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Abstract

In nonstandard testing environments, researchers often derive ad hoc tests with

correct (asymptotic) size, but their optimality properties are typically unknown a pri-

ori and difficult to assess. This paper develops a numerical framework for determining

whether an ad hoc test is effectively optimal—approximately maximizing a weighted

average power criterion for some weights over the alternative and attaining a power en-

velope generated by a single weighted average power–maximizing test. Our approach

uses nested optimization algorithms to approximate the weight function that makes

an ad hoc test’s weighted average power as close as possible to that of a true weighted

average power–maximizing test, and we show the surprising result that the rejection

probabilities corresponding to the latter form an approximate power envelope for the

former. We provide convergence guarantees, discuss practical implementation and ap-

ply the method to the weak-instrument–robust conditional likelihood ratio test and a

recently-proposed test for when a nuisance parameter may be on or near its boundary.
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1 Introduction

In nonstandard testing environments involving composite null and/or alternative hypothe-

ses, a uniformly most powerful test often does not exist. It is therefore common for

researchers to devise implementable ad hoc tests that are designed to have provably correct

(asymptotic) size. Although researchers may go to great lengths to demonstrate that

their devised ad hoc tests have “good” power properties via Monte Carlo simulation, the

theoretical power optimality properties of these tests are frequently unknown and elusive.

It is therefore difficult for both those who design hypothesis tests and those who are meant

to use them to assess whether the power of a given test can be improved upon by a different

test, a central question for its usefulness.

Instances for which researchers have sought to show that an ad hoc test is theoretically

optimal in some sense have been limited. Such approaches can be roughly divided into

two types of power comparisons. The first compares the power function of the ad hoc

test to a point-wise power envelope. This point-wise power envelope is constructed as the

power of a collection of point-optimal tests computed at each point in the corresponding

collection of point alternative hypotheses for points lying in the composite alternative space

(e.g., Andrews et al., 2006; Andrews et al., 2019 and Guggenberger et al., 2019). Although

it is possible for the power function of an ad hoc test to coincide with a power envelope con-

structed in this fashion, this is rarely the case because this form of power envelope may be

unattainable by the power of any single test. To avoid or at least mitigate such unfair com-

parisons, researchers typically impose additional constraints on the point-optimal tests that

are used to produce the point-wise power envelope such as unbiasedness (e.g., the two-sided

t-test and Moreira and Moreira, 2013, 2019), rotational invariance (e.g., Andrews et al.,

2006 and Moreira et al., 2021) and similarity (e.g., Andrews et al., 2006 and Montiel Olea,

2020). However, the imposition of constraints on the underlying collection of (constrained)

point-optimal tests still does not generally produce a power envelope that is necessarily at-

tainable by a single test and leads to an optimality analysis that is limited to tests satisfying

the constraints. So when the power function of an ad hoc test falls short of a power envelope

constructed in this way, what is a researcher to conclude? Is the ad hoc test suboptimal?

Or is the power envelope simply an unfair and unattainable comparison because it does

not correspond to the power function of any single test of the composite hypothesis?

The second approach to test optimality assessment in the literature compares either

(i) the power function of the ad hoc test to the power function of a test that is known to
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be weighted average power (WAP) maximizing for a particular weight function over the

parameter values in the composite alternative or (ii) the WAPs of these two tests, or both

(e.g., Andrews and Ploberger, 1994; Andrews et al., 2008; Elliott and Müller, 2014; Elliott

et al., 2015 and Cox, 2024). This approach is also incomplete, leading to its own set of

questions. How should the researcher choose the weight function when constructing the

WAP-maximizing test under comparison? If the power function or WAP of the ad hoc

test is not dominated by that of the WAP-maximizing test, should we conclude that it is

optimal or could it be dominated by a WAP-maximizing test for a different set of weights?

In this paper, we propose to numerically determine whether there exists a weight

function over the composite alternative that justifies the ad hoc test. More precisely,

we propose a numerical procedure for automatically finding the weight function that

minimizes the WAP difference between the WAP-maximizing test corresponding to that

weight function and the ad hoc test over a discretization of the composite alternative space.

This eliminates the ambiguity of the second approach to test optimality implicit in the

questions above. When this WAP-difference is (not) approximately equal to zero, this

approach immediately allows us to conclude that the ad hoc test under study is (not)

effectively optimal in the sense of (not) being an approximately WAP-maximizing test itself.

A side benefit to our approach is that in the case for which the ad hoc test is determined

to be effectively optimal, we know which weights over the alternative space make it

approximately WAP-maximizing, allowing us to interpret how the test “directs power”.

In addition to determining whether an ad hoc test is approximately WAP-maximizing

for some weight function, we show the surprising result that our procedure immediately

produces an attainable power envelope for the ad hoc test. Over a discretization of the

composite alternative space, we provide a set of sufficient conditions under which the

power function of the WAP-maximizing test using the weights that minimize the WAP

difference with the ad hoc test is a power envelope for the ad hoc test. Since this power

envelope is constructed from a single test, it is indeed attainable. In addition, this power

envelope is “most favorable” to the ad hoc test in the sense that it is constructed from

a single WAP-maximizing test with WAP as close as possible to that of the ad hoc test.

Our numerical procedure is composed of an inner and an outer loop algorithm. The

inner loop algorithm computes an approximate WAP-maximizing test for a given set of

weights over the discretized alternative space, in analogy with Moreira and Moreira (2013),

Elliott et al. (2015) and Fernández et al. (2025). Our outer loop algorithm, which has no

counterparts that we are aware of in the literature, approximates the weight function that
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minimizes the WAP difference between the corresponding WAP-maximizing test and the

ad hoc test over the discretized alternative space.1 Using the results mentioned above, the

power function of this corresponding WAP-maximizing test can then be used as a power

envelope for the ad hoc test. We provide new convergence results for both the inner and

outer loop algorithms, formally guaranteeing that they approximate the WAP-maximizing

test and weights mentioned above. Our algorithms and their convergence guarantees are

general and not case-specific.

One may wonder why it would be more desirable to construct an ad hoc test with

correct size and subsequently analyze its optimality properties rather than simply con-

structing a WAP-maximzing test directly using, e.g., Moreira and Moreira (2013) or Elliott

et al. (2015). There are two main reasons: one conceptual and one computational. The

first reason for constructing an ad hoc test is that it is often unclear which weight function

one should use when constructing a WAP-maximizing test. Our procedure instead simply

tells the researcher whether there exists a weight function that rationalizes the ad hoc

test they have devised (as well as providing an approximation to it). The second reason

is that even with a clear idea of a desirable weight function, computing the corresponding

WAP-maximizing test can become computationally prohibitive when the dimension of

the alternative parameter space is too high. Since our inner loop algorithm also computes

WAP-maximizing tests iteratively, it is also of course subject to this criticism. However,

our numerical procedure can be used to provide partial evidence on the optimality of a test

if the researcher applies it to lower-dimensional special cases and is able to show that the

ad hoc test is optimal in those special cases. On the other hand, a WAP-maximizing test

for a lower-dimensional special case does not readily generalize up to higher dimensions.

Finally, we note that discovering an ad hoc test to be effectively optimal for a particular

testing problem can be used to motivate the development of tests for related problems.

For example, the theoretical optimality results established by Andrews et al. (2006, 2008)

in the specific setting of a homoskedastic linear IV model with randomly sampled data

for Moreira’s (2003) conditional likelihood ratio (CLR) test, apparently helped motivate

Andrews and Mikusheva (2016) and Andrews and Guggenberger (2019) to produce gen-

eralizations of this test to settings that allow for dependent data, nonlinear models and

1Ketz and McCloskey (2025) made the first attempt we are aware of at numerically finding weights
that minimize the WAP difference between an ad hoc test and a WAP-maximizing test. However,
their approach was confined to the particular problem of testing with inequality restrictions on nuisance
parameters, carried no formal convergence guarantees and did not contain any results on producing power
envelopes. Nevertheless, it helped motivate us to write the current paper.
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singular variance matrices.

We apply our results and algorithms to two different testing problems, the first of

which has been previously analyzed using the first approach to optimality assessment

described above and the second of which has been analyzed using the second. For the first

problem, we substantively contribute to the ongoing debate over the optimality properties

of the CLR test. Specifically, we revisit classic optimality results from Andrews et al.

(2006, 2008) and more recent critiques by Andrews et al. (2019) and Van de Sijpe and

Windmeijer (2023) in the context of the Gaussian homoskedastic linear IV model. Using

the first existing approach to test optimality assessment described above, Andrews et al.

(2006, 2008) show that the CLR test effectively attains the point-wise power envelope for

invariant (similar) tests under a design that holds the reduced-form error variance matrix

constant. On the other hand, Andrews et al. (2019) argue that the CLR test falls short

of the point-wise power envelope obtained by fixing the true value of the parameter of

interest and instead varying its hypothesized value, which Van de Sijpe and Windmeijer

(2023) show is equivalent to producing the more standard point-wise power envelope that

fixes the hypothesized value and varies the true value under a design that instead holds

the variance matrix of the structural errors constant. Using our new algorithms, we show

that the CLR test’s power function is virtually indistinguishable from that of a single

WAP-maximzing test for both designs, leading us to conclude that the CLR test is in fact

effectively optimal in the class of invariant asymptotically efficient tests for this problem.

For our second application, we analyze the optimality properties of the new inequality-

imposed confidence interval (IICI) of Cox (2024), designed to improve inference when a

scalar nuisance parameter may lie on or near the boundary of the parameter space. Using

the second existing approach to test optimality assessment described above, Cox (2024)

compares the WAP of the test implied by the IICI to that of the WAP-maximizing test

proposed for this problem by Elliott et al. (2015), finding them to be very close. We

plot the power functions of both tests and find that they intersect, making the optimality

properties of the IICI-implied test unclear. Instead, we show that while the power function

of the IICI-implied test is very close to the power function of a single most favorable WAP-

maximizing test, it does fall slightly short with a maximum gap of about 0.3 percentage

points. Nevertheless, its WAP is extremely close to that of the WAP-maximizing test,

implying that it is highly-competitive but slightly short of optimal for problems with a

scalar nuisance parameter that may lie on or near its boundary.

The scope for other applications of our results and numerical procedure is very wide
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and we just briefly mention some additional examples here. In addition to analyzing the

CLR test, one may seek to analyze the (unknown) optimality properties of other weak

IV-robust tests in the literature such as the Lagrange multiplier test of Kleibergen (2002),

which could be particularly interesting due to its non-monotonic power function. Campbell

and Yogo’s (2006) test of stock return predictability was not found to be dominated by the

WAP-maximizing test with weights chosen by Elliott et al. (2015). Using our approach, it

would be interesting to learn if there is a WAP-maximizing test that indeed dominates it.

We could use our approach to determine whether the apparent power deficiencies of the test

of Guggenberger et al. (2019) when compared to the point-wise power envelope disappear

when using our approach that makes the attainable comparison to a most favorable

single WAP-maximizing test. More broadly, our approach could be used to analyze tests

in the large literatures on inference for moment inequality models, inference robust to

identification failure, inference in structural change models and inference with highly-

persistent (e.g., local-to-unit root) processes. We intend to analyze some of these examples

in follow-up work. And we of course hope that our results and numerical procedures will

be useful for the optimality analysis of new ad hoc tests that have yet to be developed.

