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SUMMARY

I propose a new type of confidence interval for correct asymptotic inference after using data
to select a model of interest without assuming any model is correctly specified. This hybrid
confidence interval is constructed by combining techniques from the selective inference and 10

post-selection inference literatures to yield a short confidence interval across a wide range of
data realizations. I show that hybrid confidence intervals have correct asymptotic coverage, uni-
formly over a large class of probability distributions that do not bound scaled model parameters. I
illustrate the use of these confidence intervals in the problem of inference after using the LASSO
objective function to select a regression model of interest and provide evidence of their desirable 15

length and coverage properties in small samples via a set of Monte Carlo experiments that entail
a variety of different data distributions as well as an empirical application to the predictors of
diabetes disease progression.

Some key words: Confidence Interval; LASSO; Misspecification; Post-Selection Inference; Selective Inference; Uni-
form Asymptotics 20

1. INTRODUCTION

A large portion of the statistics literature in recent years has been dedicated to advancing
inference methods that are valid after using data to select a model of interest without assuming
the correct specification of any model in the selection set. Many, if not most, of these methods
can be roughly broken down into two strands: methods that are valid for a selected parameter 25

conditional on the model that is selected using a particular model selection criterion and methods
that are unconditionally valid irrespective of the particular model selection criterion used. The
former is often referred to as “selective inference” (e.g., Lee et al., 2016) and the latter is often
referred to as “post-selection inference” (e.g., Berk et al., 2013), terms I will use throughout this
paper. 30

Apart from the differences in coverage guarantees from confidence intervals constructed from
these two approaches, they also feature complementary strengths and weaknesses in terms of
informativeness. While selective intervals tend to be short when the model selected by the data
is selected with (unconditional) high probability, they can become exceedingly wide when this
selection event occurs with low probability. Indeed, standard selective intervals approach naive 35

intervals (with incorrect coverage for the selected parameter) based upon inverting t-tests while
ignoring data-driven model selection when the selection event occurs with high probability (An-
drews et al., 2020). On the other hand, their expected length may be infinite (Kivaranovic and
Leeb, 2021). Post-selection intervals do not suffer this latter drawback but can be very conser-
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vative in scenarios where the model selection criterion is known and the model selected by the40

data is selected with high probability, leading to coverage probabilities well in excess of their
nominal levels and unnecessarily wide intervals.

In this paper, I propose a new class of hybrid confidence intervals for inference after model
selection that aims to draw on the complementary informativeness strengths of selective and
post-selection intervals. Motivated by the fact that selective intervals can become extremely45

wide when the model selected by the data is selected with low (unconditional) probability, by
relaxing the conditional coverage requirement it may be possible to attain intervals with guaran-
teed unconditional coverage and better length properties. Although post-selection intervals have
guaranteed unconditional coverage, selective intervals are substantially shorter when the model
selected by the data is selected with high probability. In order to use the relative strengths of50

these two confidence intervals in terms of their lengths, the hybrid approach to confidence in-
terval construction uses the data to transition a post-selection interval toward a selective interval
when the latter is short. The hybrid intervals introduced here make use of similar reasoning to
the hybrid intervals of Andrews et al. (2020) and Andrews et al. (2021), but applied to a model
selection framework that generalizes that of Andrews et al. (2020) to incorporate many popular55

model selection criteria used in linear regression.
Like selective intervals, but unlike post-selection intervals, hybrid intervals require knowl-

edge of the model selection criterion used by the researcher and the model selected by the data.
The hybrid approach relaxes the conditional (on the selected model) coverage requirement of
standard selective intervals to produce confidence intervals that are unconditionally valid. This60

unconditional coverage guarantee is analogous to the unconditional coverage guarantee of post-
selection intervals with one difference: since we know the model selection criterion being used
when constructing hybrid intervals, we attain validity on average across the models potentially
selected using this particular model selection criterion, rather than across all possible model se-
lection criteria. (Selective intervals posess the same unconditional coverage properties as hybrid65

intervals. For brevity, we refer the interested reader to Tibshirani et al. (2016) and Tibshirani
et al. (2018) for detailed discussions on the interpretation of unconditional coverage when the
model selection criterion is known.) The relaxation of the conditional coverage requirement can
be viewed as an alternative approach for improving the length properties of selective intervals to
standard sample splitting, the “data-carving” approach of Fithian et al. (2017) or the randomized70

response approach of Tian and Taylor (2018). However, in contrast to these latter approaches,
the hybrid approach does not discard or add noise to the data in the model selection stage. It
therefore yields valid inference on an object of interest that is selected from the full set of data
rather than a fraction of it.

The hybrid approach to confidence interval construction improves upon the typical length75

properties of both the selective and post-selection intervals by modifying the conditioning event
of selective intervals to restrict the selected parameter of interest to lie within a post-selection
interval with a higher coverage probability. Since this latter addition to the conditioning event is
not necessarily satisfied by the data, the hybrid approach takes the selective interval based upon
this event but modifies which truncated normal quantiles are used in its constructoin to main-80

tain correct coverage. By construction, the maximum length of the hybrid interval is bounded
above by the length of the corresponding higher coverage post-selection interval, yielding finite
expected length and breaking the negative result of Kivaranovic and Leeb (2021). At the same
time, hybrid intervals can be configured to nearly approach naive intervals when the model se-
lected by the data is selected with high probability in the sense that they approach naive intervals85

of a slightly higher coverage level.
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Under a strengthening of the general model selection framework of Markovic et al. (2018)
and an assumption implying the existence of a uniformly asymptotically valid post-selection
confidence interval, I establish the uniform asymptotic validity of the hybrid intervals I propose.
Standard uniform laws of large numbers and central limit theorems and results in e.g., Kuchib- 90

hotla et al. (2018) and Bachoc et al. (2020) can be used to verify these assumptions in linear
regression model selection contexts. In the absence of knowledge of a true model, these assump-
tions typically require the practically-relevant setting of random, rather than fixed, regressors. As
an illustration, in the supplementary materials of this paper I show how to verify these assump-
tions in the context of performing inference on a population regression coefficient for a predictor 95

of interest after using the LASSO objective function to select the control variables that enter the
regression. Importantly, this framework does not impose distributional assumptions on the data
or that any parameters are known a priori.

The uniform asymptotic validity results can be applied to many other examples such as infer-
ence in a linear regression model selected by LASSO with randomized cross-validation, a ran- 100

domized information criterion, a fixed number of steps along the forward stepwise and least angle
regression algorithms and along the solution path of LASSO. Unlike the point-wise asymptotic
results of e.g., Tian and Taylor (2017), the uniform asymptotic results I establish in this paper
provide better approximations to finite sample coverage across a broad range of data-generating
processes. And unlike the results of e.g., Tibshirani et al. (2018) or Andrews et al. (2021) but in 105

line with e.g., Bachoc et al. (2020), the uniform asymptotic validity results I establish in this pa-
per do not require one to bound the magnitude of various parameters such as (scaled) population
regression coefficients.

Finally, I investigate the finite-sample performance of the hybrid intervals relative to the selec-
tive intervals of Lee et al. (2016), standard intervals formed after sample splitting and the post- 110

selection intervals of Bachoc et al. (2020) when using LASSO as the model selection criterion in
a set of Monte Carlo experiments and an empirical data application. In the Monte Carlo experi-
ments, I draw data from a variety of distributions in a small sample setting to examine how well
the uniform asymptotic results translate to challenging finite-sample settings that significantly
depart from Gaussianity. Under a wide range of values for the LASSO penalty parameter, I find 115

that the length distribution of hybrid intervals compares very favorably to those of selective and
post-selection intervals. The length gains relative to selective intervals are acutely pronounced
at higher quantiles of the relative length distributions. As a stark example, the 95th quantile of
the length distribution of the selective intervals can be more than 34 times larger than that of
the hybrid intervals under the Monte Carlo designs I examine. In addition, I find that the hybrid 120

intervals exhibit approximately correct finite-sample coverage. In the empirical application, I an-
alyze the diabetes dataset from Efron et al. (2004) that was used to study selective intervals in
Lee et al. (2016) and again find favorable empirical performance for the hybrid intervals.

2. BASIC IDEAS BEHIND THE HYBRID APPROACH

To impart intuition, I focus on a particular application for the construction of confidence inter- 125

vals after model selection, noting that a general approach that covers a wide range of applications
is given in the following section. In particular, consider the standard linear regression framework
for which a response variable yi is modeled as a linear function of a predictor variable of interest
zi and some subset of the control variables X1i, . . . , Xpi for i = 1, . . . , n. Without imposing any
assumptions about the true underlying relationship between the response, predictor of interest 130

and controls, the researcher chooses a model M = (E, sE) with E ⇢ {1, . . . , p} being the sub-
set of indices corresponding to the controls in the model and sE ⇢ {�1, 1}|E| being the set of
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signs of the coefficients on these controls. The researcher’s target parameter of interest is equal
to the population linear regression coefficient ✓E defined by

(✓E ,�E) = argmin
✓2R,bE2R|E|

Eky � z✓ �XEbEk2,

where y = (y1, . . . , yn)T , z = (z1, . . . , zn)T may be fixed or random and XE is the submatrix135

of the fixed or random design matrix X = (x1, . . . , xp) corresponding to model M = (E, sE)
with xk = (Xk1, . . . , Xkn)T .

