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Abstract

Limit distributions of likelihood ratio statistics are well-known to be discontinuous in the

presence of nuisance parameters at the boundary of the parameter space, which lead to size

distortions when standard critical values are used for testing. In this paper, we propose a new

and simple way of constructing critical values that yields uniformly correct asymptotic size,

regardless of whether nuisance parameters are at, near or far from the boundary of the parameter

space. Importantly, the proposed critical values are trivial to compute and at the same time

provide powerful tests in most settings. In comparison to existing size-correction methods, the

new approach exploits the monotonicity of the two components of the limiting distribution of

the likelihood ratio statistic, in conjunction with rectangular confidence sets for the nuisance

parameters, to gain computational tractability.

Uniform validity is established for likelihood ratio tests based on the new critical values,

and we provide illustrations of their construction in two key examples: (i) testing a coeffi cient

of interest in the classical linear regression model with non-negativity constraints on control co-

effi cients, and, (ii) testing for the presence of exogenous variables in autoregressive conditional
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heteroskedastic models (ARCH) with exogenous regressors. Simulations confirm that the tests

have desirable size and power properties. A brief empirical illustration demonstrates the use-

fulness of our proposed test in relation to testing for spill-overs and ARCH(-X) effects.

Keywords: Likelihood ratio tests; Parameters on the boundary; Uniform inference.

Introduction

As is now well-known, the asymptotic distribution of a likelihood ratio (LR) statis-

tic is discontinuous under the null hypothesis being tested at points for which a vector

nuisance parameter lies on the boundary of its parameter space. This feature compli-

cates the proper formation of critical values (CVs) that control the asymptotic size of

the LR test uniformly over the parameter space. In this setting, we propose a simple and

computationally-tractable method of CV formation (Algorithm 1) that controls the as-

ymptotic size of a test using the standard LR statistic. The correct uniform asymptotic

size of the resulting test (Theorem 3.3) ensures that the test also has good size proper-

ties in finite samples whether the nuisance parameter is at, near or far away from the

boundary of its parameter space.

Although a few recent advances in the literature have now produced hypothesis tests

that are uniformly valid over the nuisance parameter space, our focus in this paper is to

introduce a hypothesis test that is simple to compute even when the dimension of the

vector of nuisance parameter is not small, without sacrificing much power. To attain this

goal, we continue to use a standard LR statistic because it is one of the most widely-

used tests in statistics and is effi cient in finite samples under correct specification when

nuisance parameters are far from the boundary. However, the standard χ2-based CVs

for LR statistics are invalid when nuisance parameters are on or near the boundary. In

contrast, the CVs we propose are based upon the asymptotic distributions of this test

statistic that arise under certain parameter sequences that drift toward the boundary of

the parameter space.

In order to establish uniform asymptotic size control, we derive the null asymptotic

distribution of LR statistics under a comprehensive class of parameter sequences that
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drift the nuisance parameter vector toward the boundary at any sample size-dependent

rate. Under a particularly important rate for establishing asymptotic size, the asymptotic

distribution of the LR statistic depends upon a nuisance parameter vector that cannot

be estimated consistently but can still be “estimated” by an asymptotically Gaussian

random vector centered at its true value. Our key insight is that confidence bounds for

this latter “estimator” can be combined with monotonicity properties inherent to the

two components of the asymptotic distribution of the LR statistic to yield CVs that can

be computed via straightforward Monte Carlo simulation. In order to uniformly control

asymptotic size, we make use of a standard Bonferroni correction to account for the

randomness involved in the “estimation”of the nuisance parameter.

The main theoretical result of our paper (Theorem 3.3) proves that our algorithm

for CV formation (Algorithm 1) controls axymptotic size uniformly in a general frame-

work encompassing numerous and varied applications. Examples include tests of a one-

dimensional sub-vector of the mean in the multivariate Gaussian location model with

a restricted mean vector, tests of a regression coeffi cient in the linear regression model

when some coeffi cients have a known sign and tests of parameters in random coeffi cients

models such as the workhorse empirical industrial organization model of Berry, Levin-

sohn and Pakes (1995). We verify that the conditions of our main theoretical result hold

in applications of tests on regression coeffi cients and specification tests in ARCH-type

models, the latter being a pervasive example of tests suffering from boundary problems

in the recent literature on conditional volatility models, see, e.g., Francq and Zakoïan

(2009), Cavaliere, Nielsen and Rahbek (2017), Cavaliere, Nielsen, Pedersen and Rahbek

(2022) and Cavaliere, Perera and Rahbek (2024). We contribute to this literature by pro-

viding the first hypothesis test we are aware of with proven uniform asymptotic validity

for specification testing for the presence of exogenous variables in ARCH-type models.

Several papers in the literature derive asymptotic distributions of estimators and test

statistics at the boundary of the parameter space; see, e.g., Self and Liang (1987), Shapiro

(1989), Geyer (1994), Silvapulle and Silvapulle (1995) and Andrews (2001). More recently,

Cavaliere et al. (2022) propose a bootstrap-based CV construction that implicitly uses an
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estimator to switch between the quantiles of the asymptotic distribution at and far away

from the boundary in large samples. However, using CVs that correspond to distributions

at the boundary and/or far away from the boundary does not ensure uniform asymptotic

size control since null distributions can have larger quantiles in intermediate ranges near

the boundary of the parameter space.

This latter fact has been recognized in the literature, leading to inference methods

that control asymptotic null rejection probabilities uniformly across all parameter se-

quences that may drift toward the boundary of the parameter space. In particular, An-

drews and Guggenberger (2009) propose CVs in a general testing framework that are as-

ymptotically equivalent to least-favorable CVs which find the maximal quantile of a test

statistic’s null asymptotic distribution over the nuisance parameter that cannot be con-

sistently estimated. Recent alternative approaches allowing for quite general constraints,

including Hong and Li (2020) and Li (2025), advocate similar least favorable-type CVs

that are derived from sophisticated bootstrap implementations. Recognizing the conserv-

ative nature of tests using these CVs, and its negative consequence on power, McCloskey

(2017) proposes CVs that do not maximize these quantiles over the entire nuisance pa-

rameter space but rather a first stage confidence set for the nuisance parameter; see also

Berger and Boos (1994) and Silvapulle (1996) for parametric finite-sample versions of this

approach. In the context of boundary problems, Mitchell, Allman and Rhodes (2019)

apply McCloskey’s (2017) approach to CV formation for LR statistics although, unlike

the current paper, they focus on problems that may also feature singularities (see Drton,

2009). Fan and Shi (2023) also take this approach to CV formation for Wald and Quasi-

Likelihood Ratio (QLR) statistics in more complicated boundary problems that require

an initial first step of identifying an implicit nuisance parameter.

Although McCloskey’s (2017) method tends to produce better power properties than

the least favorable approach of Andrews and Guggenberger (2009) and related papers,

both methods can become computationally intractable when the nuisance parameter is

not low-dimensional because they generally require the optimization of a function whose

values must be simulated at each parameter value. The approach we propose in this
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paper is similar in spirit to the approach of McCloskey (2017), but by exploiting the

monotonicity properties of the two components of the LR statistic, remains computa-

tionally tractable in the presence of nuisance parameters that are not low-dimensional

because it does not require optimization of a function calculated via simulation.

Finally, Ketz (2018) and Ketz andMcCloskey (2023) propose computationally tractable

and uniformly valid inference approaches to inference when parameters may be on or

near the boundary of the parameter space. Although these approaches are different from

that taken in this paper, one commonality these two works share with our approach here

is that they use one-step estimators, discussed e.g., in Newey and McFadden (1994), to

attain asymptotically Gaussian estimation as input to form valid inference regardless of

where the true parameter lies in relation to the boundary of their parameter space.

Structure of the paper. The remainder of the paper is organized as follows. Section

1 provides basic intuition for our proposed method. Section 2 introduces the general

setting and assumptions as well as the ongoing examples on hypothesis testing in a

linear regression model with positivity constrained coeffi cients and specification testing in

ARCH models. Section 3 contains our proposed algorithm for critical value construction

and proofs the validity of the critical values. Section 4 considers the performance of our

proposed method by means of Monte Carlo simulations, and Section 5 contains a small

empirical illustration in relation to specification testing in ARCH models for various stock

market indices. All proofs and additional simulations are collected in the supplemental

appendix.

Notation. The following notation is used throughout the paper. The set of positive

definite matrices with eigenvalues bounded below by some κ > 0, and above by κ−1 is

denoted by Υ. For a squarem×m matrix A, let diag(A) a diagonal matrix with the same

diagonal of A. Moreover, let diagv(A) denote the m-dimensional column vector with the

diagonal elements of A as entries. I() is the indicator function. With A a positive definite

matrix and x a vector, ‖x‖A =
√
x′Ax.
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1 Main ideas in a simple Gaussian model

To obtain the basic intuition underlying our proposed CV construction, consider the case

of a scalar parameter of interest γ and a scalar nuisance parameter β, where γ ≥ 0 and

b ≥ 0. We consider testing H0 : γ = 0, against the alternative, H1 : γ > 0. For simplicity,

we frame this in terms of the a bivariate normal model for Y ∈ R2, where

Y = (Yγ, Yb)
′ ∼ N (λ,Σ) ,

with λ = (γ, b)′ and Σ a known positive definite covariance matrix. In standard settings,

this model corresponds to a limiting experiment. For testing H0, consider the standard

likelihood ratio (LR) statistic as defined by

LR = inf
λ∈{0}×[0,∞]

(λ− Y )′Σ−1(λ− Y )− inf
λ∈[0,∞]×[0,∞]

(λ− Y )′Σ−1(λ− Y ).

Under H0, by standard arguments

LR ∼ inf
λ∈{0}×[−b,∞]

Q(λ)− inf
λ∈[0,∞]×[−b,∞]

Q(λ) ≡ L(b, b), (1.1)

for Q(λ) = (λ− Z)′Σ−1(λ− Z) with Z ∼ N(0,Σ).

The diffi culty with controlling the size of a test using the LR statistic in this setting

comes down to the fact that β is unknown and therefore the null distribution L(b, b) in

(1.1) is unknown. Since the null distribution is unknown, it is not obvious how to define a

critical value (CV) such that the test has size no greater than a nominal level α ∈ (0, 1).

A naive approach which sets the CV to the 1 − α quantile of (1.1) at some given value

of b can lead to size distortions. For example, the standard CV is equal to the 1 − α

quantile of (1.1) for b =∞, corresponding to a max{N(0, 1), 0}2-distribution. However, a

test using this CV will over-reject if the 1−α quantile of the distribution in (1.1) is larger

for some value of b <∞. To illustrate this, the figure below contains the 95-percentile of

L(b, b) for the case where Σ is a correlation matrix with correlation parameter ρ.
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Figure: Simulated 95%-quantiles of L(b, b) as a function of ρ ∈ (−1, 1) and b ≥ 0.

A solution, referred to as the “least favorable approach” of Andrews and Guggen-

berger (2009), is based on using the largest the 1 − α quantile of (1.1) across all possi-

ble values of b ∈ [0,∞] and therefore has correct size. Although not a major concern in

the present example for which b is one-dimensional, the least favorable approach becomes

computationally intractable as the dimension of the nuisance parameter grows beyond

two or so. Furthermore, this approach can be very conservative, leading to poor power

when the true value of b is not close to the value used to compute the CV.

Our alternative CV is constructed as follows. Define

L(x, y) = inf
λ∈{0}×[−x,∞]

Q(λ)− inf
λ∈[0,∞]×[−y,∞]

Q(λ),

where L (x, y) is stochastically decreasing in x, while increasing in y. Furthermore, let

CVq(x, y) denote the qth quantile of L(x, y) and note: (i) under H0, LR ∼ L(b, b), and,

(ii) for any values bL < bU with b ∈ (bL, bU), CVq(b, b) ≤ CVq(bL, bU). We use these

observations to choose bL and bU in a judicious data-dependent manner to feasibly control

the size of the LR test. Specifically, choose η ∈ (0, α) and let z1−η/2 denote the (1−η/2)th
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quantile of N(0, 1). The with Σ22 second diagonal entry of Σ and

bL = Yβ −
√

Σ22z1−η/2, bU = Yβ +
√

Σ22z1−η/2, (1.2)

it holds that P(b ∈ (bL, bu)) = 1− η. Thus, our proposal is to use CVα = CV1−α+η(bL, bU)

as a CV. To see how it controls size, note that for any b ≥ 0 the probability of rejecting

under H0 can be bounded above using Bonferroni’s inequality:

P (L(b, b) ≥ CVα) ≤ P (CV1−α+η(b, b) ≥ CVα) + P (L(b, b) ≥ CV1−α+η(b, b)) .

