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Abstract

In nonstandard testing environments, researchers often derive ad hoc tests with
correct (asymptotic) size, but their optimality properties are typically unknown a pri-
ori and difficult to assess. This paper develops a numerical framework for determining
whether an ad hoc test is effectively optimal—approximately maximizing a weighted
average power criterion for some weights over the alternative and attaining a power en-
velope generated by a single weighted average power—maximizing test. Our approach
uses nested optimization algorithms to approximate the weight function that makes
an ad hoc test’s weighted average power as close as possible to that of a true weighted
average power—maximizing test, and we show the surprising result that the rejection
probabilities corresponding to the latter form an approximate power envelope for the
former. We provide convergence guarantees, discuss practical implementation and ap-
ply the method to the weak-instrument-robust conditional likelihood ratio test and a

recently-proposed test for when a nuisance parameter may be on or near its boundary.
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1 Introduction

In nonstandard testing environments involving composite null and/or alternative hypothe-
ses, a uniformly most powerful test often does not exist. It is therefore common for
researchers to devise implementable ad hoc tests that are designed to have provably correct
(asymptotic) size. Although researchers may go to great lengths to demonstrate that
their devised ad hoc tests have “good” power properties via Monte Carlo simulation, the
theoretical power optimality properties of these tests are frequently unknown and elusive.
It is therefore difficult for both those who design hypothesis tests and those who are meant
to use them to assess whether the power of a given test can be improved upon by a different
test, a central question for its usefulness.

Instances for which researchers have sought to show that an ad hoc test is theoretically
optimal in some sense have been limited. Such approaches can be roughly divided into
two types of power comparisons. The first compares the power function of the ad hoc
test to a point-wise power envelope. This point-wise power envelope is constructed as the
power of a collection of point-optimal tests computed at each point in the corresponding
collection of point alternative hypotheses for points lying in the composite alternative space
(e.g., |Andrews et al.| 2006; Andrews et al.l 2019 and |Guggenberger et al.| 2019). Although
it is possible for the power function of an ad hoc test to coincide with a power envelope con-
structed in this fashion, this is rarely the case because this form of power envelope may be
unattainable by the power of any single test. To avoid or at least mitigate such unfair com-
parisons, researchers typically impose additional constraints on the point-optimal tests that
are used to produce the point-wise power envelope such as unbiasedness (e.g., the two-sided
t-test and Moreira and Moreiral, 2013, 2019)), rotational invariance (e.g., Andrews et al.|
2006 and Moreira et al. [2021) and similarity (e.g., |Andrews et al.l 2006 and Montiel Olea,
2020). However, the imposition of constraints on the underlying collection of (constrained)
point-optimal tests still does not generally produce a power envelope that is necessarily at-
tainable by a single test and leads to an optimality analysis that is limited to tests satisfying
the constraints. So when the power function of an ad hoc test falls short of a power envelope
constructed in this way, what is a researcher to conclude? Is the ad hoc test suboptimal?
Or is the power envelope simply an unfair and unattainable comparison because it does
not correspond to the power function of any single test of the composite hypothesis?

The second approach to test optimality assessment in the literature compares either

(i) the power function of the ad hoc test to the power function of a test that is known to



be weighted average power (WAP) maximizing for a particular weight function over the
parameter values in the composite alternative or (ii) the WAPs of these two tests, or both
(e.g., Andrews and Ploberger, (1994; Andrews et al., 2008; Elliott and Miiller, 2014; Elliott
et al., 2015 and (Cox, [2024). This approach is also incomplete, leading to its own set of
questions. How should the researcher choose the weight function when constructing the
WAP-maximizing test under comparison? If the power function or WAP of the ad hoc
test is not dominated by that of the WAP-maximizing test, should we conclude that it is
optimal or could it be dominated by a WAP-maximizing test for a different set of weights?
In this paper, we propose to numerically determine whether there exists a weight
function over the composite alternative that justifies the ad hoc test. More precisely,
we propose a numerical procedure for automatically finding the weight function that
minimizes the WAP difference between the WAP-maximizing test corresponding to that
weight function and the ad hoc test over a discretization of the composite alternative space.
This eliminates the ambiguity of the second approach to test optimality implicit in the
questions above. When this WAP-difference is (not) approximately equal to zero, this
approach immediately allows us to conclude that the ad hoc test under study is (not)
effectively optimal in the sense of (not) being an approximately WAP-maximizing test itself.
A side benefit to our approach is that in the case for which the ad hoc test is determined
to be effectively optimal, we know which weights over the alternative space make it
approximately WAP-maximizing, allowing us to interpret how the test “directs power”.
In addition to determining whether an ad hoc test is approximately WAP-maximizing
for some weight function, we show the surprising result that our procedure immediately
produces an attainable power envelope for the ad hoc test. Over a discretization of the
composite alternative space, we provide a set of sufficient conditions under which the
power function of the WAP-maximizing test using the weights that minimize the WAP
difference with the ad hoc test is a power envelope for the ad hoc test. Since this power
envelope is constructed from a single test, it is indeed attainable. In addition, this power
envelope is “most favorable” to the ad hoc test in the sense that it is constructed from
a single WAP-maximizing test with WAP as close as possible to that of the ad hoc test.
Our numerical procedure is composed of an inner and an outer loop algorithm. The
inner loop algorithm computes an approximate WA P-maximizing test for a given set of
weights over the discretized alternative space, in analogy with Moreira and Moreira (2013),
Elliott et al|(2015) and Fernandez et al. (2025)). Our outer loop algorithm, which has no

counterparts that we are aware of in the literature, approximates the weight function that



minimizes the WAP difference between the corresponding WAP-maximizing test and the
ad hoc test over the discretized alternative spaceE] Using the results mentioned above, the
power function of this corresponding WAP-maximizing test can then be used as a power
envelope for the ad hoc test. We provide new convergence results for both the inner and
outer loop algorithms, formally guaranteeing that they approximate the WAP-maximizing
test and weights mentioned above. Our algorithms and their convergence guarantees are
general and not case-specific.

One may wonder why it would be more desirable to construct an ad hoc test with
correct size and subsequently analyze its optimality properties rather than simply con-
structing a WAP-maximzing test directly using, e.g., Moreira and Moreira (2013) or [Elliott
et al.| (2015). There are two main reasons: one conceptual and one computational. The
first reason for constructing an ad hoc test is that it is often unclear which weight function
one should use when constructing a WAP-maximizing test. Our procedure instead simply
tells the researcher whether there exists a weight function that rationalizes the ad hoc
test they have devised (as well as providing an approximation to it). The second reason
is that even with a clear idea of a desirable weight function, computing the corresponding
WAP-maximizing test can become computationally prohibitive when the dimension of
the alternative parameter space is too high. Since our inner loop algorithm also computes
WAP-maximizing tests iteratively, it is also of course subject to this criticism. However,
our numerical procedure can be used to provide partial evidence on the optimality of a test
if the researcher applies it to lower-dimensional special cases and is able to show that the
ad hoc test is optimal in those special cases. On the other hand, a WAP-maximizing test
for a lower-dimensional special case does not readily generalize up to higher dimensions.

Finally, we note that discovering an ad hoc test to be effectively optimal for a particular
testing problem can be used to motivate the development of tests for related problems.
For example, the theoretical optimality results established by |Andrews et al.| (2006, [2008)
in the specific setting of a homoskedastic linear IV model with randomly sampled data
for Moreiraf's (2003) conditional likelihood ratio (CLR) test, apparently helped motivate
Andrews and Mikusheva, (2016)) and |Andrews and Guggenberger| (2019) to produce gen-

eralizations of this test to settings that allow for dependent data, nonlinear models and

'Ketz and McCloskey]| (2025) made the first attempt we are aware of at numerically finding weights
that minimize the WAP difference between an ad hoc test and a WAP-maximizing test. However,
their approach was confined to the particular problem of testing with inequality restrictions on nuisance
parameters, carried no formal convergence guarantees and did not contain any results on producing power
envelopes. Nevertheless, it helped motivate us to write the current paper.



singular variance matrices.

We apply our results and algorithms to two different testing problems, the first of
which has been previously analyzed using the first approach to optimality assessment
described above and the second of which has been analyzed using the second. For the first
problem, we substantively contribute to the ongoing debate over the optimality properties
of the CLR test. Specifically, we revisit classic optimality results from Andrews et al.
(2006, |2008) and more recent critiques by |Andrews et al.| (2019) and [Van de Sijpe and
Windmeijer (2023)) in the context of the Gaussian homoskedastic linear IV model. Using
the first existing approach to test optimality assessment described above, Andrews et al.
(2006, 2008) show that the CLR test effectively attains the point-wise power envelope for
invariant (similar) tests under a design that holds the reduced-form error variance matrix
constant. On the other hand, Andrews et al| (2019) argue that the CLR test falls short
of the point-wise power envelope obtained by fixing the true value of the parameter of
interest and instead varying its hypothesized value, which |[Van de Sijpe and Windmeijer,
(2023) show is equivalent to producing the more standard point-wise power envelope that
fixes the hypothesized value and varies the true value under a design that instead holds
the variance matrix of the structural errors constant. Using our new algorithms, we show
that the CLR test’s power function is virtually indistinguishable from that of a single
WAP-maximzing test for both designs, leading us to conclude that the CLR test is in fact
effectively optimal in the class of invariant asymptotically efficient tests for this problem.

For our second application, we analyze the optimality properties of the new inequality-
imposed confidence interval (IICI) of |Cox| (2024)), designed to improve inference when a
scalar nuisance parameter may lie on or near the boundary of the parameter space. Using
the second existing approach to test optimality assessment described above, Cox] (2024)
compares the WAP of the test implied by the IICI to that of the WAP-maximizing test
proposed for this problem by |Elliott et al.| (2015)), finding them to be very close. We
plot the power functions of both tests and find that they intersect, making the optimality
properties of the IICI-implied test unclear. Instead, we show that while the power function
of the IICI-implied test is very close to the power function of a single most favorable WAP-
maximizing test, it does fall slightly short with a maximum gap of about 0.3 percentage
points. Nevertheless, its WAP is extremely close to that of the WAP-maximizing test,
implying that it is highly-competitive but slightly short of optimal for problems with a
scalar nuisance parameter that may lie on or near its boundary.