To establish the basic arguments, let us temporarily assume we have confidence intervals with
correct finite-sample coverage, regression coefficient estimators that are normally distributed in
finite samples and that variance parameters are known. There is now a large literature enabling140

the construction of selective intervals with (asymptotically) correct coverage for a population
regression coefficient conditional on the model cM = ( bE, ŝbE) selected by the user for a variety
of model selection criteria (e.g., Lee et al., 2016; Tibshirani et al., 2016; Tibshirani et al., 2018).
That is, we have at our disposal a level 1� ↵ selective interval CIS,↵bM such that

P
⇣
✓bE 2 CIS,↵bM |cM = M

⌘
� 1� ↵ (1)

for all M = (E, sE) with E ⇢ {1, . . . , p} (or some other relevant subset of the universe of mod-145

els). On the other hand, there is a growing literature enabling the construction of post-selection
intervals with correct unconditional coverage for a regression coefficient chosen by any model
selection technique (e.g., Berk et al., 2013; Kuchibhotla et al., 2020; Bachoc et al., 2020). That
is, for any potentially data-dependent cM ⇢ {1, . . . , p}, we have at our disposal a level 1� ↵
post-selection interval CIP,↵bM such that150

P
⇣
✓bE 2 CIP,↵bM

⌘
� 1� ↵ (2)

for all cM = ( bE, ŝbE) with bE ⇢ {1, . . . , p} (or some other relevant subset of the universe of mod-
els).

Selective confidence intervals are typically constructed by expressing the model selection
event {cM = M} in terms of a data-dependent truncation interval for the OLS estimator b✓bE
of ✓bE , where155

(b✓E , b�E) = argmin
✓2R,bE2R|E|

ky � z✓ �XEbEk2.

This truncation interval depends upon a sufficient statistic Z bM for the unknown nuisance pa-
rameter �bE that is independent of b✓bE after conditioning on the realization of cM = ( bE, ŝbE), i.e.,
{cM = M} = {b✓E 2 [V�

M
(ZM ),V+

M
(ZM )]}. (There is an additional element of the conditioning

set V0
M
(ZM ) � 0 that is suppressed in this section for simplicity of exposition.) The typical con-

struction of a selective interval then proceeds by invoking the fact that b✓bE |cM = M is distributed160

according to a normal distribution with mean ✓E truncated to the interval [V�
M
(ZM ),V+

M
(ZM )],

and collecting all null hypothesized values of ✓E for which a test based upon this distribution
evaluated at the realized value of ZM would fail to reject at level ↵. On the other hand, post-
selection intervals typically take the form CIP,↵bM = b✓bE ± � bMK↵, where �M is the standard de-

viation of b✓E and K↵ is a constant that guarantees (2) holds.165
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My proposal in this context is to form a level 1� ↵ hybrid confidence interval CIH,↵

bM that
is constructed in analogy with the selective interval after modifying the conditioning event and
appropriately adjusting the corresponding coverage level. More specifically, this modified con-
ditioning event is equal to the intersection of the model selection event expressed in terms of the
sufficient statistic ZM and the (potentially false) event that ✓bE lies inside of a level 1� � > 1� ↵ 170

post-selection interval:
n
cM = M

o
\
n
✓bE 2 CIP,�bM

o

=
n
b✓E 2 [V�

M
(ZM ),V+

M
(ZM )]

o
\
n
b✓E 2 [✓E � �MK� , ✓E + �MK� ]

o

=
n
b✓E 2 [V�,H

M
(ZM , ✓E),V+,H

M
(ZM , ✓E)]

o
,

where V�,H

M
(ZM , ✓E) = max

�
V�
M
(ZM ), ✓E � �MK�

 
and V+,H

M
(ZM , ✓E) = 175

min
�
V+
M
(ZM ), ✓E + �MK�

 
(using the convention that [a, b] = ; if b < a). A hybrid

interval is then constructed by invoking the fact that b✓bE |{cM = M} \ {✓bE 2 CIP,�bM } is
distributed according to a normal distribution with mean ✓E truncated to the interval
[V�,H

M
(ZM , ✓E),V+,H

M
(ZM , ✓E)]. It is defined as all null hypothesized values of ✓E for which a

test based upon this distribution evaluated at the realized value of ZM would fail to reject at the 180

adjusted level of (↵� �)/(1� �).
When P(cM = M) is small, one (or both) of the bounds of the truncation interval used to form

a selective interval [V�
M
(ZM ),V+

M
(ZM )] tends to be very close to b✓E so that a test based upon

the distribution of b✓E |{cM = M} fails to reject for many hypothesized values of the mean ✓E
of b✓E , including very large ones. Since it is based upon inverting such a test, this induces the 185

selective interval to become very long. The additional condition ✓bE 2 CIP,�bM used to form the
hybrid interval bounds the value ✓E can take from above and below so that by conditioning on
{b✓E 2 [V�,H

M
(ZM , ✓E),V+,H

M
(ZM , ✓E)]} rather than {b✓E 2 [V�

M
(ZM ),V+

M
(ZM )]}, the values

of ✓E under consideration in the formation of the hybrid interval are bounded above and below
by b✓E ± �MK� . In contrast to the selective interval, this fact implies that the level 1� ↵ hybrid 190

interval lies inside of the level 1� � post-selection interval CIP,�bM so that the former is never
longer than the latter. In addition, the latter confidence interval is not much wider than the level
1� ↵ post-selection interval CIP,↵bM by virtue of the fact that the length of CIP,↵bM depends upon ↵

as a constant times
p
log(↵�1). This is shown by Bachoc et al. (2018) under Gaussian errors with

a fixed design matrix but the argument can be extended via the central limit theorem (see Bachoc 195

et al., 2020 and Kuchibhotla et al., 2021). On the other hand, when P(cM = M) is large, the
truncation interval used to form the selective interval tends to be very wide so that the distribution
of b✓E |{cM = M} is close to the unconditional distribution of b✓E and the selective interval is
very close to its short naive counterpart. Since V�

M
(ZM ) is large and negative and V+

M
(ZM ) is

large and positive in this case, the hybrid truncation interval [V�,H

M
(ZM , ✓E),V+,H

M
(ZM , ✓E)] 200

becomes very close to the selective truncation interval yielding a hybrid interval that is very
close to the (1� ↵)/(1� �) selective and naive confidence intervals.

The reason behind inverting tests at the adjusted level (↵� �)/(1� �) (rather than ↵) is to
account for the fact that the modified conditioning event is not necessarily satisfied by a given
realization of the data since P(✓bE 2 CIP,�bM ) < 1. To see why this adjusted level yields correct 205

unconditional coverage of the hybrid confidence interval, note that analogous arguments to those
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used to guarantee correct conditional coverage (1) can be used to guarantee

P
⇣
✓bE 2 CIH,↵

bM

���cM = M, ✓bE 2 CIP,�bM

⌘
� 1� ↵

1� �
(3)

for all M = (E, sE) with E ⇢ {1, . . . , p} so that

P
⇣
✓bE 2 CIH,↵

bM

⌘
� P

⇣
✓bE 2 CIH,↵

bM

���✓bE 2 CIP,�bM

⌘
P
⇣
✓bE 2 CIP,�bM

⌘
� 1� ↵

for all cM = ( bE, ŝbE) with bE ⇢ {1, . . . , p}, where the final inequality follows from (2), (3) and210

the law of iterated expectations.

3. GENERAL ASYMPTOTIC MODEL SELECTION FRAMEWORK

In this section I introduce a set of very general assumptions to incorporate several forms of
model selection and post-selection targets of inferential interest. I discuss how these assump-
tions apply in many model selection settings. In the supplementary material, I provide more215

detail about how these assumptions hold in the context of inference on a regression coefficient
of interest after using LASSO to select controls variables.

Suppose we use a data set of n observations that is realized from an unknown probability
measure P 2 Pn to select a model M from a finite set of models M = {1, . . . , |M|}. I require
the set of probability measures Pn to satisfy a uniform version of the model selection condition220

of Markovic et al (2018). Letting cMn denote the (random) model selected by the data, suppose
that the event that a given model M 2 M is selected is equivalent to a random vector Dn(M)
satisfying an affine constraint according to the following assumption.

Assumption 1. For all M 2 M, cMn = M if and only if AMDn(M)  baM,n, where AM is a
fixed matrix and baM,n is a random vector such that for all " > 0,225

lim
n!1

sup
P2Pn

P (kbaM,n � aM,n(P)k > ") = 0

for some vector-valued sequence of functions aM,n(P) such that for some finite �̄, kaM,n(P)k 
�̄ for all P 2 Pn and n � 1.

