

for some function K↵(P) such that for some finite �̄, 0K↵(P) �̄ for all P2Pn.

For inference on (linear functionals of) population regression coefficients after model

selection in the linear regression framework, Kn,↵ typically takes the form of (an upper

bound on) the (1�↵)-quantile of the maximum of a sequence of correlated standard

normal random variables, for which the correlation matrix is derived from b⌃T,n, or an

asymptotically equivalent bootstrap version. The uniformly consistent estimation of b⌃T,n

implied by Assumption 3 then immediately implies the uniform consistency of Kn,↵ for

K↵ required by Assumption 4 while the results of Bachoc et al. (2020) imply the uniform

coverage requirement of the assumption for several examples of PoSI CIs.

4 HySI CIs and Uniform Asymptotic Validity

We are now equipped with the ingredients needed to define the (1�↵)-level HySI CI,

CIH,↵

n,cMn
, for µT,n(cMn). To begin describing the HySI CI construction, it is useful to

express the conditioning event in Assumption 1 in terms of a data-dependent interval

for the target statistic Tn(cMn). The bounds of this interval are expressed in terms of a

directly-computable random vector ZM,n that is asymptotically independent of Tn(M):

ZM,n=Dn(M)�
⇣
b⌃(M)
DT,n

/b⌃T,n(M,M)
⌘
Tn(M),

where b⌃(M)
DT,n

is the estimated covariance vector between Tn(M) and Dn(M). The following

lemma follows from a slight extension of the arguments used to prove Lemma 5.1 in Lee
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et al. (2016).

Lemma 1

Under Assumption 1, the conditioning set for any model M 2M being selected can be

expressed as follows:

n
cMn=M

o
=
�
V�
M,n

(ZM,n)Tn(M)V+
M,n

(ZM,n),V0
M,n

(ZM,n)�0
 
,

where

V�
M,n

(z)= max
j:(AM

b⌃(M)
DT,n/

b⌃T,n(M,M))j<0

baM,n,j�(AMz)j

(AM
b⌃(M)
DT,n

/b⌃T,n(M,M))j

V+
M,n

(z)= min
j:(AM

b⌃(M)
DT,n/

b⌃T,n(M,M))j>0

baM,n,j�(AMz)j

(AM
b⌃(M)
DT,n

/b⌃T,n(M,M))j

V0
M,n

(z)= min
j:(AM

b⌃(M)
DT,n/

b⌃T,n(M,M))j=0

baM,n,j�(AMz)j.

The HySI CI is constructed from the distribution function of Tn(cMn) after conditioning

on the events {cMn=M} and

n
µT,n(cMn)2CIP,�

n,cMn

o

=

⇢
µT,n(cMn)�

q
b⌃T,n(cMn,cMn)Kn,�Tn(cMn)µT,n(cMn)+

q
b⌃T,n(cMn,cMn)Kn,�

�

(by Assumption 4) for some �2(0,↵). More specifically, let FTN(·;µ,�2,L,U) denote the
truncated normal distribution function of ⇠|{L ⇠U} for ⇠⇠N (µ,�2). For ↵2 (0,1),

define bµH,↵

T,n
(cMn) to solve

FTN

⇣
Tn(cMn);µ,b⌃T,n(cMn,cMn),V�,H

cMn,n
(ZcMn,n

,µ),V+,H

cMn,n
(ZcMn,n

,µ)
⌘
=1�↵

in µ, where

V�,H

M,n
(z,µ)=max

⇢
V�
M,n

(z), µ�
q
b⌃T,n(M,M)Kn,�

�
,

V+,H

M,n
(z,µ)=min

⇢
V+
M,n

(z), µ+
q
b⌃T,n(M,M)Kn,�

�
.
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In turn, CIH,↵

n,cMn
is defined as

CIH,↵

n,cMn
=


bµ
H,

↵��
2(1��)

T,n
(cMn),bµ

H,1� ↵��
2(1��)

T,n
(cMn)

�
, (4)

where bµ
H,

↵��
2(1��)

T,n
(cMn) and bµ

H,1� ↵��
2(1��)

T,n
(cMn) are used instead of bµH,↵/2

T,n
(cMn) and bµH,1�↵/2

T,n
(cMn)

to account for the fact that the probability of the conditioning event {µT,n(cMn)2CIP,�
n,cMn

}
is only bounded below by 1�� under all sequences of probability measures {Pn} (by As-

sumption 4). For simplicity, I focus on the two-sided equal-tailed version of the HySI CI as

defined in (4) but note that the uniform asymptotic validity results presented here also ap-

ply to one-sided and non-equal-tailed versions for which bµ
H,

↵��
2(1��)

T,n
(cMn) and bµ

H,1� ↵��
2(1��)

T,n
(cMn)

are replaced by any bµH,q1
T,n

(cMn) and bµH,1�q2
T,n

(cMn) such that q1+q2=(↵��)/(1��).