The sum of the two terms on the right hand side of the above bound is less than α since

P (CV1−α+η(b, b) ≥ CVα) = 1− P (CV1−α+η(b, b) < CVα) ≤ 1− P(b ∈ (bL, bU)) = η,

and P(L(b, b) ≥ CV1−α+η(b, b)) = α− η.

As we demonstrate in Theorem 3.3, CVα can be generalized to control size as a CV for

LR statistics when (a) the parameter space for γ is not constrained, (b) the dimension

of β exceeds one, and, (c) (the estimators) Yγ and Yb are not normally distributed in

finite samples. For (a), the minimization space [0,∞] in the expressions for LR and

L(b, b) are modified to properly reflect the parameter space for γ under H1. For (b),

in order to use the multivariate version of the monotonicity property (ii), bL and bU

are replaced by multivariate counterparts derived from rectangular confidence sets for

the mean of a multivariate normal distribution. For (iii), the CVs described in Section

3 below do not require normally distributed estimators but rather estimators that are

asymptotically Gaussian. We describe how to obtain such estimators in the presence of

boundary constraints via a one-step Newton-Raphson iteration below.

2 General setup and framework

2.1 Setup

For a given set of observations {Wt}nt=1, consider the (log-likelihood) objective function,

Ln(θ) = fn({Wt}nt=1; θ), (2.1)
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in terms of the parameter vector θ = (γ′, β′, δ′)′ ∈ Θ = Θγ × Θβ × Θδ, where γ ∈ Rdγ is

the parameter (vector) of interest, while β ∈ Rdβ and δ ∈ Rdδ are nuisance parameters.

Specifically, we throughout assume that the true value of δ be an interior point of Θδ,

while the true value of β is allowed to be in the interior, or at (near) the boundary of

Θβ. Furthermore, for γ we assume s of the components are in the "interior", while the

remaining dγ−s are allowed to be on the "boundary", 0 ≤ s ≤ dγ. Formally (without loss

of generality), Θγ = [γL, γU ]s× [0, γU ]dγ−s, Θβ = [0, βU ]dβ , with −∞ ≤ γL < 0 < γU ≤ ∞,

0 < βU ≤ ∞, and Θδ ⊂ (−∞,∞)dδ is a compact subset. Finally, as in Andrews and

Cheng (2012), we introduce an additional parameter φ used here to capture any features

of the distribution of the data {Wt} not explicit from the formulation in (2.1). This way,

ψ = (θ, φ) ‘completely determines the distribution of the data’. The parameter space is

Ψ = {ψ = (θ, φ) : θ ∈ Θ, φ ∈ Φ(θ)} where Φ(θ) ⊂ Φ with Φ a compact metric space

which induces weak convergence of the bivariate distributions (Wt,Wt+s), all t, s ≥ 1.

We are interested in testing the hypothesis

H0 : γ = γ0

by using the (quasi-) LR statistic. That is, with the unrestricted θ̂n and restricted θ̃n

estimators as defined by

θ̂n = arg max
θ∈Θ

Ln(θ) and θ̃n = arg max
θ∈ΘH0

Ln(θ),

where ΘH0 = {θ = (γ′, β′, δ′)′ ∈ Θ : γ = γ0}, the statistic is given by,

LRn = 2(Ln(θ̂n)− Ln(θ̃n)). (2.2)

To provide context and intuition, we include as running examples linear regression

models with sign-restricted coeffi cients as well as a time series ARCH model with ex-

planatory covariates.

Running example: Regression. WithWt = (yt, x
′
t)
′ consider the regression equation,

yt = θ′xt + εt, for t = 1, 2, . . . , n, (2.3)

with xt = (x1,t, x
′
2,t)
′, θ = (γ, β′)′ ∈ Θ = Θγ × Θβ = [0,∞]1+dβ . We are interested in
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testing H0 : γ = 0, which we emphasize is a non-standard testing problem as some of

entries of β may be zero-valued such that β is a boundary point of Θβ.

Given a sample {Wt}nt=1, the least-squares objective function is given by

Ln(θ) = −1
2

n∑
t=1

(yt − x′tθ)
2

= −n
2

(Syy + θ′Sxxθ − 2θ′Sxy) ,

with Syy = n−1
∑n

t=1 y
2
t , Sxx = n−1

∑n
t=1 xtx

′
t, and Sxy = n−1

∑n
t=1 xtyt. With the

ordinary least-squares estimator given by θ̂LS = S−1
xx Sxy, it follows that the unrestricted

estimator is given by

θ̂n = arg min
θ∈Θ

(θ − θ̂LS)′Sxx(θ − θ̂LS),

see Lemma A.4 in the Appendix, while the restricted estimator is given by

θ̃n = arg min
θ∈ΘH0

(θ − θ̂LS)′Sxx(θ − θ̂LS),

where ΘH0 = {θ = (γ, β′)′ ∈ Θ : γ = 0}, and, finally, the LR statistic is given by (2.2).

Finally, we note that, in this example, the additional parameter φ determines the joint

distribution of xt and εt. �

Running example: ARCH. For the second example, we consider hypothesis testing in

ARCH models augmented with non-negative explanatory (or exogenous, X) covariates.

Let yt ∈ R be given by

yt = σtεt, t ∈ Z, (2.4)

σ2
t = θ′Ft−1 (2.5)

where Ft = (X ′t, Y
′
t , 1)′, with Xt = (x1,t, . . . , xp,t)

′ and Yt = (y2
t , . . . y

2
t−q+1)′. We are

interested in testing whether the covariates are needed for the conditional variance σ2
t .

With θ partitioned as θ = (γ′, β′, δ)′, let Ft = (Y ′γ,t, Y
′
β,t, 1)′, write (2.5) as a function of θ as

σ2
t (θ) = θ′Ft−1 = δ + β′Yβ,t−1 + γ′Yγ,t−1,

with θ ∈ Θ = Θγ × Θβ × Θδ, Θγ = [0, γU ]p, Θβ = [0, γU ]q and Θδ = [δL, δU ], δL > 0. As

before, the objective is to test the hypothesis H0 : γ = 0, which is a non-standard testing

problem as some of the β’s can be on the boundary.
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Given a sample {Wt}nt=1 = {(y2
t , F

′
t−1)}nt=1, the Gaussian quasi-log-likelihood function

is (up to a constant) given by

Ln(θ) =
n∑
t=1

lt (θ) , lt(θ) = −1

2

(
log σ2

t (θ) +
y2
t

σ2
t (θ)

)
. (2.6)

The QMLE θ̂n (θ̃n) is any maximizer of Ln (θ) over Θ (ΘH0 = {θ ∈ Θ : γ = 0}), and

LRn(H0) = 2
[
Ln(θ̂n)− Ln(θ̃n)

]
(2.7)

is the LR statistic.

Finally, in this example the additional parameter φ = φ(θ) determines the joint dis-

tribution of Ft−1 and εt. �

2.2 Drifting sequences and assumptions

In order to establish uniform validity of our proposed critical values in the possible pres-

ence of nuisance parameters near or on the boundary, we study the limiting behavior of the

LR statistic in (2.2) under drifting sequences of parameters ψn = (θn, φn)→ ψ0 = (θ0, φ0).

Specifically, we let θn = (γ′0, β
′
n, δ
′
n)′ denote a sequence of parameters in ΘH0 , that is, a

sequence along which H0 holds and which satisfy θn → θ0 = (γ′0, β
′
0, δ
′
0)′ as n → ∞. In

order to allow β to be either an interior point or near/at the boundary, in addition to

βn =
(
βn,1, . . . , βn,dβ

)′ → β0 we require that
√
nβn → b = (b1, b2, . . . , bdβ)′ ∈ [0,∞]dβ , as

n → ∞. This includes sequences of true parameters converging to an interior point —

e.g., bi =∞ —or to a boundary point at the standard
√
n rate —e.g., bi ∈ [0,∞). More-

over, parameters converging to zero at a rate slower (faster) than
√
n corresponds to,

e.g., bi = ∞ (bi = 0). Henceforth, the distribution of the (stationary) random vectors

{Wt : t ≥ 1} is determined by the true parameter ψ; expectations, variances and proba-

bilities computed under ψ are denoted as Eψ, Vψ and Pψ, respectively.

In order to state the limiting distribution of LRn, we make the following assumptions

which are similar to Andrews (2001); see also Ketz (2018) and Fan and Shi (2023). These

assumptions are stated for any drifting sequence ψn ∈ Ψ satisfying

ψn → ψ0 and
√
nβn → b = (b1, b2, . . . , bdβ)′ ∈ [0,∞]dβ . (2.8)
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Assumption 1 θ̂n − θn = op(1) and θ̃n − θn = op(1) as n→∞.

Assumption 2 (i) Ln(θ) has continuous left/right partial derivatives of order two on

Θ for all n ≥ 1 (almost surely); (ii) for all deterministic εn → 0,

sup
θ∈Θ:‖θ−θn‖≤εn

∥∥∥∥n−1∂
2Ln(θ)

∂θ∂θ′
− n−1∂

2Ln(θn)

∂θ∂θ′

∥∥∥∥ = op(1).

Assumption 3 The Hessian satisfies

n−1∂
2Ln(θn)

∂θ∂θ′
p→ −Ω0 ∈ Υ.

Assumption 4 The score satisfies

n−1/2∂Ln(θn)

∂θ

d→ N(0,Σ0), with Σ0 ∈ Υ

Remark 2.1 Note that Assumptions 1—4 imply that (θ̂n−θn) and (θ̃n−θn) are Op(n
−1/2)

(by an extension of Andrews, 1999, Lemma 1 and Theorem 1).

Running example: Regression. We consider here a setting where the data {Wt} are

assumed to be i.i.d.; see Remark 3.1 below for the extension to the more general case of

time series data. Specifically, we make throughout the following standard assumptions.

Assumption LinIID 1 For all ψ ∈ Ψ,

1. {(x′t, εt)′}t=1,2,... are i.i.d., with Eψ[εt|xt] = 0 almost surely for all t;

2. Eψ[xtx
′
t] ∈ Υ and Eψ[xtx

′
tε

2
t ] ∈ Υ,

3. Eψ|xj,t|2+ν ≤ c and Eψ|xj,tεt|2+ν ≤ c for j = 1, . . . , dβ and constants c < ∞ and

ν > 0 (not depending on ψ).

Note that under Assumption 1 and any drifting sequence ψn ∈ Ψ satisfying (2.8), it

holds that Eψn [xtx
′
t] → Eψn [xtx

′
t] = Ω0 and Eψn [xtx

′
tε

2
t ] → Eψ0 [xtx′tε2

t ] = Σ0. We have

the following result that ensures that the high-level Assumptions 1—4 hold for linear

regressions.
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Proposition 2.1 Assumption LinIID 1 implies that Assumptions 1—4 hold with Ω0 =

Eψ0 [xtx′t] and Σ0 = Eψ0 [xtx′tε2
t ]. �

Running example: ARCH. Recall that ψ = (θ, φ) where φ denotes the joint distribu-

tion of Ft−1 and εt. In particular, under the assumptions below, Ω0 and Σ0 in Assump-

tions 3—4 are determined entirely by ψ.

Assumption ARCH 1 For any ψ ∈ Ψ the process {(y2
t , F

′
t−1)′}t∈Z is stationary and α-

mixing.

The assumption is similar to that used in most of the literature on GARCH models,

such as Francq and Thieu (2018) where the DGP is assumed to be strictly stationary and

ergodic. We here impose the stronger assumption of strong mixing, to apply a weak law

of large numbers (LLN) for triangular arrays.

To ensure identification, we make the following assumption.

Assumption ARCH 2 For any non-zero constant vector k ∈ Rdβ+dγ and constant k̃ ∈

R, it holds that

Pψ(k′(Y ′t , X
′
t)
′ 6= k̃) > 0 for all ψ ∈ Ψ.

Assumption ARCH 3 For all ψ ∈ Ψ the innovation εt is independent of the σ-field

Ft−1 = σ{Fs : s ≤ t− 1}. (2.9)

Moreover, Eψ[ε2
t−1] = 0, and there exist constants ν1, c1 ∈ (0,∞) such that Eψ[|εt|4(1+ν1)] ≤

c1 for all ψ ∈ Ψ. There exists a constant κ ∈ (0,∞) such that Eψ[ε4
t − 1] = κ < ∞ for

all ψ ∈ Ψ.

Assumption ARCH 4 There exist constants ν2, c2 ∈ (0,∞) such that

Eψ[
(
y2
t ‖Ft−1‖3

)1+ν2 ] ≤ c2 for all ψ ∈ Ψ.