Several papers in the selective inference literature have shown that, under an appropriate defi-
nition of a model, the model selection event {cMn = M} is equivalent to the event that an affine
constraint holds on a lower-dimensional statistic Dn(M) that is a function of the underlying data230

in accordance with Assumption 1. The appropriate definition of a model for Assumption 1 to
be satisfied in the context of linear regression is usually the set of non-zero regression coeffi-
cients and their signs. The affine constraints typically arise from Karush-Khun-Tucker necessary
and sufficient conditions from optimizing the objective function determining which model is se-
lected, by comparing the values of different statistics across the steps of an iterative selection235

procedure and/or by comparing the values of statistics evaluated at different tuning parameters
when model selection tuning parameters are data-dependent. For example, Lee et al. (2016) show
that for a fixed LASSO penalty parameter �, the LASSO model selection event characterizing
the set of non-zero regression coefficients and their signs is equivalent to {AMDn(M)  baM,n}
for which AM is a matrix of zeros, ones and negative ones, Dn(M) is a vector of scaled least240

squares regression estimates and inner products of regressors and residuals and baM,n is a vector
that is a function of � and the design matrix. This vector baM,n naturally satisfies the uniform
convergence in probability in the assumption by a uniform law of large numbers and standard
moments conditions on the underlying design matrix.
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As another example, Tibshirani et al. (2016) show that for a fixed number of steps along 245

the forward stepwise and least angle regression algorithms, the selection event characterizing
the active regressors and their signs is equivalent to {AMDn(M)  baM,n} for which AM is a
matrix of ones and negative ones, Dn(M) is a vector with elements that are functions of inner
products of orthognally projected regressors and dependent variables and baM,n = 0. Using the
equivalence between the solution path of LASSO and a modified version of least angle regression 250

(Efron et al., 2004), Tibshirani et al. (2016) provide a similar affine characterization for models
chosen along the solution path of LASSO (rather than for a fixed LASSO penalty parameter).
Finally, Markovic et al. (2018) and Tian and Taylor (2018) show the affine characterization of
the selection event holds for various selection procedures when random noise is added to the
selection criterion and/or the selection criterion uses a data-dependent tuning parameter (such as 255

LASSO with � chosen via cross-validation).
I am interested in constructing a confidence interval for a scalar parameter that is chosen based

upon the selected model cMn. I denote this target parameter as µT,n(cMn), where by a slight abuse
of notation, µT,n(M) denotes µT,n(M ;P), the M th element of µT,n(P) defined in Assumption
2. Recall that M indexes a model, which in the context of linear regression is not equal the 260

number of regressors. Rather, in a typical application of model selection for p regressors subject
to selection, M indexes both the set of non-zero regression coefficients amongst the p coefficients
along with their signs so that there is a total of |M| = 3p models being selected amongst.

For any M , assume that in the absence of data-dependent selection, there is an asymptoti-
cally Gaussian statistic Tn(M) centered around µT,n(M). Further assume that the full vectors of 265

statistics Tn(M) and the statistics determining selection Dn(M) are uniformly jointly asymp-
totically normal under P 2 Pn with centering vectors µT,n and µD,n and limiting covariance
matrix ⌃ that may depend upon P. I use the following strengthening of Markovic et al. (2018)
to full joint convergence of all statistics because I focus on unconditional inferential statements
that do not condition on the selected model. For any matrix A, let �min(A) and �max(A) denote 270

its minimum and maximum eigenvalues.
Assumption 2. For Tn = (Tn(1), . . . , Tn(|M|))T 2 R|M| and Dn =

(Dn(1)T , . . . , Dn(|M|)T )T and the class of Lipschitz functions that are bounded in ab-
solute value by one and have Lipschitz constant bounded by one, BL1, there exist sequences of
functions µT,n(P) and µD,n(P) and a function ⌃(P) such that for (T ⇤T

P , D⇤T
P )T ⇠ N (0,⌃(P)) 275

with

⌃ =

✓
⌃T ⌃TD

⌃DT ⌃D

◆
,

lim
n!1

sup
P2Pn

sup
f2BL1

����EP


f

✓
Tn � µT,n(P)
Dn � µD,n(P)

◆�
� EP


f

✓
T ⇤
P

D⇤
P

◆����� = 0.

Furthermore, for some finite �̄ > 0, 1/�̄  ⌃T (M,M ;P)  �̄ and 1/�̄  �min(⌃
(M)
D

(P)) 
�max(⌃

(M)
D

(P))  �̄ for all M 2 M and P 2 Pn, where ⌃(M)
D

is the covariance matrix of
D⇤(M). 280

The statistics Tn(M) typically take the form of scaled (linear functionals of) sample regres-
sion coefficient estimates under the imposed model M with µT,n(M) being equal to the scaled
(linear functionals of) population regression counterparts. As discussed following Assumption
1, the statistics Dn(M) typically take the form of scaled sample regression parameter estimates
and functions of inner products of dependent variables, regressors and residuals (with the addi- 285

ton of noise terms for applications involving randomization). Thus, Tn and Dn naturally satisfy
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joint uniform central limit theorems under standard assumptions on the data. Indeed, Markovic
et al. (2018) verify marginal central limit theorems on (Tn(M), DN (M)T )T for a given M for
inference on regression coefficients after LASSO model selection with a fixed penalty parameter
and a penalty parameter chosen via randomized cross-validation and after randomized informa-290

tion criteria-based selection. It is straightforward to extend these results to show that the joint
uniform central limit theorem in Assumption 2 holds for these problems. Similarly, Tibshirani
et al. (2018) show that both linear functionals of sample regression coefficient estimates and
the selection events involved in models selected for a fixed number of steps along the forward
stepwise and least angle regression algorithms and along the solution path of LASSO are func-295

tions of a “master statistic”, enabling a joint uniform central limit theorem of the form given in
Assumption 2. Although these latter results impose a fixed design matrix, they easily extend to
random designs under suitable assumptions. It is important to note that Assumption 2 does not
impose eigenvalue bounds on the full covariance matrix ⌃, allowing this matrix to be singular.

In order to form asymptotically valid hybrid intervals, I require the use of uniformly consistent300

estimators b⌃T,n and b⌃DT,n for the covariance matrices in Assumption 2. Let k · k denote the
Frobenius norm.

Assumption 3. There exist estimators b⌃T,n and b⌃DT,n such that for all " > 0,

lim
n!1

sup
P2Pn

P
⇣
kb⌃T,n � ⌃T (P)k > "

⌘
= 0 and lim

n!1
sup
P2Pn

P
⇣
kb⌃DT,n � ⌃DT (P)k > "

⌘
= 0.

Unlike the post-selection intervals of Bachoc et al. (2020), using an inconsistent conservative
estimator of ⌃T that consistently overestimates its diagonal values will not lead to hybrid in-305

tervals with correct asymptotic coverage. In the construction of the hybrid confidence interval,
consistent estimation of ⌃T and ⌃DT is crucial to forming a random vector ZM,n that is asymp-
totically independent of the statistic Tn(M). The necessity of Assumption 3 therefore limits
the scope of application of hybrid intervals relative to post-selection ones. Nevertheless, in the
context of selection in the linear regression model, the (co)variances ⌃T and ⌃DT are possible310

to consistently estimate when (i) the regressors are either random or constant (corresponding
to an intercept term) or (ii) the true model is known a priori. The former has been shown by,
e.g., Kuchibhotla et al. (2018) and references therein and the latter is well known. Although
much of the selective inference and post-selection literature has focused on the case of a fixed
design matrix, case (i) is more relevant for applications involving data that are sampled from315

an underlying population distribution, a commonly encountered scenario in practice. For typical
applications, Kuchibhotla et al. (2018) show how the elements of ⌃T and ⌃DT can be estimated
consistently using standard heteroskedasticity-robust methods in linear regression contexts with
iid data under standard moment conditions, applying to both homoskedastic and heteroskedastic
data. Freedman (1981) and Buja et al. (2019) show how the elements of ⌃T and ⌃DT can be320

estimated via pairs bootstrap (see also Markovic et al., 2018). The consistency arguments can be
strengthened to the uniform consistency requirement of Assumption 3 straightforwardly.

I make one final high-level assumption on the existence of a post-selection interval with correct
unconditional uniform asymptotic coverage of the parameter of interest µT,n(cMn).

Assumption 4. For any ↵ 2 (0, 1), we have a confidence interval of the form325

CIP,↵
n, bMn

= Tn(cMn)±
q
b⌃T,n(cMn, cMn)Kn,↵
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that satisfies lim infn!1 infP2Pn P
⇣
µT,n(cMn;P) 2 CIP,↵

n, bMn

⌘
� 1� ↵ and for any " > 0,

limn!1 supP2Pn
P (|Kn,↵ �K↵(P)| > ") = 0 for some function K↵(P) such that for some fi-

nite �̄, 0  K↵(P)  �̄ for all P 2 Pn.
For inference on (linear functionals of) population regression coefficients after model selection

in the linear regression framework, Kn,↵ typically takes the form of (an upper bound on) the 330

(1� ↵)-quantile of the maximum of a sequence of correlated standard normal random variables,
for which the correlation matrix is derived from b⌃T,n, or an asymptotically equivalent bootstrap
version. The uniformly consistent estimation of b⌃T,n implied by Assumption 3 then immediately
implies the uniform consistency of Kn,↵ for K↵ required by Assumption 4 while the results
of Bachoc et al. (2020) imply the uniform coverage requirement of the assumption for several 335

examples of post-selection intervals.

4. HYBRID CONFIDENCE INTERVALS AND UNIFORM ASYMPTOTIC VALIDITY

We are now equipped with the ingredients needed to define the (1� ↵)-level hybrid confi-
dence interval, CIH,↵

n, bMn
, for µT,n(cMn). To begin describing the hybrid interval construction, it is

useful to express the conditioning event {cMn = M} in terms of a data-dependent interval for the 340

target statistic Tn(cMn): [V�
M,n

(ZM,n),V+
M,n

(ZM,n)]. The bounds of this interval are functions of
a random vector ZM,n. Exact expressions for this random vector and the bounds are provided in
the supplementary material.