The remainder of the paper proceeds as follows. In Section 2, we provide the intuition

underlying our numerical approach by illustrating how to find the weight function that jus-

tifies the two-sided t-test as a WAP-maximizing test and contrasting it with the point-wise

power envelope that is not attained by the two-sided t-test. Section 3 formalizes the general

hypothesis testing framework we study, defines the numerical problem of finding weights that

make an ad hoc test approximately WAP-maximizing and shows that the resulting WAP-

maximizing test yields a “most favorable” approximate power envelope under a set of suffi-

cient conditions. Section 4 describes our numerical procedure, detailing the inner loop algo-

rithm that computes approximate WAP-maximizing tests and the outer loop algorithm that

adjusts weights, along with practical considerations such as switching tests, thresholding,

adding support points, and Monte Carlo smoothing. We provide the theoretical convergence

guarantees for these algorithms in Section 5, establishing that our numerical method yields

valid approximate WAP-maximizing tests and power envelopes. In Section 6, we apply our

results and numerical procedures to the two testing applications described above. Mathemat-

ical proofs and implementation details for the applications are contained in the Appendix.
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2 Intuition and Motivation

We begin by analyzing a simple canonical hypothesis testing example to impart intuition and

motivate our approach to assessing the optimality of a hypothesis test. Consider a two-sided

test of the mean of a Gaussian random variable with known unit variance: H0 :β=0 vs. H1 :

β ≠0 for Y ∼N (β,1).2 The standard level-α two-sided t-test that rejects when |Y | exceeds
z1−α/2 is well-known to be the uniformly most powerful test amongst all unbiased tests. How-

ever, suppose that we would not like to confine our analysis to unbiased tests. Since there is

no uniformly most powerful test, we take the common approach of comparing the t-test to

the point-wise power envelope for this testing problem. Specifically, the point-wise power en-

velope is equal to the rejection probabilities of the collection of the most powerful point-wise

tests ofH0 vs.Hβ′ :β=β′, as a function of a collection of β′ values. By the Neyman-Pearson

lemma, we know that each of these point-wise tests is the likelihood ratio test of H0 vs. Hβ′.

Figure 1 plots the power function of the two-sided t-test and the point-wise power

envelope. Notably, the power function of the two-sided t-test lies substantially below the

power envelope. Using the point-wise power envelope could thus lead us to believe that

the two-sided t-test is suboptimal. However, note that the point-wise power envelope

does not produce a power comparison that is necessarily attainable because it corresponds

to the power of a collection of point-optimal tests that are each optimal against a point

alternative Hβ′ with β′∈R\{0}, none of which correspond to the composite alternative

hypothesis of interest H1. In other words, it is still possible for the two-sided t-test of

the composite alternative H1 to be optimal even though its power function lies below

the power function of a collection of point-wise optimal tests of Hβ′—we may simply be

comparing its power function to an unattainable upper bound.

In the context of this testing problem, our proposed approach is to instead determine

whether there exists a set of weights over the composite alternative space Θ1=R\{0}
such that the WAP of the two-sided t-test is well-approximated by the WAP of a WAP-

maximizing test with this set of weights. If so, we may conclude that the two-sided t-test

is “nearly optimal” for this set of weights. To address this task, we discretize the com-

posite alternative space Θ1 into support points Θ̄1⊂Θ1 and introduce an algorithm that

successively adjusts the weights on each support point to produce a WAP-maximizing test

with WAP as close as possible to that of the two-sided t-test. Surprisingly, we show below

that the rejection probabilities of this WAP-maximizing test produce a power envelope for

2The analysis of this section applies without loss of generality to all two-sided t-tests of the mean
of a Gaussian random variable with known variance via a simple scale transformation.
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Figure 1: Power function of two-sided t-test and point-wise power envelope

the two-sided t-test. An important feature of this power envelope is that it corresponds to

the rejection probabilities of a single test and is therefore necessarily attainable, in contrast

to the point-wise power envelope. This power envelope is not only attainable but it is a

“most favorable” power envelope in the sense that it is based upon a WAP-maximizing test

with WAP as close as possible to that of the two-sided t-test itself.

For the sake of illustration, let us work with the coarse discretization Θ̄1= {−1,1}.
The WAP-maximizing test of H0 vs. the discretized composite alternative H̄1 :β∈Θ̄1 that

weights β=1 by ω1 (and β=−1 by 1−ω1) rejects when

LR(Y )=
(1−ω1)f(Y ;−1)+ω1f(Y ;1)

f(Y ;0)
>cv

for cv satisfying PH0(LR(Y )>cv)=α, where f(·;µ) denotes the density function of aN (µ,1)

random variable and PH0 denotes the probability under H0. Our approach begins with

some initial weight ω1, computes the power function of the WAP-maximizing test using this

weight and adjusts the value of ω1 according to the difference between the power function

of the t-test and the WAP-function at β=1: if the power of the t-test lies below that of the

WAP-maximizing test at β=1, we adjust ω1 downwards, putting more weight on β=−1,

and vice versa. We then repeat this procedure iteratively until the power function of the

t-test lies weakly below that of the WAP-maximizing test at all points β∈Θ̄1. If the power
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function of the t-test lies weakly below that of the WAP-maximizing test at all points β∈Θ1,

the power function of this final WAP-maximizing test produces a power envelope that is

based upon a single test. If the power function of the t-test lies within a small value of the

power function of this final WAP-maximizing test, we deem the t-test to be “effectively

optimal” since its rejection probabilities nearly coincide with those of a test with known

optimality. The weights given in the final iteration tell us how the nearly optimal t-test

weights points in the alternative space since they are the weights for which the corresponding

WAP-maximizing test has WAP nearly equal to that of the t-test. Otherwise, we deem

the t-test to be suboptimal since its power function is dominated by that of another test.

We provide the specifics of how the weight ω1 is adjusted at each iteration in the outer

loop algorithm in Section 4.2, along with a theoretical justification for the algorithm in

Section 5, but the intuition is as follows. Since any WAP-maximizing test is optimal for its

set of weights by definition, we know (i) its power function cannot be dominated by that

of the t-test on Θ̄1 and (ii) if the t-test is itself WAP-optimal, there exists a set of weights

for which its power function must match that of a WAP-maximizing test. These two facts

justify our iterative weighting adjustment: at each iteration, we want to increase the weight

at support points for which the WAP-maximizing test has lower power than the t-test

and therefore decrease the weights at other support points. Naturally, these decreased

weights will be at points for which the WAP-maximizing test has greater power than the

t-test. The five panels of Figure 2 illustrate this re-weighting principle in five iterative steps,

starting at ω1=0.1, for which ω1 is successively increased until the power function of the

WAP-maximizing test coincides with that of the t-test. The upward-pointing (downward-

pointing) arrows indicate that the weight on the support point for the WAP-maximizing

test needs to be adjusted downward (upward) to bring the power function of the WAP-

maximizing test closer to lying (weakly) above that of the t-test. Since the power function

of the WAP-maximizing test with weight ω1=0.5 in the final panel coincides with that of

the two-sided t-test, we can say that the two-sided t-test is optimal in the class of all tests

of H0 vs. H1 while no longer needing to constrain ourselves to the class of unbiased tests.

3 General Framework

Having illustrated the intuition behind our approach in a simple problem, we now move

to the general hypothesis testing framework of interest.
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Figure 2: Power functions for two-sided t-tests and WAP-maximizing tests with different weights

9



3.1 Testing Problem

Suppose that we observe a random element Y taking values in the metric space Y and

that Y has a probability density function fθ(·) relative to some sigma-finite measure ν,

where the parameter governing its distribution θ∈Θ⊂Rk is finite-dimensional. We are

interested in testing

H0 :θ∈Θ0 vs. H1 :θ∈Θ1, (1)

where Θ0,Θ1⊂Θ, Θ0∩Θ1=∅ and Θ0 is not a singleton. This testing problem with a single

observation Y typically arises as the limiting problem under an asymptotic approximation

to a finite-sample problem with many observations via a local asymptotic embedding

corresponding to a limit experiment or by using the asymptotic equivalence approach of

Müller (2011). See Elliott et al. (2015) for a more detailed discussion.

A generic test of (1) is a measurable function φ : Y 7→ [0,1] for which φ(y) is the

probability of rejecting H0 upon observing the realization Y =y. For the parameter value

θ∈Θ,
∫
φfθdν is thus equal to the rejection probability of the test when the true value

of the parameter is θ. The starting point of our analysis is to suppose that we have an ad

hoc test with correct size, a measurable function φah :Y 7→ [0,1] that is known to satisfy the

(uniform) size constraint supθ∈Θ0

∫
φahfθdν≤α. We would like to assess whether φah is

“nearly optimal” among tests that control size. For this problem to be nontrivial, we focus

on tests of the hypothesis (1) for which no uniformly most powerful test is known to exist.

3.2 Numerical Assessment of Near Optimality

As illustrated above in the simple context of a two-sided t-test for the mean of a Gaussian

random variable with known variance, one could attempt to assess the optimality of φah

by comparing it to the point-wise power envelope obtained by computing the rejection

probabilities of a collection of level-α Neyman-Pearson tests indexed by θ′∈Θ1 of H0,Λθ′
:

the density of Y is
∫
fθdΛθ′(θ) vs. Hθ′ :θ=θ′ given by

φΛθ′ ,θ
′(y)=


1 if fθ′(y)>cv

∫
fθ(y)dΛθ′(θ)

κ if fθ′(y)=cv
∫
fθ(y)dΛθ′(θ)

0 if fθ′(y)<cv
∫
fθ(y)dΛθ′(θ)

,

for some cv ≥ 0 and 0≤κ≤ 1 satisfying
∫
φΛθ′ ,θ

′(
∫
fθdΛθ′(θ))dν = α, where Λθ′ is the

least-favorable probability distribution over Θ0 corresponding to the point alternative
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Hθ′.
3 Indeed, this approach has been applied in the literature, oftentimes after imposing

additional side constraints such as similarity or invariance (e.g., Andrews et al., 2006,

2008; Moreira and Moreira, 2013, 2019; Guggenberger et al., 2019; Andrews et al., 2019;

Montiel Olea, 2020). However, as in the simple example of Section 2, comparison to this

collection of Neyman-Pearson tests may produce an unattainable power envelope.

Instead, we propose to determine whether the WAP of φah is nearly equal to that

of a single WAP-maximizing test corresponding to some set of weights over Θ1 and is

thus “nearly optimal”. More formally, we seek to determine whether there exists a weight

function Ω, a probability distribution with support on Θ1, such that φah nearly maximizes

the WAP criterion (Wald, 1943)

WAP(φ)=

∫ (∫
φfθdν

)
dΩ(θ) (2)

within the set of level-α tests

Φα≡
{
φ :Y 7→ [0,1]:φ is measurable, sup

θ∈Θ0

∫
φfθdν≤α

}
.