The scope for other applications of our results and numerical procedure is very wide



and we just briefly mention some additional examples here. In addition to analyzing the
CLR test, one may seek to analyze the (unknown) optimality properties of other weak
[V-robust tests in the literature such as the Lagrange multiplier test of Kleibergen! (2002),
which could be particularly interesting due to its non-monotonic power function. (Campbell
and Yogo's (2000]) test of stock return predictability was not found to be dominated by the
WAP-maximizing test with weights chosen by [Elliott et al.| (2015)). Using our approach, it
would be interesting to learn if there is a WAP-maximizing test that indeed dominates it.
We could use our approach to determine whether the apparent power deficiencies of the test
of |Guggenberger et al.| (2019) when compared to the point-wise power envelope disappear
when using our approach that makes the attainable comparison to a most favorable
single WAP-maximizing test. More broadly, our approach could be used to analyze tests
in the large literatures on inference for moment inequality models, inference robust to
identification failure, inference in structural change models and inference with highly-
persistent (e.g., local-to-unit root) processes. We intend to analyze some of these examples
in follow-up work. And we of course hope that our results and numerical procedures will
be useful for the optimality analysis of new ad hoc tests that have yet to be developed.
The remainder of the paper proceeds as follows. In Section [2| we provide the intuition
underlying our numerical approach by illustrating how to find the weight function that jus-
tifies the two-sided t¢-test as a WAP-maximizing test and contrasting it with the point-wise
power envelope that is not attained by the two-sided t-test. Section |3|formalizes the general
hypothesis testing framework we study, defines the numerical problem of finding weights that
make an ad hoc test approximately WAP-maximizing and shows that the resulting WAP-
maximizing test yields a “most favorable” approximate power envelope under a set of suffi-
cient conditions. Section {4 describes our numerical procedure, detailing the inner loop algo-
rithm that computes approximate WAP-maximizing tests and the outer loop algorithm that
adjusts weights, along with practical considerations such as switching tests, thresholding,
adding support points, and Monte Carlo smoothing. We provide the theoretical convergence
guarantees for these algorithms in Section [5} establishing that our numerical method yields
valid approximate WAP-maximizing tests and power envelopes. In Section 6] we apply our
results and numerical procedures to the two testing applications described above. Mathemat-

ical proofs and implementation details for the applications are contained in the Appendix.



2 Intuition and Motivation

We begin by analyzing a simple canonical hypothesis testing example to impart intuition and
motivate our approach to assessing the optimality of a hypothesis test. Consider a two-sided
test of the mean of a Gaussian random variable with known unit variance: Hy: =0 vs. Hy:
B0 for Y ~N(B,1) | The standard level-a two-sided t-test that rejects when |Y| exceeds
Z1—a/2 is well-known to be the uniformly most powerful test amongst all unbiased tests. How-
ever, suppose that we would not like to confine our analysis to unbiased tests. Since there is
no uniformly most powerful test, we take the common approach of comparing the ¢-test to
the point-wise power envelope for this testing problem. Specifically, the point-wise power en-
velope is equal to the rejection probabilities of the collection of the most powerful point-wise
tests of Hy vs. Hg: f=[', as a function of a collection of 5’ values. By the Neyman-Pearson
lemma, we know that each of these point-wise tests is the likelihood ratio test of Hy vs. Hp.

Figure (1] plots the power function of the two-sided t-test and the point-wise power
envelope. Notably, the power function of the two-sided t-test lies substantially below the
power envelope. Using the point-wise power envelope could thus lead us to believe that
the two-sided t-test is suboptimal. However, note that the point-wise power envelope
does not produce a power comparison that is necessarily attainable because it corresponds
to the power of a collection of point-optimal tests that are each optimal against a point
alternative Hg with '€ R\ {0}, none of which correspond to the composite alternative
hypothesis of interest H;. In other words, it is still possible for the two-sided t-test of
the composite alternative H; to be optimal even though its power function lies below
the power function of a collection of point-wise optimal tests of Hg—we may simply be
comparing its power function to an unattainable upper bound.

In the context of this testing problem, our proposed approach is to instead determine
whether there exists a set of weights over the composite alternative space ©; =R\ {0}
such that the WAP of the two-sided t-test is well-approximated by the WAP of a WAP-
maximizing test with this set of weights. If so, we may conclude that the two-sided t-test
is “nearly optimal” for this set of weights. To address this task, we discretize the com-
posite alternative space ©, into support points ©; C©; and introduce an algorithm that
successively adjusts the weights on each support point to produce a WAP-maximizing test
with WAP as close as possible to that of the two-sided t-test. Surprisingly, we show below

that the rejection probabilities of this WAP-maximizing test produce a power envelope for

2The analysis of this section applies without loss of generality to all two-sided ¢-tests of the mean
of a Gaussian random variable with known variance via a simple scale transformation.
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Figure 1: Power function of two-sided t-test and point-wise power envelope

the two-sided t-test. An important feature of this power envelope is that it corresponds to
the rejection probabilities of a single test and is therefore necessarily attainable, in contrast
to the point-wise power envelope. This power envelope is not only attainable but it is a
“most favorable” power envelope in the sense that it is based upon a WAP-maximizing test
with WAP as close as possible to that of the two-sided t-test itself.

For the sake of illustration, let us work with the coarse discretization ©; = {—1,1}.
The WAP-maximizing test of Hy vs. the discretized composite alternative H;: 5 € ©; that
weights S=1 by w; (and f=—1 by 1—wy) rejects when

Ly e VDb vy
f(Y:0)
for cv satisfying Py, (LR(Y) > cv) =c, where f(+;u) denotes the density function of a N'(p1,1)

random variable and Py, denotes the probability under Hy. Our approach begins with

some initial weight w;, computes the power function of the WAP-maximizing test using this
weight and adjusts the value of w; according to the difference between the power function
of the t-test and the WAP-function at 5=1: if the power of the ¢-test lies below that of the
WAP-maximizing test at =1, we adjust w; downwards, putting more weight on f=—1,
and vice versa. We then repeat this procedure iteratively until the power function of the

t-test lies weakly below that of the WAP-maximizing test at all points 3 € ©;. If the power



function of the t-test lies weakly below that of the WAP-maximizing test at all points 5 € Oy,
the power function of this final WAP-maximizing test produces a power envelope that is
based upon a single test. If the power function of the ¢-test lies within a small value of the
power function of this final WAP-maximizing test, we deem the t-test to be “effectively
optimal” since its rejection probabilities nearly coincide with those of a test with known
optimality. The weights given in the final iteration tell us how the nearly optimal ¢-test
weights points in the alternative space since they are the weights for which the corresponding
WAP-maximizing test has WAP nearly equal to that of the ¢t-test. Otherwise, we deem
the t-test to be suboptimal since its power function is dominated by that of another test.

We provide the specifics of how the weight wy is adjusted at each iteration in the outer
loop algorithm in Section along with a theoretical justification for the algorithm in
Section [o) but the intuition is as follows. Since any WAP-maximizing test is optimal for its
set of weights by definition, we know (i) its power function cannot be dominated by that
of the t-test on ©; and (ii) if the t-test is itself WAP-optimal, there exists a set of weights
for which its power function must match that of a WAP-maximizing test. These two facts
justify our iterative weighting adjustment: at each iteration, we want to increase the weight
at support points for which the WAP-maximizing test has lower power than the ¢-test
and therefore decrease the weights at other support points. Naturally, these decreased
weights will be at points for which the WAP-maximizing test has greater power than the
t-test. The five panels of Figure [2 illustrate this re-weighting principle in five iterative steps,
starting at wy; =0.1, for which w; is successively increased until the power function of the
WAP-maximizing test coincides with that of the t-test. The upward-pointing (downward-
pointing) arrows indicate that the weight on the support point for the WAP-maximizing
test needs to be adjusted downward (upward) to bring the power function of the WAP-
maximizing test closer to lying (weakly) above that of the ¢-test. Since the power function
of the WAP-maximizing test with weight w; =0.5 in the final panel coincides with that of
the two-sided t-test, we can say that the two-sided t-test is optimal in the class of all tests

of Hy vs. Hy while no longer needing to constrain ourselves to the class of unbiased tests.

3 General Framework

Having illustrated the intuition behind our approach in a simple problem, we now move

to the general hypothesis testing framework of interest.
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Figure 2: Power functions for two-sided t-tests and WAP-maximizing tests with different weights
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3.1 Testing Problem

Suppose that we observe a random element Y taking values in the metric space ) and
that Y has a probability density function fy(-) relative to some sigma-finite measure v,
where the parameter governing its distribution # € © CR¥ is finite-dimensional. We are

interested in testing
H0:9€@0 VS. H1:9€@1, (1)

where 0,0, CO, ©;NO; =() and O is not a singleton. This testing problem with a single
observation Y typically arises as the limiting problem under an asymptotic approximation
to a finite-sample problem with many observations via a local asymptotic embedding
corresponding to a limit experiment or by using the asymptotic equivalence approach of
Muller| (2011). See [Elliott et al. (2015) for a more detailed discussion.