The hybrid interval is constructed from the distribution function of Tn(cMn) after conditioning
on the events {cMn = M} and {µT,n(cMn) 2 CIP,�

n, bMn
} for some � 2 (0,↵). More specifically, 345

let FTN (·;µ,�2,L,U) denote the truncated normal distribution function of ⇠|{L  ⇠  U} for
⇠ ⇠ N (µ,�2). For ↵ 2 (0, 1), define bµH,↵

T,n
(cMn) to solve

FTN

⇣
Tn(cMn);µ, b⌃T,n(cMn, cMn),V�,H

bMn,n
(Z bMn,n

, µ),V+,H

bMn,n
(Z bMn,n

, µ)
⌘
= 1� ↵

in µ, where expressions for V�,H

M,n
(z, µ) and V+,H

M,n
(z, µ) are provided in the supplementary ma-

terial. In turn, CIH,↵

n, bMn
is defined as

CIH,↵

n, bMn
=


bµ
H,

↵��
2(1��)

T,n
(cMn), bµ

H,1� ↵��
2(1��)

T,n
(cMn)

�
, (4)

where bµ
H,

↵��
2(1��)

T,n
(cMn) and bµ

H,1� ↵��
2(1��)

T,n
(cMn) are used instead of bµH,↵/2

T,n
(cMn) and bµH,1�↵/2

T,n
(cMn) 350

to account for the fact that the probability of the conditioning event {µT,n(cMn) 2 CIP,�
n, bMn

} is
only bounded below by 1� � under all sequences of probability measures {Pn} (by Assumption
4). For simplicity, I focus on the two-sided equal-tailed version of the hybrid interval as defined
in (4) but note that the uniform asymptotic validity results presented here also apply to one-sided

and non-equal-tailed versions for which bµ
H,

↵��
2(1��)

T,n
(cMn) and bµ

H,1� ↵��
2(1��)

T,n
(cMn) are replaced by 355

any bµH,q1
T,n

(cMn) and bµH,1�q2
T,n

(cMn) such that q1 + q2 = (↵� �)/(1� �).
Once the post-selection constant Kn,� is found, construction of the hybrid interval is com-

putationally straightforward since it just involves finding the zeros of two continuous functions.
Since Kn,� must be computed to form the hybrid interval, this implies that the hybrid and post-
selection intervals share approximately the same degree of computational complexity. Berk et al. 360
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(2013) provide code for efficiently computing non-conservative Kn,� values (in the sense that the
coverage requirement in Assumption 4 holds with equality) in linear regression contexts when
20 or less covariates are subjected to model selection. Berk et al. (2013) and Bachoc et al. (2020)
also discuss computationally straightforward methods for computing conservative values of Kn,�

that satisfy Assumption 4 even when the number of models under consideration is very large by365

appealing to bounds on the quantiles of the maximum of correlated Gaussian random variables.
I now state a result establishing the uniform asymptotic coverage of CIH,↵

n, bMn
conditional on the

realization of the selected model cMn and the possibly false event {µT,n(cMn) 2 CIP,�
n, bMn

}. The
proof of both this result and the one following it are contained in the supplementary material.

PROPOSITION 1. Under Assumptions 1–4,370

lim
n!1

sup
P2Pn

����P
⇣
µT,n(cMn) 2 CIH,↵

n, bMn

���cMn = M,µT,n(cMn) 2 CIP,�
n, bMn

⌘
� 1� ↵

1� �

����

⇥ P
⇣
cMn = M,µT,n(cMn) 2 CIP,�

n, bMn

⌘
= 0

for all M 2 M.

Using the results from Proposition 1, we can show that CIH,↵

n, bMn
has uniformly correct un-

conditional coverage at level 1� ↵ and a controlled degree of nonsimilarity. This is the main375

theoretical result of the paper.
PROPOSITION 2. Under Assumptions 1–4,

lim inf
n!1

inf
P2Pn

P
⇣
µT,n(cMn;P) 2 CIH,↵

n, bMn

⌘
� 1� ↵

and

lim sup
n!1

sup
P2Pn

P
⇣
µT,n(cMn;P) 2 CIH,↵

n, bMn

⌘
 1� ↵

1� �
.

The user is free to choose any value of � with 0  �  ↵ in the construction of the hybrid
interval. There is no value of � that is optimal uniformly across the parameter space in terms380

of interval length measures. Rather, as we can see from the lower and upper bounds given in
the above proposition, � controls the degree of (asymptotic) non-similarity of the hybrid confi-
dence interval with the interval being closer to (asymptotically) similar when � is small. Similar
confidence intervals are not necessarily desirable in this context. In fact when � = 0, the hybrid
interval is identical to the (similar) level 1� ↵ selective interval. On the other hand, for � = ↵,385

the hybrid interval is equal to the (non-similar) level 1� � post-selection interval.
The choice of � trades off the length properties of the hybrid interval over different realizations

of the data. I recommend a small but non-negligible value of � such as � = ↵/10 to attain an
interval that is not much longer than the selective interval when the model selected by the data
is selected with high probability (so that the selective interval is short) without compromising a390

lot of length when this does not occur. Proposition 3 of Andrews et al. (2020) implies that when
a given model is selected with probability approaching one, the (1� ↵)–level hybrid interval
converges to an interval contained in a (1� ↵)/(1� �)–level naive interval, where � 2 (0,↵)
is chosen by the user. When using the recommended value of � = ↵/10 to construct the hybrid
interval, this means that 99%, 95% and 90% hybrid intervals converge to intervals contained in395

99.1%, 95.5% and 90.9% naive intervals. See Section 5 and Andrews et al. (2021) and Andrews
et al. (2020) for further evidence that this choice works well in practice in related contexts.
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5. FINITE-SAMPLE PROPERTIES OF CONFIDENCE INTERVALS

In order to investigate the finite-sample properties of hybrid confidence intervals and compare
them to existing confidence intervals in a variety of settings, I examine Monte Carlo experiments 400

for the application of inference on a regression coefficient of interest after using LASSO to select
controls variables, detailed in the supplementary material. The data-generating processes I study
in these Monte Carlo experiments are designed to closely match those studied in the simulations
of Tibshirani et al. (2018) and Bachoc et al. (2020) who focus on the different application of
inference on the variable selected across the steps of the least angle regression algorithm. More 405

specifically, I consider data generated from the standard linear regression model

y = ✓z +X� + u (5)

where y is an n⇥ 1 vector of observations of the outcome of interest, ✓ 2 R, z is an n⇥ 1 vec-
tor of observations of the predictor of interest, � 2 Rp, X is an n⇥ p matrix of observations of
control variables that are selected by the LASSO objective function and u is an n⇥ 1 vector of
independent and identically distributed error terms that is independent of X . With this knowledge 410

of the data-generating process, the target parameter of inferential inference after model selection
can be written as µT,n(cMn) =

p
neT1 (E[WE,iW T

E,i
])�1E[WE,iW T

i
]� for E = bEn, where e1 de-

notes the first standard basis vector, W = (z,X), WE = (z,XE), XE equals the submatrix of X
composed of the columns of X corresponding to E and � = (✓,�T )T . (The rows of an arbitrary
matrix or vector B are denoted as Bi.) 415

For this simulation study, I generate data that entail significant departures from Gaussianity in
a relatively small sample of n = 50 in order to assess the relevance of the asymptotic guarantees
provided by Proposition 2 and the relative performance of the hybrid interval in a small sample
setting. Across all simulation designs, I set ↵ = 0.05 for nominal confidence interval coverage
of 95%, p = 10 potential control variables, ✓ = 0 and � = (�4, 4, 0 . . . , 0)T . All quantities are 420

computed across 1, 000 independent simulation replications. The full matrix of regressors W is
generated in two ways. In the independent design case, the columns of W are drawn from in-
dependent distributions, where each column is drawn from an independent N (0, 1), Bernoulli
or skew normal (0, 1, 5) distribution with equal probability. In the dependent design case, each
row of W is generated independently from a multivariate normal distribution with mean vector 425

zero and covariance matrix (e�0.1|i�j|)1i,jp. In both cases, each column is subsequently nor-
malized to have unit Euclidean norm and Y is then generated according to (5) after sampling
the entries of u independently in four ways: from a normal, skew normal (with shape parameter
five), Laplace or uniform distribution, all with mean zero and unit variance.