Once the PoSI constant Kn,� is found, construction of the HySI CI is computationally

straightforward since it just involves finding the zeros of two continuous functions. Since

Kn,� must be computed to form the HySI CI, this implies that the HySI and PoSI CIs share

approximately the same degree of computational complexity. Berk et al. (2013) provide

code for efficiently computing non-conservative Kn,� values (in the sense that the coverage

requirement in Assumption 4 holds with equality) in linear regression contexts when 20 or

less covariates are subjected to model selection. Berk et al. (2013) and Bachoc et al. (2020)

also discuss computationally straightforward methods for computing conservative values

of Kn,� that satisfy Assumption 4 even when the number of models under consideration is

very large by appealing to bounds on the quantiles of the maximum of correlated Gaussian

random variables.

I now state a result establishing the asymptotic coverage of CIH,↵

n,cMn
conditional on the

realization of the selected model cMn and the possibly false event {µT,n(cMn)2CIP,�
n,cMn

}.

Proposition 1

Under Assumptions 1–4,

lim
n!1

sup
P2Pn

����P
⇣
µT,n(cMn)2CIH,↵

n,cMn

���cMn=M,µT,n(cMn)2CIP,�
n,cMn

⌘
�1�↵

1��

����

⇥P
⇣
cMn=M,µT,n(cMn)2CIP,�

n,cMn

⌘
=0

for all M2M.

Using the results from Proposition 1, we can show that CIH,↵

n,cMn
has correct unconditional
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coverage at level 1�↵ and a controlled degree of nonsimilarity. This is the main theoretical

result of the paper.

Proposition 2

Under Assumptions 1–4,

liminf
n!1

inf
P2Pn

P
⇣
µT,n(cMn;P)2CIH,↵

n,cMn

⌘
�1�↵

and

limsup
n!1

sup
P2Pn

P
⇣
µT,n(cMn;P)2CIH,↵

n,cMn

⌘
 1�↵

1��
.

The user is free to choose any value of � with 0�↵ in the construction of the HySI

CI. There is no value of � that is optimal uniformly across the parameter space in terms

of CI length measures. Rather, as we can see from the lower and upper bounds given in

the above proposition, � controls the degree of (asymptotic) non-similarity of the HySI

CI with the CI being closer to (asymptotically) similar when � is small.8 Similar CIs are

not necessarily desirable in this context. In fact when �=0, the HySI CI is identical to

the (similar) level 1�↵ selective CI. On the other hand, for �=↵, the HySI CI is equal

to the (non-similar) level 1�� PoSI CI.

The choice of � trades off the length properties of the HySI CI over different realizations

of the data. I recommend a small but non-negligible value of � such as �=↵/10 to attain

a CI that is not much longer than the selective CI when the model selected by the data

is selected with high probability (so that the selective CI is short) without compromising a

lot of length when this does not occur. Proposition 3 of Andrews et al. (2020) implies that

when a given model is selected with probability approaching one, the (1�↵)–level HySI CI

converges to a (1�↵)/(1��)–level selective CI which in turn converges to a (1�↵)/(1��)–

level naive CI, where �2(0,↵) is chosen by the user. When using the recommended value of

�=↵/10 to construct the HySI CI, this means that 99%, 95% and 90% HySI CIs converge

to 99.1%, 95.5% and 90.9% naive CIs. See Section 6 and Andrews et al. (2021) and Andrews

et al. (2020) for further evidence that this choice works well in practice in related contexts.

5 Application to Inference After LASSO Model Selection

I now specialize the general framework to the problem of constructing a HySI CI for a

regression coefficient of interest after using LASSO to determine which covariates enter the

8A similar CI is defined as having identical coverage probability uniformly across the parameter space.
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regression model, dropping the simplifying assumptions of Section 2. Formally, suppose we

have data (z,X,y)2Rn⇥Rn⇥p⇥Rn for which the rows of y and z are identically distributed

random variables and the rows of X are either identically distributed random vectors or

have entries equal to one (corresponding to an intercept term).9 We are interested in the

population regression coefficient corresponding to the predictor of interest z after selecting

which of the control variables in X should enter the regression model according to the

non-zero subset of the vector b�, where

b�=argmin
�2Rp

1

2
ky⇤�X⇤�k22+�k�k1

with y⇤=(I�Pz)y and X⇤=(I�Pz)X for Pz=zz0/z0z and � being the LASSO penalty

parameter. Letting bEn denote the set of non-zero coefficients of b�, we can characterize

a model M as a set of LASSO-selected controls E and the sign of the LASSO regression

coefficients corresponding to the selected controls sE. In other words, a given model M

is defined as a tuple (E,sE).