A generic test of is a measurable function ¢ : Y~ [0,1] for which ¢(y) is the
probability of rejecting Hy upon observing the realization Y =y. For the parameter value
00, [pfedv is thus equal to the rejection probability of the test when the true value
of the parameter is 6. The starting point of our analysis is to suppose that we have an ad
hoc test with correct size, a measurable function ¢,y : Y+ [0,1] that is known to satisfy the
(uniform) size constraint supyce, f Canfodv < a. We would like to assess whether ¢, is
“nearly optimal” among tests that control size. For this problem to be nontrivial, we focus

on tests of the hypothesis for which no uniformly most powerful test is known to exist.
3.2 Numerical Assessment of Near Optimality

As illustrated above in the simple context of a two-sided t-test for the mean of a Gaussian
random variable with known variance, one could attempt to assess the optimality of ¢,
by comparing it to the point-wise power envelope obtained by computing the rejection
probabilities of a collection of level-av Neyman-Pearson tests indexed by 6’ € ©; of Hy s, :
the density of Y is [ fodAg/(0) vs. Hy:0=0" given by

L if foly)>cv | foly)dAe (0)
Pag oY) =19 s if foly)=cv [ foly)dAe(6),
0 if fyr (y) < Cfog(y)dAgl (9)

for some cv >0 and 0 < 5 <1 satisfying [, o ([ fodAe/(0))dv = a, where Ay is the

least-favorable probability distribution over ©, corresponding to the point alternative
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Hy P Indeed, this approach has been applied in the literature, oftentimes after imposing
additional side constraints such as similarity or invariance (e.g., Andrews et al., |2000,
2008; Moreira and Moreira, 2013, 2019; Guggenberger et al., [2019; Andrews et al.l 2019;
Montiel Oleal 2020). However, as in the simple example of Section 2| comparison to this
collection of Neyman-Pearson tests may produce an unattainable power envelope.

Instead, we propose to determine whether the WAP of ¢, is nearly equal to that
of a single WAP-maximizing test corresponding to some set of weights over ©; and is
thus “nearly optimal”. More formally, we seek to determine whether there exists a weight
function €2, a probability distribution with support on ©1, such that ¢,;, nearly maximizes
the WAP criterion (Wald, [1943))

Wap()= [ ( / wfedV> a5(0) )

within the set of level-«v tests

D= {@:yH 0,1]: is measurable, sup / sofedl/éa}-
0€Bg

If a least-favorable probability distribution Aq over ©q corresponding to the simple alterna-
tive Hy o the density of Y is [ fpd(6) exists, this WAP-maximizing test takes the familiar
Neyman-Pearson form of a test of Hya,, : the density of Y is [ fodAq () vs. Hy o given by

Pro W) =9 s if [fo(y)dQ(0)=cva [ foly)dAa(f) (3)

Here, cvg >0 and 0< 3¢ <1 are defined to satisfy [¢n,o([ fodAa(d))dv=a. As noted
by [Elliott et al.| (2015), even if this least-favorable distribution does not exist, we can find
an “approximate least-favorable distribution” to approximate the test the maximizes .

It is not typically possible to determine the existence of a weight function {2 for which
an ad hoc test ¢,, maximizes the WAP criterion WAP(y) analytically. We thus propose a
numerical approach that computes the weights that make the WAP of a WAP-maximizing

test as close as possible to the WAP of the ad hoc test for those weights over a discretization

3See ILehmann and Romano| (2005) for details on least-favorable distributions and |Andrews et al.
(2008), [Elliott et al.| (2015)) and [Fernandez et al.| (2025)) for details on computing approximations to them.
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of the alternative space. Specifically, let ©; = (6y,...,0hs,) CO; denote a finite set of support
points for the alternative space with M, elements and Q= (wy,...,wps, ) € Apy, denote a
probability distribution over those support points, where Ay, is the M;-dimensional unit

simplex. Formally, the numerical problem we wish to solve is given by

My

_inf  sup ij / (¢ —Pan) fo,dv. (4)
1

QEA M, pED, =

A test p* € ®,, that solves is a WAP-maximizing test with corresponding WAP as close

as possible to that of ¢, since

My My My
sup ij/(gp—cpah)fgjdl/: sup ij/gofgjdV—ij/gpahfgjdV. (5)
PED, = IS o j=1 j=1

A natural byproduct of our approach is that a weight function € solving (4)) provides valuable
information about the power properties of the ad hoc test: higher weight over a set of points

in ©; indicates that the test prioritizes rejection in that set relative to other points in ;.

3.3 Using WAP-Maximizing Tests to Produce an Approximate Power En-

velope

In addition to determining whether ¢,;, nearly maximizes a WAP criterion for some set of
weights via @, our numerical approach has the added benefit of being able to produce an
approximate power envelope (APE) for ¢, whether or not it is WAP-maximizing. This
power envelope is again obtained from a single test and is therefore necessarily attainable,
in contrast to power envelopes derived from a collection of tests. To see this, first note

that the rejection probabilities over ©; of the test that solves

sup inf / (0—an) fodv

<p€<1>a0€@1

constitute a power envelope for ¢, € P, since

sup inf /(@‘%h)fedi/Zeiengl/(%h—%h)fedeo-

Weéageel

12



For an appropriately chosen ©; = (6},...,0x;,) C ©;—see Section for details, we can

then view the rejection probabilities of the test that solves

sup | min / (o—an) fo,dv (6)
as an APE for g, since it constitutes a power envelope for ¢, over ©; by definition. In
Theorem (1| below, we show that the value of the maximin problem in @ is equal to the
value of the minimax problem in and any test that solves (@ also solves . Since we
show how to approximate the solution to @ in Sections 4| and |5 below, this latter result
provides a practical strategy for obtaining an APE for ¢,,: solve @ and numerically check
whether the solution yields an APE for ¢,j,. Absent further structure on the problem, this
strategy is not guaranteed to produce an APE but it can still provide a useful guide for
obtaining an APE in practice. In Theorem [2] below, we impose additional structure on
the problem that is sufficient for guaranteeing that this strategy indeed produces an APE.
Let

O* =argmax_ IIllIl / (0 —an) fo,dv
ey J=1,..,M

and
My

A}, =argmin sup ij / ©—Pan) fo,dv.
QEAMl @G(I)a] 1

We can now state our first result.

Theorem 1
For Q= (w,....oar,) €Ay, and any a€(0,1),

Sup _min / (¢—an) fo,dv=_1inf sup Zw] / ©—Pan) fo;dv,

PpEDI= 1,...,M QEA]\&@E{)O‘

&*£0 and A}, #0. Furthermore, for any ¢* € ®* and any Q* = (w},...w};, ) €A}y, , we have

M1 Ml
> wr / (" —@an) fo,dv= sup > wr / (¢ —an) fo,dv. (7)
j=1 PELa g

In words, equation @) states that any ¢* € ®*, i.e., any test that solves the maximin
problem in (@, is WAP-maximizing with respect to any Q* € A}y, - Therefore, if one follows
the strategy mentioned above and finds that a test that solves yields an APE for @,

13



this strategy comes with the added benefit that the APE is “most-favorable” for ¢ in
the sense that it corresponds to the rejection probabilities of a WAP-maximizing test with
WAP as close as possible to that of ¢, over ©.

It can be shown that Theorem [1] further implies that if the least-favorable distribution
Ag- exists for all Qe Ay, then any test ¢* € ®*—which serves as a power envelope for
©Van, 00 ©1—is equal to a Neyman-Pearson test ¢ Age 0+ fOr some Qe A}y, , except possibly

on the event]
My
{y ey: Zw}‘fgj :CVQ*/fg(y)dAQ* (9)} (8)
j=1

We impose the commonly-satisfied sufficient condition that this event has r-measure
zero for all * in Theorem [2f below and formally show that any ¢* € ®* is equal to a
Neyman-Pearson test ¢, o« v-almost everywhere (a.e.), and this Neyman-Pearson test
is unique v-a.e. This uniqueness result trivially implies that the test that solves also
solves @ so that the test obtained by solving the minimax problem according to our

algorithms in Section {4 readily provides a most-favorable APE for ¢,p,.

Theorem 2
Let a € (0,1). For all 0" € A%y, suppose that the least favorable distribution Ag. over
©q emists and that has v-measure zero. Then, for any QO €AY, Pag. 0 18 the v-a.e.

unique mazximizer of

Furthermore, for any ¢7,p5€ ®* and any Q“{,Q; = A*Ml, we have
P1=pr= Phas ¥ = Phgy (5 V-0

The condition that has v-measure zero typically holds when Y is an absolutely
continuous random vector since (8)) is typically a lower-dimensional submanifold of ). The
existence of a least favorable distribution has been established under weak conditions for a
Euclidean sample space ) when f is continuous in # and Oy is a closed Borel set in a finite-

dimensional Euclidean space. See Lehmann and Romano (2005)) and references therein.

4This follows from Lemrna under the assumption that A*(©g) >0 for all A* € M.
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4 Numerical Implementation

To numerically approximate the weight function that justifies an ad hoc test ,; in terms
of WAP or produce a power function that dominates it, we aim to solve @ Our numerical
algorithm for solving is composed of an inner loop and an outer loop. The inner loop
computes an approximation to a WAP-maximizing test ¢, o for a given weight function
Q2 in the spirit of [Moreira and Moreira| (2013), Elliott et al| (2015) and Fernandez et al.
(2025) The outer loop approximates a weight function Q that solves (] using the inner
loop as input at each step since it involves searching over WAP-maximizing tests via the
relation . In Section |5, we provide theoretical convergence results justifying the use of
our algorithm for solving ().

4.1 Inner Loop for Computing Approximate WAP-Maximizing Test

Discretize the null parameter space O into a finite set of support points O = {él,...,éMO} C
©p with M elements. In light of (2) (and Fubini’s Theorem), we aim to solve the following

discretized optimization problem:

max pgdy  s.t. /cpfé,dygoz, for i=1,..., M, (9)
pe '

where ® = {¢: Y — [0,1] : ¢ is measurable} and g(y) = [ fy(y)d(0) for a given weight

function €). Its dual problem is given by

Mo
min max/gogdz/—zxi (/goféidy—a),
i=1

7\20 ped

where A = (5\1,...,5\]\40). It is not hard to see that Slater’s condition is satisfied in this
setting and therefore strong duality holds between these two problemsﬁ This implies that

for any solution A* of the dual problem, any solution @5. of

Mo
S(A") =max / @gdv—;ﬂi‘ ( / wfaidv—a>

9Guggenberger and Huang (2024) also briefly note that their numerical algorithm for approximating
minimax regret treatment rules could also potentially be modified to numerically approximate a
WAP-maximizing test for a given weight function.

6See Theorem 1 in Chapter 8.3 in [Luenberger| (1997).
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is also a solution of the primal problem @ We can operationalize this observation via

the following simple result.

Proposition 1
For any A >0,

Mo
ngEargr?gg(/gogdu—;)\i (/gpf;ﬁu—a)
for

1L if gly) >N (v)
0, if gly) <S5 Nif5, ().