In each simulated data set, I perform the LASSO model selection exercise described in 430

the supplementary material for several different values of the LASSO penalty parameter
� 2 {1, 2, 4, 8, 16, 100} and construct confidence intervals for the target parameter µT,n(cMn)

(µT,n(cMn/2) for the split-sample interval, see below) selected by the LASSO objective function.
Specifically, I calculate the naive interval that ignores model selection, a split-sample interval, the
selective interval, the hybrid interval using the recommended value of � = ↵/10 and the post- 435

selection interval. The naive interval is simply based on inverting the standard asymptotic t-test
at the nominal level. Both the hybrid and post-selection intervals computed in these simulations
use the less conservative post-selection construction that incorporates the fact that the regressor
z is the predictor of interest and therefore not subject to selection. The split-sample interval is
constructed as follows: the first n/2 observations are used to select the model, yielding cMn/2, 440

while the final n/2 observations are used to construct a standard interval based on inverting the
standard asymptotic t-test at the nominal level. It is important to note that although the split-



12 A. MCCLOSKEY

sample interval is known to have correct asymptotic coverage, it is not for the same object of
interest, µT,n(cMn), for which the other intervals are designed. Instead, the spit-sample interval
has correct asymptotic coverage for the scaled population regression coefficient evaluated at the445

model selected by the first half of the data only, i.e., µT,n(cMn/2). This is especially important to
keep in mind when evaluating the tradeoffs of the various confidence intervals because selecting
the model from only a portion of the data will yield a selected model with less desirable statis-
tical properties (e.g., larger prediction errors). Nevertheless, we include this comparison since it
is commonly used as a valid method for inference after model selection.450

The results of the Monte Carlo experiments are very similar across some of the error distribu-
tions and LASSO penalty parameters. To save on space, I report a subset of results that illustrate
the main features and tradeoffs of the full set of experiments. In particular, I report results for
the normal and skew normal error distributions and small, medium and large values of �. The
values of � that fall into these categories are determined by the corresponding largest probability455

that a particular model is selected across simulation draws. A larger penalty parameter is needed
in the dependent design cases to produce similar model selection probabilities to the indepen-
dent design cases because dependent design matrices effectively reduce the signal-to-noise ratio
in the model selection problem. The value � = 1 is considered small for all designs and error
distributions since the largest model selection probabilities when � = 1 are 0.057, 0.003, 0.001460

and 0.002 for independent designs with normal errors, independent designs with skew normal
errors, dependent designs with normal errors and dependent designs with skew normal errors,
respectively. The value � = 4 generates moderate model selection probabilities for independent
designs, equal to 0.323 and 0.257 for normal and skew normal errors, while � = 16 generates
moderate model selection probabilities for dependent designs, equal to 0.285 and 0.214 for nor-465

mal and skew normal errors. Finally, � = 16 generates large model selection probabilities equal
to 1 for independent designs while � = 100 does so for dependent designs.

To begin, Table 1 displays the simulated (unconditional) coverage probabilities of the five
confidence intervals for the different penalty parameter values. The selective, hybrid and post-
selection intervals all have finite-sample coverage close to the nominal level of 95%, where470

the selective and hybrid intervals tend to slightly under-cover and the post-selection intervals
tend to over-cover. The small coverage distortions of the selective and hybrid intervals are to be
expected from such small non-Gaussian data sets and they diminish for larger samples. On the
other hand, both the naive and split-sample intervals exhibit more sizable under-coverage. This
under-coverage is to be expected from the naive interval since it is known to incorrectly cover475

after using the data to select the model, even in large samples. The split-sample intervals only
exhibit notable coverage distortions in the dependent design cases. Since split-sample intervals
are known to have correct coverage in large samples, this is likely due to the fact that these
intervals are constructed using only n/2 = 25 data points and the strong positive correlation
between the regressors effectively reduces this sample size further relative to the independent480

design cases. It is also interesting to note that even for the relatively small sample size of n = 50,
the hybrid intervals roughly obey the asymptotic upper bound on coverage given in Proposition
2: (1� ↵)/(1� �) = 0.955.

Next, Figs. 1–3 plot the ratios of the 5th, 25th, 50th, 75th and 95th empirical quantiles across
simulation draws of the lengths of the five confidence intervals relative to those corresponding to485

the post-selection interval for small � (Fig. 1), medium � (Fig. 2) and large � (Fig. 3). There are
four panels within each figure corresponding to how the design matrix and errors are generated.
The ratios of the length quantiles of the post-selection interval relative to itself, which is always
equal to one, is also included in the figures in order to detect when the other intervals’ length
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Table 1. Unconditional Coverage Probabilities

Confidence Interval
� Naive SS Sel HySI PoSI

Indep Design, Normal Errors
1 0.876 0.929 0.915 0.919 0.975
4 0.909 0.941 0.906 0.910 0.984
16 0.925 0.950 0.925 0.931 0.990

Indep Design, Skew Normal Errors
1 0.898 0.927 0.942 0.940 0.969
4 0.919 0.952 0.931 0.932 0.987
16 0.920 0.943 0.919 0.927 0.989

Dep Design, Normal Errors
1 0.867 0.951 0.955 0.957 0.985
16 0.900 0.847 0.919 0.922 0.994
100 0.927 0.928 0.928 0.932 0.989

Dep Design, Skew Normal Errors
1 0.892 0.933 0.951 0.948 0.982
16 0.915 0.887 0.929 0.934 0.989
100 0.946 0.937 0.947 0.953 0.993

This table reports unconditional coverage probabilities for the selected population coefficient on the predictor of
interest after using LASSO to choose the control variables in the regression across Monte Carlo replications,
all evaluated at the nominal coverage level of 95%. Coverage probabilities are reported for naive, split-sample
(SS), selective (Sel), hybrid (HySI) and post-selection (PoSI) confidence intervals for a sample size of n = 50.
The coverage probabilities are reported for values of the LASSO penalization parameter � corresponding to
small, moderate and large model selection probabilities. The design matrix is generated with independent (upper
half of table) or correlated (lower half) columns and the error terms have normal or skew normal distributions.

quantiles are shorter than those of the post-selection interval. Even though the naive intervals 490

do not have correct coverage in large samples, I also include their ratios of length quantiles as a
lower bound to show how close the other intervals come to attaining it.

From Fig. 1 we can see that for a small LASSO penalty parameter, the length quantiles of
the selective interval are almost uniformly dominated by all other intervals. For this low level
of penalization the probability that LASSO chooses any given model is low, with maximum 495

model selection probabilities between 0.001 and 0.057, leading to excessively long selective
intervals. On the other hand, the hybrid intervals tend to have similar length properties to those
of the post-selection intervals, with some small increases in the dependent design cases (lower
two panels). The split-sample intervals also have similar length properties although, unlike the
hybrid intervals, their length quantiles always exceed those of the post-selection intervals with 500

the additional drawback that their target model of interest is much less precisely selected.
Fig. 2 displays somewhat similar features to Fig. 1 although for the moderate-sized penalty pa-

rameter corresponding to this figure, we can start to see that the hybrid intervals become notably
shorter than the post-selection intervals in most cases, especially when the selective intervals are
shorter. The selective intervals tend to be shorter than in Fig. 1 because the higher penalty param- 505

eter increases the probability that LASSO chooses a given model, with corresponding maximum
model selection probabilities between 0.214 and 0.323. In combination with the results in Fig. 1,
we can start to see the benefits of hybridization: the hybrid interval borrows the strengths of both
the selective and post-selection intervals for different realizations of the data.
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Fig. 1. This figure plots the 5th, 25th, 50th, 75th and 95th empirical quantiles of the lengths of the 95% naive
(dotted black), split-sample (orange), selective (red), hybrid (blue) and post-selection (black) confidence intervals
divided by the corresponding length quantiles of the 95% post-selection interval across Monte Carlo replications
for inference after using LASSO to choose the control variables in the regression with a sample size of n = 50 and
a small LASSO penalization parameter � = 1. The upper-left plot corresponds to a design matrix with independent
columns and error terms with a normal distribution. The upper-right plot corresponds to a design matrix with
independent columns and error terms with a skew normal distribution. The lower-left plot corresponds to a design
matrix with correlated columns and error terms with a normal distribution. The lower-right plot corresponds to a

design matrix with correlated columns and error terms with a skew normal distribution.

Fig. 3 clearly show the benefits of using hybrid instead of post-selection when model selec-510

tion probabilities are high (due to the large penalty parameter). Here we can see that the length
quantiles of both the selective and hybrid intervals are nearly identical to those of the naive inter-
val and substantially smaller than those of the post-selection interval. This is a clear illustration
that the hybrid intervals attain nearly the same short lengths as the selective interval when they
are short while guarding against the excessive lengths of the latter for unfavorable realizations515

of the data. Large penalty parameters, with corresponding large model selection probabilities,
yield length quantiles of the selective and hybrid intervals that are nearly indistinguishable from
those of the naive intervals, entailing length reductions of 34–35% relative to the post-selection
interval across all quantile levels.
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Fig. 2. This figure plots the 5th, 25th, 50th, 75th and 95th empirical quantiles of the lengths of the 95% naive
(dotted black), split-sample (orange), selective (red), hybrid (blue) and post-selection (black) confidence intervals
divided by the corresponding length quantiles of the 95% post-selection interval across Monte Carlo replications
for inference after using LASSO to choose the control variables in the regression with a sample size of n = 50
and a medium LASSO penalization parameter. The upper-left plot corresponds to a design matrix with indepen-
dent columns and error terms with a normal distribution for � = 4. The upper-right plot corresponds to a design
matrix with independent columns and error terms with a skew normal distribution for � = 4. The lower-left plot
corresponds to a design matrix with correlated columns and error terms with a normal distribution for � = 16.
The lower-right plot corresponds to a design matrix with correlated columns and error terms with a skew normal

distribution for � = 16.