If a least-favorable probability distribution ΛΩ over Θ0 corresponding to the simple alterna-

tive H1,Ω : the density of Y is
∫
fθdΩ(θ) exists, this WAP-maximizing test takes the familiar

Neyman-Pearson form of a test of H0,ΛΩ
: the density of Y is

∫
fθdΛΩ(θ) vs. H1,Ω given by

φΛΩ,Ω(y)=


1 if

∫
fθ(y)dΩ(θ)>cvΩ

∫
fθ(y)dΛΩ(θ)

κΩ if
∫
fθ(y)dΩ(θ)=cvΩ

∫
fθ(y)dΛΩ(θ)

0 if
∫
fθ(y)dΩ(θ)<cvΩ

∫
fθ(y)dΛΩ(θ).

, (3)

Here, cvΩ≥0 and 0≤κΩ≤1 are defined to satisfy
∫
φΛΩ,Ω(

∫
fθdΛΩ(θ))dν=α. As noted

by Elliott et al. (2015), even if this least-favorable distribution does not exist, we can find

an “approximate least-favorable distribution” to approximate the test the maximizes (2).

It is not typically possible to determine the existence of a weight function Ω for which

an ad hoc test φah maximizes the WAP criterion WAP(φ) analytically. We thus propose a

numerical approach that computes the weights that make the WAP of a WAP-maximizing

test as close as possible to the WAP of the ad hoc test for those weights over a discretization

3See Lehmann and Romano (2005) for details on least-favorable distributions and Andrews et al.
(2008), Elliott et al. (2015) and Fernández et al. (2025) for details on computing approximations to them.
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of the alternative space. Specifically, let Θ̄1=(θ1,...,θM1)⊂Θ1 denote a finite set of support

points for the alternative space with M1 elements and Ω̄=(ω1,...,ωM1)∈∆M1 denote a

probability distribution over those support points, where ∆M1 is the M1-dimensional unit

simplex. Formally, the numerical problem we wish to solve is given by

inf
Ω̄∈∆M1

sup
φ∈Φα

M1∑
j=1

ωj

∫
(φ−φah)fθjdν. (4)

A test φ∗∈Φα that solves (4) is a WAP-maximizing test with corresponding WAP as close

as possible to that of φah since

sup
φ∈Φα

M1∑
j=1

ωj

∫
(φ−φah)fθjdν= sup

φ∈Φα

M1∑
j=1

ωj

∫
φfθjdν−

M1∑
j=1

ωj

∫
φahfθjdν. (5)

A natural byproduct of our approach is that a weight function Ω̄ solving (4) provides valuable

information about the power properties of the ad hoc test: higher weight over a set of points

in Θ̄1 indicates that the test prioritizes rejection in that set relative to other points in Θ̄1.

3.3 Using WAP-Maximizing Tests to Produce an Approximate Power En-

velope

In addition to determining whether φah nearly maximizes a WAP criterion for some set of

weights via (4), our numerical approach has the added benefit of being able to produce an

approximate power envelope (APE) for φah, whether or not it is WAP-maximizing. This

power envelope is again obtained from a single test and is therefore necessarily attainable,

in contrast to power envelopes derived from a collection of tests. To see this, first note

that the rejection probabilities over Θ1 of the test that solves

sup
φ∈Φα

inf
θ∈Θ1

∫
(φ−φah)fθdν

constitute a power envelope for φah∈Φα since

sup
φ∈Φα

inf
θ∈Θ1

∫
(φ−φah)fθdν≥ inf

θ∈Θ1

∫
(φah−φah)fθdν=0.

12



For an appropriately chosen Θ̄1=(θ1,...,θM1)⊂Θ1—see Section 4.3.3 for details, we can

then view the rejection probabilities of the test that solves

sup
φ∈Φα

min
j=1,...,M1

∫
(φ−φah)fθjdν (6)

as an APE for φah since it constitutes a power envelope for φah over Θ̄1 by definition. In

Theorem 1 below, we show that the value of the maximin problem in (6) is equal to the

value of the minimax problem in (4) and any test that solves (6) also solves (4). Since we

show how to approximate the solution to (4) in Sections 4 and 5 below, this latter result

provides a practical strategy for obtaining an APE for φah: solve (4) and numerically check

whether the solution yields an APE for φah. Absent further structure on the problem, this

strategy is not guaranteed to produce an APE but it can still provide a useful guide for

obtaining an APE in practice. In Theorem 2 below, we impose additional structure on

the problem that is sufficient for guaranteeing that this strategy indeed produces an APE.

Let

Φ∗=argmax
φ∈Φα

min
j=1,...,M1

∫
(φ−φah)fθjdν

and

∆∗
M1

=argmin
Ω̄∈∆M1

sup
φ∈Φα

M1∑
j=1

ωj

∫
(φ−φah)fθjdν.

We can now state our first result.

Theorem 1

For Ω̄=(ω1,...,ωM1)∈∆M1 and any α∈(0,1),

sup
φ∈Φα

min
j=1,...,M1

∫
(φ−φah)fθjdν= inf

Ω̄∈∆M1

sup
φ∈Φα

M1∑
j=1

ωj

∫
(φ−φah)fθjdν,

Φ∗≠∅ and∆∗
M1

≠∅. Furthermore, for any φ∗∈Φ∗ and any Ω̄∗=(ω∗
1,...,ω

∗
M1

)∈∆∗
M1

, we have

M1∑
j=1

ω∗
j

∫
(φ∗−φah)fθjdν= sup

φ∈Φα

M1∑
j=1

ω∗
j

∫
(φ−φah)fθjdν. (7)

In words, equation (7) states that any φ∗∈Φ∗, i.e., any test that solves the maximin

problem in (6), is WAP-maximizing with respect to any Ω̄∗∈∆∗
M1

. Therefore, if one follows

the strategy mentioned above and finds that a test that solves (4) yields an APE for φah,

13



this strategy comes with the added benefit that the APE is “most-favorable” for φah in

the sense that it corresponds to the rejection probabilities of a WAP-maximizing test with

WAP as close as possible to that of φah over Θ̄1.

It can be shown that Theorem 1 further implies that if the least-favorable distribution

ΛΩ̄∗ exists for all Ω̄∗∈∆∗
M1

, then any test φ∗∈Φ∗—which serves as a power envelope for

φah on Θ̄1—is equal to a Neyman-Pearson test φΛΩ̄∗ ,Ω̄∗ for some Ω̄∗∈∆∗
M1

, except possibly

on the event:4 {
y∈Y :

M1∑
j=1

ω∗
jfθj =cvΩ̄∗

∫
fθ(y)dΛΩ̄∗(θ)

}
. (8)

We impose the commonly-satisfied sufficient condition that this event has ν-measure

zero for all Ω̄∗ in Theorem 2 below and formally show that any φ∗ ∈Φ∗ is equal to a

Neyman-Pearson test φΛΩ̄∗ ,Ω̄∗ ν-almost everywhere (a.e.), and this Neyman-Pearson test

is unique ν-a.e. This uniqueness result trivially implies that the test that solves (4) also

solves (6) so that the test obtained by solving the minimax problem according to our

algorithms in Section 4 readily provides a most-favorable APE for φah.

Theorem 2

Let α∈ (0,1). For all Ω̄∗ ∈∆∗
M1

, suppose that the least favorable distribution ΛΩ̄∗ over

Θ0 exists and that (8) has ν-measure zero. Then, for any Ω̄∗∈∆∗
M1

, φΛΩ̄∗ ,Ω̄∗ is the ν-a.e.

unique maximizer of

sup
φ∈Φα

M1∑
j=1

ω∗
j

∫
(φ−φah)fθjdν.

Furthermore, for any φ∗
1,φ

∗
2∈Φ∗ and any Ω̄∗

1,Ω̄
∗
2∈∆∗

M1
, we have

φ∗
1=φ∗

2=φΛΩ̄∗
1
,Ω̄∗

1
=φΛΩ̄∗

2
,Ω̄∗

2
ν-a.e.

The condition that (8) has ν-measure zero typically holds when Y is an absolutely

continuous random vector since (8) is typically a lower-dimensional submanifold of Y. The
existence of a least favorable distribution has been established under weak conditions for a

Euclidean sample space Y when fθ is continuous in θ and Θ0 is a closed Borel set in a finite-

dimensional Euclidean space. See Lehmann and Romano (2005) and references therein.

4This follows from Lemma 3 under the assumption that Λ∗(Θ0)>0 for all Λ∗∈M∗
0.
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4 Numerical Implementation

To numerically approximate the weight function that justifies an ad hoc test φah in terms

of WAP or produce a power function that dominates it, we aim to solve (4). Our numerical

algorithm for solving (4) is composed of an inner loop and an outer loop. The inner loop

computes an approximation to a WAP-maximizing test ϕΛΩ,Ω for a given weight function

Ω in the spirit of Moreira and Moreira (2013), Elliott et al. (2015) and Fernández et al.

(2025).5 The outer loop approximates a weight function Ω̄ that solves (4) using the inner

loop as input at each step since it involves searching over WAP-maximizing tests via the

relation (5). In Section 5, we provide theoretical convergence results justifying the use of

our algorithm for solving (4).

4.1 Inner Loop for Computing Approximate WAP-Maximizing Test

Discretize the null parameter space Θ0 into a finite set of support points Θ̄0={θ̃1,...,θ̃M0}⊂
Θ0 with M0 elements. In light of (2) (and Fubini’s Theorem), we aim to solve the following

discretized optimization problem:

max
φ∈Φ

∫
φgdν s.t.

∫
φfθ̃idν≤α, for i=1,...,M0, (9)

where Φ= {φ :Y → [0,1] :φ is measurable} and g(y) =
∫
fθ(y)dΩ(θ) for a given weight

function Ω. Its dual problem is given by

min
Λ̃≥0

max
φ∈Φ

∫
φgdν−

M0∑
i=1

λ̃i

(∫
φfθ̃idν−α

)
,

where Λ̃ = (λ̃1,...,λ̃M0). It is not hard to see that Slater’s condition is satisfied in this

setting and therefore strong duality holds between these two problems.6 This implies that

for any solution Λ̃∗ of the dual problem, any solution φ̃Λ̃∗ of

ϕ̃(Λ̃∗):=max
φ∈Φ

∫
φgdν−

M0∑
i=1

λ̃∗
i

(∫
φfθ̃idν−α

)
5Guggenberger and Huang (2024) also briefly note that their numerical algorithm for approximating

minimax regret treatment rules could also potentially be modified to numerically approximate a
WAP-maximizing test for a given weight function.

6See Theorem 1 in Chapter 8.3 in Luenberger (1997).
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is also a solution of the primal problem (9). We can operationalize this observation via

the following simple result.

Proposition 1

For any Λ̃≥0,

φ̃Λ̃∈argmax
φ∈Φ

∫
φgdν−

M0∑
i=1

λ̃i

(∫
φfθ̃idν−α

)

for

φ̃Λ̃(y)=

1 , if g(y)≥
∑M0

i=1λ̃ifθ̃i(y)

0 , if g(y)<
∑M0

i=1λ̃ifθ̃i(y).