Since 5. is given in closed form as soon as we know K*, it is sufficient to solve the
dual problem in order to find a tractable solution to the primal problem @D Also, note

that given the above, we have

S(A)= / @xgdv—f:x‘ ( / @xfaid’/—a) : (10)

This observation motivates the following algorithm for approximating @5..

1. Initialization:

(a) Choose A© :(5\50),...,5\5\2)0) >0 and {h;,}32, satisfying

hp,>0 for k=01,.., hy,—0 ask—oo and Zﬁk:oo
k=0

(b) Compute @54, and H(A®).
2. kth iteration:

(a) Compute 7=(1,...,Tas, ), Where

Tz:/@x(k)féid’/_a-
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(b) Update A®+D = (Xﬁ’““’,...,ﬂg’;j”):

where (a), =max{a,0} for a€R.

(¢) Compute @51y and G(AKHD).

The intuition for this algorithm is essentially the same as that of Elliott et al| (2015).
However, in contrast to the algorithm in Elliott et al. (2015)), our algorithm carries proven
convergence guarantees—see Section

For k large enough, a ¢zu) approximately solves the original optimization problem
@D in a sense we make precise in Section By Lemma 1 of [Elliott et al.| (2015), if
SUPgeo, | Pim fodv < a, then ¢xq, attains an upper bound on the WAP for the weight
function (2 for any test ¢ € ®,, no matter how large k is. This size constraint needs to be
checked numerically but approximately holds by design if ©, C Oy is rich enough. Finally, to
map any test ¢x given in Lagrange multiplier form back to the Neyman-Pearson form ,
simply set CVQ:Z?iOlS\Z‘, so=1and A=(A,....\ng) € Apg, with )\izj\i/CVQ for i=1,...,. M.

4.2 Outer Loop Algorithm for Computing Weight Function

Let
o)= s>, [ (o
peda’
and

My
o€ arggégxzwj / (©—Pan) fo, dv.
a =1

The function ¢ may fail to be fully differentiable but is convex, therefore enabling us to

work with the following projected subgradient descent algorithm to solve .

1. Initialization:

TFerndndez et al| (2025) show that a slight modification to the algorithm of [Elliott et al.| (2015)
produces an algorithm with proven convergence guarantees.

17



(a) Choose Q© = (wgo),...,w](\g)l) €Ay, and {hy}32, satistying

h,>0 for k=01,..., hy—0 ask—oc and th:oo.
k=0

(b) Compute ¢(Q®) and
My
50 Eﬂg£g2w§o) / (¢ —an) fo,dv
]:

using the inner loop algorithm.
2. kth iteration:

(a) Compute v=(71,...,7ar, ), where
’yi:/(gp&k)—goah)fgidu, for i=1,....Mj.
(b) Update Q+D = (Q’“*”,...,@’;j”):

w§k+1):7TA (Wz(k)_hkﬁ> for izl,...7Ml,
Yill2

where w5 denotes the Euclidean projection onto the unit simplex Ay, .

(c) Compute ¢(Q*+) and

My
. k1
Pk Earggé%f E 1%(' i )/(SD—SOah)fejdV
]:

using the inner loop algorithm.

The intuition underlying the algorithm is simple. Since our goal is to obtain a power
envelope for (), from a WAP-maximizing test, we aim to find weights  such that the power
of ¢, is (weakly) greater than that of (4 at all support points in ©:. So at each iteration
k, we aim to increase the weight given to support points for which ¢f ) currently has lower
power than ¢,. Since the weights must add to one, we therefore must decrease the weight

given to other support points. Naturally, we do so at points for which ¢, currently has
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higher power than ¢,;. Step 2(a) computes the support points for which we aim to increase
(decrease) the corresponding weights while Step 2(b) computes the weight adjustment.
For k large enough, a Q%) approximately solves the original optimization problem
in a sense we make precise in Section [5| Step 2(b) of the algorithm relies on a Euclidean
projection onto the unit simplex Ay, . This is a quadratic programming problem and there
are efficient computational algorithms in the literature designed for solving this problem

(e.g.,[Wang and Carreira-Perpinan, 2013)).
4.3 Implementation Details

In this section, we provide precise recommendations on how to implement our numerical
)
procedure. We follow these recommendations ourselves when analyzing the applications

in Section [Gl
4.3.1 Switching Tests

We follow [Elliott et al.| (2015)) and implement switching tests when the parameter space for
the nuisance parameter is unbounded, albeit with an additional related objective. Tests
that do not (approximately) reduce to a standard test in the “standard” part of the
parameter space, typically characterized by large values of nuisance parameters, tend to
significantly sacrifice power in the “standard” part of the parameter space, a conclusively
undesirable property (see Section 4 of [Elliott et al., [2015). Therefore, we do not wish
to limit the scope of our analysis on test optimality to WAP-maximizing tests that are
not able to “switch” to standard tests in the “standard” parts of the parameter space.
Indeed, ad hoc tests are typically purposefully designed to reduce to standard tests that
are known to be optimal in some sense in the “standard” part of the parameter space for
this very reason. For example, in the linear instrumental variables (IV) model, the CLR
test reduces to the two-sided ¢-test when the concentration parameter is large. Since our
optimality-assessment procedure relies upon approximating WAP-maximizing tests on a
finite set of support points ©; C O, comparing to WAP-maximzing tests that do no allow
for “switching” would inherently disadvantage an ad hoc test that reduces to a standard
test in the “standard” part of the parameter space because the WA P-maximizing test would
place zero weight over any region in ©; outside of ©;. Due to the typical noncompactness of
the parameter spaces Oy and O, there are also numerical benefits to focusing on switching
tests, for which we also refer the interested reader to Section 4 of Elliott et al| (2015).
Since an ad hoc test can immediately be seen as suboptimal when it does not reduce to

a known “standard best test” in the “standard” part of the parameter space, we focus here
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on ad hoc tests that do. Section 4.1 of |Elliott et al. (2015) formalizes how the “standard”
part of the parameter space can be characterized in terms of large values of a parameter .
Let g be the point where the “standard” part of the parameter space begins in the sense
that for d >ds the ad hoc test and the standard test have essentially the same rejection
profile. Let D(Y) and dsp denote a statistic and a “switching point” such that with
probability very close to zero, D(Y') > dgp whenever ¢ <ds. The motivation for this choice
is that we only want the test to which we compare ¢, to switch to a standard test g that
has the best rejection profile in the standard part of the parameter space when we know
that the ad hoc test has essentially the same rejection profile, enabling us to analyze its
optimality properties outside of this region. In practice, all this amounts to changing 5 (y)

in the inner loop algorithm from the expression in Proposition [1| to the switching form

@x(y)=L(D(y)>dsr)ps(y)+1(D(y) <dsp)1 ( >Z)\f9 )

See [Elliott et al.| (2015) for a formal definition of the standard best test ¢g and further

details on switching tests.
4.3.2 Numerical Approximation Thresholds

Acknowledging that we cannot perfectly compute Q* (due to the numerical approximation
of the outer loop) or ¢, for any Q€ Ay, (due to the numerical approximation of the inner
loop), let gb;% denote the test obtained from the outer loop algorithm. In addition to potential
numerical error arising from the use of our algorithms, we must rely on approximations of
rejection probabilities within step 2.(a) of the inner loop algorithm and step 2.(a) of the outer
loop algorithm. Nevertheless, the theoretical results in the following section and standard
laws of large numbers imply that if we apply our algorithms with enough iterations and
simulate rejection probabﬂities from enough Monte Carlo replications, these approximation
errors will be small so that (i) [¢ f(;dl/ cannot lie substantially above a for any 0 e,
and (i) [ (#5—¥an) fodv cannot lie substantially below zero for any 6 € ©;. We therefore

use the following numerical approximation threshold rules for some small threshold e > 0:

e For € 0,, we conclude that f@%fgdu§a if f@*ﬁfgdl/ga%—e
e For A€ 0O, we conclude that

f ﬁ_ ah) fodv <0 1ff an) fodv <e,
Gl Z0 i [y ) >,
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= J(@5—0an) fodv =0 it | [ (25 —pan) fodv| <.

4.3.3 Constructing the Approximate Power Envelope

Using the numerical approximation threshold rules above, we implement the algorithm

by potentially adding support points according to the following steps:

1. For a given ©y and Oy, run the inner and outer loop algorithms until i gb;iz fdvSa
for all 8€ O, and f(@g—s%h)fgdvg() for all #€©,. Proceed to step 2.

2. For a fine grid @g C Oy, compute [ P55 fpdv for each 0c @g .

o If [ gb% f3dv S for all ée@g , proceed to step 3.
e Otherwise, add (some of) the values in ©} for which [ @5 fadvZato ©p and

return to step 1.
3. For a fine grid @{ C Oy, compute [ (gb*ﬁ—goah) fodv for each 6’6@{ )

o If (gb*@—%h)fedugo for all f & @{ , then gb;i) constitutes an approzimate power

envelope and either

-/ (gbg — @an) fodv = 0 for all 0 € 9{ = Conclude that ., is effectively
optimal.
-/ (gbg—gpah) fodv Z 0 for some 0 € @{ = Conclude that @, is effectively

dominated.

e Otherwise, add (some of) the values in ©] for which [ (@5 —Pan) fodv Z0 to

©; and return to step 1.

The motivation for step 2. is to ensure 5 has approximately correct size, in analogy
with step 8. of |[Elliott et al./s (2015) algorithm. Similarly, step 3. is used to ensure that
the power function of gb;iz provides a good approximation to that of a WAP-maximizing

test that yields a power envelope for @g.
4.3.4 Approximating Rejection Probabilities

To approximate rejection probabilities, we rely on Monte Carlo simulation but incorporate
several modifications designed to improve the numerical stability and convergence of
our algorithms. These adjustments impose qualitative features that the true rejection
probabilities are known to satisfy, thereby reducing simulation noise that would otherwise

distort the optimization.
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First, in all examples we consider, the power function of the ad hoc test is continuous in
6. Independent simulation draws across different 6 values produce artificially jagged power
functions. To avoid this, we employ common random numbers by generating a single
set of baseline draws and obtaining simulated values of Y for each parameter value by
transforming these baseline draws (i.e., by translating them by ). This induces smoothness
in the simulated rejection probabilities.