We note that the space Θ is constrained such that {(yt, F ′t−1)′}t∈Z is stationary for any

θ0 ∈ Θ. We have the following result.

Proposition 2.2 Assumptions ARCH 1-4 imply that Assumptions 1-4 hold. �
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2.3 The asymptotic distribution of the LR statistic

The following lemma states the limiting distribution of the LR statistic when some of

the nuisance parameters can be on or near the boundary. It extends existing results in

the literature (e.g., Theorem 4 of Andrews, 2001) as we consider drifting sequences and

hence nuisance parameters local to the boundary of the parameter space. To state the

results, define the generic quadratic form

Q (λ) = ‖λ−HZ‖2
(HΩ−10 H′)−1

, (2.10)

where λ ∈ Rdγ+dβ and H is a (dγ + dβ) × dθ selection matrix such that Hθ = (γ′, β′)′.

Moreover, Z is N(0,Ω−1
0 Σ0Ω−1

0 ) distributed, with the matrices Ω0 and Σ0 provided by,

respectively, by Assumptions 3 and 4.

Lemma 2.1 Under Assumptions 1—4, and any sequence ψn ∈ Ψ satisfying (2.8),

LRn
d→ L∞(b, b)

with

L∞(x, y) = inf
λ∈{0}dγ×Λβ(x)

Q (λ)− inf
λ∈Λγ×Λβ(y)

Q (λ) , (2.11)

for x, y ∈ [0,∞]dβ , and

Λγ = lim
n→∞

√
n(Θγ − γ0), Λβ(b) = [−b1,∞]× · · · × [−bdβ ,∞]

where Λγ is of the form Λγ = Λγ,1 × · · · × Λγ,dγ with Λγ,i = [−∞,∞] if γ0,i is in the

interior of [γL, γU ] and Λγ,i = [0,∞] if γ0,i = γL, i = 1, . . . , dγ.

The distribution of the limiting random variable L∞(b, b) approximates the finite-

sample distribution of LRn for βn = b/
√
n. Notice that this distribution is unknown

in practice, as it is unknown whether the nuisance parameters in β are interior points

or on/near the boundary. Put differently, it is not feasible to consistently estimate the

quantiles of L∞(b, b) for use as CVs in this context because b is not consistently estimable

along {ψn} sequences due to the
√
n scaling of βn.
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Indeed, controlling the asymptotic size of a likelihood ratio test using LRn as the test

statistic requires the use of a CV that asymptotically bounds the rejection probability

under all parameter sequences ψn → ψ0 satisfying (2.8) as n → ∞ by the nominal level

of the test α ∈ (0, 1) (see, e.g., Andrews and Guggenberger, 2009, or McCloskey, 2017).

This motivates us to examine an alternative method of CV construction that can feasibly

control the asymptotic size of the test. This we do next.

3 Feasible uniform critical value construction

In this section we detail how to construct uniformly valid critical values for the LR sta-

tistic. As we argue below, these CVs are simple to construct, allow to control asymptotic

size irrespectively of the nuisance parameters being on the boundary or not, and provide

power gains with respect to existing methods.

As outlined in Section 1, and detailed in the next, that as L∞(b, b) is given by (2.11)

for x = y = b, we suggest to exploit the properties of L∞(x, y) in order to select x and

y in a data-driven (and simple) way such that the asymptotic size is bounded above by

the user-chosen nominal level α.

We proceed as follows. In Section 3.1 we present a key monotonicity property of

L∞(x, y) and discuss initially a naive (ineffi cient) method to construct valid CVs. In

Section 3.2 we introduce some preliminaries needed for constructing our proposed CV.

Our main algorithm to construct the CVs is given in Section 3.3, where we also prove

the uniform validity of our procedure.

3.1 Monotonicity of L∞(x, y) and some naive CVs

A key propery of L∞(x, y), which we exploit throughout, is given in the following lemma.

Lemma 3.1 Let b, b, b̄ ∈ [0,∞]dβ satisfy (element-wise) b ≤ b ≤ b̄, then

L∞(b, b) ≤ L∞(b, b̄) a.s.

Given the monotonicity property of Lemma 3.1, a naive and straightforward way of

constructing a uniformly valid test is to use a CV based on the distribution of L∞(0dβ ,∞dβ),
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which satisfies L∞(b, b) ≤ L∞(0dβ ,∞dβ). However, such a choice of CVs leads to a very

conservative test. Alternatively, one may use the 1−α quantile of L∞(b∗, b∗), where b∗ is

the maximizer across [0,∞]dβ of all 1−α quantiles of L∞(b, b), in Andrews and Guggen-

berger (2009). However, also this choice of CV can lead to a conservative test with lower

power. Perhaps more importantly, b∗ is computationally prohibitive to compute when the

number of nuisance parameters dβ > 2. To reduce the conservative nature of these CVs,

McCloskey (2017) suggests to use the 1− α + η quantile of L∞(b̃, b̃) for some η ∈ (0, α),

where b̃ is the maximizer across a (1 − η)-level confidence set for b. Unfortunately, this

proposal suffers a similar computational drawback to that of Andrews and Guggenberger

(2009) when dβ > 2.

We finally note that the shrinkage-based bootstrap of Cavaliere, Nielsen, Pedersen and

Rahbek (2022) essentially seeks to choose between L∞(0, 0) or L∞(∞,∞) (component-

wise) in a data-driven way. However, it fails to control size uniformly since there may

exist values b ∈ (0,∞) such that L∞(b, b) ≥ L∞(0, 0).

3.2 Prerequisites and additional assumptions

In order to construct computationally-feasible and uniformly-valid CVs, we require two

main ingredients, which are very simple to satisfy in applications. First, we need a

consistent estimators of the covariance matrices Ω0 and Σ0, see Assumptions 3—4. Second,

we need the construction of a consistent and asymptotically Gaussian estimator β̌n of βn

with asymptotic covariance matrix given by Σβ = HβΩ−1
0 Σ0Ω−1

0 H ′β where Ω0 is defined in

Assumption 3 and Hβ is the selection matrix satisfying Hβθ = β. Moreover, we require a

consistent estimator Σ̌β,n of the covariance matrix Σβ. We formalize these requirements

through the following assumptions, which hold for any sequence {ψn} inΨ satisfying (2.8).

Assumption 5 There exists a matrix Σ̂n such that Σ̂n
p→ Σ0.

Assumption 6 There exists estimators β̌n and Σ̌β,n which satisfy (i)
√
n(β̌n − βn)

d→

N(0,Σβ), with Σβ = HβΩ−1
0 Σ0Ω−1

0 H ′β, and (ii) Σ̌β,n
p→ Σβ.
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As a simple example of an estimator satisfying Assumption 6 in general, consider the

one-step iterated Newton-Raphson estimator for θ:

θ̌n = θ̂n −
(
∂2Ln(θ̂n)

∂θ∂θ′

)−1
∂Ln(θ̂n)

∂θ
. (3.1)

As observed by Ketz (2018), by definition, θ̌n may not belong to the parameter space Θ,

and hence Ln(θ̌n) may not even be well-defined. We have the following lemma due to

Ketz (2018).

Lemma 3.2 Under any sequence ψn ∈ Ψ satisfying (2.8) and Assumptions 1—4, with θ̌n

given by (3.1),
√
n(θ̌n − θn)

d→ N(0,Ω−1
0 Σ0Ω−1

0 ).

In particular, we have that β̌n = Hβ θ̌n is asymptotically normal,

√
n(β̌n − βn)

d→ N(0,Σβ), (3.2)

where Σβ = HβΩ−1
0 Σ0Ω−1

0 H ′β. If, in addition, Assumption 5 holds, then

Σ̌β,n = Hβ

(
n−1∂

2Ln(θ̂n)

∂θ∂θ′

)−1

Σ̂n

(
n−1∂

2Ln(θ̂n)

∂θ∂θ′

)−1

H ′β
p→ Σβ. (3.3)

Hence, for the one-step iterated Newton-Raphson estimator θ̌n of (3.1) it holds that

Assumptions 1—5 imply Assumption 6. We illustrate this in terms of the two running

examples.

Running example: Regression. To verify Assumptions 5 and 6 for the linear regres-

sion example, we make the following additional assumptions.

Assumption LinIID 2 For all ψ ∈ Ψ and some constants ν, c > 0, Eψ[|xi,t, xj,t, xk,txl,t|1+ν ] ≤

c for i,j, k, l = 1, . . . , dθ.

The following Proposition states that Assumptions 5—6 hold for the linear regression

example when choosing Σ̂n as the Eicker-White heteroskedasticity-robust estimator1,

Σ̂n =
1

n

n∑
t=1

ε̂2
txtx

′
t, ε̂t = yt − x′tθ̂LS. (3.4)

1Note that one could alternatively define the estimator in terms of the the constrained residuals, that
is, ε̂t = yt − x′tθ̂n.
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Proposition 3.1 Suppose β̌n = β̂LS and Σ̌β,n is equal to the upper dβ × dβ block of

S−1
xx Σ̂nS

−1
xx with Σ̂n given by (3.4). Then Assumptions LinIID 1—2 imply Assumptions 5—6.

Remark 3.1 The linear regression example can easily be extended to time series data. In

particular, under appropriate strong mixing conditions on {Wt}t∈Z and replacing Σ̂n with

a HAC estimator (Newey and West, 1987), it is possible to verify Assumptions 1—5. �

Running example: ARCH. Under Assumptions ARCH 1-4 it holds that Σ0 = (κ/2)Ω0;

hence, we can estimate Σ0 using Σ̂n = (κ̂n/2)Ω̂n with

Ω̂n = −n−1∂
2Ln(θ̂n)

∂θ∂θ′
, κ̂n = n−1

n∑
t=1

(ε̂4
t − 1)

where ε̂t = yt/σ̂t(θ̂n). Moreover, let β̌n = Hβ θ̌n with θ̌n given by (3.1), and finally let

Σ̌β,n = (κ̂n/2)HβΩ̂−1
n H ′β. (3.5)

Proposition 3.2 With β̌n and Σ̌β,n as defined above, Assumptions ARCH 1-4 imply

Assumptions 5—6. �

3.3 Uniformly valid CV

We can now finally state our main algorithm to construct uniformly valid CVs, which are

denoted as CV α,n, where α ∈ (0, 1) denotes the nominal significance level. As anticipated,

it relies on the asymptotically normal estimator β̌n and the consistent covariance matrix

estimator Σ̌β,n in Assumption 6.

Algorithm 1

With θ̂n, Ω̂n = −n−1∂2Ln(θ̂n)/∂θ∂θ′, Σ̂n, β̌n, Σ̌β,n and the nominal significance level

α ∈ (0, 1) as inputs:

1. Choose some η ∈ (0, α);

2. Compute Ω̌β,n = diag(Σ̌β,n)−1/2Σ̌β,n diag(Σ̌β,n)−1/2;

3. Compute q̌1−η,n as the (1− η)-quantile of maxi=1,...,dβ |Žβ,i| with Žβ
d
= N(0, Ω̌β,n);
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4. Compute bL,n = (bL,n,1, . . . , bL,n,dβ)′ and bU,n = (bU,n,1, . . . , bU,n,dβ)′ by setting bL,n,i =

max{0, b̌L,n,i} and bU,n,i = max{0, b̌U,n,i} for i = 1, . . . , dβ, where

b̌L,n =
√
nβ̌n − q̌1−η,n diagv(Σ̌β,n)1/2, b̌U,n =

√
nβ̌n + q̌1−η,n diagv(Σ̌β,n)1/2;

5. Compute CVα,n as the 1 − α + η quantile of L∞,n(bL,n, bU,n), where L∞,n(·, ·) is

defined as L∞(·, ·) in (2.11) with Ω0 and Σ0 replaced by Ω̌n and Σ̂n, respectively.

Notice that the quantiles in Steps 3 and 5 of Algorithm 1 can be computed straight-

forwardly by simulation. Notice also that the elements of bL,n and bU,n are maximized

against zero in order to ensure that bL,n and bU,n obeys the lower bounds of b.

We can now state our main theorem, where we establish the uniform asymptotic size

control of the LR test based on our proposed critical value, CV α,n.

Theorem 3.3 Let CVα,n be constructed as in Algorithm 1. Then under Assumptions 1—6,

lim sup
n→∞

sup
ψ∈Ψ

Pψ (LRn ≥ CVα,n) ≤ α.