Since φ̃Λ̃∗ is given in closed form as soon as we know Λ̃∗, it is sufficient to solve the

dual problem in order to find a tractable solution to the primal problem (9). Also, note

that given the above, we have

ϕ̃(Λ̃)=

∫
φ̃Λ̃gdν−

M0∑
i=1

λ̃i

(∫
φ̃Λ̃fθ̃idν−α

)
. (10)

This observation motivates the following algorithm for approximating φ̃Λ̃∗.

1. Initialization:

(a) Choose Λ̃(0)=(λ̃
(0)
1 ,...,λ̃

(0)
M0

)≥0 and {h̃k}∞k=0 satisfying

h̃k>0 for k=0,1,..., h̃k→0 as k→∞ and
∞∑
k=0

h̃k=∞.

(b) Compute φ̃Λ̃(0) and ϕ̃(Λ̃(0)).

2. kth iteration:

(a) Compute τ=(τ1,...,τM0), where

τi=

∫
φ̃Λ̃(k)fθ̃idν−α.
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(b) Update Λ̃(k+1)=(λ̃
(k+1)
1 ,...,λ̃

(k+1)
M0

):

λ̃
(k+1)
i =

(
λ̃
(k)
i +h̃k

τi
∥τi∥2

)
+

for i=1,...,M0,

where (a)+=max{a,0} for a∈R.

(c) Compute φ̃Λ̃(k+1) and ϕ̃(Λ̃(k+1)).

The intuition for this algorithm is essentially the same as that of Elliott et al. (2015).

However, in contrast to the algorithm in Elliott et al. (2015), our algorithm carries proven

convergence guarantees—see Section 5.7

For k large enough, a φ̃Λ̃(k) approximately solves the original optimization problem

(9) in a sense we make precise in Section 5. By Lemma 1 of Elliott et al. (2015), if

supθ∈Θ0

∫
φ̃Λ̃(k)fθdν≤α, then φ̃Λ̃(k) attains an upper bound on the WAP for the weight

function Ω for any test φ∈Φα, no matter how large k is. This size constraint needs to be

checked numerically but approximately holds by design if Θ̄0⊂Θ0 is rich enough. Finally, to

map any test φ̃Λ̃ given in Lagrange multiplier form back to the Neyman-Pearson form (3),

simply set cvΩ=
∑M0

i=1λ̃i, κΩ=1 and Λ=(λ1,...,λM0)∈∆M0 with λi= λ̃i/cvΩ for i=1,...,M0.

4.2 Outer Loop Algorithm for Computing Weight Function

Let

ϕ(Ω̄)= sup
φ∈Φα

M1∑
j=1

ωj

∫
(φ−φah)fθjdν

and

φ∗
Ω̄∈argmax

φ∈Φα

M1∑
j=1

ωj

∫
(φ−φah)fθjdν.

The function ϕ may fail to be fully differentiable but is convex, therefore enabling us to

work with the following projected subgradient descent algorithm to solve (4).

1. Initialization:

7Fernández et al. (2025) show that a slight modification to the algorithm of Elliott et al. (2015)
produces an algorithm with proven convergence guarantees.
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(a) Choose Ω̄(0)=(ω
(0)
1 ,...,ω

(0)
M1

)∈∆M1 and {hk}∞k=0 satisfying

hk>0 for k=0,1,..., hk→0 as k→∞ and
∞∑
k=0

hk=∞.

(b) Compute ϕ(Ω̄(0)) and

φ∗
Ω̄(0)∈argmax

φ∈Φα

M1∑
j=1

ω
(0)
j

∫
(φ−φah)fθjdν

using the inner loop algorithm.

2. kth iteration:

(a) Compute γ=(γ1,...,γM1), where

γi=

∫
(φ∗

Ω̄(k)−φah)fθidν, for i=1,...,M1.

(b) Update Ω̄(k+1)=(ω
(k+1)
1 ,...,ω

(k+1)
M1

):

ω
(k+1)
i =π∆

(
ω
(k)
i −hk

γi
∥γi∥2

)
for i=1,...,M1,

where π∆ denotes the Euclidean projection onto the unit simplex ∆M1.

(c) Compute ϕ(Ω̄(k+1)) and

φ∗
Ω̄(k+1)∈argmax

φ∈Φα

M1∑
j=1

ω
(k+1)
j

∫
(φ−φah)fθjdν

using the inner loop algorithm.

The intuition underlying the algorithm is simple. Since our goal is to obtain a power

envelope for φah from aWAP-maximizing test, we aim to find weights Ω̄ such that the power

of φ∗
Ω̄
is (weakly) greater than that of φah at all support points in Θ̄1. So at each iteration

k, we aim to increase the weight given to support points for which φ∗
Ω̄(k) currently has lower

power than φah. Since the weights must add to one, we therefore must decrease the weight

given to other support points. Naturally, we do so at points for which φ∗
Ω̄(k) currently has
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higher power than φah. Step 2(a) computes the support points for which we aim to increase

(decrease) the corresponding weights while Step 2(b) computes the weight adjustment.

For k large enough, a Ω̄(k) approximately solves the original optimization problem (4)

in a sense we make precise in Section 5. Step 2(b) of the algorithm relies on a Euclidean

projection onto the unit simplex ∆M1. This is a quadratic programming problem and there

are efficient computational algorithms in the literature designed for solving this problem

(e.g., Wang and Carreira-Perpinan, 2013).

4.3 Implementation Details

In this section, we provide precise recommendations on how to implement our numerical

procedure. We follow these recommendations ourselves when analyzing the applications

in Section 6.

4.3.1 Switching Tests

We follow Elliott et al. (2015) and implement switching tests when the parameter space for

the nuisance parameter is unbounded, albeit with an additional related objective. Tests

that do not (approximately) reduce to a standard test in the “standard” part of the

parameter space, typically characterized by large values of nuisance parameters, tend to

significantly sacrifice power in the “standard” part of the parameter space, a conclusively

undesirable property (see Section 4 of Elliott et al., 2015). Therefore, we do not wish

to limit the scope of our analysis on test optimality to WAP-maximizing tests that are

not able to “switch” to standard tests in the “standard” parts of the parameter space.

Indeed, ad hoc tests are typically purposefully designed to reduce to standard tests that

are known to be optimal in some sense in the “standard” part of the parameter space for

this very reason. For example, in the linear instrumental variables (IV) model, the CLR

test reduces to the two-sided t-test when the concentration parameter is large. Since our

optimality-assessment procedure relies upon approximating WAP-maximizing tests on a

finite set of support points Θ̄1⊂Θ1, comparing to WAP-maximzing tests that do no allow

for “switching” would inherently disadvantage an ad hoc test that reduces to a standard

test in the “standard” part of the parameter space because the WAP-maximizing test would

place zero weight over any region in Θ1 outside of Θ̄1. Due to the typical noncompactness of

the parameter spaces Θ0 and Θ1, there are also numerical benefits to focusing on switching

tests, for which we also refer the interested reader to Section 4 of Elliott et al. (2015).

Since an ad hoc test can immediately be seen as suboptimal when it does not reduce to

a known “standard best test” in the “standard” part of the parameter space, we focus here
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on ad hoc tests that do. Section 4.1 of Elliott et al. (2015) formalizes how the “standard”

part of the parameter space can be characterized in terms of large values of a parameter δ.

Let δS be the point where the “standard” part of the parameter space begins in the sense

that for δ>δS the ad hoc test and the standard test have essentially the same rejection

profile. Let D(Y ) and δSP denote a statistic and a “switching point” such that with

probability very close to zero, D(Y )>δSP whenever δ≤δS. The motivation for this choice

is that we only want the test to which we compare φah to switch to a standard test φS that

has the best rejection profile in the standard part of the parameter space when we know

that the ad hoc test has essentially the same rejection profile, enabling us to analyze its

optimality properties outside of this region. In practice, all this amounts to changing φ̃Λ̃(y)

in the inner loop algorithm from the expression in Proposition 1 to the switching form

φ̃Λ̃(y)=1(D(y)>δSP )φS(y)+1(D(y)≤δSP )1

(
g(y)≥

M0∑
i=1

λ̃ifθ̃i(y)

)
.

See Elliott et al. (2015) for a formal definition of the standard best test φS and further

details on switching tests.

4.3.2 Numerical Approximation Thresholds

Acknowledging that we cannot perfectly compute Ω̄∗ (due to the numerical approximation

of the outer loop) or φ∗
Ω for any Ω∈∆M1 (due to the numerical approximation of the inner

loop), let φ̂∗
Ω̂
denote the test obtained from the outer loop algorithm. In addition to potential

numerical error arising from the use of our algorithms, we must rely on approximations of

rejection probabilities within step 2.(a) of the inner loop algorithm and step 2.(a) of the outer

loop algorithm. Nevertheless, the theoretical results in the following section and standard

laws of large numbers imply that if we apply our algorithms with enough iterations and

simulate rejection probabilities from enough Monte Carlo replications, these approximation

errors will be small so that (i)
∫
φ̂∗
Ω̂
fθ̃dν cannot lie substantially above α for any θ̃∈Θ̄0

and (ii)
∫
(φ̂∗

Ω̂
−φah)fθdν cannot lie substantially below zero for any θ∈Θ̄1. We therefore

use the following numerical approximation threshold rules for some small threshold ϵ>0:

• For θ∈Θ0, we conclude that
∫
φ̂∗
Ω̂
fθdν⪅α if

∫
φ̂∗
Ω̂
fθdν≤α+ϵ.

• For θ∈Θ1, we conclude that

–
∫
(φ̂∗

Ω̂
−φah)fθdν⪅0 if

∫
(φ̂∗

Ω̂
−φah)fθdν<ε,

–
∫
(φ̂∗

Ω̂
−φah)fθdν⪆0 if

∫
(φ̂∗

Ω̂
−φah)fθdν>−ε,
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–
∫
(φ̂∗

Ω̂
−φah)fθdν≈0 if |

∫
(φ̂∗

Ω̂
−φah)fθdν|≤ε.

4.3.3 Constructing the Approximate Power Envelope

Using the numerical approximation threshold rules above, we implement the algorithm

by potentially adding support points according to the following steps:

1. For a given Θ̄0 and Θ̄1, run the inner and outer loop algorithms until
∫
φ̂∗
Ω̂
fθ̃dν⪅α

for all θ̃∈Θ̄0 and
∫
(φ̂∗

Ω̂
−φah)fθdν⪆0 for all θ∈Θ̄1. Proceed to step 2.

2. For a fine grid Θf
0⊂Θ0, compute

∫
φ̂∗
Ω̂
fθ̃dν for each θ̃∈Θf

0.

• If
∫
φ̂∗
Ω̂
fθ̃dν⪅α for all θ̃∈Θf

0, proceed to step 3.

• Otherwise, add (some of) the values in Θf
0 for which

∫
φ̂∗
Ω̂
fθ̃dν ⪅̸α to Θ̄0 and

return to step 1.