Second, we ensure that key moments of the distribution of Y are matched exactly
in the simulations. For example, when Y is standard bivariate normal, we standardize
the baseline draws to have mean zero and identity covariance. In some instances we
also impose symmetry by symmetrizing the baseline draws. For the bivariate normal
case, this guarantees that the marginal distributions are symmetric around zero. In the
boundary-robust testing application of Section this ensures that the estimated power
function of the two-sided t-test is symmetric, as implied by theory.

Third, we choose the random seed so that the estimated null rejection probabilities
are close to the nominal level whenever the true null rejection probabilities are known to
equal the nominal level. For example, in the linear IV model the CLR test is similar by
construction. If the simulation draws happen to make the CLR test appear to overreject
at some points in Oy, then the algorithm—which searches for a WAP-maximizing test
that weakly dominates the CLR test while satisfying the size constraint—may struggle to
converge. Ensuring that simulated null rejection rates are close to their theoretical values

avoids these problems and yields more reliable numerical results.

5 Theoretical Justification of Numerical Implementation

In this section, we present the theoretical justification for both the inner and outer loop
algorithms for computing approximate WAP-maximizing tests that can produce a power

envelope for a given ad hoc test.
5.1 Inner Loop

We now present the theoretical result guaranteeing the convergence of the inner loop
algorithm for minimizing ¢ in (I0), which as discussed in Section 4.1} also solves the primal
problem @D This algorithm is a dual (projected) subgradient descent algorithm and

therefore its convergence properties readily follow from known results in the literature. Let

o™= min H(AY).

i=0,1,...k
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Theorem 3
The inner loop algorithm described in Section satisfies for any k>1f]

~ -
0 _A 154> il :,fk

- -~ Al
*) —ming(A) < v/ Mymax{l—a,« | =
¢ K20¢( ) - \/ 0 { } 2Zf:0hi

The tuning parameter choice

3

}NLi = )
/ Mymax{1—a,a}

for1=0,1,...

with € >0 implies

o™ —ming(A) <e

A>0
for all szax{l—oz,oé}MoHK(O)—K*Hg/52'

The convergence rate is controlled by fk, which depends on the starting value A©
through [|[A© —A*||2 and on the tuning parameter sequence {h;}. It holds that Iy —0
as k— oo if Zﬁk =00 and Zﬁi < 00. The particular proposed choice of the tuning
parameters {h;} is taken from Section 3.2.3 of Nesterov et al| (2018). This choice is
convenient as it only depends on known quantities and guarantees that the algorithm finds
an e-solution if the number of iterations is sufficiently large.

Elliott et al. (2015)) also propose an algorithm for approximating @, but they do
not provide any convergence guarantees analogous to our Theorem |3| for our inner loop
algorithm. However, while we were writing this paper, |Fernandez et al.| (2025) proposed
an algorithm that slightly modifies that of Elliott et al.| (2015) and produces a test that
provably approximates ¢, with convergence guarantees analogous to our Theorem |3f as
well as bounds the Monte Carlo error. Their results also enable them to bound the size-
distortions of their approximately optimal test and provide specific theoretically-grounded
tuning parameter recommendations for an updating parameter, number of iterations and
initial weights. FEither the original algorithm of [Elliott et al.| (2015), the new modified
algorithm of Fernandez et al.| (2025) or the linear-programming algorithm of Moreira and

Moreira (2013) can be used in place of our inner loop algorithm if desired.

8As there are potentially multiple solutions A* of the dual problem, the distance on the right hand
side can be interpreted as the smallest distance of A(?) to the set of solutions.
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5.2 Outer Loop

Moving to the theoretical result guaranteeing the convergence of the outer loop algorithm
for approximating the weight function that solves , we again note that since this algo-
rithm is a (projected) subgradient descent algorithm, its convergence properties readily
follow from known results in the literature. Let
® — mi 0O

o =_min H(Q").
Theorem 4
The outer loop algorithm described in Section @ satisfies for any k>1 E|

_ QO _O*|2+52F h2
®) — min ¢(Q)<+/M | 2 =0t Ty
¢ e, ¢( ) = 1 22?:()]%‘ k

The tuning parameter choice

€
h;= , fori1=0.1,...
VM,

with € >0 implies

¢ — min ¢(Q)<e
QEA]Ml

for all N> M;[|Q© —Q¥||3/<2,

The convergence rate is controlled by I', which depends on the starting value Q©
through [|Q2©® —Q*||2 and on the tuning parameter sequence {h;}. It holds I’y — 0 as
k— o0 if Y- hy=o00 and >_h? < oo, which as with the inner loop is a convenient choice
taken from Section 3.2.3 of [Nesterov et al. (2018)).

6 Applications

In this section, we apply our results and algorithms to shed new light on the optimality
properties of a test whose optimality properties have already been thoroughly analyzed in the
literature as well as a brand-new test that has not yet. Specifically, we analyze the optimality
of the CLR test of Moreira (2003) and the test implied by the inequality-imposed confidence

9As there are potentially multiple solutions OF of 7 the distance on the right hand side can be
interpreted as the smallest distance of Q) to the set of solutions.
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interval of Cox (2024). Throughout this section, the nominal level « is taken equal to 5%.
6.1 CLR Test in the Homoskedastic Linear IV Model

As alluded to in the introduction, Andrews et al| (2006, 2008) (AMS06 and AMSO08, hence-
forth) investigate the optimality of the CLR test in the homoskedastic linear IV model,
holding the variance matrix for the reduced-form errors fixed in their analysis (coined as
the “fixed-€2 design” by [Van de Sijpe and Windmeijer, 2023)). In this setting, AMS06
construct an asymptotically efficient two-sided point-wise power envelope for invariant
similar tests as the rejection probabilities arising from a collection of point-optimal invariant
similar tests, finding the striking result that the CLR test numerically attains this power
envelope. AMSO08 further strengthen this result by showing that one essentially obtains
the same power envelope without imposing similarity. However, Andrews et al.| (2019)
(AMY, henceforth) provide a counterpoint to these optimality results by finding that the
CLR test falls short of a point-wise power envelope that is constructed by varying the
value of the parameter of interest and keeping its hypothesized value fixed, rather than
the more standard analysis that keeps the value of the parameter of interest fixed and
varies its hypothesized value. In recent work, Van de Sijpe and Windmeijer| (2023) show
that this latter analysis is essentially the same as the standard analysis that varies the
parameter of interest while keeping its hypothesized value fixed but instead of holding the
variance matrix for the reduced-form errors fixed, fixes the variance matrix of the structural
and first-stage errors (coined as the “fixed-3 design” by [Van de Sijpe and Windmeijer,
2023). Van de Sijpe and Windmeijer (2023) further argue that the fixed-€2 design implicitly
favors the power function of the CLR test and that the fixed-X design is better suited for
analyzing power in cases of low to moderate endogeneity as well as differing signs of the
parameter of interest and the correlation between the structural errors in the IV model.

These recent results of AMY and Van de Sijpe and Windmeijer| (2023) motivate us
to revisit the optimality analysis of the CLR test, looking at both the fixed-Q2 and fixed-
designs. Analyzing the CLR test under the fixed-¥ design using our new numerical
optimality assessment enables us to assess whether the previously examined point-wise
power envelopes of AMY may simply be setting an unattainable power bound. Before
proceeding, we formally introduce the linear IV model and the CLR test, and briefly
describe the power envelope of AMS06. We closely follow the notation of AMSO06.

The linear IV model is given by

Y1 =28+,
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Yo =T +00,

where y1,10,u,v0 €R?, Z € R™*, B€R, and m € R¥. Here, yi, y» and Z are observed,
where y; denotes the outcome of interest, y» the (potentially) endogenous regressor of
interest, and Z the instrumentsm The random vectors u and vy are unobserved structural
error terms. We assume that Z is fixed. Plugging the reduced-form equation for g, into

the structural equation for y;, we obtain the reduced-form equation for y, i.e.,
y1=2Z7B+u,

where v =u+wvy5. The resulting set of reduced-form equations can be written aﬂ
Y =Zrd+V,

where
Y =[y1,50], V =1[v1,00] and a=(j,1)".

Let V; denote the it" row of V' and assume that V; is iid across i with
Vi~ N(0,Q).

Having defined the linear IV model, we can now formally state the testing problem of

interest, which is given by
Hy: B=Pf, meR* vs. Hy: BeR\{f}, TR

We follow AMS06 and further simplify this testing problem. To that end, we define the

following transformations of Y
S=(Z2'Z)"V2Z'Y by (b)Qo)V? and T=(Z'2) "2 Z'Y Q Lag-(a)Qao) "1/,

where by=(1,—/y)" and a=(fy,1)". Lemma 2 of AMS06 shows that S and 7" are jointly
normally distributed and independent. AMS06 argue that the coordinate system used to

10We omit additional exogenous regressors without loss of generality, as the above model can always
be obtained by partialling them out.

"Here, we use Y to be consistent with the notation in AMS06. This Y should, however, not be
confused with the random element Y that enters the general testing problem in Section

26



specify S and T should not affect inference and, therefore, only consider statistics that
are invariant to rotation of the coordinate system. This is achieved by considering test

statistics that only depend on S and T through

S's ST
s 1TT

Qs Qsr
Qsr Qr

I

Q=

see Theorem 1 in AMS06 and the surrounding discussion. The distribution of @ is

noncentral Wishart and, importantly, depends on 7 only through
\N=n'7"Zr,

which implies that if we restrict our attention to test statistics based on @), the testing

problem of interest simplifies to
Hoi 6:60, /\GR+ VS. Hli BGR\{B{)}, /\GR+. (].].)

The LR statistic for testing can be written as

LR= % <QS—QT+ \/(QS_QT)2+4Q%T) .