Using the Karush-Khun-Tucker conditions for optimizing the LASSO objective func-

tion, Lee et al. (2016) show that cMn = (bEn,sign(b�E)) = (E,sE) = M if and only if

AMDn(M)baM,n, where

AM=

0

B@
�diag(sE) 0

0 Ip�|E|

0 �Ip�|E|

1

CA,

Dn(M)=

 p
n(X⇤0

E
X⇤

E
)�1X⇤0

E
y⇤

n�1/2X⇤0
�E

(y⇤�X⇤
E
(X⇤0

E
X⇤

E
)�1X⇤0

E
y⇤)

!
,

baM,n=

0

B@
��

p
ndiag(sE)(X⇤0

E
X⇤

E
)�1sE

�n�1/21p�|E|��n�1/2X⇤0
�E

X⇤
E
(X⇤0

E
X⇤

E
)�1sE

�n�1/21p�|E|+�n�1/2X⇤0
�E

X⇤
E
(X⇤0

E
X⇤

E
)�1sE

1

CA,

with X⇤
E
equal to the submatrix of X⇤ composed of the columns of X⇤ corresponding

to E and X⇤
�E

equal to the submatrix of X⇤ composed of the remaining columns. Let

X̃ =X�z(EP[z0z])�1EP[z0X] and let X̃ 0
E
denote the submatrix of X̃ composed of the

columns of X̃ corresponding to E and X̃ 0
�E

denote the submatrix of X̃ composed of the

9In this and the following section, the rows of an arbitrary matrix or vector B are denoted as Bi.
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remaining columns. Assumption 1 thus holds with

aM,n(P)=

0

B@
��n�1/2diag(sE)(EP[X̃E,iX̃ 0

E,i
])�1sE

�n�1/21p�|E|��n�1/2EP[X̃�E,iX̃ 0
E,i
](EP[X̃E,iX̃ 0

E,i
])�1sE

�n�1/21p�|E|+�n�1/2EP[X̃�E,iX̃ 0
E,i
](EP[X̃E,iX̃ 0

E,i
])�1sE

1

CA

under standard moment, stationarity and dependence conditions on Pn that imply a

uniform law of large numbers for baM,n and uniform moment bounds on EP[X̃�E,iX̃ 0
E,i
] and

EP[X̃E,iX̃ 0
E,i
].

Letting WE=(z,XE) and e1 denote the first standard basis vector, we are interested in

forming a CI that covers the (scaled) population regression coefficient on z in the selected

model as the target parameter

µT,n(P,M)=
p
ne01(EP[WE,iW

0
E,i
])�1EP[WE,iyi]

for E= bEn using the corresponding sample regression coefficient

Tn(M)=
p
ne01(W

0
E
WE)

�1W 0
E
y

as a statistic.10 With these definitions in mind, as well as

µD,n(P,M)=

 p
n(EP[X̃E,iX̃ 0

E,i
])�1EP[X̃E,iỹi]p

n(EP[X̃�E,iỹi]�EP[X̃�E,iX̃ 0
E,i
](EP[X̃E,iX̃ 0

E,i
])�1EP[X̃E,iỹi])

!
,

Assumption 2 holds under standard moment, stationarity and dependence conditions on

Pn that imply a multivariate uniform CLT for the vector (T 0
n
,D0

n
)0. For Assumption 3,

consider the heteroskedasticity-robust estimators b⌃T,n and b⌃DT,n for which

b⌃T,n(M,M 0)=e01

 
1

n

nX

i=1

WE,iW
0
E,i

!�1 
1

n

nX

i=1

WE,iW
0
E0,iûE,iûE0,i

! 
1

n

nX

i=1

WE0,iW
0
E0,i

!�1

e1,

b⌃DT,n((M�1)p+1:Mp,M 0)

10CIs for unscaled population regression coefficients are formed by simply dividing the CIs for µT,n(P,M)
by

p
n.
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=

 �
1
n

P
n

i=1X
⇤
E,i
X⇤0

E,i

��1
0

0 I

! 
1

n

nX

i=1

 
X⇤

E,i

X⇤
�E,i

!
W 0

E0,iu
⇤
E,i
ûE0,i

! 
1

n

nX

i=1

WE0,iW
0
E0,i

!�1

e1

where ûE,i = yi�W 0
E,i
b�M,n and u⇤

E,i
= y⇤

i
�X⇤

E,i
b�⇤
M,n

with b�M,n = (W 0
E
WE)�1W 0

E
y and

b�⇤
M,n

=(X⇤0
E
X⇤

E
)�1X⇤0

E
y⇤. Slight extensions of the arguments in Kuchibhotla et al. (2018)

from pointwise to uniform consistency provide that Assumption 3 holds for b⌃T,n and b⌃DT,n

when the data are independent under standard moment conditions on Pn.