3. For a fine grid Θf
1⊂Θ1, compute

∫
(φ̂∗

Ω̂
−φah)fθdν for each θ∈Θf

1.

• If
∫
(φ̂∗

Ω̂
−φah)fθdν⪆0 for all θ∈Θf

1 , then φ̂∗
Ω̂
constitutes an approximate power

envelope and either

–
∫
(φ̂∗

Ω̂
−φah)fθdν ≈ 0 for all θ ∈Θf

1 ⇒ Conclude that φah is effectively

optimal.

–
∫
(φ̂∗

Ω̂
−φah)fθdν ⪅̸0 for some θ∈Θf

1 ⇒ Conclude that φah is effectively

dominated.

• Otherwise, add (some of) the values in Θf
1 for which

∫
(φ̂∗

Ω̂
−φah)fθdν ⪆̸0 to

Θ̄1 and return to step 1.

The motivation for step 2. is to ensure φ̂∗
Ω̂
has approximately correct size, in analogy

with step 8. of Elliott et al.’s (2015) algorithm. Similarly, step 3. is used to ensure that

the power function of φ̂∗
Ω̂
provides a good approximation to that of a WAP-maximizing

test that yields a power envelope for φah.

4.3.4 Approximating Rejection Probabilities

To approximate rejection probabilities, we rely on Monte Carlo simulation but incorporate

several modifications designed to improve the numerical stability and convergence of

our algorithms. These adjustments impose qualitative features that the true rejection

probabilities are known to satisfy, thereby reducing simulation noise that would otherwise

distort the optimization.
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First, in all examples we consider, the power function of the ad hoc test is continuous in

θ. Independent simulation draws across different θ values produce artificially jagged power

functions. To avoid this, we employ common random numbers by generating a single

set of baseline draws and obtaining simulated values of Y for each parameter value by

transforming these baseline draws (i.e., by translating them by θ). This induces smoothness

in the simulated rejection probabilities.

Second, we ensure that key moments of the distribution of Y are matched exactly

in the simulations. For example, when Y is standard bivariate normal, we standardize

the baseline draws to have mean zero and identity covariance. In some instances we

also impose symmetry by symmetrizing the baseline draws. For the bivariate normal

case, this guarantees that the marginal distributions are symmetric around zero. In the

boundary-robust testing application of Section 6.2, this ensures that the estimated power

function of the two-sided t-test is symmetric, as implied by theory.

Third, we choose the random seed so that the estimated null rejection probabilities

are close to the nominal level whenever the true null rejection probabilities are known to

equal the nominal level. For example, in the linear IV model the CLR test is similar by

construction. If the simulation draws happen to make the CLR test appear to overreject

at some points in Θ̄0, then the algorithm—which searches for a WAP-maximizing test

that weakly dominates the CLR test while satisfying the size constraint—may struggle to

converge. Ensuring that simulated null rejection rates are close to their theoretical values

avoids these problems and yields more reliable numerical results.

5 Theoretical Justification of Numerical Implementation

In this section, we present the theoretical justification for both the inner and outer loop

algorithms for computing approximate WAP-maximizing tests that can produce a power

envelope for a given ad hoc test.

5.1 Inner Loop

We now present the theoretical result guaranteeing the convergence of the inner loop

algorithm for minimizing ϕ̃ in (10), which as discussed in Section 4.1, also solves the primal

problem (9). This algorithm is a dual (projected) subgradient descent algorithm and

therefore its convergence properties readily follow from known results in the literature. Let

ϕ̃(k)= min
i=0,1,...,k

ϕ̃(Λ̃(i)).
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Theorem 3

The inner loop algorithm described in Section 4.1 satisfies for any k≥1,8

ϕ̃(k)−min
Λ̃≥0

ϕ̃(Λ̃)≤
√
M0max{1−α,α}∥Λ̃

(0)−Λ̃∗∥22+
∑k

i=0h̃
2
i

2
∑k

i=0h̃i

=:Γ̃k.

The tuning parameter choice

h̃i=
ε√

M0max{1−α,α}
, for i=0,1,...

with ε>0 implies

ϕ̃(N)−min
Λ̃≥0

ϕ̃(Λ̃)≤ε

for all N≥max{1−α,α}M0∥Λ̃(0)−Λ̃∗∥22/ε2.

The convergence rate is controlled by Γ̃k, which depends on the starting value Λ̃(0)

through ∥Λ̃(0)−Λ̃∗∥22 and on the tuning parameter sequence {h̃k}. It holds that Γ̃k→0

as k→∞ if
∑

h̃k =∞ and
∑

h̃2
k <∞. The particular proposed choice of the tuning

parameters {h̃k} is taken from Section 3.2.3 of Nesterov et al. (2018). This choice is

convenient as it only depends on known quantities and guarantees that the algorithm finds

an ε-solution if the number of iterations is sufficiently large.

Elliott et al. (2015) also propose an algorithm for approximating φ̃Λ̃∗ but they do

not provide any convergence guarantees analogous to our Theorem 3 for our inner loop

algorithm. However, while we were writing this paper, Fernández et al. (2025) proposed

an algorithm that slightly modifies that of Elliott et al. (2015) and produces a test that

provably approximates φ̃Λ̃∗ with convergence guarantees analogous to our Theorem 3 as

well as bounds the Monte Carlo error. Their results also enable them to bound the size-

distortions of their approximately optimal test and provide specific theoretically-grounded

tuning parameter recommendations for an updating parameter, number of iterations and

initial weights. Either the original algorithm of Elliott et al. (2015), the new modified

algorithm of Fernández et al. (2025) or the linear-programming algorithm of Moreira and

Moreira (2013) can be used in place of our inner loop algorithm if desired.

8As there are potentially multiple solutions Λ̃∗ of the dual problem, the distance on the right hand
side can be interpreted as the smallest distance of Λ(0) to the set of solutions.
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5.2 Outer Loop

Moving to the theoretical result guaranteeing the convergence of the outer loop algorithm

for approximating the weight function that solves (4), we again note that since this algo-

rithm is a (projected) subgradient descent algorithm, its convergence properties readily

follow from known results in the literature. Let

ϕ(k)= min
i=0,1,...,k

ϕ(Ω̄(i)).

Theorem 4

The outer loop algorithm described in Section 4.2 satisfies for any k≥1,9

ϕ(k)− min
Ω̄∈∆M1

ϕ(Ω̄)≤
√
M1

∥Ω(0)−Ω̄∗∥22+
∑k

i=0h
2
i

2
∑k

i=0hi

=:Γk.

The tuning parameter choice

hi=
ε√
M1

, for i=0,1,...

with ε>0 implies

ϕ(N)− min
Ω̄∈∆M1

ϕ(Ω)≤ε

for all N≥M1∥Ω(0)−Ω̄∗∥22/ε2.

The convergence rate is controlled by Γk, which depends on the starting value Ω(0)

through ∥Ω(0)− Ω̄∗∥22 and on the tuning parameter sequence {hk}. It holds Γk → 0 as

k→∞ if
∑

hk=∞ and
∑

h2
k<∞, which as with the inner loop is a convenient choice

taken from Section 3.2.3 of Nesterov et al. (2018).

6 Applications

In this section, we apply our results and algorithms to shed new light on the optimality

properties of a test whose optimality properties have already been thoroughly analyzed in the

literature as well as a brand-new test that has not yet. Specifically, we analyze the optimality

of the CLR test of Moreira (2003) and the test implied by the inequality-imposed confidence

9As there are potentially multiple solutions Ω̄∗ of (4), the distance on the right hand side can be
interpreted as the smallest distance of Ω̄(0) to the set of solutions.
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interval of Cox (2024). Throughout this section, the nominal level α is taken equal to 5%.

6.1 CLR Test in the Homoskedastic Linear IV Model

As alluded to in the introduction, Andrews et al. (2006, 2008) (AMS06 and AMS08, hence-

forth) investigate the optimality of the CLR test in the homoskedastic linear IV model,

holding the variance matrix for the reduced-form errors fixed in their analysis (coined as

the “fixed-Ω design” by Van de Sijpe and Windmeijer, 2023). In this setting, AMS06

construct an asymptotically efficient two-sided point-wise power envelope for invariant

similar tests as the rejection probabilities arising from a collection of point-optimal invariant

similar tests, finding the striking result that the CLR test numerically attains this power

envelope. AMS08 further strengthen this result by showing that one essentially obtains

the same power envelope without imposing similarity. However, Andrews et al. (2019)

(AMY, henceforth) provide a counterpoint to these optimality results by finding that the

CLR test falls short of a point-wise power envelope that is constructed by varying the

value of the parameter of interest and keeping its hypothesized value fixed, rather than

the more standard analysis that keeps the value of the parameter of interest fixed and

varies its hypothesized value. In recent work, Van de Sijpe and Windmeijer (2023) show

that this latter analysis is essentially the same as the standard analysis that varies the

parameter of interest while keeping its hypothesized value fixed but instead of holding the

variance matrix for the reduced-form errors fixed, fixes the variance matrix of the structural

and first-stage errors (coined as the “fixed-Σ design” by Van de Sijpe and Windmeijer,

2023). Van de Sijpe and Windmeijer (2023) further argue that the fixed-Ω design implicitly

favors the power function of the CLR test and that the fixed-Σ design is better suited for

analyzing power in cases of low to moderate endogeneity as well as differing signs of the

parameter of interest and the correlation between the structural errors in the IV model.

These recent results of AMY and Van de Sijpe and Windmeijer (2023) motivate us

to revisit the optimality analysis of the CLR test, looking at both the fixed-Ω and fixed-Σ

designs. Analyzing the CLR test under the fixed-Σ design using our new numerical

optimality assessment enables us to assess whether the previously examined point-wise

power envelopes of AMY may simply be setting an unattainable power bound. Before

proceeding, we formally introduce the linear IV model and the CLR test, and briefly

describe the power envelope of AMS06. We closely follow the notation of AMS06.

The linear IV model is given by

y1=y2β+u,
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y2=Zπ+v2,

where y1,y2,u,v2 ∈Rn, Z ∈Rn×k, β ∈R, and π ∈Rk. Here, y1, y2 and Z are observed,

where y1 denotes the outcome of interest, y2 the (potentially) endogenous regressor of

interest, and Z the instruments.10 The random vectors u and v2 are unobserved structural

error terms. We assume that Z is fixed. Plugging the reduced-form equation for y2 into

the structural equation for y1, we obtain the reduced-form equation for y1, i.e.,

y1=Zπβ+v1,

where v1=u+v2β. The resulting set of reduced-form equations can be written as11

Y =Zπa′+V,

where

Y =[y1,y2], V =[v1,v2] and a=(β,1)′.

Let Vi denote the i
th row of V and assume that Vi is iid across i with

Vi∼N (0,Ω).

Having defined the linear IV model, we can now formally state the testing problem of

interest, which is given by

H0 : β=β0, π∈Rk vs. H1 : β∈R\{β0}, π∈Rk.