Moreira (2003) observes that Q7 is a sufficient statistic for A under Hy. This, in turn, allows
the construction of a size « test using conditional critical values. In particular, the CLR test
rejects when LR > cvy_o(Qr), where c¢vq_(Qr) is such that Ps (LR >cvi_o(Qr)|Qr) =0

The power envelope proposed by AMS06 is constructed from a collection of point-
optimal invariant similar two-sided (POIS2) tests. Invariance is imposed by restricting
attention to tests that only depend on the data through (). In the context at hand,
imposing similarity is tantamount to relying on conditional critical values, conditional
on the observed value of ()7. This avoids the need for approximating the least-favorable
distribution, as done in AMS08. The two-sidedness that AMS06 consider is such that the
resulting test is asymptotically efficient, i.e., the test has the same power as the two-sided
t-test when instruments are strong (A=00). The corresponding point-optimal test, POIS2,
puts equal weight on (5*,A*) and (3;,\;), where the latter is a function of the former,
ensuring asymptotic efficiency. The corresponding power envelope is then mapped out by
the POIS2 test as (8*,\*) varies.
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6.1.1 Fixed-() Design

AMSO06 consider a fixed-€2 design in their simulations, setting {21 =€ =1 and [, =0.
They numerically compare the power of the CLR test to their point-wise power envelope
as functions of 5 and A for various values of k£ and €215 (p in their paper). For given values
of k and €215, they consider several A-slices of the CLR power function and the power
envelope, for which f is varied over a fine grid for a given value of A\. An example of such
a A-slice is given in Figure

e
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(a) Screenshot of Figure 1(c) in AMS06 (b) Power of CLR test together with our APE

Figure 3: Power of CLR test as a function of 5 for A=5 together with AMS06’s power envelope
and our approximate power envelope for k=5 and Q12=0.5.

Panel (a) of Figure |3|is a screenshot of Figure 1(c) in AMS06, which shows the power
of the CLR test (and the Anderson-Rubin and Lagrange multiplier tests of /Anderson and
Rubin, 1949 and Kleibergen, 2002)) together with their proposed power envelope as (3 varies
and A=5 for k=5 and 215=0.5. The power of the CLR test and the power envelope are

4

virtually indistinguishable (or “very close” in this and many other figures in AMS06 where
k, Q9, and X are varied), which leads AMS06 to conclude that the CLR test attains the
power envelope “in a numerical sense”.

We reconsider the above testing problem for £k =5 and ;5 = 0.5. In the case at
hand, @) takes the role of Y and A replaces § E We set A\s =75 and Agp =160, where Qr
takes the role of D(Y'), since the probability that Q7 > Agp is less than 0.01 whenever

A<\g. The standard test is implemented as the Lagrange multiplier test, which rejects

2In principle, we could use (S,T) as Y, replace § by 7 and investigate the optimality of the CLR,
test in the class of asymptotically efficient tests. However, the computational cost of approximating of
A increases rapidly in the dimension of the nuisance parameter.
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Hy when Q%/Qr > x3_,(1)[F] Note that switching to the standard test (for large \)
is equivalent to imposing asymptotic efficiency as defined by AMS06. We obtain our
APE using ©y = {(8,A): =0, A€ {1,5,10,...,30,40,...,170}} and ©; = {(b/v/A\) : be
{—4,-3,-2,2,3,4}, A€ {1,5,10,...,30,40,...,170} }. Implementation details, including the
number of simulation draws and the choices of {hy}, @{; and O/ are given in Appendix

Panel (b) of Figure |3[shows the power function of the CLR test (for the same parameter
constellation as in panel (a)) together with our APE. As in panel (a), the power of the
CLR test is indistinguishable from the power envelope for the A-slice under consideration.
Instead of considering multiple A-slices, we produce a heatmap showing the difference
between our APE and the power of the CLR test over a grid of values for 5 and )\El This

heatmap is shown in Figure [

3 2 E 0 1 2 3
BV

Figure 4: Difference between APE and power of CLR test in percentage points for k=5 and
Q12=0.5.

0.5pp
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140 0.3pp

120 0.2pp
100 0.1pp
0.0pp
-0.1pp
-0.2p
-0.3pp

-0.4pp

o

-0.5pp

The differences between the APE and the power of the CLR test are very close to zero
over the entire grid; note that the scale on the right ranges only from -0.5 percentage points
(pp) to 0.5pp. In fact, the largest difference (in absolute value) is below 0.1pp. We therefore
conclude that the CLR test is effectively optimal (for k=5 and €42 =0.5). Our finding
is complementary to that of AMS06: we find that the CLR test is (effectively) optimal

3For A>\g =75, the CLR test, the Lagrange multiplier test and the two-sided ¢-test all approximately
coincide.

“The grid is given by {(b/vA,\):be{—3.5,-3,...,3.5}, A€ {0.1,10,20,...,170} }. Note that this grid
does not coincide with ©yU©; and that the underlying rejection probabilities are evaluated using draws
that are independent from those used to obtain the APE. This protects from a potential winner’s curse,
cf. |Andrews et al.| (2024).
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in the class of invariant asymptotically efficient tests, while AMS06 find the stronger result

of point-optimality in the smaller class of tests that are similar and two-sided (in the sense
that they impose)F_gl

6.1.2 Fixed-X Design

As shown by [Van de Sijpe and Windmeijer (2023), AMY consider a fixed->J design in their
simulations, where the variance matrix of the structural errors u and v,, 3, is held constant.
AMY set 313 =Yg =1 and consider several values for Y15 (py,, in their paper). Their
Figure 1 shows the power functions of the CLR test (and the Anderson-Rubin test) and
the power envelope of AMS06 based on the POIS2 test for different values of X5, keeping
k=10 and A\=15 fixed. In contrast to AMS06, however, AMY set =0 and vary f.

power
power

——APE| |
CLR

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Bov/A

Bovx
(a) Screenshot of Figure 1(b) in AMY

(b) Power of CLR test together with our APE

Figure 5: Power of CLR test as a function of §y for A =15 together with AMS06’s power
envelope and our APE for k=10 and ¥15=0.5.

Panel (a) of Figure 5|is a screenshot of Figure 1(b) in AMY, where ¥15=0.5. The power
of the CLR test is on the power envelope for values of Syv/A between 0 and 5, but drops
below for values further away from 0. The maximal gap of the CLR test’s power function
with the POIS2 power envelope is around 3—4pp. Based on this finding, AMY conclude
that the finding of AMS06 “that the CLR test is essentially on the [...] power envelope
does not hold...”. However, as discussed extensively above, this does not mean that the
CLR test is not optimal since it is unclear if the point-wise power envelope used by AMY is

attainable. We therefore reconsider the testing problem considered in AMY, where k=10

150ur finding is also complementary to that of AMS08: while we find a weaker result (optimality as
opposed to point-optimality), we do not impose two-sidedness (in the sense that they impose).
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and Y12 =0.5, and construct our APE. We set A\s =160 and Asp =320. The underlying
Oy and O, as well as additional implementation details are provided in Appendix
Panel (b) of Figure [5| displays the power function of the CLR test (for the same
parameter constellation as in panel (a)) together with our APE. We find that the CLR
test attains our APE, at least for the A-slice under consideration. As before, we produce
a heatmap showing the difference between our APE and the power of the CLR test over
a grid of values for # and A, while setting 5y =0. While this setting seemingly differs
from the setting of AMY (where =0 while 3, varies), it follows from Corollary 1 of
de Sijpe and Windmeijer| (2023) and the subsequent discussion that the resulting power

curves are simply mirror images of one anotherﬂ The heatmap is shown in Figure @

0.5pp
160 0.4pp
140 0.3pp
120 0.2pp
100 0.1pp
~< 0.0

80 pp
-0.1pp

60
-0.2pp

40
-0.3pp

20
-0.4pp

0

-40 -30 -20 -10 0 10 20 30 40
BV

-0.5pp

Figure 6: Difference between APE and power of CLR test in percentage points for k=10 and
312=0.5.

The heatmap in Figure [6] uses the same scale as the heatmap in Figure ] and leads
us to the same conclusion: the difference between our APE and the power function of the
CLR test is very close to zero across the entire grid. We conclude that the CLR test is,
in fact, effectively optimal under both the fixed-{2 and fixed-> designs.

6.2 Test Implied by IICI in Boundary Problem

A line of recent work has examined testing problems involving uniformly-valid inference

when nuisance parameters may lie on or near the boundary of the parameter spaceEl

16T hat is, the power of the CLR test for testing Hy: 3= 3 when the true value of 3, say 3%, is equal
to 0, is equal to the power of the CLR test for testing Hy:5=0 when §*=

17See for example, |Andrews and Guggenberger| (2010), [Ketz| (2018), IKetz and McCloskey| (2025) and
(Cavaliere et al. (2025).
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Focusing on the special case of a scalar nuisance parameter to analyze the properties of

a new confidence interval proposed by (Coxl (2024), we work with the Gaussian experiment

()= (C)0 )

where [ is the scalar parameter of interest and § >0 is a scalar nuisance parameter. As
discussed in Section this formulation corresponds to the asymptotic behavior of a
broad class of finite-sample models (see, e.g., Elliott et al., [2015 and Ketz and McCloskey,
2025). Formally, the testing problem of interest is given byﬁ

Hoﬁzﬂo,(SZOVS Hlﬁ#ﬁo,(SZO (].2)

Cox| (2024)) proposes a new confidence interval for 3, called the inequality-imposed
confidence interval (IICT). The IICI has several desirable properties: (i) it is easy to compute,
(i) it does not require simulation or tuning parameters, (iii) it is adaptive, and (iv) it
has weakly shorter length than the standard two-sided confidence interval that ignores
the information contained in Y5. The IICI is constructed as the union of the standard
two-sided CI when Y5 is large and positive, the two-sided confidence interval that imposes
0=0 when Y5 is large and negative, and the intersection of the two when Y5 is close to
zero; see Panel A of Figure 1 in Cox (2024) for a visual illustration. Formally, the lower

and upper bounds of the (1—a)-nominal IICI are given by

Yi—z1a2 if o>,

Y1 —pYo—+/1—=p*21_o/2 otherwise,
and

Y1+zl—a/2 1f3/2>_ca

Y1 —pYo++/1=p*21_o/2 otherwise,

respectively, where c= - Vpl_p ’ Z1—a/2 and 21_q o denotes the 1—a/2 quantile of the A/(0,1)

distribution. The test implied by the IICI rejects Hy in when [ lies outside of it.
To gauge the optimality of the IICI, Cox| (2024) compares the WAP of the test im-

18This limiting Gaussian formulation also applies to problems for which nuisance parameters are
restricted to be greater/less than or equal to any known value via a simple affine transformation.
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Figure 7: Power of the nearly optimal test of |[Elliott et al.| (2015) and the test implied by the
IICI for p=0.7 and §=1.

plied by the IICI with the power bound on WAP derived in [Elliott et al. (2015) (EMW,
henceforth), using equal weight on §=—2 and =2 and uniform weights on ¢ € [0,9].
For p=0.7, the WAP of the IICI is 53.1% and the WAP of the EMW power bound is
53.5%. Using e=0.005 (following EMW), |Cox: (2024) concludes that the test implied by
the TICI is nearly optimal in the sense of EMW, as its WAP lies within € of the power
bound. However, some ambiguity with respect to the optimality of the test remains{™|
as shown in Figure [7] the power functions of the test implied by the IICI and the nearly
optimal test of EMW (under the above weights) cross, which prevents us from concluding
whether the test implied by the IICT is optimal or dominated.