We emphasize that the underlying assumptions of Theorem 3.3 are intuitive and

typically possible to very for a given statistical model. In particular, have that the

critical values determined by Algorithm 1 are valid in terms of the linear regression and

the ARCH models due to Propositions 3.1 and 3.2, respectively. The result states that

Algorithm 1 provides asymptotically valid CVs for any choice of η ∈ (0, α). We note

that 1 − η (approximately) quantifies the probability of the event b ∈ [bL,n, bU,n]. The

parameter η is user-chosen and following the existing body of literature (e.g., McCloskey,

2017) we recommend choosing η = α/10.

4 Simulation experiments

In this section, we consider the performance of our proposed LR test. Section 4.1 considers

the linear regression with positivity-constrained coeffi cients as in the running example,

whereas Section 4.2 considers the ARCH model.
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4.1 Linear regression with positivity constraints

Consider the linear regression model, given by

yt = γxt,1 + βxt,2 + εt, t = 1, . . . , n,

where for xt = (xt,1, xt,2)′, {(x′t, εt)′}t=1,2,... an i.i.d. process withxt
εt

 ∼ N

0,

Ω 0

0 1


 ,

and θ = (γ, β′)′ with γ, β ∈ [0,∞). The matrix Ω is a correlation matrix given by

Ω =

 1 ρ

ρ 1

 .

We seek to test the hypothesis H0 : γ = 0 against γ > 0.

For comparison, we report the rejection frequencies for the LR test where one ignores

that β is constrained. Here the CV is given by 2.71, the 90th percentile of the χ2
1 distrib-

ution, which is motivated by (erroneously) approximating the distribution of the LR sta-

tistic by its asymptotic distribution at the boundary point β = 0, (max{0, N(0, 1)})2 (la-

belled “LR”in the tables). We also compare with the conditional LR (“CLR”in the ta-

bles) test proposed by Ketz (2018). All tests are carried out at a nominal level of α = 5%,

and for the uniform CV construction η = α/10. For the uniform CV construction as well

as the CLR test, the CVs are determined by means of simulation, making use of 10,000

draws. All rejection frequencies are based on 10,000 Monte Carlo replications.

Tables 1-4 report the rejection frequencies of our proposed test for different values of γ,

β, ρ, and n. Specifically, we consider the cases γ, β ∈ {0, 0.1}, ρ ∈ {−0.95,−0.75, 0.5, 0, 0.5, 0.75, 0.95}

and sample sizes n ∈ {100, 250, 500, 1000}.

Tables 1 and 2 contain the rejection frequencies under H0.

[Tables 1 and 2 around here]

Our test appears to control size. It tends to be conservative whenever (max(N(0, 1), 0)2

yields conservative CVs, that is for correlations ρ ≥ 0.5. Importantly, it controls size
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when (max(N(0, 1), 0)2 does not, that is for correlations ρ ≤ −0.5. The CLR test has re-

jection frequencies around α across all correlations.

Tables 3 and 4 contains the rejection frequencies under the alternative.

[Tables 3 and 4 around here]

Our proposed method appears to have attractive rejection frequencies under most

alternatives, and in particular it has higher rejection frequencies than the CLR approach

for correlations ρ ≤ −0.75.

4.2 ARCH

In this section we consider the ARCH model and seek to evaluate the performance of our

proposed method when testing for the presence of an explanatory covariate when another

covariate may be present. Specifically, consider the model

yt = σtεt, t = 1, . . . , n,

σ2
t = δ1 + δ2y

2
t−1 + γxt−1,1 + βxt−1,2,

where δ1 > 0, δ2, γ, β ≥ 0, and {εt}t=1,...,n is an i.i.d. process with εt ∼ N(0, 1). We

consider testing H0 : γ = 0, against γ > 0.

In terms of the covariates, we follow the simulation design in Nielsen, Pedersen, Rah-

bek and Thorsen (2024) and let (xt,1, xt,2) = (exp(vt,1), exp(vt,2)) with Vt = (v1,t, v2,t)
′ a bi-

variate autoregression with correlated innovations satisfying Vt = aVt−1 + εt, t = 1, . . . , n.

Here {εt}nt=1 is an i.i.d. N2(0,Σ) process with

Σ = b
(
1− a2

) 1 ρ12

ρ12 1


independent of {zt}nt=1 , ρ12 ∈ (−1, 1), a = 0.9 and b = 0.5. The simulated realizations of

the processes for yt and (xt,1, xt,2) make use of a burn-in period of 1000 observations.

For the experiment we assume that it is known to the researcher that the true value of

the ARCH coeffi cient δ2 is not near its boundary of zero, so that the only parameter that

potentially causes a discontinuity in the null distribution is β. We report the rejection
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frequencies for n = 1000 observations, parameter values γ, β ∈ {0, 0.01, 0.05, 0.1, 0.25},

ρ12 ∈ {−0.95,−0.75, 0.5, 0, 0.5, 0.75, 0.95}, and compare with the standard LR with CVs

derived at the boundary as well as the CLR test as in the previous section.

Table 5 contains rejection frequencies under H0 for different values of β and ρ12. We

note that similar to the findings for the linear regression case in the previous section, our

proposed method has rejection frequencies less than α for all combinations of parameter

values. Similar to the linear regression case, the standard LR test overrejects for the case

of β = 0 and small values of ρ12.

[Tables 5 and 6 around here]

Table 6 contains the rejection frequencies for the alternatives γ ∈ {0.01, 0.05, 0.1, 0.25}

with β = 0. Our proposed method performs well in terms of rejecting H0, and performs

comparably to the CLR test for most combinations of the parameter values.

Summarizing the findings in Sections 4.1 and 4.2, we have that our proposed method

yields attractive rejection frequencies in most settings and yield more powerful tests than

the CLR approach in cases with extreme correlations between covariates.

5 Empirical illustration

In this section we consider an empirical illustration of our proposed test. We consider

ARCH models for daily returns of various stock indices and test for the presence of

ARCH effects and spillovers from the U.S. stock market. Inspired by the HAR model of

Corsi (2009), and similar to Nielsen et al. (2024, Section 5), we include lagged Realized

Volatility (RV) covariates to account for potential high persistence in the conditional

variance of the index returns. With the daily index return given by yt in (2.4), let

σ2
t = δ + βARCHy

2
t−1 + βRVRVt−1 + βWRVW,t−1 + βMRVM,t−1 + βSPXSPX

2
t−1,

with δ > 0 and βARCH , βRV , βM , βSPX ≥ 0. The variable RVt is the RV of the index based

on 5-minutes intraday returns at day t, RVW,t = 5−1
∑4

i=0 RVt−i is the weekly average

RV, and RVW,t = 22−1
∑21

i=0RVt−i is the monthly average RV. Lastly, the variable SPXt

is the (continuously compounded, close-to-close) return on the S&P 500 index at day t.
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We refer to Nielsen et al. (2024, Section 5) for a discussion and motivation for this type

of model. Based on data retrieved from the Oxford Man Realized Library covering the

period 3 January 2000 to 27 June 2018, we analyze the following indices: Australian ASX

All Ordinaries (AORD), Belgian BEL 20 (BFX), Spanish IBEX 35 (IBEX), IPC Mexico

(MXX), Indian NIFTY50 (NSEI) and Danish OMX C20 (OMX) (notice that OXM C20

begins on 3 October 2005). For each of these indices, we test the hypothesis for no ARCH,

HARCH : βARCH = 0, and the hypothesis of no spillovers from the U.S. stock market,

HSPX : βSPX = 0. The tests are carried out under the assumption that the true value δ0

is away from its lower bound, δ0 > δL, but no assumptions are imposed on the remaining

nuisance parameters.

Table 7 contains point estimates of the model parameters for each index series. More-

over, it contains the values of the LR and CLR statistics along with CVs based on 5%

nominal levels. Based on the LR test, for all of the series except for the Indian NSEI

index, we cannot reject HARCH . On the contrary we reject HSPX for all series except

for the Danish OMX. Note that if one uses as CV, 2.71, based on the max{N(0, 1), 0}2-

distribution, one would reject HSPX also for the OMX series.

[Table 7 around here]

In short, based on our proposed critical values, we find evidence for no ARCH effects

in most of the index return series, whereas most of the series appear subject to spillovers

from the U.S. stock market.

6 Conclusions

This paper proposes a novel and computationally effi cient method for constructing CVs

for LR tests that achieve uniform asymptotic size control, even when nuisance parame-

ters lie on or near the boundary of their parameter space. The key innovation lies in us-

ing confidence bounds for an asymptotically Gaussian approximation of a nuisance pa-

rameter estimator and exploiting the monotonicity properties of the two components of

the LR statistic’s asymptotic distribution. This allows for the formation of valid CVs

via straightforward Monte Carlo simulation, without the need for intensive optimization
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or conservative least-favorable approaches. The method remains tractable in settings for

which the nuisance parameter is not low-dimensional and is broadly applicable, includ-

ing to models such as constrained regressions and ARCH specifications, offering the first

uniformly valid test for the latter.

References

Andrews, D.W.K. (2001): “Testing when a parameter is on the boundary of the

maintained hypothesis”, Econometrica, vol. 69, 683—734.

Andrews, D.W.K. and Cheng, X. (2012),“Estimation and inference with weak,

semi-strong, and strong identification”, Econometrica, vol. 80, 2153—2211.

Andrews, D.W.K. and Guggenberger, P. (2009): “Hybrid and size-corrected

subsampling methods”, Econometrica, vol. 77, 721—762.

Berger, R. L. and Boos, D. D. (1994): “P values maximized over a confidence set

for the nuisance parameter”, Journal of the American Statistical Association, vol.

89, 1012—1016.

Berry, S., Levinsohn, J., and Pakes, A. (1995): “Automobile prices in market

equilibrium”, Econometrica, vol. 63, 841—890.

Cavaliere, G., Nielsen, H. B., Pedersen, R. S., and Rahbek, A. (2022): “Boot-

strap inference on the boundary of the parameter space, with application to condi-

tional volatility models”, Journal of Econometrics, vol. 227, 241—263.

Cavaliere, G., Nielsen, H. B., and Rahbek, A. (2017): “On the consistency of

bootstrap testing for a parameter on the boundary of the parameter space”, Journal

of Time Series Analysis, vol. 38, 513—534.

Cavaliere, G., Perera, I., and Rahbek, A. (2024): “Specification tests for GARCH

processes”, Journal of Business and Economic Statistics, vol. 42, 197—214.

24



Corsi, F. (2009): “A simple approximate long-memory model of realized volatility”,

Journal of Financial Econometrics, vol. 7, 174—196.

Drton, M. (2009): “Likelihood ratio tests and singularities”, Annals of Statistics, vol.

37, 979—1012.

Fan, Y. and Shi, X. (2023): “Wald, QLR, and score tests when the parameters are

subject to linear inequality constraints”, Journal of Econometrics, vol. 235, 2005-

2026.

Francq, C. and Thieu, L. Q. (2019): “QML inference for volatility models with

covariates”, Econometric Theory, vol. 35, 37—72.

Francq, C., and Zakoïan, J.-M. (2009), ”Testing the nullity of GARCH coeffi cients:

Correction of the standard tests and relative effi ciency comparisons“, Journal of the

American Statistical Association, vol. 104, 313—324.

Geyer, C. J. (1994),“On the asymptotics of constrained M -estimators”, The Annals

of Statistics, vol. 22, 1993—2010.

Hong, H. and Li, J. (2020),“The numerical bootstrap”, The Annals of Statistics, vol.

48, 397—412.

Ketz, P. (2018): “Subvector inference when the true parameter vector may be near or

at the boundary”, Journal of Econometrics, vol. 207, 285—306.

Ketz, P. and McCloskey, A. (2023): “Short and simple confidence intervals when

the directions of some effects are known”, Review of Economics and Statistics,

forthcoming.

Li, J. (2025),“The proximal bootstrap for constrained estimators”, Journal of Statistical

Planning and Inference, vol. 236, 106245.

McCloskey, A. (2017): “Bonferroni-based size-correction for nonstandard testing

problems”, Journal of Econometrics, vol. 200, 17—35.

25



Mitchell, J. D., Allman, E. S., and Rhodes, J. A. (2019): “Hypothesis testing

near singularities and boundaries”, Electronic Journal of Statistics, vol. 13, 2150—

2193.

Newey, W. K. and McFadden, D. L. (1994): “Large sample estimation and hy-

pothesis testing". In Engle, R. and McFadden, D., editors, Handbook of Economet-

rics, vol. 4, 2111—2245.

Newey, W. K. and West, K. D. (1987): “A simple, positive semi-definite, het-

eroskedasticity and autocorrelation consistent covariance matrix”, Econometrica,

vol. 55, 703—708.