6. EMPIRICAL APPLICATION TO DIABETES DATA 520

I further investigate the properties of hybrid confidence intervals in an empirical application to
the diabetes data set from Efron et al. (2004). This data set was also examined by Lee et al. (2016)
in their empirical application of selective inference after using LASSO as a model selection
device, thus serving as a benchmark application for inference after using LASSO. Departing
from the exact exercise performed by Lee et al. (2016), I perform the LASSO model selection 525

exercise described in the supplementary material multiple times for the response of interest y
being equal to a quantitative measure of disease progression one year after baseline. In each
empirical exercise, I set one of the 10 regressors in the data set as a predictor of interest z
while allowing the remaining nine regressors to be potential control variables X selected by
LASSO. I perform these exercises for two values of the LASSO penalty parameter � 2 {50, 190} 530

to illustrate the merits of the hybrid intervals relative to other confidence intervals under low and
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Fig. 3. This figure plots the 5th, 25th, 50th, 75th and 95th empirical quantiles of the lengths of the 95% naive
(dotted black), split-sample (orange), selective (red), hybrid (blue) and post-selection (black) confidence intervals
divided by the corresponding length quantiles of the 95% post-selection interval across Monte Carlo replications
for inference after using LASSO to choose the control variables in the regression with a sample size of n = 50
and a large LASSO penalization parameter. The upper-left plot corresponds to a design matrix with independent
columns and error terms with a normal distribution for � = 16. The upper-right plot corresponds to a design
matrix with independent columns and error terms with a skew normal distribution for � = 16. The lower-left plot
corresponds to a design matrix with correlated columns and error terms with a normal distribution for � = 100.
The lower-right plot corresponds to a design matrix with correlated columns and error terms with a skew normal

distribution for � = 100.

high levels of penalization. The penalty parameter of � = 190 was examined by Lee et al. (2016)
for this data set and corresponds to LASSO selecting three to four control variables across the
different predictors of interest. On the other hand, � = 50 corresponds to LASSO selecting six
to seven controls.535

Fig. 4 plots the naive, split-sample (using half of the data for model selection), selective, hybrid
(with � = ↵/10) and post-selection nominal 95% confidence intervals for � = 50 and � = 190
and each of the 10 predictors of interest: Age, Sex, Body-Mass Index (BMI), Blood Pressure (BP)
and six different blood serum measurements (S1–S6). Before comparing the intervals, I reiterate
that the naive interval does not have correct 95% coverage and that the split-sample intervals540

cover a different, arguably inferior, target of interest based upon a model selected with half as
much data. The left panel of Fig. 4 provides a striking illustration of how much shorter the hybrid
intervals can become relative to selective intervals at this lower level of LASSO penalization: the
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Fig. 4. This figure plots the naive (dotted black), split-sample (orange), selective (red), hybrid (blue) and post-
selection (black) confidence intervals for the population coefficient for each of the 10 regressors in the diabetes data
set after using LASSO to choose the control variables in the regression with the LASSO penalization parameter

set to � = 50 (left) and � = 190 (right).

hybrid interval is shorter than the selective interval across all predictors of interest, with a length
averaging 52% of the latter across the predictors and several length reductions in excess of 65%. 545

In comparison to the post-selection intervals, the hybrid intervals tend to be very similar across
predictors of interest with an average length increase of 2%.

In contrast to the left panel, the right panel of Fig. 4 illustrates a more favorable case for the
selective intervals at this higher level of LASSO penalization. For all but one predictor of in-
terest (S5), the hybrid intervals are very similar to the selective intervals in these cases where it 550

performs well, entailing slight length increases over the latter of 0–3%. However, the selective
interval for S5 is excessively long while the hybrid interval for this same predictor is not, provid-
ing a length reduction of nearly 65%. In comparison to the post-selection intervals, the hybrid
intervals are shorter for all predictors of interest with an average length reduction in excess of
25% across predictors and reaching more than 35% for several of them. Finally, it is interesting 555

to note the large difference between the split-sample confidence interval and the selective, hy-
brid and naive intervals when Sex is the predictor of interest: the split-sample interval is nearly
centered at zero while the other three nearly coincide and indicate strong evidence that Sex is a
strong predictor of diabetes disease progression.

In summary, Fig. 4 provides real world evidence that hybrid intervals perform very similarly 560

to selective intervals (and also naive intervals) in scenarios that are favorable to the latter while
transitioning more closely to post-selection intervals in scenarios for which selective intervals
become very long.

7. DISCUSSION

Two questions that I did not address in this paper but may be worth investigating in follow-up 565

research are whether post-selection confidence intervals that do not satisfy the structure imposed
by Assumption 4 can be used as an ingredient in the construction of hybrid intervals and whether
hybrid intervals can be constructed to have correct asymptotic coverage for high-dimensional
models with a diverging number of parameters. The first question is interesting in light of recent
work dedicated to producing post-selection intervals that are either shorter and/or easier to com- 570

pute in the presence of many models under consideration (see e.g., Kuchibhotla et al., 2020). For
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the second question, results in Tibshirani et al. (2018) suggest that uniform asymptotic coverage
of hybrid intervals may not be possible in high-dimensional models. On the other hand, results
in Tian and Taylor (2017) suggest that point-wise asymptotic coverage may be attainable.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes a theoretical result establish-580

ing an expression for the truncation bounds used in the hybrid confidence interval construction
with corresponding analytical expressions for these bounds, details on how the general frame-
work of hybrid confidence interval construction specializes to the problem of forming a hybrid
confidence interval for a regression coefficient of interest after using LASSO to determine which
covariates enter the regression model and the proofs of the theoretical results in this paper.585
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SUMMARY

The first section of this supplementary material contains a theoretical result establishing an
expression for the truncation bounds used in the hybrid confidence interval construction with 10

corresponding analytical expressions for these bounds. The second section specializes the gen-
eral framework of hybrid confidence interval construction to the general problem of constructing
a hybrid confidence interval for a regression coefficient of interest after using LASSO to de-
termine which covariates enter the regression model. The third section of this supplementary
material provides the proofs of the theoretical results in “Hybrid Confidence Intervals for Infor- 15

mative Uniform Asymptotic Inference After Model Selection.”

1. TRUNCATION BOUNDS FOR HYBRID CONFIDENCE INTERVALS

The bounds of the truncation interval for the target statistic Tn(cMn) can be expressed in terms
of a directly-computable random vector ZM,n that is asymptotically independent of Tn(M):

ZM,n = Dn(M)�
⇣
b⌃(M)
DT,n

/b⌃T,n(M,M)
⌘
Tn(M),

where b⌃(M)
DT,n

is the estimated covariance vector between Tn(M) and Dn(M). The following 20

lemma follows from a slight extension of the arguments used to prove Lemma 5.1 in Lee et al.
(2016).

LEMMA 1. Under Assumption 1, the conditioning set for any model M 2 M being selected

can be expressed as follows:

n
cMn = M

o
=
n
V�
M,n

(ZM,n)  Tn(M)  V+
M,n

(ZM,n),V0
M,n(ZM,n) � 0

o
,

where 25

V�
M,n

(z) = max
j:(AMb⌃(M)

DT,n/
b⌃T,n(M,M))j<0

baM,n,j � (AMz)j

(AM
b⌃(M)
DT,n

/b⌃T,n(M,M))j

V+
M,n

(z) = min
j:(AMb⌃(M)

DT,n/
b⌃T,n(M,M))j>0

baM,n,j � (AMz)j

(AM
b⌃(M)
DT,n

/b⌃T,n(M,M))j

V0
M,n(z) = min

j:(AMb⌃(M)
DT,n/

b⌃T,n(M,M))j=0
baM,n,j � (AMz)j .

C� 2021 Biometrika Trust
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Proof. By Assumption 1,
n
cMn = M

o
= {AMDn(M)  baM,n}30

=
n
AM

⇣
b⌃(M)
DT,n

/b⌃T,n(M,M)
⌘
Tn(M)  baM,n �AMZM,n

o

=

⇢⇣
AM

⇣
b⌃(M)
DT,n

/b⌃T,n(M,M)
⌘⌘

j

Tn(M)  baM,n,j � (AMZM,n)j

�

=

8
>>>><

>>>>:

Tn(M)  baM,n,j�(AMZM,n)j

(AMb⌃(M)
DT,n/

b⌃T,n(M,M))j
, for j : (AM

b⌃(M)
DT,n

/b⌃T,n(M,M))j > 0

Tn(M) � baM,n,j�(AMZM,n)j

(AMb⌃(M)
DT,n/

b⌃T,n(M,M))j
, for j : (AM

b⌃(M)
DT,n

/b⌃T,n(M,M))j < 0

0  baM,n,j � (AMZM,n)j for j : (AM
b⌃(M)
DT,n

/b⌃T,n(M,M))j = 0

9
>>>>=

>>>>;

.

The statement of the lemma immediately follows. ⇤
Upon intersecting the event35

n
cMn = M

o
=
n
V�
M,n

(ZM,n)  Tn(M)  V+
M,n

(ZM,n),V0
M,n(ZM,n) � 0

o

with the event
n
µT,n(cMn) 2 CIP,�

n, bMn

o

=

⇢
µT,n(cMn)�

q
b⌃T,n(cMn, cMn)Kn,�  Tn(cMn)  µT,n(cMn) +

q
b⌃T,n(cMn, cMn)Kn,�

�
,

(by Assumption 4) we obtain the truncation interval for Tn(cMn) used to construct the hybrid
confidence interval:40

n
cMn = M

o
\
n
µT,n(cMn) 2 CIP,�

n, bMn

o

=
n
V�,H

M,n
(ZM,n, µT,n(M))  Tn(M)  V+,H

M,n
(ZM,n, µT,n(M)),V0

M,n(ZM,n) � 0
o
,

where

V�,H

M,n
(z, µ) = max

⇢
V�
M,n

(z), µ�
q
b⌃T,n(M,M)Kn,�

�
,

V+,H

M,n
(z, µ) = min

⇢
V+
M,n

(z), µ+
q
b⌃T,n(M,M)Kn,�

�
.