To address this ambiguity, we compute our APE for the testing problem with p=0.7.
We follow EMW and choose dsp =6. The standard test is the two-sided t-test. We use
0, ={(b,d):be{-3,-2,—1,1,2,3}, d€{0,0.5,...,8}} and follow EMW in discretizing O
in terms of “base” distributions. Details on this and other implementation choices are
provided in Appendix As in Section we produce a heatmap showing the difference
between our APE and the power of the test implied by the IICT over a grid of values for
B and ¢, fixing 5y=0; see Figure

The scale of the heatmap is the same as for the heatmaps in Section The difference
between the APE and the power of the test implied by the IICI is close to zero over a large

This is related to the fact that e is given as an absolute (rather than a relative) value, making it
difficult to interpret what it means for the difference in WAPs to be “small”.
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Figure 8: Difference between APE and power of test implied by the IICI in percentage points
for p=0.7.

portion of the grid. However, there are some values for which the test implied by the IICI
falls short of the APE—the maximal difference is about 0.3pp and occurs at (3,0)=(2,1).
We, therefore, conclude that the test implied by the IICI is effectively dominated, albeit
by a very small margin. In fact, the WAPs of the test underlying the APE and the test
implied by the IICI are 52.532% and 52.529%, respectively, with the corresponding weights
given in Appendix Abstracting from numerical approximations, the WAP of the
test implied by the IICI is thus within 0.00003 of the lowest possible upper bound (given
©,), improving on the finding in and providing a strong argument in favor
of using the IICI in practice. Although the test is effectively dominated, the loss in WAP

is negligible considering the simplicity of the procedure.
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A Appendix

A.1 Proofs of Main Results

Proof of Theorem |1} Starting with the first claim of the theorem, for any p € ®,,,

min /(gp Yan) fo,dv=_inf ij/go ©an) fo,dv. (13)

QEA]WI

This can be seen as follows: for any Q€ Ay,

...........

-----

Moreover, since the canonical basis vectors of RM! are included in Ayy,,

My
. a d > f ” d
P / (¢ = an) fo,dv enAlMlZ% / —Pan) fo;dv
and follows. Thus,
My
Sup _min ah) Jo,dv=sup _inf w o) fo.dv.
(pquljZI ..... M /(90 Pan) fo, %ggeAMlZ J/ ©—Pan) fo,

Further, in Lemma [2| we show that the Ky Fan minimax theorem implies

suerlgf ij / ©—@an) fo,dv=_inf sup ij / ©—Pan) fo,dv. (14)
My

PED, Qe ped,

The fact that ®*#( follows directly from Lemma,
To see that A}, #0, note that since the criterion function on the right hand side of
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([14) is continuous in (Q,p), ¢: Ax, —R given by

— sup ij / —pan) fo,dv,

€<I>a

is lower semi-continuous and therefore by compactness of A/, , the infimum is attained

at some " = (wf,...wh;, ) € Any,:

M1 Ml
su By . v=_ mf su W 3 dv. 15
3 [t emtir=oint s s [ o= (15

To show @, note that for any ¢* € ®*

My

Zw [ —artudv=_ int > [ —eatuds
]\41
=sup inf W / . dv
or g QEAMlZ J —Pah f9
My
= inf sup / » dv
QEAMlgoeI)aZI (SO 4 h>f9
My
=sup » W) / (p—an) fo,dv,
PEDa’

where the inequality follows by definition of the infimum, the first equality by the definition
of ®* and , the second by and the last by . By the definition of the supremum,

we also have
SUPE :W /(%7 Pah) fo,dv > E w; / ©" —Pan) fo,dv.
j=

Therefore, the inequality in the preceding display can be replaced by an equality and @
follows. [J

Proof of Theorem [2; Under the given conditions, the first statement follows directly
from Lemma (3| The second statement follows from the first, together with equation ,
which implies that % and @5 are WAP-maximizing tests with respect to Qi and Q. O
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Proof of Proposition |1 For any p € ®,

Mo Mo Mo
/gogdl/—z}\i (/goféidu—oz) :/cp(g—Z)\ifé)dV—i—aZ)\i,
i=1 — ‘

which is clearly maximized at ¢5. [

Proof of Theorem [3; The proof follows from Theorem 3.2.2 of |[Nesterov et al.| (2018).
It only remains to bound the Lipschitz constant of ¢ and derive its subdifferential, which
is done in Lemma {4} The second claim follows from equations (3.2.16)—(3.2.21) in section
3.2.3 in Nesterov et al.| (2018). O

Proof of Theorem [4; The proof follows from Theorem 3.2.2 of |Nesterov et al.| (2018).
It only remains to bound the Lipschitz constant of ¢ and derive its subdifferential, which
is done in Lemma [5| The second claim follows from equations (3.2.16)—(3.2.21) in section
3.2.3 in Nesterov et al.| (2018). [

A.2 Auxiliary Results

Lemma 1 (Based on Theorem 6.1.5 of |Riischendorf (2014))
For Py the probability measure associated with density function fy, if P={Py:0€0} <,
there exists a test p* € P, for any a€[0,1] satisfying

Jnf / (0" —Pan) fodv = sup [nf / (0= Pan) fodv.
Proof: The existence result relies on properties of the set of test functions ® and
the weak-x topology on the space of measurable and r-essentially bounded functions
Loov):={p e L)) : IK € Rs.th. |p| < Kv—ae.}, where £()) denotes the set of
measurable functions mapping ) into R. As usual, we endow L. (v) with the norm
|olloo :=Inf{ K : |p| < K v—a.e.} and treat functions ¢,¢' € L(v) as equal when o =¢/

v-a.e. Further, a sequence {p,} C L.(v) converges with respect to the weak-* topology if

/gpnédy—>/cp5du VoeLy(v),

as n— 00, where £;(r) denotes the space of (equivalence classes) of absolutely v-integrable
functions.
The importance of the weak-x topology lies first in the Banach-Alaoglu theorem,

according to which the closed unit ball B={p € Ly(V):||¢]lc <1} is weak-+ compact.
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Since P < v, ® is a weak-* closed subset of B and therefore ® is weak-* compact. Secondly,
the power function 3: ®— [0,1]°, ¢+ 3, is weak- continuous. In order to see this, note that

f3 is continuous if and only if ¢+ 5,(6) is continuous for all # € ©. Now, since for all § €O,

dP
8.0)= [ o gt

with d% € L1(v), the continuity follows by the definition of weak-x convergence, given

above. Thus, not only is ® weak-* compact, but also the set of power function differences

G ={B,— Par : © = [-1,1]|V0 € O s.th. B,(6) — Ban(0) = f(go — @an) fodv} is weak-x
compact as a continuous image of a compact setm

These observations readily imply the claimed existence of such minimax-type tests. Since

Oo= () {pe®:8,(0)<a},

[ISCH)

®,, is a weak-+ closed subset of ® and hence weak-* compact. Now, let k: P, —[—1,1] be

defined as k() :=infgeo, {B,(0)—Ban(6)}. By continuity of ¢+ B,(0)—Fan (), k is upper
semicontinuous and hence attains its supremum on the compact set ®,. Thus, there exists
p*ed, such that

(") = inf {8, (0)~Fun(0)} = sup inf {5,(6)—Fu(0)}

ped, 1
and ¢* is a minimax test. [

Lemma 2

IfP={Pp:0€O} <, then

sup inf / / (9 —pun) Fodvd€2(6) = inf sup / / (o un) fodid(0),

PEDa RSN
where A denotes the set of probability measures over either ©1 or Ay, .

Proof: Note that A and @, are convex and that r(,¢) = [[ (¢ —@an) fodvdQ(6) is linear
in both of its arguments. Further, by similar arguments to those in the proof of Lemma |1}
o—>1(p) is weak-* continuous for all Q€A and ®,, is weak-+ compact. We can further
endow A with the weak topology on £;(v) when we identify (2 with its implied density

20See Theorem 6.1.4 in Riischendorf| (2014).
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ho= [ fodQ(0) € L£1(v). Hence, the Ky Fan minimax theorerrﬂ applies and implies

sup inf r(€2,p) :énf sup r(2,p).

ApE(I’QQeA EAQD€<I>Q
This proves the claim. [J

Lemma 3
Suppose a€(0,1) and Q€ A, where A denotes the set of probability measures over either

©1 or Ay, and consider the problem

sup /(go—%h)/fgdﬂ(e)du. (16)

IS
Then, the following statements hold:

1. There exists a solution to , i.e.,

& —angnae [ (o) [ fod20)ds 20

PEP

2. Let My denote the set of finite measures over ©y. For any A€ M,

0= [ (o) [ fut0)av— [ ( [t )aso) 20

ped

and any o € P5, \ can be written as

1 5 Zf ffng(G) >ff9d/\(9)
=43¢, if [£odQ0)= [ fodA(6)
0 . if [fod26) < [ fodA(0)

for some »x€®.