Finally, Assumption 4 holds by the results of Bachoc et al. (2020) when using one of

the PoSI CIs discussed in that paper. In particular, let Kn,↵ equal the (1�↵)-quantile of

max
i

|Zi| for Z⇠N (0,⌦)

with ⌦=corr(b⌃T,n)⌘diag(b⌃T,n)†/2b⌃T,ndiag(b⌃T,n)†/2, where A† denotes the Moore-Penrose

inverse of matrix A and A1/2 denotes the symmetric nonnegative definite square root of

a symmetric nonnegative definite matrix A. By Assumption 3,

lim
n!1

sup
P2Pn

P(|Kn,↵�K↵(P)|>")=0

for any "> 0, where K↵(P) is equal to the (1�↵)-quantile of maxi|Zi| for Z ⇠N (0,⌦)

with ⌦=corr(⌃T (P)). For ↵ 6=1, 0K↵(P) �̄ for some finite �̄ and any probability

measure P. Theorem 2.3 of Bachoc et al. (2020) provides sufficient conditions on Pn that

imply liminfn!1infP2PnP
⇣
µT,n(cMn;P)2CIP,↵

n,cMn

⌘
�1�↵ for CIP,↵

n,cMn
formed according to

Assumption 4.11

6 Finite-Sample Properties of Confidence Intervals

In order to investigate the finite-sample properties of HySI CIs and compare them to

existing CIs in a variety of settings, I examine Monte Carlo experiments for the application

described in the previous section. The DGPs I study in these Monte Carlo experiments

are designed to closely match those studied in the simulations of Tibshirani et al. (2018)

and Bachoc et al. (2020) who focus on the different application of inference on the variable

selected across the steps of the LAR algorithm. More specifically, I consider data generated

11Note that the form of PoSI CI introduced here is a less conservaitve version that incorporates the
fact that the predictor of interest z is protected from variable selection, referred to as “PoSI1” by Berk
et al. (2013).
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from the standard linear regression model

y=✓z+X�+u (5)

where y is an n⇥ 1 vector of observations of the outcome of interest, ✓ 2 R, z is an

n⇥1 vector of observations of the predictor of interest, �2Rp, X is an n⇥p matrix of

observations of control variables that are selected by the LASSO objective function and u

is an n⇥1 vector of independent and identically distributed error terms that is independent

of X. With this knowledge of the DGP, the target parameter of inferential inference after

model selection can be written as µT,n(cMn)=
p
ne01(E[WE,iW 0

E,i
])�1E[WE,iW 0

i
]� for E=Ên,

where W=(z,X) and �=(✓,�0)0.

For this simulation study, I generate data that entail significant departures from

Gaussianity in a relatively small sample of n=50 in order to assess the relevance of the

asymptotic guarantees provided by Proposition 2 and the relative performance of the HySI

CI in a small sample setting. Across all simulation designs, I set ↵=0.05 for nominal CI

coverage of 95%, p=10 potential control variables, �=0 and �=(�4,4,0...,0)0. All quantities

are computed across 1,000 independent simulation replications. The full matrix of regressors

W is generated in two ways. In the “independent” case, the columns of W are drawn

from independent distributions, where each column is drawn from an independent N (0,1),

Bernoulli or skew normal (0,1,5) distribution with equal probability. Each column is then

normalized to have a sample mean of zero and unit Euclidean norm. In the “dependent” case,

each row ofW is generated independently from amultivariate normal distribution withmean

vector zero and covariance matrix (e�0.1|i�j|)1i,jp. Each column is subsequently normalized

to have unit Euclidean norm. In each of these two cases, Y is then generated according to (5)

after sampling the entries of u independently in four ways: from a normal, skew normal (with

shape parameter five), Laplace or uniform distribution, all with mean zero and unit variance.

In each simulated data set, I perform the LASSO model selection exercise described in

Section 5 for several different values of the LASSO penalty parameter �2{1,2,4,8,16,100}
and construct CIs for the target parameter µT,n(cMn) (µT,n(cMn/2) for the split-sample

CI, see below) selected by the LASSO objective function. Specifically, I calculate the

naive CI that ignores model selection, a split-sample CI, the selective CI, the HySI CI

using the recommended value of �=↵/10 and the PoSI CI. The naive CI is simply based

on inverting the standard asymptotic t-test at the nominal level. In accordance with

the previous section, both the HySI and PoSI CIs computed in these simulations use
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the less conservative PoSI construction that incorporates the fact that the regressor z is

the predictor of interest and therefore not subject to selection. The split-sample CI is

constructed as follows: the first n/2 observations are used to select the model, yieldingcMn/2,

while the final n/2 observations are used to construct a standard CI based on inverting the

standard asymptotic t-test at the nominal level. It is important to note that although the

split-sample CI is known to have correct asymptotic coverage, it is not for the same object

of interest, µT,n(cMn), for which the other CIs are designed. Instead, the spit-sample CI

has correct asymptotic coverage for the scaled population regression coefficient evaluated

at the model selected by the first half of the data only, i.e., µT,n(cMn/2). This is especially

important to keep in mind when evaluating the tradeoffs of the various CIs because

selecting the model from only a portion of the data will yield a selected model with less

desirable statistical properties (e.g., larger prediction errors). Nevertheless, we include this

comparison since it is commonly used as a valid method for inference after model selection.