Nielsen, H. B., Pedersen, R. S., Rahbek, A., and Thorsen, S. N.,“Testing in

GARCH-X models: Boundary, correlations and bootstrap theory”, Journal of Time

Series Analysis, forthcoming.

Self, S. G. and Liang, K.-Y. (1987),“Asymptotic properties of maximum likelihood

estimators and likelihood ratio tests under nonstandard conditions”, Journal of the

American Statistical Association, vol. 82, 605—610.

Shapiro, A. (1989),“Asymptotic properties of statistical estimators in stochastic pro-

gramming”, The Annals of Statistics, vol. 17, 841—858.

Silvapulle, M. J. (1996),“A test in the presence of nuisance parameters”, Journal of

the American Statistical Association, vol. 91, 1690—1693.

Silvapulle, M. J. and Silvapulle, P. (1995),“A score test against one-sided alter-

natives”, Journal of the American Statistical Association, vol. 90, 342—349.

26



Table 1: Rejection Frequencies under null hypothesis, (γ, β) = (0, 0)

n LR CLR LR-uniform

ρ = −0.95
100 0.0998 0.0520 0.0414
250 0.1050 0.0526 0.0397
500 0.1054 0.0536 0.0422
1000 0.1040 0.0502 0.0424

ρ = −0.75
100 0.0813 0.0527 0.0352
250 0.0873 0.0545 0.0359
500 0.0820 0.0513 0.0332
1000 0.0867 0.0529 0.0367

ρ = −0.5
100 0.0727 0.0523 0.0299
250 0.0684 0.0505 0.0297
500 0.0753 0.0528 0.0309
1000 0.0677 0.0482 0.0250

ρ = 0
100 0.0520 0.0545 0.0223
250 0.0489 0.0512 0.0183
500 0.0510 0.0513 0.0191
1000 0.0482 0.0498 0.0190

ρ = 0.5
100 0.0293 0.0547 0.0114
250 0.0283 0.0501 0.0105
500 0.0288 0.0512 0.0099
1000 0.0286 0.0519 0.0103

ρ = 0.75
100 0.0142 0.0552 0.0049
250 0.0143 0.0584 0.0041
500 0.0138 0.0550 0.0043
1000 0.0152 0.0577 0.0046

ρ = 0.95
100 0.0014 0.0602 0.0011
250 0.0014 0.0577 0.0010
500 0.0015 0.0634 0.0011
1000 0.0013 0.0603 0.0010



Table 2: Rejection Frequencies under null hypothesis, (γ, β) = (0, 0.1)

n LR CLR LR-uniform

ρ = −0.95
100 0.0562 0.0537 0.0224
250 0.0540 0.0536 0.0205
500 0.0495 0.0493 0.0217
1000 0.0488 0.0507 0.0237

ρ = −0.75
100 0.0560 0.0553 0.0226
250 0.0527 0.0530 0.0235
500 0.0547 0.0554 0.0294
1000 0.0510 0.0507 0.0369

ρ = −0.5
100 0.0554 0.0544 0.0226
250 0.0514 0.0519 0.0250
500 0.0470 0.0468 0.0257
1000 0.0488 0.0487 0.0339

ρ = 0
100 0.0522 0.0543 0.0213
250 0.0505 0.0512 0.0235
500 0.0497 0.0514 0.0247
1000 0.0526 0.0523 0.0302

ρ = 0.5
100 0.0423 0.0538 0.0155
250 0.0499 0.0544 0.0195
500 0.0493 0.0504 0.0170
1000 0.0460 0.0463 0.0169

ρ = 0.75
100 0.0288 0.0543 0.0083
250 0.0367 0.0487 0.0113
500 0.0445 0.0502 0.0148
1000 0.0496 0.0510 0.0185

ρ = 0.95
100 0.0048 0.0526 0.0017
250 0.0108 0.0536 0.0028
500 0.0226 0.0547 0.0065
1000 0.0364 0.0543 0.0085



Table 3: Rejection Frequencies under alternative hypothesis, (γ, β) =
(0.1, 0)

n LR CLR LR-uniform

ρ = −0.95
100 0.3214 0.0947 0.1811
250 0.5331 0.1250 0.3518
500 0.7741 0.1780 0.6037
1000 0.9504 0.2607 0.8811

ρ = −0.75
100 0.3232 0.1707 0.1870
250 0.5326 0.2726 0.3529
500 0.7638 0.4411 0.6022
1000 0.9432 0.6702 0.8702

ρ = −0.5
100 0.2947 0.2150 0.1676
250 0.5257 0.3929 0.3487
500 0.7499 0.6147 0.5870
1000 0.9443 0.8611 0.8758

ρ = 0
100 0.2665 0.2708 0.1508
250 0.4712 0.4774 0.3061
500 0.7124 0.7146 0.5519
1000 0.9302 0.9305 0.8542

ρ = 0.5
100 0.1720 0.2246 0.0902
250 0.3474 0.3961 0.1997
500 0.5695 0.6088 0.3966
1000 0.8498 0.8599 0.7174

ρ = 0.75
100 0.0958 0.1660 0.0432
250 0.2108 0.2783 0.1028
500 0.3851 0.4332 0.2238
1000 0.6554 0.6733 0.4730

ρ = 0.95
100 0.0106 0.0921 0.0036
250 0.0290 0.1232 0.0105
500 0.0752 0.1737 0.0237
1000 0.1796 0.2560 0.0620



Table 4: Rejection Frequencies under alternative hypothesis (γ, β) =
(0.1, 0.1)

n LR CLR LR-uniform

ρ = −0.95
100 0.1474 0.0927 0.0691
250 0.1804 0.1229 0.0803
500 0.2267 0.1716 0.1114
1000 0.3168 0.2598 0.1666

ρ = −0.75
100 0.1991 0.1690 0.1010
250 0.3152 0.2853 0.1820
500 0.4570 0.4335 0.2931
1000 0.6855 0.6729 0.5117

ρ = −0.5
100 0.2294 0.2190 0.1251
250 0.4054 0.3947 0.2557
500 0.6235 0.6196 0.4553
1000 0.8668 0.8649 0.7586

ρ = 0
100 0.2588 0.2659 0.1466
250 0.4656 0.4719 0.3103
500 0.7107 0.7118 0.5699
1000 0.9313 0.9314 0.8887

ρ = 0.5
100 0.2071 0.2269 0.1044
250 0.3861 0.3921 0.2311
500 0.6121 0.6135 0.4495
1000 0.8640 0.8639 0.7921

ρ = 0.75
100 0.1416 0.1700 0.0630
250 0.2724 0.2818 0.1427
500 0.4353 0.4369 0.2721
1000 0.6657 0.6660 0.5083

ρ = 0.95
100 0.0305 0.0964 0.0099
250 0.0822 0.1269 0.0255
500 0.1567 0.1712 0.0623
1000 0.2527 0.2527 0.1272



Table 5: Rejection Frequencies under null hypothesis

β2 LR CLR LR-Uniform

ρ12 = −0.95
0 0.07814 0.03445 0.03094

0.01 0.05682 0.04196 0.0257
0.05 0.0504 0.03612 0.04296
0.1 0.05299 0.03883 0.05491
0.25 0.04597 0.04638 0.05346

ρ12 = −0.75
0 0.07296 0.03733 0.03252

0.01 0.04922 0.0389 0.02226
0.05 0.05032 0.03988 0.04359
0.1 0.05171 0.04084 0.05311
0.25 0.05149 0.04218 0.05462

ρ12 = −0.5
0 0.06602 0.03927 0.02835

0.01 0.05276 0.04005 0.02233
0.05 0.05114 0.03901 0.04231
0.1 0.04819 0.03945 0.0503
0.25 0.04596 0.03941 0.0504

ρ12 = 0
0 0.04871 0.03818 0.01854

0.01 0.04683 0.03913 0.02071
0.05 0.05045 0.03964 0.03844
0.1 0.05148 0.04187 0.05158
0.25 0.04842 0.03589 0.04882

ρ12 = 0.5
0 0.02877 0.05214 0.01233

0.01 0.04805 0.04324 0.01992
0.05 0.04851 0.04021 0.0245
0.1 0.04613 0.03792 0.03592
0.25 0.04931 0.03981 0.04771

ρ12 = 0.75
0 0.01475 0.0620 0.00612

0.01 0.03772 0.04913 0.01501
0.05 0.0488 0.0434 0.0189
0.1 0.0504 0.0454 0.0230
0.25 0.0482 0.0430 0.0385

ρ12 = 0.95
0 0.0009022 0.05704 0.001403

0.01 0.0106 0.05932 0.003701
0.05 0.0421 0.0489 0.0118
0.1 0.0538 0.0537 0.0217
0.25 0.0481 0.0481 0.0188



Table 6: Rejection Frequencies for under various alternatives

γ LR CLR LR-uniform

ρ12 = −0.95
0 0.08134 0.0379 0.03298

0.01 0.4380 0.2167 0.2813
0.05 0.9902 0.7901 0.9649
0.1 0.9998 0.9114 0.9965
0.25 1.0000 0.9568 0.9981

ρ12 = −0.75
0 0.0701 0.03691 0.02888

0.01 0.4377 0.2610 0.2872
0.05 0.9891 0.8976 0.9687
0.1 1.0000 0.9714 0.9982
0.25 1.0000 0.9856 0.9986

ρ12 = −0.5
0 0.06329 0.03815 0.02544

0.01 0.4230 0.2956 0.2765
0.05 0.9889 0.9527 0.9688
0.1 0.9999 0.9939 0.9988
0.25 1.0000 0.9961 0.9990

ρ12 = 0
0 0.0478 0.03818 0.01914

0.01 0.3816 0.3355 0.2459
0.05 0.9875 0.9819 0.9670
0.1 0.9999 0.9997 0.9990
0.25 1.0000 0.9999 0.9994

ρ12 = 0.5
0 0.03165 0.05479 0.01202

0.01 0.2879 0.3144 0.1702
0.05 0.9655 0.9578 0.9191
0.1 0.9988 0.9985 0.9967
0.25 1.0000 1.0000 1.0000

ρ12 = 0.75
0 0.01686 0.0588 0.006924

0.01 0.1721 0.2313 0.08815
0.05 0.8592 0.8464 0.7527
0.1 0.9821 0.9784 0.9581
0.25 0.9996 0.9994 0.9990

ρ12 = 0.95
0 0.002107 0.06493 0.001706

0.01 0.02321 0.1231 0.01021
0.05 0.3389 0.3702 0.1745
0.1 0.5843 0.5847 0.4011
0.25 0.8056 0.8030 0.6670



Table 7: Results for the empirical illustration
AORD BFX IBEX MXX NSEI OMX

δ 0.03 0.05 0.08 0.25 0.35 0.27
βARCH 0.01 0.01 0.00 0.08 0.16 0.00
βRV 0.09 0.63 0.62 0.30 0.39 0.49
βW 0.69 0.79 0.52 0.37 0.38 0.58
βM 0.34 0.00 0.17 0.72 0.22 0.05
βSPX 0.19 0.07 0.09 0.07 0.15 0.06

LR(HARCH) 0.66 0.66 0.00 16.78 106.42 0.00
Uniform CV 6.58 6.66 8.39 16.98 20.44 18.50

LR(HSPX) 441.02 23.24 21.79 22.07 59.99 6.05
Uniform CV 7.57 7.29 8.52 16.95 20.21 18.76

Observations 4757 4802 4772 4729 4670 3259



Supplemental Appendix

A Proofs

A.1 Proofs of main results

Proof of Lemma 2.1

We first introduce some notation. Let b(1) = (b
(1)
1 , . . . , b

(1)
dβ

)′ and b(2) = (b
(2)
1 , . . . , b

(2)
dβ

)′

satisfy

b
(1)
i = I(bi <∞)bi, b

(2)
i = I(bi =∞)bi

for i = 1, . . . , dβ, and where we work under the convention that 0 ×∞ = 0. Note that

b = b(1) + b(2). Likewise, let β(1)
n = (β

(1)
n,1, . . . , β

(1)
n,dβ

)′ and β(2)
n = (β

(2)
n,1, . . . , β

(2)
n,dβ

)′ satisfy

β
(1)
n,i = I(bi <∞)βn,i, β

(2)
n,i = I(bi =∞)βn,i

for i = 1, . . . , dβ. Define

θ(1)
n = (0′dγ , β

(1)′
n , 0′dδ)

′ and θ(2)
n = (γ′0, β

(2)′
n , δ′0)′. (A.1)

In particular, θn = θ
(1)
n + θ

(2)
n , and we have that under any {ψn} sequence,

√
nθ(1)

n → (0′dγ , b
(1), 0′dδ)