2. APPLICATION TO INFERENCE AFTER LASSO MODEL SELECTION45

I now specialize the general framework to the problem of constructing a hybrid confidence
interval for a regression coefficient of interest after using LASSO to determine which covariates
enter the regression model, dropping the simplifying assumptions of Section 2 of the main text.
Formally, suppose we have data (z,X, y) 2 Rn ⇥ Rn⇥p ⇥ Rn for which the rows of y and z
are identically distributed random variables and the rows of X are either identically distributed50

random vectors or have entries equal to one (corresponding to an intercept term). (The rows of
an arbitrary matrix or vector B are denoted as Bi.) We are interested in the population regres-
sion coefficient corresponding to the predictor of interest z after selecting which of the control
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variables in X should enter the regression model according to the non-zero subset of the vector
b�, where 55

b� = argmin
�2Rp

1

2
ky⇤ �X⇤�k22 + �k�k1

with y⇤ = (I � Pz)y and X⇤ = (I � Pz)X for Pz = zzT /zT z and � being the LASSO penalty
parameter. Letting bEn denote the set of non-zero coefficients of b�, we can characterize a model
M as a set of LASSO-selected controls E and the sign of the LASSO regression coefficients
corresponding to the selected controls sE . In other words, a given model M is defined as a tuple
(E, sE). 60

Using the Karush-Khun-Tucker conditions for optimizing the LASSO objective function, Lee
et al. (2016) show that cMn = ( bEn, sign(b�bEn

)) = (E, sE) = M if and only if AMDn(M) 
baM,n, where

AM =

0

@
�diag(sE) 0

0 Ip�|E|
0 �Ip�|E|

1

A ,

Dn(M) =

✓ p
n(X⇤T

E
X⇤

E
)�1X⇤T

E
y⇤

n�1/2X⇤T
�E

(y⇤ �X⇤
E
(X⇤T

E
X⇤

E
)�1X⇤T

E
y⇤)

◆
,

65

baM,n =

0

@
��

p
ndiag(sE)(X⇤T

E
X⇤

E
)�1sE

�n�1/21p�|E| � �n�1/2X⇤T
�E

X⇤
E
(X⇤T

E
X⇤

E
)�1sE

�n�1/21p�|E| + �n�1/2X⇤T
�E

X⇤
E
(X⇤T

E
X⇤

E
)�1sE

1

A ,

with X⇤
E

equal to the submatrix of X⇤ composed of the columns of X⇤ corresponding to E
and X⇤

�E
equal to the submatrix of X⇤ composed of the remaining columns. Let X̃ = X �

z(EP[z0z])�1EP[z0X] and let X̃T

E
denote the submatrix of X̃ composed of the columns of X̃

corresponding to E and X̃T

�E
denote the submatrix of X̃ composed of the remaining columns.

Assumption 1 thus holds with 70

aM,n(P) =

0

B@
��n�1/2diag(sE)(EP[X̃E,iX̃T

E,i
])�1sE

�n�1/21p�|E| � �n�1/2EP[X̃�E,iX̃T

E,i
](EP[X̃E,iX̃T

E,i
])�1sE

�n�1/21p�|E| + �n�1/2EP[X̃�E,iX̃T

E,i
](EP[X̃E,iX̃T

E,i
])�1sE

1

CA

under standard moment, stationarity and dependence conditions on Pn that imply a uniform law
of large numbers for baM,n and uniform moment bounds on EP[X̃�E,iX̃T

E,i
] and EP[X̃E,iX̃T

E,i
].

Letting WE = (z,XE) and e1 denote the first standard basis vector, we are interested in form-
ing a confidence interval that covers the (scaled) population regression coefficient on z in the
selected model as the target parameter 75

µT,n(P,M) =
p
neT1 (EP[WE,iW

T

E,i])
�1EP[WE,iyi]

for E = bEn using the corresponding sample regression coefficient

Tn(M) =
p
ne01(W

0
EWE)

�1W 0
Ey

as a statistic. (Confidence intervals for unscaled population regression coefficients are formed by
simply dividing the confidence intervals for µT,n(P,M) by

p
n.) With these definitions in mind,
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as well as

µD,n(P,M) =

 p
n(EP[X̃E,iX̃ 0

E,i
])�1EP[X̃E,iỹi]p

n(EP[X̃�E,iỹi]� EP[X̃�E,iX̃ 0
E,i

](EP[X̃E,iX̃ 0
E,i

])�1EP[X̃E,iỹi])

!
,

Assumption 2 holds under standard moment, stationarity and dependence conditions on Pn that80

imply a multivariate uniform central limit theorem for the vector (T 0
n, D

0
n)

0. For Assumption 3,
consider the heteroskedasticity-robust estimators b⌃T,n and b⌃DT,n for which

b⌃T,n(M,MT )

= eT1

 
1

n

nX

i=1

WE,iW
T

E,i

!�1 
1

n

nX

i=1

WE,iW
T

ET ,i
ûE,iûET ,i

! 
1

n

nX

i=1

WET ,iW
T

ET ,i

!�1

e1,

85

b⌃DT,n((M � 1)p+ 1 : Mp,MT )

=

 ⇣
1
n

P
n

i=1X
⇤
E,i

X⇤T
E,i

⌘�1
0

0 I

! 
1

n

nX

i=1

✓
X⇤

E,i

X⇤
�E,i

◆
W T

ET ,i
u⇤E,iûET ,i

!

⇥
 
1

n

nX

i=1

WET ,iW
T

ET ,i

!�1

e1

where ûE,i = yi �W T

E,i
b�M,n and u⇤

E,i
= y⇤

i
�X⇤

E,i
b�⇤
M,n

with b�M,n = (W T

E
WE)�1W T

E
y and

b�⇤
M,n

= (X⇤T
E

X⇤
E
)�1X⇤T

E
y⇤. Slight extensions of the arguments in Kuchibhotla et al. (2018)90

from pointwise to uniform consistency provide that Assumption 3 holds for b⌃T,n and b⌃DT,n

when the data are independent under standard moment conditions on Pn.
Finally, Assumption 4 holds by the results of Bachoc et al. (2020) when using one of the post-

selection confidence intervals discussed in that paper. In particular, let Kn,↵ equal the (1� ↵)-
quantile of95

max
i

|Zi| for Z ⇠ N (0,⌦)

with ⌦ = corr(b⌃T,n) ⌘ diag(b⌃T,n)†/2b⌃T,ndiag(b⌃T,n)†/2, where A† denotes the Moore-
Penrose inverse of matrix A and A1/2 denotes the symmetric nonnegative definite square root of
a symmetric nonnegative definite matrix A. By Assumption 3,

lim
n!1

sup
P2Pn

P (|Kn,↵ �K↵(P)| > ") = 0

for any " > 0, where K↵(P) is equal to the (1� ↵)-quantile of maxi |Zi| for Z ⇠ N (0,⌦)
with ⌦ = corr(⌃T (P)). For ↵ 6= 1, 0  K↵(P)  �̄ for some finite �̄ and any probability mea-100

sure P. Theorem 2.3 of Bachoc et al. (2020) provides sufficient conditions on Pn that imply
lim infn!1 infP2Pn P

⇣
µT,n(cMn;P) 2 CIP,↵

n, bMn

⌘
� 1� ↵ for CIP,↵

n, bMn
formed according to As-

sumption 4. The form of post-selection interval introduced here is a less conservaitve version that
incorporates the fact that the predictor of interest z is protected from variable selection, referred
to as “PoSI1” by Berk et al. (2013).105
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3. PROOFS OF THEORETICAL RESULTS

The following lemma is useful for proving the correct uniform asymptotic coverage of the
hybrid confidence interval CIH,↵

n, bMn
.

LEMMA 2. For Z⇤
M,n

= Dn(M)�
⇣
b⌃(M)
DT,n

/b⌃T,n(M,M)
⌘
T ⇤
n(M) with T ⇤

n(M) =

Tn(M)� µT,n(M), V�
M,n

(Z⇤
M,n

) = V�
M,n

(ZM,n)� µT,n(M) and V+
M,n

(Z⇤
M,n

) = 110

V+
M,n

(ZM,n)� µT,n(M).
Proof. Noting that

Z⇤
M,n = Dn(M)�

⇣
b⌃(M)
DT,n

/b⌃T,n(M,M)
⌘
Tn(M) +

⇣
b⌃(M)
DT,n

/b⌃T,n(M,M)
⌘
µT,n(M)

= ZM,n +
⇣
b⌃(M)
DT,n

/b⌃T,n(M,M)
⌘
µT,n(M),

we have 115

V�
M,n

(Z⇤
M,n) = max

j:(AMb⌃(M)
DT,n/

b⌃T,n(M,M))j<0

baM,n,j � (AMZ⇤
M,n

)j

(AM
b⌃(M)
DT,n

/b⌃T,n(M,M))j

= max
j:(AMb⌃(M)

DT,n/
b⌃T,n(M,M))j<0

baM,n,j � (AMZM,n)j �
⇣
AM

⇣
b⌃(M)
DT,n

/b⌃T,n(M,M)
⌘
µT,n(M)

⌘

j

(AM
b⌃(M)
DT,n

/b⌃T,n(M,M))j

= max
j:(AMb⌃(M)

DT,n/
b⌃T,n(M,M))j<0

baM,n,j � (AMZM,n)j

(AM
b⌃(M)
DT,n

/b⌃T,n(M,M))j
� µT,n(M)

= V�
M,n

(ZM,n)� µT,n(M).