The results of the Monte Carlo experiments are very similar across some of the error

distributions and LASSO penalty parameters. To save on space, I report a subset of results

that illustrate the main features and tradeoffs of the full set of experiments. In particular,

I report results for the normal and skew normal error distributions and �2{1,4,16}.
To begin, Table 1 displays the simulated (unconditional) coverage probabilities of the

five CIs for the three different penalty parameter values. The selective, HySI and PoSI CIs

all have finite-sample coverage close to the nominal level of 95%, where the selective and

HySI CIs tend to slightly under-cover and the PoSI CIs tend to slightly over-cover. The

small coverage distortions of the selective and HySI CIs are to be expected from such small

non-Gaussian data sets and they diminish for larger samples. On the other hand, both the

naive and split-sample CIs exhibit more sizable under-coverage. This under-coverage is to

be expected from the naive CI since it is known to incorrectly cover after using the data to

select the model, even in large samples. The split-sample CIs only exhibit notable coverage

distortions in the dependent design cases. Since split-sample CIs are known to have correct

coverage in large samples, this is likely due to the fact that these CIs are constructed

using only n/2=25 data points and the strong positive correlation between the regressors

effectively reduces this sample size further relative to the independent design cases.

Next, Figures 1–3 plot the ratios of the 5th, 25th, 50th, 75th and 95th empirical quantiles

across simulation draws of the lengths of the five CIs relative to those corresponding to

the PoSI CI for �=1 (Figure 1), �=4 (Figure 2) and �=16 (Figure 3). There are four

panels within each figure corresponding to how the design matrix and errors are generated.
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The ratios of the length quantiles of the PoSI CI relative to itself, which is always equal to

one, is also included in the figures in order to detect when the other CIs’ length quantiles

are shorter than those of the PoSI CI. Even though the naive CIs do not have correct

coverage in large samples, I also include their ratios of length quantiles as a lower bound

to show how close the other CIs come to attaining it.

From Figure 1 we can see that for a small LASSO penalty parameter, the length

quantiles of the selective CI are uniformly dominated by all other CIs. For this low level

of penalization the probability that LASSO chooses any given model is low, leading to

excessively long selective CIs. On the other hand, the HySI CIs tend to have similar length

properties to those of the PoSI CIs, with some small increases in the dependent design

cases (lower two panels). The split-sample CIs also have similar length properties although,

unlike the HySI CIs, their length quantiles always exceed those of the PoSI CIs with the

additional drawback that their target model of interest is much less precisely selected.

Figure 2 displays somewhat similar features to Figure 1 although for the moderate-sized

penalty parameter corresponding to this figure, we can start to see that the HySI CIs

become notably shorter than the PoSI CIs when the selective CIs are shorter. In the top

two panels corresponding to an independent design matrix, the selective CIs tend to be

shorter than in Figure 1 because the higher penalty parameter increases the probability

that LASSO chooses a given model. In combination with the results in Figure 1, we can

start to see the benefits of hybridization: the HySI CI borrows the strengths of both the

selective and PoSI CIs for different realizations of the data. On the other hand, the bottom

two panels display similar features to those in Figure 1 because the dependent design

matrices effectively reduce the signal-to-noise ratio in the model selection problem, making

model selection probabilities significantly lower.

The top two panels of Figure 3 clearly show the benefits of using HySI instead of PoSI

when model selection probabilities are high (due to the large penalty parameter). Here we

can see that the length quantiles of both the selective and HySI CIs are nearly identical to

those of the naive CI and substantially smaller than those of the PoSI CI. This is a clear

illustration that the HySI CIs attain nearly the same short lengths as the selective CI when

they are short while guarding against the excessive lengths of the latter for unfavorable

realizations of the data. From the bottom two panels of the figure, we can see that the

selective CIs still tend to be significantly longer and the HySI CIs tend to be similar to the

PoSI CIs with a dependent design matrix. This is again due to a reduced signal-to-noise

ratio relative to the size of the penalty parameter. When the penalty parameter is increased
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to �=100, the relative length quantiles for the dependent design matrices look very similar

to those in the top two panels of this figure with the length quantiles of the selective

and HySI CIs being nearly indistinguishable from those of the naive CIs, entailing length

reductions of 34–35% relative to the PoSI CI across all quantile levels.