′ ≡ τ (A.2)

and
√
n(Θ− θ(2)

n )→ Λ̃ and
√
n(Θ

H0
− θ(2)

n )→ Λ̃0 (A.3)

where Θ
H0
≡ {θ ∈ Θ : γ = γ0} and Λ̃ and Λ̃0 are convex cones (with zero vertex) given

respectively by

Λ̃ = Λγ × Λ̃β × Λδ and Λ̃0 = {0}dγ × Λ̃β × Λδ, (A.4)

for Λδ = Rdδ and Λ̃β = Λ̃β,1 × · · · × Λ̃β,dβ , with

Λ̃β,i =

 R+ if bi <∞

R if bi =∞
, i = 1, . . . , dβ.
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As in Andrews (1999), we note that

Ln (θ) = Ln (θn) +
1

2
Z ′nΩnZn −

1

2
‖
√
n(θ − θn)− Zn‖2

Ωn +Rn (θ) ,

with

Ωn ≡ −n−1∂
2Ln(θn)

∂θ∂θ′
, (A.5)

Zn = Ω−1
n n−1/2∂Ln(θn)

∂θ
, (A.6)

‖λ− Zn‖2
Ωn = (λ− Zn)′Ωn (λ− Zn) , λ ∈ Rdθ . (A.7)

Hence,

LRn = 2(Ln(θ̂n)− Ln(θ̃n))

= ‖
√
n(θ̃n − θn)− Zn‖2

Ωn − ‖
√
n(θ̂n − θn)− Zn‖2

Ωn + 2
(
Rn(θ̂n) +Rn(θ̃n)

)
= ‖
√
n(θ̃n − θn)− Zn‖2

Ωn − ‖
√
n(θ̂n − θn)− Zn‖2

Ωn + op (1) ,

where the last equality follows by Assumptions 1—2. We seek to show that, jointly,

‖
√
n(θ̃n − θn)− Zn‖2

Ωn

d→ inf
λ∈Λ̃0

‖λ− (Z + τ)‖2
Ω0

and

‖
√
n(θ̂n − θn)− Zn‖2

Ωn

d→ inf
λ∈Λ̃
‖λ− (Z + τ)‖2

Ω0
.

Given this convergence, the limiting distribution, L∞(b, b), of LRn is then derived by

standard arguments, using the structure of Λ̃ and Λ̃0 and that Λδ = Rdδ :

inf
λ∈Λ̃0

‖λ− (Z + τ)‖2
Ω0
− inf

λ∈Λ̃
‖λ− (Z + τ)‖2

Ω0

= inf
λ∈{0}dγ×Λ̃β×Λδ

‖λ− (Z + τ)‖2
Ω0
− inf

λ∈Λγ×Λ̃β×Λδ

‖λ− (Z + τ)‖2
Ω0

= inf
λ∈{0}dγ×Λ̃β

‖λ−H(Z + τ)‖2
(HΩ−10 H′)−1

− inf
λ∈Λγ×Λ̃β

‖λ−H(Z + τ)‖2
(HΩ−10 H′)−1

= inf
λ∈{0}dγ×Λβ(b)

‖λ−HZ‖2
(HΩ−10 H′)−1

− inf
λ∈Λγ×Λβ(b)

‖λ−HZ‖2
(HΩ−10 H′)−1

= L∞(b, b).
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Let us focus on the convergence of ‖
√
n(θ̂n − θn) − Zn‖2

Ωn
, noting that the convergence

of ‖
√
n(θ̃n − θn) − Zn‖2

Ωn
follows by similar arguments, and that the convergence holds

jointly, as ‖
√
n(θ̂n − θn) − Zn‖2

Ωn
and ‖

√
n(θ̃n − θn) − Zn‖2

Ωn
are functions of the same

data {Wt}. It suffi ces to show the following three properties:

1. With θ̂q,n satisfying ‖
√
n(θ̂q,n− θn)−Zn‖2

Ωn
= infθ∈Θ ‖

√
n(θ− θn)−Zn‖2

Ωn
, it holds

that

‖
√
n(θ̂n − θn)− Zn‖2

Ωn = ‖
√
n(θ̂q,n − θn)− Zn‖2

Ωn + op(1).

2. It holds that

‖
√
n(θ̂q,n−θn)−Zn‖2

Ωn = inf
θ∈Θ
‖
√
n(θ−θn)−Zn‖2

Ωn = inf
λ∈Λ̃
‖λ−
√
nθ(1)

n −Zn‖2
Ωn+op(1).

3. It holds that

inf
λ∈Λ̃
‖λ−

√
nθ(1)

n − Zn‖2
Ωn

d→ inf
λ∈Λ̃
‖λ− (Z + τ)‖2

Ω0
.

These properties follow from Lemmas A.1—A.3. �

Proof of Lemma 3.1

With b ≤ b ≤ b̄, it holds that Λβ(b) ⊂ Λβ(b) ⊂ Λβ(b̄). This implies that

inf
λ∈{0}dγ×Λβ(b)

Q (λ) ≥ inf
λ∈{0}dγ×Λβ(b)

Q (λ) ,

and

inf
λ∈Λγ×Λβ(b)

Q (λ) ≥ inf
λ∈Λγ×Λβ(b̄)

Q (λ) .

Hence,

L∞(b, b) = inf
λ∈{0}dγ×Λβ(b)

Q (λ)− inf
λ∈Λγ×Λβ(b)

Q (λ) ≤ inf
λ∈{0}dγ×Λβ(b)

Q (λ)− inf
λ∈Λγ×Λβ(b̄)

Q (λ)

= L∞(b, b̄),

as required. �
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Proof of Lemma 3.2

By a Taylor-type expansion at θn,

√
n
(
θ̌n − θn

)
=

Idθ −
(
∂2Ln(θ̂n)

∂θ∂θ′

)−1
∂2Ln(θn)

∂θ∂θ′

√n(θ̂n − θn)

−
(
n−1∂

2Ln(θ̂n)

∂θ∂θ′

)−1

n−1/2∂Ln(θn)

∂θ
+ op (1)

d→ N(0,Ω−1
0 Σ0Ω−1

0 )

where we have used Assumptions 1—4 and Remark 2.1. This proves (3.2). In addition,

(3.3) follows directly from Assumptions 1—3 and 5. �

Proof of Theorem 3.3

For the parameter spaceΨ, standard subsequencing arguments (e.g., Andrews and Guggen-

berger, 2009, and McCloskey, 2017) provide that showing

lim
n→∞

Pψn (LRn ≥ CV1−α+η,n(bL,n, bU,n)) ≤ α (A.8)

under all {ψn} sequences in Ψ satisfying ψn → ψ0 and (2.8) is suffi cient for proving the

statement of the theorem. Consider any such sequence; then, we have

Pψn (LRn ≥ CV1−α+η,n(bL,n, bU,n))

= Pψn
(
LRn ≥ CV1−α+η,n(bL,n, bU,n) ≥ CV1−α+η,n(

√
nβn,

√
nβn)

)
+ Pψn

(
LRn ≥ CV1−α+η,n(

√
nβn,

√
nβn) > CV1−α+η,n(bL,n, bU,n)

)
+ Pψn

(
CV1−α+η,n(

√
nβn,

√
nβn) > LRn ≥ CV1−α+η,n(bL,n, bU,n)

)
≤ Pψn

(
LRn ≥ CV1−α+η,n(

√
nβn,

√
nβn)

)
(A.9)

+ Pψn
(
CV1−α+η,n(

√
nβn,

√
nβn) > CV1−α+η,n(bL,n, bU,n)

)
.

Note the following:

(a) the distribution function of L∞,n(
√
nβn,

√
nβn) converges in probability to the dis-

tribution function of L∞(b, b) by Assumptions 1—3 and 5 and the continuous map-

ping theorem;

(b) LRn
d→ L∞(b, b) by Lemma 2.1;
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(c) for any b ∈ [0,∞]dβ , L∞(b, b) is an absolutely continuous random variable with

support [0,∞).

Therefore, Lemma 5(ii) of Andrews and Guggenberger (2010) implies

Pψn
(
LRn ≥ CV1−α+η,n(

√
nβn,

√
nβn)

)
→ P (L∞(b, b) ≥ CV1−α+η(b, b)) = α− η, (A.10)

where CV1−α+η(b, b) denotes the 1 − α + η quantile of L∞(b, b). For q1−η equal to the

(1− η)-quantile ofmaxi=1,...,dβ |Zβ,i| with Zβ
d
= N(0,Ωβ) andΩβ = diag (Σβ)−1/2 Σβ diag (Σβ)−1/2,

Pψn
(
CV1−α+η,n(

√
nβn,

√
nβn) > CV1−α+η,n(bL,n, bU,n)

)
= 1− Pψn

(
CV1−α+η,n(

√
nβn,

√
nβn) ≤ CV1−α+η,n(bL,n, bU,n)

)
≤ 1− Pψn

(
bL,n ≤

√
nβn ≤ bU,n

)
= 1− Pψn

(
b̄L,n ≤

√
nβn ≤ bU,n

)
≤ 1− Pψn

(
b̄L,n ≤

√
nβn ≤ b̄U,n

)
= 1− Pψn

(
−q̂1−η,n diagv(Σ̂β,n)1/2 ≤

√
n(β̄n − βn) ≤ q̂1−η,n diagv(Σ̂β,n)1/2)

)
= 1− Pψn

−q̂1−η,n ≤
√
n(β̄n,i − βn,i)√

Σ̂β,n,ii

≤ q̂1−η,n for all i = 1, . . . , dβ


= 1− Pψn

 max
i=1,...,dβ

∣∣∣∣∣∣
√
n(β̄n,i − βn,i)√

Σ̂β,n,ii

∣∣∣∣∣∣ ≤ q̂1−η,n


→ 1− P

(
max

i=1,...,dβ
|Zβ,i| ≤ q1−η

)
= η, (A.11)

where the inequalities inside of probabilities are evaluated element-wise across vectors, the

first inequality follows from Lemma 3.1, the second equality follows from βn ≥ 0 and the

convergence follows from Assumption 6 and Lemma 5(ii) of Andrews and Guggenberger

(2010).

Together, (A.9)—(A.11) imply (A.8), and therefore the statement of the theorem. �

A.2 Technical lemmas for proving main results

Lemma A.1 Let θ̂q,n satisfy ‖
√
n(θ̂q,n− θn)−Zn‖2

Ωn
= infθ∈Θ ‖

√
n(θ− θn)−Zn‖2

Ωn
, with

Ωn given by (A.5) and Zn given by (A.6). Under Assumptions 1-4 and any sequence {ψn}
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satisfying ψn → ψ0 and (2.8),

‖
√
n(θ̂n − θn)− Zn‖2

Ωn = ‖
√
n(θ̂q,n − θn)− Zn‖2

Ωn + op(1).

Proof. The result follows directly from arguments given in Andrews (1999, proof of

Theorem 2) with θ0 replaced by θn. �

Lemma A.2 Under Assumptions 3-4 and any sequence {ψn} satisfying ψn → ψ0 and

(2.8), it holds that

inf
θ∈Θ
‖
√
n(θ − θn)− Zn‖2

Ωn = inf
λ∈Λ̃
‖λ−

√
nθ(1)

n − Zn‖2
Ωn + op(1),

where Ωn given by (A.5), Zn given by (A.6), Λ̃ is given by (A.4) and θ(1)
n is given by (A.1).

Proof. By definition, using (A.1),

‖
√
n(θ − θn)− Zn‖2

Ωn = ‖
√
n(θ − θ(2)

n )− (Zn +
√
nθ(1)

n )‖2
Ωn .

Hence,

inf
θ∈Θ
‖
√
n(θ − θn)− Zn‖2

Ωn = inf
θ∈Θ
‖
√
n(θ − θ(2)

n )− (Zn +
√
nθ(1)

n )‖2
Ωn

= inf
λ∈
√
n(Θ−θ(2)n )

‖λ− (Zn +
√
nθ(1)

n )‖2
Ωn .

By Assumptions 3-4 and (A.2), we have that Zn +
√
nθ

(1)
n = Op(1). Hence, the result

now follows using the fact that
√
n(Θ − θ(2)

n ) contains zero for all n ≥ 1 and Silvapulle

and Sen (2005, Corollary 4.7.5.1 and the comments on p. 194). �

Lemma A.3 Under Assumptions 3-4 and any sequence {ψn} satisfying ψn → ψ0 and

(2.8), it holds that

inf
λ∈Λ̃
‖λ− (Zn +

√
nθ(1)

n )‖2
Ωn

d→ inf
λ∈Λ̃
‖λ− (Z + τ)‖2

Ω0
,

where Ωn given by (A.5), Zn given by (A.6), Λ̃ is given by (A.4), θ(1)
n is given by (A.1),

and τ is defined in (A.2).