The proof for V+
M,n

(Z⇤
M,n

) is entirely analogous and therefore omitted. ⇤ 120

Proof of Proposition 1. By the same argument used in the proof of Proposition 5 in Andrews
et al. (2020),

FTN (t;µ,⌃T (M,M),V�,H

M,n
(z, µ),V+,H

M,n
(z, µ))

is decreasing in µ so that bµ
H,

↵��
2(1��)

T,n
(cMn) � µT,n(cMn) is equivalent to

FTN

⇣
Tn(cMn);µT,n(cMn), b⌃T,n(cMn, cMn),V�,H

bMn,n
(Z bMn,n

, µT,n(cMn)),V+,H

bMn,n
(Z bMn,n

, µT,n(cMn))
⌘

� 1� ↵� �

2(1� �)
. 125
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Further, Lemma 2 implies

FTN

⇣
Tn(cMn);µT,n(cMn), b⌃T,n(cMn, cMn),V�,H

bMn,n
(Z bMn,n

, µT,n(cMn)),V+,H

bMn,n
(Z bMn,n

, µT,n(cMn))
⌘

= FTN

⇣
T ⇤
n(cMn) + µT,n(cMn);µT,n(cMn), b⌃T,n(cMn, cMn),

max

⇢
V�
bMn,n

(Z⇤
bMn,n

) + µT,n(cMn), µT,n(cMn)�
q
b⌃T,n(cMn, cMn)Kn,�

�
,

min

⇢
V+
bMn,n

(Z⇤
bMn,n

) + µT,n(cMn), µT,n(cMn) +
q
b⌃T,n(cMn, cMn)Kn,�

�◆
130

= FTN

✓
T ⇤
n(cMn); 0, b⌃T,n(cMn, cMn),max

⇢
V�
bMn,n

(Z⇤
bMn,n

),�
q
b⌃T,n(cMn, cMn)Kn,�

�
,

min

⇢
V+
bMn,n

(Z⇤
bMn,n

),
q
b⌃T,n(cMn, cMn)Kn,�

�◆

so that bµ
H,

↵��
2(1��)

T,n
(cMn) � µT,n(cMn) is equivalent to

FTN

✓
T ⇤
n(cMn); 0, b⌃T,n(cMn, cMn),max

⇢
V�
bMn,n

(Z⇤
bMn,n

),�
q
b⌃T,n(cMn, cMn)Kn,�

�
,

min

⇢
V+
bMn,n

(Z⇤
bMn,n

),
q
b⌃T,n(cMn, cMn)Kn,�

�◆
� 1� ↵� �

2(1� �)
. (1)135

By an extension of Lemma 5 of Andrews et al. (2020), to prove the statment of the proposition,
it suffices to show that for all subsequences {ns} ⇢ {n}, {Pns} 2 ⇥1

n=1Pn with

1. ⌃(Pns) ! ⌃⇤ 2 S

S = {⌃ : 1/�̄  ⌃T (M,M)  �̄, 1/�̄  �min(⌃
(M)
D

)  �max(⌃
(M)
D

)  �̄},

2. K�(Pns) ! K⇤
� 2 [0, �̄],140

3. aM,ns(Pns) ! a⇤
M

2 [��̄, �̄]dim(aM ),

4. Pns

✓
cMns = M,µT,ns(cMns) 2 CIP,�

ns, bMns

◆
! p⇤ 2 (0, 1], and

5. µD,ns(M ;Pns) ! µ⇤
D
(M) 2 [�1,1]dim(D⇤(M))

for some finite �̄, we have

lim
n!1

Pns

✓
µT,ns(cMns) 2 CI↵,H

ns, bMns

����cMns = M,µT,ns(cMns) 2 CIP,�
ns, bMns

◆
=

1� ↵

1� �
.

Let {Pns} be a sequence satisfying conditions 1.–5. Now under {Pns},145

(T ⇤
ns
, b⌃T,ns , b⌃DT,ns ,Kns,�)

d�! (T ⇤,⌃⇤
T
,⌃⇤

DT
,K⇤

�) by Assumptions 2–4, where
T ⇤
n = (T ⇤

n(1), . . . , T
⇤
n(|M|)T and T ⇤ ⇠ N (0,⌃⇤

T
). In addition, conditions 3.–4. along with

Assumptions 1–2 imply that under {Pns}, cMns

d�! cM , where cM = M 2 M if and only if
AM (D⇤(M) + µ⇤

D
(M))  a⇤

M
with D⇤(M) ⇠ N (0,⌃(M)⇤

D
). This convergence occurs jointly

with that for (T ⇤
ns
, b⌃T,ns , b⌃DT,ns ,Kns,�). Note that it is not possible for (AMµ⇤

D
(M))j = 1150

for any j under conditions 3.–4. and Assumptions 1–2. Thus, under Assumptions 1–3, similar
arguments to those used in the proof of Lemma 8 in Andrews et al. (2020) show that for
any M 2 M, (V�

M,ns
(Z⇤

M,ns
),V+

M,ns
(Z⇤

M,ns
))

d�! (V�
M
(Z⇤

M
),V+

M
(Z⇤

M
)) under {Pns}, where
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V�
M
(z) and V+

M
(z) are defined identically to V�

M,n
(z) and V+

M,n
(z) after replacing b⌃T,n, b⌃DT,n

and baM,n with ⌃⇤
T

, ⌃⇤
DT

and a⇤
M

and Z⇤
M

is defined identically to Z⇤
M,n

after replacing b⌃T,n, 155

b⌃DT,n, Dn(M) and T ⇤
n(M) with ⌃⇤

T
, ⌃⇤

DT
, D⇤(M) + µ⇤

D
(M) and T ⇤(M). This convergence

is joint with that of (T ⇤
ns
, b⌃ns ,Kns,� , cMns) so that we may write

(T ⇤
ns
, b⌃ns ,Kns,� , cMns ,V�

M,ns
(Z⇤

M,ns
),V+

M,ns
(Z⇤

M,ns
))

d�! (T ⇤,⌃⇤,K⇤
� , cM,V�

M
(Z⇤

M ),V+
M
(Z⇤

M )) (2)

under {Pns} for any M 2 M. 160

By Lemma 9 of Andrews et al. (2020), FTN (t;µ,⌃T (M,M),L,U) is continuous over the set
�
(t, µ,⌃T (M,M)) 2 R3,L 2 R [ {�1} ,U 2 R [ {1} : ⌃T (M,M) > 0,L < t < U

 

so that with Assumption 4, (2) implies
✓
FTN (T ⇤

ns
(cMns); 0, b⌃T,ns(cMns , cMns),max

⇢
V�
bMns ,ns

(Z⇤
bMns ,ns

),�
q
b⌃T,ns(cMns , cMns)Kns,�

�
,

min

⇢
V+
bMns ,ns

(Z⇤
bMns ,ns

),
q
b⌃T,ns(cMns , cMns)Kns,�

�
,1(cMns = M,µT,ns(cMns) 2 CIP,�

ns, bMns

)

◆

d�!
✓
FTN (T ⇤(cM); 0,⌃⇤

T (cM, cM),max

⇢
V�
bM (Z⇤

bM ),�
q
⌃⇤
T
(cM, cM)K⇤

�

�
, 165

min

⇢
V+
bM (Z⇤

bM ),
q

⌃⇤
T
(cM, cM)K⇤

�

�
, (3)

1

✓
cM = M,�

q
⌃⇤
T
(cM, cM)K⇤

�  T ⇤(cM) 
q

⌃⇤
T
(cM, cM)K⇤

�

◆◆
,

since µT,n(cMn) 2 CIP,�
n, bMn

is equivalent to

�
q
b⌃T,n(cMn, cMn)Kn,�  T ⇤

n(cMn) 
q
b⌃T,n(cMn, cMn)Kn,� .

Given the equivalence in (1), Lemma 1 and (3), the result of the proposition follows from the
same arguments used to prove the first part of Corollary 2 of Andrews et al. (2020). ⇤ 170

Proof of Proposition 2. To see why the first inequality holds, note the following:

lim inf
n!1

inf
P2Pn

P
⇣
µT,n(cMn;P) 2 CIH,↵

n, bMn

⌘

� lim inf
n!1

inf
P2Pn

P
⇣
µT,n(cMn;P) 2 CIH,↵

n, bMn

���µT,n(cMn;P) 2 CIP,�
n, bMn

⌘
P
⇣
µT,n(cMn;P) 2 CIP,�

n, bMn

⌘

= lim inf
n!1

inf
P2Pn

X

M2M

n
P
⇣
µT,n(cMn;P) 2 CIH,↵

n, bMn

���cMn = M,µT,n(cMn;P) 2 CIP,�
n, bMn

⌘

⇥ P
⇣
cMn = M,µT,n(cMn;P) 2 CIP,�

n, bMn

⌘o
175

� 1� ↵

1� �
lim inf
n!1

inf
P2Pn

X

M2M
P
⇣
cMn = M,µT,n(cMn;P) 2 CIP,�

n, bMn

⌘

=
1� ↵

1� �
lim inf
n!1

inf
P2Pn

P
⇣
µT,n(cMn;P) 2 CIP,�

n, bMn

⌘
� 1� ↵

1� �
(1� �) = 1� ↵,



8 A. MCCLOSKEY

where the second inequality follows from Lemma 6 of Andrews et al. (2020) and Proposition 1
and the final inequality holds by Assumption 4. The second inequality in the proposition follows
from essentially the same argument used to prove the final part of Corollary 2 of Andrews et al.180

(2020). ⇤
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