7 Empirical Application to Diabetes Data

I further investigate the properties of HySI CIs in an empirical application to the diabetes

data set from Efron et al. (2004). This data set was also examined by Lee et al. (2016)

in their empirical application of selective inference after using LASSO as a model selection

device, thus serving as a benchmark application for inference after using LASSO. Departing

from the exact exercise performed by Lee et al. (2016), I perform the LASSOmodel selection

exercise described in Section 5 multiple times for the response of interest y being equal to a

quantitative measure of disease progression one year after baseline. In each empirical exer-

cise, I set one of the 10 regressors in the data set as a predictor of interest z while allowing the

remaining nine regressors to be potential control variables X selected by LASSO. I perform

these exercises for two values of the LASSO penalty parameter �2{50,190} to illustrate the
merits of the HySI CIs relative to other CIs under “low” and “high” levels of penalization.

The penalty parameter of �=190 was examined by Lee et al. (2016) for this data set and

corresponds to LASSO selecting three to four control variables across the different predictors

of interest. On the other hand, �=50 corresponds to LASSO selecting six to seven controls.

Figures 4 and 5 plot the naive, split-sample (using half of the data for model selection),

selective, HySI (with �=↵/10) and PoSI nominal 95% CIs for �=50 and �=190 and each

of the 10 predictors of interest: Age, Sex, Body-Mass Index (BMI), Blood Pressure (BP)

and six different blood serum measurements (S1–S6). Before comparing the CIs, I reiterate

that the naive CI does not have correct 95% coverage and that the split-sample CIs cover

a different, arguably inferior, target of interest based upon a model selected with half as

much data. Figure 4 provides a striking illustration of how much shorter the HySI CIs

can become relative to selective CIs at this lower level of LASSO penalization: the HySI

CI is shorter than the selective CI across all predictors of interest, with a length averaging

52% of the latter across the predictors and several length reductions in excess of 65%. In

comparison to the PoSI CIs, the HySI CIs tend to be very similar across predictors of

interest with an average length increase of 2%.

In contrast to Figure 4, Figure 5 illustrates a more favorable case for the selective

CIs at this higher level of LASSO penalization. For all but one predictor of interest (S5),
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the HySI CIs are very similar to the selective CIs in these cases where it performs well,

entailing slight length increases over the latter of 0–3%. However, the selective CI for S5

is excessively long while the HySI CI for this same predictor is not, providing a length

reduction of nearly 65%. In comparison to the PoSI CIs, the HySI CIs are shorter for all

predictors of interest with an average length reduction in excess of 25% across predictors

and reaching more than 35% for several of them.

In summary, Figures 4–5 provide real world evidence that HySI CIs perform very simi-

larly to selective CIs (and also naive CIs) in scenarios that are favorable to the latter while

transitioning more closely to PoSI CIs in scenarios for which selective CIs become very long.

8 Conclusions and Extensions

In this paper, I introduce an alternative CI for inference after model selection to those

that currently dominate the literature. By relaxing the coverage requirement of selective

CIs, these HySI CIs are able to borrow upon the relative strengths of selective and PoSI

CIs to yield CIs with desirable length properties across a wide variety of data realizations.

Two questions that I did not address in this paper but may be worth investigating

in follow-up research are whether PoSI CIs that do not satisfy the structure imposed by

Assumption 4 can be used as an ingredient in the construction of HySI CIs and whether HySI

CIs can be constructed to have correct asymptotic coverage for high-dimensional models

with a diverging number of parameters. The first question is interesting in light of recent

work dedicated to producing PoSI CIs that are either shorter and/or easier to compute in

the presence of many models under consideration (see e.g., Kuchibhotla et al., 2020). For the

second question, results in Tibshirani et al. (2018) suggest that uniform asymptotic coverage

of HySI CIs may not be possible in high-dimensional models. On the other hand, results

in Tian and Taylor (2017) suggest that point-wise asymptotic coverage may be attainable.
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Table 1: Unconditional Coverage Probabilities

Confidence Interval
� Naive SS Sel HySI PoSI

Indep Design, Normal Errors
1 0.88 0.93 0.92 0.92 0.98
4 0.91 0.94 0.91 0.91 0.98
16 0.93 0.95 0.93 0.93 0.99

Indep Design, Skew Normal Errors
1 0.90 0.93 0.94 0.94 0.97
4 0.92 0.95 0.93 0.93 0.99
16 0.92 0.94 0.92 0.93 0.99