We follow AMS06 and further simplify this testing problem. To that end, we define the

following transformations of Y :

S=(Z′Z)−1/2Z′Y b0·(b′0Ωb0)−1/2 and T=(Z′Z)−1/2Z′YΩ−1a0·(a′0Ωa0)−1/2,

where b0=(1,−β0)
′ and a=(β0,1)

′. Lemma 2 of AMS06 shows that S and T are jointly

normally distributed and independent. AMS06 argue that the coordinate system used to

10We omit additional exogenous regressors without loss of generality, as the above model can always
be obtained by partialling them out.

11Here, we use Y to be consistent with the notation in AMS06. This Y should, however, not be
confused with the random element Y that enters the general testing problem in Section 3.1.
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specify S and T should not affect inference and, therefore, only consider statistics that

are invariant to rotation of the coordinate system. This is achieved by considering test

statistics that only depend on S and T through

Q=

[
QS QST

QST QT

]
=

[
S′S S′T

T ′S T ′T

]
;

see Theorem 1 in AMS06 and the surrounding discussion. The distribution of Q is

noncentral Wishart and, importantly, depends on π only through

λ=π′Z′Zπ,

which implies that if we restrict our attention to test statistics based on Q, the testing

problem of interest simplifies to

H0 : β=β0, λ∈R+ vs. H1 : β∈R\{β0}, λ∈R+. (11)

The LR statistic for testing (11) can be written as

LR=
1

2

(
QS−QT+

√
(QS−QT )2+4Q2

ST

)
.

Moreira (2003) observes thatQT is a sufficient statistic for λ underH0. This, in turn, allows

the construction of a size α test using conditional critical values. In particular, the CLR test

rejects when LR>cv1−α(QT ), where cv1−α(QT ) is such that Pβ0(LR>cv1−α(QT )|QT )=α.

The power envelope proposed by AMS06 is constructed from a collection of point-

optimal invariant similar two-sided (POIS2) tests. Invariance is imposed by restricting

attention to tests that only depend on the data through Q. In the context at hand,

imposing similarity is tantamount to relying on conditional critical values, conditional

on the observed value of QT . This avoids the need for approximating the least-favorable

distribution, as done in AMS08. The two-sidedness that AMS06 consider is such that the

resulting test is asymptotically efficient, i.e., the test has the same power as the two-sided

t-test when instruments are strong (λ=∞). The corresponding point-optimal test, POIS2,

puts equal weight on (β∗,λ∗) and (β∗
2,λ

∗
2), where the latter is a function of the former,

ensuring asymptotic efficiency. The corresponding power envelope is then mapped out by

the POIS2 test as (β∗,λ∗) varies.
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6.1.1 Fixed-Ω Design

AMS06 consider a fixed-Ω design in their simulations, setting Ω11=Ω22=1 and β0=0.

They numerically compare the power of the CLR test to their point-wise power envelope

as functions of β and λ for various values of k and Ω12 (ρ in their paper). For given values

of k and Ω12, they consider several λ-slices of the CLR power function and the power

envelope, for which β is varied over a fine grid for a given value of λ. An example of such

a λ-slice is given in Figure 3.
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(a) Screenshot of Figure 1(c) in AMS06
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(b) Power of CLR test together with our APE

Figure 3: Power of CLR test as a function of β for λ=5 together with AMS06’s power envelope
and our approximate power envelope for k=5 and Ω12=0.5.

Panel (a) of Figure 3 is a screenshot of Figure 1(c) in AMS06, which shows the power

of the CLR test (and the Anderson-Rubin and Lagrange multiplier tests of Anderson and

Rubin, 1949 and Kleibergen, 2002) together with their proposed power envelope as β varies

and λ=5 for k=5 and Ω12=0.5. The power of the CLR test and the power envelope are

virtually indistinguishable (or “very close” in this and many other figures in AMS06 where

k, Ω12, and λ are varied), which leads AMS06 to conclude that the CLR test attains the

power envelope “in a numerical sense”.

We reconsider the above testing problem for k = 5 and Ω12 = 0.5. In the case at

hand, Q takes the role of Y and λ replaces δ.12 We set λS=75 and λSP=160, where QT

takes the role of D(Y ), since the probability that QT >λSP is less than 0.01 whenever

λ≤λS. The standard test is implemented as the Lagrange multiplier test, which rejects

12In principle, we could use (S,T) as Y , replace δ by π and investigate the optimality of the CLR
test in the class of asymptotically efficient tests. However, the computational cost of approximating of
Λ increases rapidly in the dimension of the nuisance parameter.
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H0 when Q2
ST/QT > χ2

1−α(1).
13 Note that switching to the standard test (for large λ)

is equivalent to imposing asymptotic efficiency as defined by AMS06. We obtain our

APE using Θ̄0 = {(β,λ) : β =0, λ∈ {1,5,10,...,30,40,...,170}} and Θ̄1 = {(b/
√
λ,λ) : b∈

{−4,−3,−2,2,3,4}, λ∈{1,5,10,...,30,40,...,170}}. Implementation details, including the

number of simulation draws and the choices of {hk}, Θf
0 and Θf

1 are given in Appendix A.3.

Panel (b) of Figure 3 shows the power function of the CLR test (for the same parameter

constellation as in panel (a)) together with our APE. As in panel (a), the power of the

CLR test is indistinguishable from the power envelope for the λ-slice under consideration.

Instead of considering multiple λ-slices, we produce a heatmap showing the difference

between our APE and the power of the CLR test over a grid of values for β and λ.14 This

heatmap is shown in Figure 4.
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Figure 4: Difference between APE and power of CLR test in percentage points for k=5 and
Ω12=0.5.

The differences between the APE and the power of the CLR test are very close to zero

over the entire grid; note that the scale on the right ranges only from -0.5 percentage points

(pp) to 0.5pp. In fact, the largest difference (in absolute value) is below 0.1pp. We therefore

conclude that the CLR test is effectively optimal (for k=5 and Ω12=0.5). Our finding

is complementary to that of AMS06: we find that the CLR test is (effectively) optimal

13For λ>λS=75, the CLR test, the Lagrange multiplier test and the two-sided t-test all approximately
coincide.

14The grid is given by {(b/
√
λ,λ) : b∈{−3.5,−3,...,3.5}, λ∈{0.1,10,20,...,170}}. Note that this grid

does not coincide with Θ̄0∪Θ̄1 and that the underlying rejection probabilities are evaluated using draws
that are independent from those used to obtain the APE. This protects from a potential winner’s curse,
cf. Andrews et al. (2024).
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in the class of invariant asymptotically efficient tests, while AMS06 find the stronger result

of point-optimality in the smaller class of tests that are similar and two-sided (in the sense

that they impose).15

6.1.2 Fixed-Σ Design

As shown by Van de Sijpe and Windmeijer (2023), AMY consider a fixed-Σ design in their

simulations, where the variance matrix of the structural errors u and v2, Σ, is held constant.

AMY set Σ11=Σ22=1 and consider several values for Σ12 (ρuv in their paper). Their

Figure 1 shows the power functions of the CLR test (and the Anderson-Rubin test) and

the power envelope of AMS06 based on the POIS2 test for different values of Σ12, keeping

k=10 and λ=15 fixed. In contrast to AMS06, however, AMY set β=0 and vary β0.

480 Andrews, Marmer, and Yu Quantitative Economics 10 (2019)

F 1. The power functions of the POIS2, CLR, and AR tests for k = 10, λ = 15, and
ρuv = 0#0$5#0$9.
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(a) Screenshot of Figure 1(b) in AMY
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(b) Power of CLR test together with our APE

Figure 5: Power of CLR test as a function of β0 for λ=15 together with AMS06’s power
envelope and our APE for k=10 and Σ12=0.5.

Panel (a) of Figure 5 is a screenshot of Figure 1(b) in AMY, where Σ12=0.5. The power

of the CLR test is on the power envelope for values of β0
√
λ between 0 and 5, but drops

below for values further away from 0. The maximal gap of the CLR test’s power function

with the POIS2 power envelope is around 3–4pp. Based on this finding, AMY conclude

that the finding of AMS06 “that the CLR test is essentially on the [...] power envelope

does not hold...”. However, as discussed extensively above, this does not mean that the

CLR test is not optimal since it is unclear if the point-wise power envelope used by AMY is

attainable. We therefore reconsider the testing problem considered in AMY, where k=10

15Our finding is also complementary to that of AMS08: while we find a weaker result (optimality as
opposed to point-optimality), we do not impose two-sidedness (in the sense that they impose).
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and Σ12=0.5, and construct our APE. We set λS=160 and λSP=320. The underlying

Θ̄0 and Θ̄1 as well as additional implementation details are provided in Appendix A.3.

Panel (b) of Figure 5 displays the power function of the CLR test (for the same

parameter constellation as in panel (a)) together with our APE. We find that the CLR

test attains our APE, at least for the λ-slice under consideration. As before, we produce

a heatmap showing the difference between our APE and the power of the CLR test over

a grid of values for β and λ, while setting β0 =0. While this setting seemingly differs

from the setting of AMY (where β=0 while β0 varies), it follows from Corollary 1 of Van

de Sijpe and Windmeijer (2023) and the subsequent discussion that the resulting power

curves are simply mirror images of one another.16 The heatmap is shown in Figure 6.
Di,erence in power (APE minus CLR) in pp

-
p
6

-40 -30 -20 -10 0 10 20 30 40

6

0

20

40

60

80

100

120

140

160

-0.5pp

-0.4pp

-0.3pp

-0.2pp

-0.1pp

0.0pp

0.1pp

0.2pp

0.3pp

0.4pp

0.5pp

Figure 6: Difference between APE and power of CLR test in percentage points for k=10 and
Σ12=0.5.

The heatmap in Figure 6 uses the same scale as the heatmap in Figure 4 and leads

us to the same conclusion: the difference between our APE and the power function of the

CLR test is very close to zero across the entire grid. We conclude that the CLR test is,

in fact, effectively optimal under both the fixed-Ω and fixed-Σ designs.

6.2 Test Implied by IICI in Boundary Problem

A line of recent work has examined testing problems involving uniformly-valid inference

when nuisance parameters may lie on or near the boundary of the parameter space.17

16That is, the power of the CLR test for testing H0 :β=β0 when the true value of β, say β∗, is equal
to 0, is equal to the power of the CLR test for testing H0 :β=0 when β∗=−β0.