Proof. Since (Zn +
√
nθ

(1)
n ) = Op(1) and Ωn = Ω0 + op(1) by Assumptions 3-4, we have
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by Silvapulle and Sen (2005, Lemma 4.10.2.2) that

inf
λ∈Λ̃
‖λ− (Zn +

√
nθ(1)

n )‖2
Ωn = inf

λ∈Λ̃
‖λ− (Zn +

√
nθ(1)

n )‖2
Ω0

+ op(1).

By Silvapulle and Sen (2005, Corollary 4.7.5.2) and the fact that Zn +
√
nθ

(1)
n

d→ Z + τ ,

we have that infλ∈Λ̃ ‖λ− (Zn +
√
nθ

(1)
n )‖2

Ω0

d→ infλ∈Λ̃ ‖λ− (Z + τ)‖2
Ω0
. �

A.3 Proofs and lemmas related to linear regression

example

Proof of Proposition 2.1

Starting with Assumption 1, note that Assumptions LinIID 1.1—3 and a weak LLN for

row-wise i.i.d. random variables imply that ‖Sxx−Eψn [xtx
′
t]‖

p→ 0 and ‖Sxε−Eψn [xtεt]‖
p→

0 (all convergence statements that follow are thus understood to be under any sequence

{ψn} satisfying ψn → ψ0 and (2.8)). Since xt under ψn converges in distribution to xt

under ψ0 and maxj Eψ[|xt,j|2+ν ] ≤ c for all ψ ∈ Ψ, we have that Eψn [xtx
′
t]→ Eψ0 [xtx′t] =

Ω0, such that Sxx
p→ Ω0. Likewise, Eψ[xtεt] = 0 for all ψ ∈ Ψ, such that Sxε

p→ 0. Clearly,

these convergence properties imply that Sxx is invertible with probability approaching

one, such that

θ̂LS − θn = S−1
xx Sxε = op(1), (A.12)

and

‖θ̂LS − θn‖2
Sxx = (θ̂LS − θn)′Sxx(θ̂LS − θn) = op(1).

We then have by the triangle inequality

‖θ̂n − θn‖Sxx ≤ ‖θ̂n − θ̂LS‖Sxx + ‖θ̂LS − θn‖Sxx ≤ 2‖θ̂LS − θn‖Sxx ,

where the second equality follows by noting that θn ∈ Θ and ‖θ̂n− θ̂LS‖Sxx = minθ∈Θ ‖θ−

θ̂LS‖Sxx . We conclude that ‖θ̂n − θn‖Sxx = op(1), and hence that θ̂n − θn = op(1). By

similar arguments we have that θ̃n − θn = op(1).

Moving now to Assumption 2, 1. clearly holds by the definition of Ln(·) and 2. holds

trivially since −n−1∂2Ln(θ)/∂θ∂θ′ = Sxx in this example. Assumption 3 also holds by

the fact that −n−1∂2Ln(θ)/∂θ∂θ′ = Sxx and that Sxx
p→ Ω0. Finally, Assumption 4 holds
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by Assumptions LinIID 1.1—3, the Cramér Wold device and a Liapounov central limit

theorem (CLT) for row-wise i.i.d. random variables since n−1/2∂Ln(θn)/∂θ = n1/2Sxε in

this example. �

Proof of Proposition 3.1

The proof that Assumption 5 holds is nearly identical to those of White (1980, proof of

Theorem 1). For Assumption 6, note that under any sequence {ψn} satisfying ψn → ψ0

and (2.8),
√
n(θ̂LS − θn) = S−1

xx

√
nSxε

d→ N(0,Ω−1
0 Σ0Ω−1

0 )

by the continuous mapping theorem and the fact that Assumptions 3—4 hold. Further-

more, given that Assumptions 3 and 5 hold, the continuous mapping theorem implies

Σ̂β,n
p→ Σβ. �

Lemma A.4 Suppose that Sxx is invertible. For any set Λ ⊂ R1+dβ ,

arg inf
θ∈Λ

n∑
t=1

(yt − x′tθ)
2

= arg inf
θ∈Λ

(θ − θ̂LS)′Sxx(θ − θ̂LS).

Proof. After noting that for any θ,

n∑
t=1

(yt − x′tθ)
2

=
n∑
t=1

(yt − x′tθ̂LS − x′t(θ − θ̂LS))2

=
n∑
t=1

(yt − x′tθ̂LS)2 +
n∑
t=1

(x′t(θ − θ̂LS))2

− 2(θ − θ̂LS)′
n∑
t=1

xt(yt − x′tθ̂LS)︸ ︷︷ ︸
=0

=
n∑
t=1

(yt − x′tθ̂LS)2 + n(θ − θ̂LS)′Sxx(θ − θ̂LS),

the result follows immediately. �

A.4 Proofs related to the ARCH example

Below we prove that Assumptions 1-6 hold under Assumptions ARCH 1-4. Throughout,

we make use of

Wt = (y2
t , F

′
t−1)′ ∈ W =R+ × {1} × R

dβ+dγ
+ .

8



Proof that Assumption 1 holds

Under under any sequence {ψn} satisfying ψn → ψ0 and (2.8), and using the compactness

of Θ, to prove the convergence of θ̂n, it suffi ces to show that

sup
θ∈Θ
|n−1Ln(θ)− L(θ)| p→ 0, (A.13)

with

L(θ) = −1

2
Eψ0

[
log σ2

t (θ) +
y2
t

σ2
t (θ)

]
(A.14)

and

L(θ) ≤ L(θ0) for any θ ∈ Θ with equality if and only if θ = θ0. (A.15)

We start out by showing that (A.13) by applying Lemma 11.3 of Andrews and Cheng

(2013b)2. Recall that

lt(θ) = −1

2

(
log σ2

t (θ) +
y2
t

σ2
t (θ)

)
= −1

2

(
log g(Ft−1, θ) +

Wt,1

g(Ft−1, θ)

)
,

with g(Ft−1, θ) := F ′t−1θ and Wt,1 = y2
t , the first entry of Wt. For any w ∈ W, let w1

denote the first entry of w and w2 the column vector of the remaining entries, that is,

w = (w1, w
′
2)′. Let

s(w, θ) = log g(w, θ) +
w1

g(w2, θ)
= log (w′2θ) +

w1

w′2θ
.

For any θ1, θ2 ∈ Θ, a mean value expansion gives

log (w′2θ1) = log (w′2θ2) +
1

w′2θ
∗w
′
2(θ1 − θ2),

with θ∗ ∈ Θ between θ1 and θ2. Likewise,

w1

w′2θ1

=
w1

w′2θ2

− w1

(w′2θ
∗∗)2

w′2(θ1 − θ2),

2A careful inspection of the proof of that lemma shows that only strong mixing conditions as the
ones stated in Assumption ARCH 1 are needed. In particular, the proof makes use of a weak LLN for
triangular arrays of strongly mixing processes, which does not impose any rate of decay on the the mixing
coeffi cients.
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with θ∗∗ ∈ Θ between θ1 and θ2. It holds that w′2θ ≥ δL uniformly on W × Θ. Conse-

quently, for all θ1, θ2 ∈ Θ

|s(w, θ1)− s(w, θ2)| =
∣∣∣∣ 1

w′2θ
∗w
′
2(θ1 − θ2)− w1

(w′2θ
∗∗)2

w′2(θ1 − θ2)

∣∣∣∣
≤
(
δ−1
L + δ−2

L w1

)
‖w2‖ ‖θ1 − θ2‖ .

With M1(w) :=
(
δ−1
L + δ−2

L w1

)
‖w2‖, we conclude that for any η > 0

|s(w, θ1)− s(w, θ2)| ≤M1(w)η (A.16)

for all θ1, θ2 ∈ Θ and w ∈ W with ‖θ1 − θ2‖ < η. By Assumption ARCH 4, it holds that

Eψ[M1(Wt)] = Eψ
[(
δ−1
L + δ−2

L y2
t

)
‖Ft−1‖

]
≤ δ−1

L Eψ [‖Ft−1‖] + δ−2
L Eψ

[
y2
t ‖Ft−1‖

]
≤ c̃

for some constant c̃ ∈ (0,∞) for all ψ ∈ Ψ. Moreover, we have that for θ ∈ Θ

|s(Wt, θ)| ≤ | log(δL)|+ ‖Ft−1‖dθ(δU + βU + γU) +
y2
t

δL
,

so using Assumption ARCH 4 again, we have that

Eψ[sup
θ∈Θ
|s(Wt, θ)|1+ν ] ≤ c̃

for some constants ν, c̃ ∈ (0,∞) for all ψ ∈ Ψ. We conclude that

Eψ[sup
θ∈Θ
|s(Wt, θ)|1+ν ] + Eψ[M1(Wt)] ≤ C̄, (A.17)

for some constants ν, c̃ ∈ (0,∞) for all ψ ∈ Ψ. Using the fact that lt(θ) = −s(Wt, θ)/2

together with (A.16) and (A.17), we have that (A.13) holds by Lemma 11.3 of Andrews

and Cheng (2013b). Condition (A.15) holds by standard arguments and Assumption 2.

The properties (A.13)-(A.15) imply the convergence of θ̂n. By identical arguments (under

H0) we can prove that θ̃n converges, replacing Θ by ΘH0 . �

Proof that Assumption 2 holds

Note that

sup
θ∈Θ:‖θ−θn‖≤εn

∥∥∥∥n−1∂
2Ln(θ)

∂θ∂θ′
− n−1∂

2Ln(θn)

∂θ∂θ′

∥∥∥∥
10



≤ 2 sup
θ∈Θ

∥∥∥∥n−1∂
2Ln(θ)

∂θ∂θ′
− Eψ0

[
∂2lt(θ)

∂θ∂θ′

]∥∥∥∥
+ sup

θ∈Θ:‖θ−θn‖≤εn

∥∥∥∥Eψ0 [∂2lt(θ)

∂θ∂θ′

]
− Eψ0

[
∂2lt(θn)

∂θ∂θ′

]∥∥∥∥ .
Hence Assumption 2 holds provided

sup
θ∈Θ

∥∥∥∥n−1∂
2Ln(θ)

∂θ∂θ′
− Eψ0

[
∂2lt(θ)

∂θ∂θ′

]∥∥∥∥ = op(1), (A.18)

and that Eψ0 [∂2lt(θ)/∂θ∂θ
′
] is continuous. Both conditions are shown by an application of

Lemma 11.3 of Andrews and Cheng (2013b), and the proof follows closely the arguments

given in the previous proof. Note initially, that (A.18) holds provided that for any

i, j = 1, . . . , dθ

sup
θ∈Θ

∣∣∣∣n−1∂
2Ln(θ)

∂θi∂θj
− Eψ0

[
∂2lt(θ)

∂θi∂θj

]∣∣∣∣ = op(1). (A.19)

It holds that for any i, j = 1, . . . , dθ,

∂2lt(θ)

∂θi∂θj
= −1

2

[
2
y2
t

σ6
t (θ)
− 1

σ4
t (θ)

](
∂σ2

t (θ)

∂θi

)(
∂σ2

t (θ)

∂θj

)
= −1

2

[
2

y2
t

(F ′t−1θ)
3
− 1

(F ′t−1θ)
2

]
Ft−1,iFt−1,j = sij(Wt, θ),

with

sij(w, θ) = −1

2

[
2

w1

(w′2θ)
3
− 1

(w′2θ)
2

]
w2,iw2,j, w = (w1, w

′
2)′ ∈ W.

For any θ1, θ2 ∈ Θ, a mean value expansion gives that

w1

(w′2θ1)3
=

w1

(w′2θ2)3
− 3

w1

(w′2θ
∗)4
w′2(θ1 − θ2),

and
1

(w′2θ1)2
=

1

(w′2θ2)2
− 2

1

(w′2θ
∗∗)3

w′2(θ1 − θ2)

with θ∗, θ∗∗ ∈ Θ between θ1 and θ2. Consequently, for any θ1, θ2 ∈ Θ,

sij(w, θ1)− sij(w, θ2) = −1

2

[
2

w1

(w′2θ1)3
− 1

(w′2θ1)2
−
(

2
w1

(w′2θ2)3
− 1

(w′2θ2)2

)]
w2,iw2,j

=

[
3w1

(w′2θ
∗)4
− 1

(w′2θ
∗∗)3

]
w2,iw2,jw

′
2(θ1 − θ2),
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such that

|sij(w, θ1)− sij(w, θ2)| ≤
(

3w1

δ4
L

+
1

δ3
L

)
w2,iw2,j‖w2‖︸ ︷︷ ︸

:=Mij(w)

‖θ1 − θ2‖.