Dep Design, Normal Errors
1 0.87 0.95 0.96 0.96 0.99
4 0.89 0.91 0.93 0.93 0.98
16 0.90 0.85 0.92 0.92 0.99

Dep Design, Skew Normal Errors
1 0.89 0.93 0.95 0.95 0.98
4 0.88 0.92 0.94 0.94 0.98
16 0.92 0.89 0.93 0.93 0.99

This table reports unconditional coverage probabilities for the selected population coefficient on the
predictor of interest after using LASSO to choose the control variables in the regression across Monte
Carlo replications, all evaluated at the nominal coverage level of 95%. Coverage probabilities are reported
for naive, split-sample (“SS”), selective (“Sel”), HySI and PoSI confidence intervals for a sample size
of n=50. The coverage probabilities are reported for three different values of the LASSO penalization
parameter � 2 {1,4,16}. The design matrix is generated with independent (upper half of table) or
correlated (lower half) columns and the error terms have normal or skew normal distributions.

25



0

1

2

3

4

0.05 0.25 0.5 0.75 0.95

Le
ng
th
	R
at
io
	R
el
at
iv
e	
to
	P
oS
I	C
I

Empirical	Quantile	Level

Naive	CI SS	CI Selective	CI HySI	CI PoSI	CI

0

1

2

3

4

5

0.05 0.25 0.5 0.75 0.95

Le
ng
th
	R
at
io
	R
el
at
iv
e	
to
	P
oS
I	C
I

Empirical	Quantile	Level

Naive	CI SS	CI Selective	CI HySI	CI PoSI	CI

0

1

2

3

4

5

6

7

8

9

10

11

12

0.05 0.25 0.5 0.75 0.95

Le
ng
th
	R
at
io
	R
el
at
iv
e	
to
	P
oS
I	C
I

Empirical	Quantile	Level

Naive	CI SS	CI Selective	CI HySI	CI PoSI	CI

0

1

2

3

4

5

6

7

8

9

10

11

12

0.05 0.25 0.5 0.75 0.95

Le
ng
th
	R
at
io
	R
el
at
iv
e	
to
	P
oS
I	C
I

Empirical	Quantile	Level

Naive	CI SS	CI Selective	CI HySI	CI PoSI	CI

Figure 1: This figure plots the 5th, 25th, 50th, 75th and 95th empirical quantiles of the lengths of the 95%
naive (dotted black), split-sample (orange), selective (red), HySI (blue) and PoSI (black) CIs divided by the
corresponding length quantiles of the 95% PoSI CI across Monte Carlo replications for inference after using
LASSO to choose the control variables in the regression with a sample size of n=50 and the LASSO penaliza-
tion parameter set to �=1. The upper-left plot corresponds to a design matrix with independent columns
and error terms with a normal distribution. The upper-right plot corresponds to a design matrix with
independent columns and error terms with a skew normal distribution. The lower-left plot corresponds to
a design matrix with correlated columns and error terms with a normal distribution. The lower-right plot
corresponds to a design matrix with correlated columns and error terms with a skew normal distribution.
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Figure 2: This figure plots the 5th, 25th, 50th, 75th and 95th empirical quantiles of the lengths of the 95%
naive (dotted black), split-sample (orange), selective (red), HySI (blue) and PoSI (black) CIs divided by the
corresponding length quantiles of the 95% PoSI CI across Monte Carlo replications for inference after using
LASSO to choose the control variables in the regression with a sample size of n=50 and the LASSO penaliza-
tion parameter set to �=4. The upper-left plot corresponds to a design matrix with independent columns
and error terms with a normal distribution. The upper-right plot corresponds to a design matrix with
independent columns and error terms with a skew normal distribution. The lower-left plot corresponds to
a design matrix with correlated columns and error terms with a normal distribution. The lower-right plot
corresponds to a design matrix with correlated columns and error terms with a skew normal distribution.
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Figure 3: This figure plots the 5th, 25th, 50th, 75th and 95th empirical quantiles of the lengths of the 95%
naive (dotted black), split-sample (orange), selective (red), HySI (blue) and PoSI (black) CIs divided by the
corresponding length quantiles of the 95% PoSI CI across Monte Carlo replications for inference after using
LASSO to choose the control variables in the regression with a sample size of n=50 and the LASSO penaliza-
tion parameter set to �=16. The upper-left plot corresponds to a design matrix with independent columns
and error terms with a normal distribution. The upper-right plot corresponds to a design matrix with
independent columns and error terms with a skew normal distribution. The lower-left plot corresponds to
a design matrix with correlated columns and error terms with a normal distribution. The lower-right plot
corresponds to a design matrix with correlated columns and error terms with a skew normal distribution.