17See, for example, Andrews and Guggenberger (2010), Ketz (2018), Ketz and McCloskey (2025) and
Cavaliere et al. (2025).
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Focusing on the special case of a scalar nuisance parameter to analyze the properties of

a new confidence interval proposed by Cox (2024), we work with the Gaussian experiment

Y =

(
Y1

Y2

)
∼N

((
β

δ

)
,

(
1 ρ

ρ 1

))
,

where β is the scalar parameter of interest and δ≥0 is a scalar nuisance parameter. As

discussed in Section 3.1, this formulation corresponds to the asymptotic behavior of a

broad class of finite-sample models (see, e.g., Elliott et al., 2015 and Ketz and McCloskey,

2025). Formally, the testing problem of interest is given by18

H0 :β=β0, δ≥0 vs. H1 :β ≠β0, δ≥0. (12)

Cox (2024) proposes a new confidence interval for β, called the inequality-imposed

confidence interval (IICI). The IICI has several desirable properties: (i) it is easy to compute,

(ii) it does not require simulation or tuning parameters, (iii) it is adaptive, and (iv) it

has weakly shorter length than the standard two-sided confidence interval that ignores

the information contained in Y2. The IICI is constructed as the union of the standard

two-sided CI when Y2 is large and positive, the two-sided confidence interval that imposes

δ=0 when Y2 is large and negative, and the intersection of the two when Y2 is close to

zero; see Panel A of Figure 1 in Cox (2024) for a visual illustration. Formally, the lower

and upper bounds of the (1−α)-nominal IICI are given byY1−z1−α/2 if Y2>c,

Y1−ρY2−
√
1−ρ2z1−α/2 otherwise,

and Y1+z1−α/2 if Y2>−c,

Y1−ρY2+
√
1−ρ2z1−α/2 otherwise,

respectively, where c=
1−
√

1−ρ2

ρ
z1−α/2 and z1−α/2 denotes the 1−α/2 quantile of theN (0,1)

distribution. The test implied by the IICI rejects H0 in (12) when β0 lies outside of it.

To gauge the optimality of the IICI, Cox (2024) compares the WAP of the test im-

18This limiting Gaussian formulation also applies to problems for which nuisance parameters are
restricted to be greater/less than or equal to any known value via a simple affine transformation.
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Figure 7: Power of the nearly optimal test of Elliott et al. (2015) and the test implied by the
IICI for ρ=0.7 and δ=1.

plied by the IICI with the power bound on WAP derived in Elliott et al. (2015) (EMW,

henceforth), using equal weight on β=−2 and β=2 and uniform weights on δ ∈ [0,9].

For ρ=0.7, the WAP of the IICI is 53.1% and the WAP of the EMW power bound is

53.5%. Using ϵ=0.005 (following EMW), Cox (2024) concludes that the test implied by

the IICI is nearly optimal in the sense of EMW, as its WAP lies within ϵ of the power

bound. However, some ambiguity with respect to the optimality of the test remains:19

as shown in Figure 7, the power functions of the test implied by the IICI and the nearly

optimal test of EMW (under the above weights) cross, which prevents us from concluding

whether the test implied by the IICI is optimal or dominated.

To address this ambiguity, we compute our APE for the testing problem with ρ=0.7.

We follow EMW and choose δSP=6. The standard test is the two-sided t-test. We use

Θ̄1={(b,d) : b∈{−3,−2,−1,1,2,3}, d∈{0,0.5,...,8}} and follow EMW in discretizing Θ0

in terms of “base” distributions. Details on this and other implementation choices are

provided in Appendix A.3. As in Section 6.1, we produce a heatmap showing the difference

between our APE and the power of the test implied by the IICI over a grid of values for

β and δ, fixing β0=0; see Figure 8.

The scale of the heatmap is the same as for the heatmaps in Section 6.1. The difference

between the APE and the power of the test implied by the IICI is close to zero over a large

19This is related to the fact that ϵ is given as an absolute (rather than a relative) value, making it
difficult to interpret what it means for the difference in WAPs to be “small”.
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Figure 8: Difference between APE and power of test implied by the IICI in percentage points
for ρ=0.7.

portion of the grid. However, there are some values for which the test implied by the IICI

falls short of the APE—the maximal difference is about 0.3pp and occurs at (β,δ)=(2,1).

We, therefore, conclude that the test implied by the IICI is effectively dominated, albeit

by a very small margin. In fact, the WAPs of the test underlying the APE and the test

implied by the IICI are 52.532% and 52.529%, respectively, with the corresponding weights

given in Appendix A.3. Abstracting from numerical approximations, the WAP of the

test implied by the IICI is thus within 0.00003 of the lowest possible upper bound (given

Θ̄1), improving on the finding in Cox (2024) and providing a strong argument in favor

of using the IICI in practice. Although the test is effectively dominated, the loss in WAP

is negligible considering the simplicity of the procedure.

34



A Appendix

A.1 Proofs of Main Results

Proof of Theorem 1: Starting with the first claim of the theorem, for any φ∈Φα,

min
j=1,...,M1

∫
(φ−φah)fθjdν= inf

Ω̄∈∆M1

M1∑
j=1

ωj

∫
(φ−φah)fθjdν. (13)

This can be seen as follows: for any Ω̄∈∆M1,

M1∑
j=1

ωj

∫
(φ−φah)fθjdν≥ min

j=1,...,M1

∫
(φ−φah)fθjdν

M1∑
i=1

ωi= min
j=1,...,M1

∫
(φ−φah)fθjdν,

and therefore

inf
Ω̄∈∆M1

M1∑
j=1

ωj

∫
(φ−φah)fθjdν≥ min

j=1,...,M1

∫
(φ−φah)fθjdν.

Moreover, since the canonical basis vectors of RM1 are included in ∆M1,

min
j=1,...,M1

∫
(φ−φah)fθjdν≥ inf

Ω̄∈∆M1

M1∑
j=1

ωj

∫
(φ−φah)fθjdν

and (13) follows. Thus,

sup
φ∈Φα

min
j=1,...,M1

∫
(φ−φah)fθjdν= sup

φ∈Φα

inf
Ω̄∈∆M1

M1∑
j=1

ωj

∫
(φ−φah)fθjdν.

Further, in Lemma 2, we show that the Ky Fan minimax theorem implies

sup
φ∈Φα

inf
Ω̄∈∆M1

M1∑
j=1

ωj

∫
(φ−φah)fθjdν= inf

Ω̄∈∆M1

sup
φ∈Φα

M1∑
j=1

ωj

∫
(φ−φah)fθjdν. (14)

The fact that Φ∗≠∅ follows directly from Lemma 1.

To see that ∆∗
M1

≠∅, note that since the criterion function on the right hand side of
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(14) is continuous in (Ω̄,φ), ϕ :∆M1→R given by

ϕ(Ω̄)= sup
φ∈Φα

M1∑
j=1

ωj

∫
(φ−φah)fθjdν,

is lower semi-continuous and therefore by compactness of ∆M1, the infimum is attained

at some Ω̄∗=(ω∗
1,...,ω

∗
M1

)∈∆M1:

sup
φ∈Φα

M1∑
j=1

ω∗
j

∫
(φ−φah)fθjdν= inf

Ω̄∈∆M1

sup
φ∈Φα

M1∑
j=1

ωj

∫
(φ−φah)fθjdν. (15)

To show (7), note that for any φ∗∈Φ∗

M1∑
j=1

ω∗
j

∫
(φ∗−φah)fθjdν≥ inf

Ω̄∈∆M1

M1∑
j=1

ωj

∫
(φ∗−φah)fθjdν

= sup
φ∈Φα

inf
Ω̄∈∆M1

M1∑
j=1

ωj

∫
(φ−φah)fθjdν

= inf
Ω̄∈∆M1

sup
φ∈Φα

M1∑
j=1

ωj

∫
(φ−φah)fθjdν

= sup
φ∈Φα

M1∑
j=1

ω∗
j

∫
(φ−φah)fθjdν,

where the inequality follows by definition of the infimum, the first equality by the definition

of Φ∗ and (13), the second by (14) and the last by (15). By the definition of the supremum,

we also have

sup
φ∈Φα

M1∑
j=1

ω∗
j

∫
(φ−φah)fθjdν≥

M1∑
j=1

ω∗
j

∫
(φ∗−φah)fθjdν.

Therefore, the inequality in the preceding display can be replaced by an equality and (7)

follows. □

Proof of Theorem 2: Under the given conditions, the first statement follows directly

from Lemma 3. The second statement follows from the first, together with equation (7),

which implies that φ∗
1 and φ∗

2 are WAP-maximizing tests with respect to Ω̄∗
1 and Ω̄∗

2. □
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Proof of Proposition 1: For any φ∈Φ,

∫
φgdν−

M0∑
i=1

λ̃i

(∫
φfθ̃idν−α

)
=

∫
φ

(
g−

M0∑
i=1

λ̃ifθ̃i

)
dν+α

M0∑
i=0

λ̃i,

which is clearly maximized at φ̃Λ̃. □

Proof of Theorem 3: The proof follows from Theorem 3.2.2 of Nesterov et al. (2018).

It only remains to bound the Lipschitz constant of ϕ̃ and derive its subdifferential, which

is done in Lemma 4. The second claim follows from equations (3.2.16)–(3.2.21) in section

3.2.3 in Nesterov et al. (2018). □

Proof of Theorem 4: The proof follows from Theorem 3.2.2 of Nesterov et al. (2018).

It only remains to bound the Lipschitz constant of ϕ and derive its subdifferential, which

is done in Lemma 5. The second claim follows from equations (3.2.16)–(3.2.21) in section

3.2.3 in Nesterov et al. (2018). □

A.2 Auxiliary Results

Lemma 1 (Based on Theorem 6.1.5 of Rüschendorf (2014))

For Pθ the probability measure associated with density function fθ, if P={Pθ :θ∈Θ}≪ν,

there exists a test φ∗∈Φα for any α∈ [0,1] satisfying

inf
θ∈Θ1

∫
(φ∗−φah)fθdν= sup

φ∈Φα

inf
θ∈Θ1

∫
(φ−φah)fθdν.

Proof: The existence result relies on properties of the set of test functions Φ and

the weak-∗ topology on the space of measurable and ν-essentially bounded functions

L∞(ν) := {φ ∈ L(Y) : ∃K ∈ R s.th. |φ| ≤ Kν − a.e.}, where L(Y) denotes the set of

measurable functions mapping Y into R. As usual, we endow L∞(ν) with the norm

∥φ∥∞ :=inf{K : |φ|≤K ν−a.e.} and treat functions φ,φ′∈L∞(ν) as equal when φ=φ′

ν-a.e. Further, a sequence {φn}⊂L∞(ν) converges with respect to the weak-∗ topology if∫
φnδdν→

∫
φδdν ∀δ∈L1(ν),

as n→∞, where L1(ν) denotes the space of (equivalence classes) of absolutely ν-integrable

functions.