3. It holds that 15 equal to

if sup [o=ea) [ fut00)ar- ( / wfedv—a) NG)

21See Theorem 2 in [Fan| (1953).
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4. Let

Mi=asgin s [ (o) [ a0 [ ( [eosav—a)ro)

AeMy  ped

Assume that M§#0 and that the event

{yey: / £,d0(6) = / fgdA*(H)}

has v-measure zero for all A* € M, such that for any A* € M there is a v-a.e.

unique element in ®F, \- given by

%A*:ﬂ{ / £,d0(6) > / fgdA*(G)}.

Then, for any A A€ Mg and any &3> €0
Poar=Paon; =P1=¢2 V-a.c.

5. If A*€ M, with N*(©y) >0, then A*=A\*/A*(©y) is a least favorable distribution.

6. If there exists a least favorable distribution A5y, then cvoAg, € MG, where cvg denotes
the critical value of the Neyman-Pearson test of [ fodA§, against [ fod€.

Proof: We prove each part of the lemma as follows:
1. This follows by similar arguments to those in the proof of Lemma

2. Rewrite the criterion function as follows

/ (¢—Pan) / JodS2(0)dv— / ( / sofedu—a> dA(6)
:/so </fedQ(9)—/f9dA(8)> d’/JFO‘A(@o)—/%h/fedQ(e)dy.

This function is maximized by any ¢ € ® of the claimed form.

3. By 2. and its proof,

if sup [o=ea) [ futcerar- ( / sofedv—oz> aA(9)
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= inf / ( / Fod2(0)— / fgdA(6)>+dz/+aA(@o)— / Pah / Jod2(0)dv,

where (a); =max{0,a} for any a€R. The claim now follows along the same lines
as the proof of Theorem 4 in [Krafft and Witting| (1967)).

4. For any A*e M and any ¢ € 9§, we have

[ =) [ asyiv
—sup [ (=) [ fut0)iv

pED,

= Aiékﬁoil;g / (p—@an) / fod2(0)dv— / ( / s@fedv—a) dA(0)
=sup / (p—an) / JodS2(0)dv— / ( / sofodv—a) dA™(0)
> [ [ sty [ ( [ suv—a )an-0)

> [ (@) [ fuio0)av,

where we have used ¢ € @, in the first equality, part 3. in the second equality, A* €
M #0 in the third equality, the definition of the supremum together with p € ®, C @
in the first inequality and that @€ ®,, in the last inequality. This implies that @€

D p+ and thus 9=, y.v-a.e. Since ¢ and A are arbitrary, the desired result follows.

5./6. The problem in part 3. leads to the same set of solutions as the problem given in
equations (22) and (23) in Krafft and Witting (1967). The proof therefore follows
along the same lines as the proof of Theorem 12 in Krafft and Witting| (1967). O

Lemma 4

The following statements hold:

1. ¢ is Lipschitz continuous such that

[$(A)=p(N)| < v/ Momax{1—a.a} ANz

for any AN >0.
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2. For any /N\ZO,

My
(a—/goxf(;idu) _ €0p(N).

Proof: We prove each part of the lemma as follows:

1. Take any K,K’ >0. Then, by standard bounds for the supremum and the Cauchy-

Schwarz inequality,

[$(A)—H(A)| <sup
<p6<I>

Z{)\ Y }(/goféidv—oz>

Mo

2
<|A—A'2supJ > ([efuar-a).
ped -

=1

The supremum on the right hand side is achieved by either ¢p=1 or ¢ =0 and thus

Mo

supy | Y (/goféidu—oz)Qz v/ Momax{1—a,a}.

e \ o

2. By definition of &S as a maximum and Proposition (1, for any K,K’ >0,
(N> / pxdv— X ( / SOKfaidV—@)
i=1
My

_ / @Kdy_jizi;i ( / o3 féidy—oz> —Z{X;—Xi}( / SOKféidu—a)

=1

—¢(7\)+ZO{X—&}( o= / exfidv )

=:k;

and thus ¢(A') > G(A)+kT(AN'—A), for all A’>0, ie., kedp(A). O

Lemma 5

The following statements hold:
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1. ¢ s Lipschitz continuous such that

[B(Q) — (V)] < /My[|Q—Y ||
for any Q.Y €Ay,

2. For any Q€ Ay,

(/(SOB—S%h)faidl/) B €0p(Q).

i=1
Proof: We prove each part of the lemma as follows:

1. Take any Q,Q € Ay,. Then, by standard bounds for the supremum and the
Cauchy-Schwarz inequality,

) ~o() <sup [ Z{% of} [ (o)
o M 2
SHQ_Q/HQ(PSS(IIL izl(/(so_gpah)f@idV) :

The supremum on the right hand side can be bounded above using

pe® \ iy

supJ % (/(@_Spah)feidl/) 2 </M,.

2. By definition of ¢ as a maximum, for any Q,0 € Ay,

(V) >Zw/ —Pan) fo,dv
My
S, [h—ea oot 3_wi-a) [ (e o) fad
=1 =1 N

J/

-~

=%

=p(Q)+7T (Y -Q)
and thus v€9¢(Q). O
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A.3 Details for the Applications Considered in Section@

For all applications we use 300,000 simulation draws to evaluate rejection probabilities.

The choice of {hy} is common across all applications. In particular,

0.01 if min;—y_as {7} <—0.02

hi,= < 0.001 if —0.02<min;—y__ap {7} <—0.002
0.0001  otherwise,

where v=(71,...,7ar,) is defined in step 2.(a) of the algorithm in Section Furthermore,

the number of iterations for the outer loop is set equal to 1,000.
A.3.1 Details for the Homoskedastic Linear IV Model

The draws of () are obtained through baseline draws of S and T, given by two independent
sets of draws from AN(0,1;), which are standardized across all simulation draws. The
conditional critical values for the CLR test are obtained using 1,000,000 simulation draws.

The choice of {h} is common for the two designs (fixed-Q and fixed-X). In particular,

0.01 if max;—y_ {7} >0.02

hi=140.001  if 0.02>max;_y {7} >0.002
0.0001  otherwise,

where 7 = (71,...,T,) 18 defined in step 2.(a) of the algorithm in Section [£.1] Fur-
thermore, the number of iterations for the inner loop is set equal to 1,000. In both
designs, we take ©f = {(8,)\) : 8 = 0,\ € {0,2,...,150}} and ©f = {(b/v/X\,\) : b e
{-3.5,-3,...,.—0.5,0.5,1,...,3.5}, A€{0.1,10,20,...,170} }. And in the fixed-% design, we take
Oo={(B,\): =0, Ae{1,5,10,15,20,30,40,50,70,...,150,175,...,300} } and

={(8,\): B€{—40,—30,—20,—10,—2.5,—1,1,6,20,30}, A=1}
U{(b/\/_)\) be {—40,—30,—20,—10,—5,—1,1,5,10,20,30}, A=5}
U{(b/v/AN):be {—40,—30,—20,—10,—6,—1,1,5,10,20,30}, A=10}
U{(b/VAN):be {—40,—30,—20,—10,—7.5,—2,2,10,20,30}, A=15}
U{(b/\/_ A :be {—30,—10,—5,—3,3,7,10,20,40}, A=20}

u{( be{—3,—~1,2,4,6,8}, A=30}

- - -
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U{(b/VAN):be{—3,24,6,8}, A=40}
U{(b/VAN) :be{=324}, Ae{50,70,...,150,175,...,300} }.
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Figure 9: Null rejection probabilities of tests underlying APEs and CLR test.

Figure [9 shows the null rejection probabilities of the tests underlying the APEs and
of the CLR test on ©;. Panel (a) reports the results for k=5 and €, =0.5 and panel (b)
for k=10 and ¥5,=0.5. All probabilities are computed using 300,000 simulation draws,
which are independent across the values in @gj . In each panel, the test underlying the
corresponding APE and the CLR test yield virtually identical null rejection probabilities.
Although the rejection probabilities of both tests can exceed the nominal level, we know
that for the CLR test any such excess is solely due to simulation error since the CLR test
controls size by construction. Because the two tests coincide so closely in both designs,

we conclude that the tests underlying the APEs effectively control size.
A.3.2 Details for the Boundary Problem

The baseline draws used to obtain the draws of Y are standardized across all simulations
and also symmetrized. The parameter hy, is set equal to 0.01 for all k& and the number
of iterations for the inner loop is set equal to 1,000. As mentioned in the main text, we
follow [Elliott et al.| (2015)) in discretizing O in terms of “base” distributions. Our “base”
distributions are uniform distributions for § on the following intervals: [0,0.00001], [0,0.04],
[1.99,2.01], [0,0.5], [0.5,1], ..., [12,12.5]. We take (95:{(5,5) :=0,0€{0,0.1,...,7}} and
Ol ={(8.0):8€{-35,—3,...—0.5,05,1,...3.5}, 6€{0,0.5,...8}}.

Figure [10] shows the null rejection probabilities of the test underlying the APE and the
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Figure 10: Null rejection probabilities of test underlying APE and test implied by IICI.

test implied by the IICI on @5. All probabilities are computed using 300,000 simulation
draws, which are independent across the values in @{; . Although the null rejection probabil-
ities for both tests can exceed the nominal level, we know that for the test implied by the
IICT this is only due to simulation error given that proves that the IICT has uni-
formly correct coverage. Since the maximal null rejection probability of the test underlying
the APE is very close to v and the null rejection probability of the test implied by the IICI

over the entire grid, we conclude that the test underlying the APE effectively controls size.
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Figure 11: Weights underlying the APE for the test implied by the IICI
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Figure [11] shows the weights underlying the APE corresponding to the test implied
by the IICI. Apparently the test implied by the IICI does not prioritize power at positive
alternatives 5 > 0 when the value of the nuisance parameter ¢ is small and p = 0.7.
Interestingly, the region of the alternative parameter space receiving little weight by the
APE also roughly corresponds to where we see the largest power differences between the
APE and the power of the test implied by the IICI in Figure
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