28



-800 -600 -400 -200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Age

Sex

BMI

BP

S1

S2

S3

S4

S5

S6

Figure 4: This figure plots the naive (dotted black), split-sample (orange), selective (red), HySI (blue)
and PoSI (black) CIs for the population coefficient for each of the 10 regressors in the diabetes data
set after using LASSO to choose the control variables in the regression with the LASSO penalization
parameter set to �=50.
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Figure 5: This figure plots the naive (dotted black), split-sample (orange), selective (red), HySI (blue)
and PoSI (black) CIs for the population coefficient for each of the 10 regressors in the diabetes data
set after using LASSO to choose the control variables in the regression with the LASSO penalization
parameter set to �=190.
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This supplemental appendix contains the proofs of the theoretical results in

“Hybrid Confidence Intervals for Informative Uniform Asymptotic Inference After

Model Selection.”

Proof of Lemma 1: By Assumption 1,
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The statement of the lemma immediately follows. ⌅
The following lemma is useful for proving the correct uniform asymptotic coverage of

the HySI CI CIH,↵

n,cMn
.
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Proof of Proposition 1: By the same argument used in the proof of Proposition

5 in Andrews et al. (2020),
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(T ⇤
ns
,b⌃ns,Kns,�,cMns,V�

M,ns
(Z⇤

M,ns
),V+

M,ns
(Z⇤

M,ns
))

d�!(T ⇤,⌃⇤,K⇤
�
,cM,V�

M
(Z⇤

M
),V+

M
(Z⇤

M
))

(2)

3



under {Pns} for any M2M.

By Lemma 9 of Andrews et al. (2020), FTN(t;µ,⌃T (M,M),L,U) is continuous over the
set

�
(t,µ,⌃T (M,M))2R3,L2R[{�1},U2R[{1} :⌃T (M,M)>0,L<t<U

 

so that with Assumption 4, (2) implies

✓
FTN(T

⇤
ns
(cMns);0,b⌃T,ns(

cMns,cMns),max

⇢
V�
cMns ,ns

(Z⇤
cMns ,ns

),�
q
b⌃T,ns(

cMns,cMns)Kns,�

�
,

min

⇢
V+
cMns ,ns

(Z⇤
cMns ,ns

),
q
b⌃T,ns(

cMns,cMns)Kns,�

�
,1(cMns=M,µT,ns(

cMns)2CIP,�
ns,cMns

)

◆

d�!
✓
FTN(T

⇤
(cM);0,⌃⇤

T
(cM,cM),max

⇢
V�
cM
(Z⇤

cM),�
q
⌃

⇤
T
(cM,cM)K⇤

�

�
, (3)

min

⇢
V+
cM
(Z⇤

cM),
q
⌃

⇤
T
(cM,cM)K⇤

�

�
,1

✓
cM=M,�

q
⌃

⇤
T
(cM,cM)K⇤

�
T ⇤

(cM)
q
⌃

⇤
T
(cM,cM)K⇤

�

◆◆
,

since µT,n(
cMn)2CIP,�

n,cMn
is equivalent to

�
q
b⌃T,n(

cMn,cMn)Kn,�T ⇤
n
(cMn)

q
b⌃T,n(

cMn,cMn)Kn,�.

Given the equivalence in (1), Lemma 1 and (3), the result of the proposition follows from

the same arguments used to prove the first part of Corollary 2 of Andrews et al. (2020). ⌅
Proof of Propsition 2: To see why the first inequality holds, note the following:

liminf
n!1

inf
P2Pn

P
⇣
µT,n(

cMn;P)2CIH,↵

n,cMn

⌘

� liminf
n!1

inf
P2Pn

P
⇣
µT,n(

cMn;P)2CIH,↵

n,cMn

���µT,n(
cMn;P)2CIP,�

n,cMn

⌘
P
⇣
µT,n(

cMn;P)2CIP,�
n,cMn

⌘

=liminf
n!1

inf
P2Pn

X

M2M

n
P
⇣
µT,n(

cMn;P)2CIH,↵

n,cMn

���cMn=M,µT,n(
cMn;P)2CIP,�

n,cMn

⌘

⇥P
⇣
cMn=M,µT,n(

cMn;P)2CIP,�
n,cMn

⌘o

� 1�↵

1��
liminf
n!1

inf
P2Pn

X

M2M

P
⇣
cMn=M,µT,n(

cMn;P)2CIP,�
n,cMn

⌘

=
1�↵

1��
liminf
n!1

inf
P2Pn

P
⇣
µT,n(

cMn;P)2CIP,�
n,cMn

⌘
� 1�↵

1��
(1��)=1�↵,

where the second inequality follows from Lemma 6 of Andrews et al. (2020) and Proposition

1 and the final inequality holds by Assumption 4. The second inequality in the proposition

follows from essentially the same argument used to prove the final part of Corollary 2 of

Andrews et al. (2020). ⌅
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