We conclude that for any η > 0

|sij(w, θ1)− sij(w, θ2)| ≤Mij(w)η (A.20)

for all θ1, θ2 ∈ Θ and w ∈ W with ‖θ1 − θ2‖ < η. By Assumption ARCH 4, it holds that

Eψ[Mij(Wt)] = Eψ
[(

3y2
t

δ4
L

+
1

δ3
L

)
Ft−1,iFt−1,j‖Ft−1‖

]
≤ 3

δ4
L

Eψ
[
y2
t ‖Ft−1‖3]+ δ−3

L Eψ
[
‖Ft−1‖3] ≤ c̃

for some constant c̃ ∈ (0,∞) for all ψ ∈ Ψ. Moreover, we have that for θ ∈ Θ

|sij(Wt, θ)| ≤
1

2

[
2
y2
t

δ3
L

+
1

δ2
L

]
Ft−1,iFt−1,j,

so applying Assumption ARCH 4 again, we have that

Eψ sup
θ∈Θ

[|sij(Wt, θ)|1+ν ] ≤ c∗

for some constants ν, c∗ ∈ (0,∞) for all ψ ∈ Ψ. We conclude that for any i, j = 1, . . . , dθ,

Eψ sup
θ∈Θ

[|sij(Wt, θ)|1+ν ] + Eψ[Mij(Wt)] ≤ c, (A.21)

for some constant c ∈ (0,∞) for all ψ ∈ Ψ. Using (A.20) and (A.21) together with Lemma

11.3 of Andrews and Cheng (2013b), we have that (A.19) holds and, hence, that (A.18)

holds. Moreover, this lemma ensures that Eψ0 [∂2lt(θ)/∂θi∂θj] is uniformly continuous on

Θ for all ψ0 ∈ Ψ. �

Proof that Assumption 3 holds

Recall that Ω0 = −Eψ0 [∂2lt(θ0)/∂θ∂θ′] and note that the matrix is positive definite for

all ψ0 ∈ Ψ under Assumptions ARCH 1-4, by standard arguments. It holds that∥∥∥∥−n−1∂
2Ln(θn)

∂θ∂θ′
− Ω0

∥∥∥∥ =

∥∥∥∥n−1∂
2Ln(θn)

∂θ∂θ′
− Eψ0

[
∂2lt(θ0)

∂θ∂θ′

]∥∥∥∥
≤ sup

θ∈Θ

∥∥∥∥n−1∂
2Ln(θ)

∂θ∂θ′
− Eψ0

[
∂2lt(θ)

∂θ∂θ′

]∥∥∥∥
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+

∥∥∥∥Eψ0 [∂2lt(θ0)

∂θ∂θ′

]
− Eψ0

[
∂2lt(θn)

∂θ∂θ′

]∥∥∥∥ ,
where the first term is op(1) for all ψ0 ∈ Ψ, by the arguments given in the proof of

Assumption 2. Moreover, from that proof, it holds that the second term is o(1) for all

ψ0 ∈ Ψ. �

Proof that Assumption 4 holds

For a given ψn, the (scaled) score is given by

Sn =
1√
n

n∑
t=1

∂lt(θn)

∂θ
=

1√
n

n∑
t=1

−1

2
(ε2
t − 1)

1

σ2
t (θn)

Ft−1,

with Ft being Ft,n-measurable. For any non-zero constant vector k ∈ Rdθ , let st =

−k′Ft−1σ
−2
t (θn)(ε2

t − 1)/2, such that k′Sn = n−1/2
∑n

t=1 st, and note that by Assumption

ARCH 3, Eψn [st|Ft−1,n] = 0 almost surely. The result follows by an application of the

Lindeberg CLT for martingale difference arrays combined with an application of the

Cramér-Wold Theorem. Note that by Assumptions ARCH 3 and ARCH 4,

Eψn [s2
t ] = Eψn [(ε2

t − 1)2/4]k′Eψn [σ−4
t (θn)Ft−1F

′
t−1]k

= (κ/4)k′Eψn [σ−4
t (θn)Ft−1F

′
t−1]k.

The convergence of parameters under the drifting sequence induces convergence in dis-

tribution of (Ft−1, θn) under ψn to (Ft−1, θ0) under ψ0. Consequently, by the continu-

ous mapping theorem σ−4
t (θn)Ft−1F

′
t−1 = (θ′nFt−1)−2Ft−1F

′
t−1 converges in distribution

to (θ′0Ft−1)−2Ft−1F
′
t−1 under ψ0. Assumption ARCH 4 implies that ‖Ft−1σ

−2
t (θn)‖2 ≤

δ−2
L ‖Ft−1‖2 is uniformly integrable, and consequently, we have that Eψn [σ−4

t (θn)Ft−1F
′
t−1]→

Eψ0 [σ−4
t (θ0)Ft−1F

′
t−1]. Hence,

Eψn [s2
t ]→ k′Σ0k,

with

Σ0 := (κ/4)Eψ0 [σ−4
t (θ0)Ft−1F

′
t−1].
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The matrix Σ0 is positive definite by standard arguments and Assumption ARCH 2. It

remains to show that for any constant ε > 0,

1

n

n∑
t=1

s2
t I(s2

t >
√
nε)

p→ 0, (A.22)

and
1

n

n∑
t=1

E
[
s2
t |Ft−1,n

]
− Eψn [s2

t ]
p→ 0. (A.23)

To show (A.22), note that by Assumptions ARCH 3 and ARCH 4 and Minkowski’s

inequality there exist constants a υ, c ∈ (0,∞) (with c depending on k) such that for any

η > 0,

Pψn

(
1

n

n∑
t=1

s2
t I(s2

t >
√
nε) > η

)
≤ η−1Eψn

[
s2
t I(s2

t >
√
nε)
]

≤ 1

η (
√
nε)

υEψn
[
|st|2+υ

]
=

1

η (
√
nε)

υEψn
[
|(ε2

t − 1)σ−2
t (θn)k′Ft−1/2|2+v

]
=

1

22+υη (
√
nε)

υEψn
[
|ε2
t − 1|2+υ

]
Eψn

[
|σ−2
t (θn)k′Ft−1|2+υ

]
≤ 1

22+υη (
√
nε)

υEψn
[
|ε2
t − 1|2+υ

]
δ
−(2+v)
L

(
dθ∑
i=1

|ki|(Eψn
[
‖Ft−1‖2+υ

]
)1/(2+υ)

)2+υ

≤ 1

22+υη (
√
nε)

υ c→ 0,

and we conclude that (A.22) holds. The convergence in (A.23) follows by an application of

the (weak) LLN for row-wise stationary and strongly mixing triangular arrays (Andrews,

1988, p. 462), using that Eψn [s2
t |Ft−1,n] = (κ/4)(σ−2

t (θn)k′Ft−1)2 is uniformly integrable

under Assumption ARCH 4. �

Proof that Assumption 5 holds

First, note that by Assumptions 1—3, Ω̂n
p→ Ω0. Consequently, it remains to show that

κ̂n
p→ κ. (A.24)

We have that

κ̂n = n−1

n∑
t=1

(
y4
t

(θ̂′nFt−1)2
− 1

)
.
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Using the same notation as before, let f :W ×× →R be given by

f(w, θ) =
w2

1

(θ′w2)2 ,

such that κ̂n = n−1
∑n

t=1 f(Wt, θ̂n). With θ1, θ2 ∈ Θ, a mean-value expansion gives that

f(w, θ1)− f(w, θ2) = −2
w2

1

(θ∗′w2)3
w′2(θ1 − θ2).

It holds that

| − 2
w2

1

(θ∗′w2)3
w′2(θ1 − θ2)| ≤ 2w2

1

δ3
L

‖w2‖‖θ1 − θ2‖

such that with M :W →R given by

M(w) =
2w2

1

δ3
L

‖w2‖,

|f(w, θ1)− f(w, θ2)| ≤M(w)‖θ1 − θ2‖.

Consequently, for any η > 0

|f(w, θ1)− f(w, θ2)| ≤M(w)η (A.25)

for all θ1, θ2 ∈ Θ and w ∈ W with ‖θ1 − θ2‖ < η. By Assumption ARCH 4,

Eψ[M(Wt)] =
2

δ3
L

Eψ
[
y2
t ‖Ft−1‖

]
≤ c̃,

for some constant c̃ ∈ (0,∞) for all ψ ∈ Ψ. Likewise, noting that for any θ ∈ Θ,

|f(Wt, θ)| ≤ y4
t /δ

2
L, we have by Assumption ARCH 4,

Eψ
[
sup
θ∈Θ
|f(Wt, θ)|1+ε

]
≤ c∗

for some constants ε, c∗ ∈ (0,∞) for all ψ ∈ Ψ. Consequently,

Eψ
[
sup
θ∈Θ
|f(Wt, θ)|1+ν

]
+ Eψ[M(Wt)] ≤ c̄, (A.26)

for some constant c̄ ∈ (0,∞) for all ψ ∈ Ψ. Using (A.25) and (A.26) together with

Lemma 11.3 of Andrews and Cheng (2013b), we have that

sup
θ∈Θ

∣∣∣∣∣n−1

n∑
t=1

f(Wt, θ)− Eψ0 [f(Wt, θ)]

∣∣∣∣∣ = op(1)
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and that Eψ0 [f(Wt, θ)] is uniformly continuous on Θ for all ψ0 ∈ Ψ. Using that θ̂n− θ0 =

op(1), we then have that

n−1

n∑
t=1

f(Wt, θ̂n)− Eψ0 [f(Wt, θ0)] = op(1),

or, equivalently, (A.24) holds. �

Proof that Assumption 6 holds

As β̌n is given in terms of the Newton-Raphson estimator, Assumption 6 holds by Lemma

3.2. �

B Additional numerical results for ARCH

In this section we provide additional simulation results, complementing the findings in

Section 4.2. The data generating process for the simulations is given by

yt = σtzt, t = 1, . . . , n,

σ2
t = δ1 + δ2y

2
t−1 + γxt−1,1 + β1xt−1,2 + β2xt−1,3 + β3xt−1,4,

where δ1 > 0, δ2, γ, β1, β2, β3 ≥ 0, and {zt}t=1,...,n is an i.i.d. process with zt ∼ N(0, 1).

We seek to test the hypothesis

H0 : γ = 0, (A.1)

against γ > 0.

In terms of the covariates, we let

xi,t =
X̃i,t

E[X̃i,t]
, i = 1, . . . , 4, t = 1, . . . , T,

where

X̃i,t = F−1
i (Ui,t), i = 1, . . . , 4,

with F−1
i (·) the inverse distribution function of Γ(ai, b) for i = 1, 2, 3, b = 10 and a1 =

3, a2 = 5, a3 = 10, and F−1
4 (·) is the inverse distribution function of χ2

5. The correlated

uniform variables Ui,t = Φ(Zi,t) for i = 1, . . . , 4, where (Zt)
T
t=0 is an i.i.d. process with

Zt = (Z1,t, . . . , Z4,t)
′ ∼ N4(0,Σ) and Σ a positive definite correlation matrix.

For the experiment we assume that it is known to the researcher that the true value
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of the ARCH coeffi cient δ2 is not near its boundary of zero, so that the only parameters

that potentially cause a discontinuity in the null distribution are β1, β2, β3. We report

the rejection frequencies for n = 5000 observations, parameter values β1 = β2 = 0,

γ, β3 ∈ {0, 0.01, 0.05, 0.1, 0.25} and

Σ =



1

−0.75 1

−2/3 0.4 1

−0.1 0.15 0.35 1


,

and compare with the standard LR as well as the CLR test.

Table 8 contains rejection frequencies for different values of β3 and γ.

[Table 8 around here]
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Table 8: Rejection Frequencies for Different Values of γ and β3

β3 LR CLR LR-uniform

Null hypothesis, γ = 0
0 0.1094 0.0497 0.0092

0.01 0.1159 0.0468 0.0143
0.05 0.1196 0.0497 0.0230
0.1 0.1150 0.0484 0.0251
0.25 0.1116 0.0456 0.0232

γ LR CLR LR-uniform

Alternative hypotheses with β3 = 0
0 0.1083 0.0498 0.0119

0.01 0.6767 0.3112 0.2850
0.05 1.0000 0.9907 1.0000
0.1 1.0000 1.0000 1.0000
0.25 1.0000 1.0000 1.0000