The importance of the weak-∗ topology lies first in the Banach-Alaoglu theorem,

according to which the closed unit ball B={φ∈L∞(ν) :∥φ∥∞≤1} is weak-∗ compact.
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Since P≪ν, Φ is a weak-∗ closed subset of B and therefore Φ is weak-∗ compact. Secondly,

the power function β :Φ→ [0,1]Θ, φ 7→βφ is weak-∗ continuous. In order to see this, note that
β is continuous if and only if φ 7→βφ(θ) is continuous for all θ∈Θ. Now, since for all θ∈Θ,

βφ(θ)=

∫
φ
dPθ

dν
dν

with dPθ
dν

∈L1(ν), the continuity follows by the definition of weak-∗ convergence, given

above. Thus, not only is Φ weak-∗ compact, but also the set of power function differences

G := {βφ − βah : Θ → [−1,1]|∀θ ∈ Θ s.th. βφ(θ)− βah(θ) =
∫
(φ−φah)fθdν} is weak-∗

compact as a continuous image of a compact set.20

These observations readily imply the claimed existence of such minimax-type tests. Since

Φα=
⋂
θ∈Θ0

{φ∈Φ:βφ(θ)≤α},

Φα is a weak-∗ closed subset of Φ and hence weak-∗ compact. Now, let κ :Φα→ [−1,1] be

defined as κ(φ):=infθ∈Θ1{βφ(θ)−βah(θ)}. By continuity of φ 7→βφ(θ)−βah(θ), κ is upper

semicontinuous and hence attains its supremum on the compact set Φα. Thus, there exists

φ∗∈Φα such that

κ(φ∗)= inf
θ∈Θ1

{βφ∗(θ)−βah(θ)}= sup
φ∈Φα

inf
θ∈Θ1

{βφ(θ)−βah(θ)}

and φ∗ is a minimax test. □

Lemma 2

If P={Pθ :θ∈Θ}≪ν, then

sup
φ∈Φα

inf
Ω∈∆

∫∫
(φ−φah)fθdνdΩ(θ)= inf

Ω∈∆
sup
φ∈Φα

∫∫
(φ−φah)fθdνdΩ(θ),

where ∆ denotes the set of probability measures over either Θ1 or ∆M1.

Proof: Note that ∆ and Φα are convex and that r(Ω,φ):=
∫∫
(φ−φah)fθdνdΩ(θ) is linear

in both of its arguments. Further, by similar arguments to those in the proof of Lemma 1,

φ 7→r(Ω,φ) is weak-∗ continuous for all Ω∈∆ and Φα is weak-∗ compact. We can further

endow ∆ with the weak topology on L1(ν) when we identify Ω with its implied density

20See Theorem 6.1.4 in Rüschendorf (2014).
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hΩ=
∫
fθdΩ(θ)∈L1(ν). Hence, the Ky Fan minimax theorem21 applies and implies

sup
φ∈Φα

inf
Ω∈∆

r(Ω,φ)= inf
Ω∈∆

sup
φ∈Φα

r(Ω,φ).

This proves the claim. □

Lemma 3

Suppose α∈(0,1) and Ω∈∆, where ∆ denotes the set of probability measures over either

Θ1 or ∆M1, and consider the problem

sup
φ∈Φα

∫
(φ−φah)

∫
fθdΩ(θ)dν. (16)

Then, the following statements hold:

1. There exists a solution to (16), i.e.,

Φ∗
Ω :=argmax

φ∈Φα

∫
(φ−φah)

∫
fθdΩ(θ)dν ≠∅.

2. Let M0 denote the set of finite measures over Θ0. For any Λ∈M0,

Φ∗
Ω,Λ :=argmax

φ∈Φ

∫
(φ−φah)

∫
fθdΩ(θ)dν−

∫ (∫
φfθdν−α

)
dΛ(θ)≠∅

and any φ∈Φ∗
Ω,Λ can be written as

φ=


1 , if

∫
fθdΩ(θ)>

∫
fθdΛ(θ)

κ , if
∫
fθdΩ(θ)=

∫
fθdΛ(θ)

0 , if
∫
fθdΩ(θ)<

∫
fθdΛ(θ)

for some κ∈Φ.

3. It holds that (16) is equal to

inf
Λ∈M0

sup
φ∈Φ

∫
(φ−φah)

∫
fθdΩ(θ)dν−

∫ (∫
φfθdν−α

)
dΛ(θ).

21See Theorem 2 in Fan (1953).
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4. Let

M∗
0=argmin

Λ∈M0

sup
φ∈Φ

∫
(φ−φah)

∫
fθdΩ(θ)dν−

∫ (∫
φfθdν−α

)
dΛ(θ).

Assume that M∗
0≠∅ and that the event{

y∈Y :

∫
fθdΩ(θ)=

∫
fθdΛ

∗(θ)

}
has ν-measure zero for all Λ∗ ∈M∗

0, such that for any Λ∗ ∈M∗
0 there is a ν-a.e.

unique element in Φ∗
Ω,Λ∗ given by

φ∗
Ω,Λ∗=1

{∫
fθdΩ(θ)>

∫
fθdΛ

∗(θ)

}
.

Then, for any Λ∗
1,Λ

∗
2∈M∗

0 and any φ̃1,φ̃2∈Φ∗
Ω

φ∗
Ω,Λ∗

1
=φ∗

Ω,Λ∗
2
=φ̃1=φ̃2 ν-a.e.

5. If Λ∗∈M∗
0 with Λ∗(Θ0)>0, then Λ̃∗=Λ∗/Λ∗(Θ0) is a least favorable distribution.

6. If there exists a least favorable distribution Λ∗
Ω, then cvΩΛ

∗
Ω∈M∗

0, where cvΩ denotes

the critical value of the Neyman-Pearson test of
∫
fθdΛ

∗
Ω against

∫
fθdΩ.

Proof: We prove each part of the lemma as follows:

1. This follows by similar arguments to those in the proof of Lemma 1.

2. Rewrite the criterion function as follows∫
(φ−φah)

∫
fθdΩ(θ)dν−

∫ (∫
φfθdν−α

)
dΛ(θ)

=

∫
φ

(∫
fθdΩ(θ)−

∫
fθdΛ(θ)

)
dν+αΛ(Θ0)−

∫
φah

∫
fθdΩ(θ)dν.

This function is maximized by any φ∈Φ of the claimed form.

3. By 2. and its proof,

inf
Λ∈M0

sup
φ∈Φ

∫
(φ−φah)

∫
fθdΩ(θ)dν−

∫ (∫
φfθdν−α

)
dΛ(θ)
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= inf
Λ∈M0

∫ (∫
fθdΩ(θ)−

∫
fθdΛ(θ)

)
+

dν+αΛ(Θ0)−
∫
φah

∫
fθdΩ(θ)dν,

where (a)+=max{0,a} for any a∈R. The claim now follows along the same lines

as the proof of Theorem 4 in Krafft and Witting (1967).

4. For any Λ∗∈M∗
0 and any φ̃∈Φ∗

Ω, we have∫
(φ̃−φah)

∫
fθdΩ(θ)dν

= sup
φ∈Φα

∫
(φ−φah)

∫
fθdΩ(θ)dν

= inf
Λ∈M0

sup
φ∈Φ

∫
(φ−φah)

∫
fθdΩ(θ)dν−

∫ (∫
φfθdν−α

)
dΛ(θ)

=sup
φ∈Φ

∫
(φ−φah)

∫
fθdΩ(θ)dν−

∫ (∫
φfθdν−α

)
dΛ∗(θ)

≥
∫
(φ̃−φah)

∫
fθdΩ(θ)dν−

∫ (∫
φ∗fθdν−α

)
dΛ∗(θ)

≥
∫
(φ̃−φah)

∫
fθdΩ(θ)dν,

where we have used φ̃∈Φ∗
Ω in the first equality, part 3. in the second equality, Λ∗∈

M∗
0≠∅ in the third equality, the definition of the supremum together with φ̃∈Φα⊂Φ

in the first inequality and that φ̃∈Φα in the last inequality. This implies that φ̃∈
Φ∗

Ω,Λ∗ and thus φ̃=φ∗
Ω,Λ∗ν-a.e. Since φ̃ and Λ∗ are arbitrary, the desired result follows.

5./6. The problem in part 3. leads to the same set of solutions as the problem given in

equations (22) and (23) in Krafft and Witting (1967). The proof therefore follows

along the same lines as the proof of Theorem 12 in Krafft and Witting (1967). □

Lemma 4

The following statements hold:

1. ϕ̃ is Lipschitz continuous such that

|ϕ̃(Λ̃)−ϕ̃(Λ̃′)|≤
√
M0max{1−α,α}∥Λ̃−Λ̃′∥2

for any Λ̃,Λ̃′≥0.
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2. For any Λ̃≥0, (
α−
∫
φΛ̃fθ̃idν

)M0

i=1

∈∂ϕ̃(Λ̃).

Proof: We prove each part of the lemma as follows:

1. Take any Λ̃,Λ̃′≥0. Then, by standard bounds for the supremum and the Cauchy-

Schwarz inequality,

|ϕ̃(Λ̃)−ϕ̃(Λ̃′)|≤sup
φ∈Φ

∣∣∣∣M0∑
i=1

{λ̃i−λ̃′
i}
(∫

φfθ̃idν−α

)∣∣∣∣
≤∥Λ̃−Λ̃′∥2sup

φ∈Φ

√√√√M0∑
i=1

(∫
φfθ̃idν−α

)2

.

The supremum on the right hand side is achieved by either φ=1 or φ=0 and thus

sup
φ∈Φ

√√√√M0∑
i=1

(∫
φfθ̃idν−α

)2

=
√
M0max{1−α,α}.

2. By definition of ϕ̃ as a maximum and Proposition 1, for any Λ̃,Λ̃′≥0,

ϕ̃(Λ̃′)≥
∫
φΛ̃dν−

M0∑
i=1

λ̃′
i

(∫
φΛ̃fθ̃idν−α

)

=

∫
φΛ̃dν−

M0∑
i=1

λ̃i

(∫
φΛ̃fθ̃idν−α

)
−

M0∑
i=1

{λ̃′
i−λ̃i}

(∫
φΛ̃fθ̃idν−α

)

=ϕ̃(Λ̃)+

M0∑
i=1

{λ̃′
i−λ̃i}

(
α−
∫
φΛ̃fθ̃idν︸ ︷︷ ︸
=:ki

)

and thus ϕ̃(Λ̃′)≥ϕ̃(Λ̃)+k⊺(Λ̃′−Λ̃), for all Λ̃′≥0, i.e., k∈∂ϕ̃(Λ̃). □

Lemma 5

The following statements hold:
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1. ϕ is Lipschitz continuous such that

|ϕ(Ω̄)−ϕ(Ω̄′)|≤
√
M1∥Ω̄−Ω̄′∥2

for any Ω̄,Ω̄′∈∆M1.

2. For any Ω̄∈∆M1, (∫
(φ∗

Ω̄−φah)fθidν

)M1

i=1

∈∂ϕ(Ω̄).

Proof: We prove each part of the lemma as follows:

1. Take any Ω̄,Ω̄′ ∈ ∆M1. Then, by standard bounds for the supremum and the

Cauchy-Schwarz inequality,

|ϕ(Ω̄)−ϕ(Ω̄′)|≤ sup
φ∈Φα

∣∣∣∣M1∑
i=1

{ωi−ω′
i}
∫
(φ−φah)fθidν

∣∣∣∣
≤∥Ω̄−Ω̄′∥2 sup

φ∈Φα

√√√√M1∑
i=1

(∫
(φ−φah)fθidν

)2

.

The supremum on the right hand side can be bounded above using

sup
φ∈Φ

√√√√M1∑
i=1

(∫
(φ−φah)fθidν

)2

≤
√
M1.

2. By definition of ϕ as a maximum, for any Ω̄,Ω̄′∈∆M1,

ϕ(Ω̄′)≥
M1∑
i=1

ω′
i

∫
(φ∗

Ω̄−φah)fθidν

=

M1∑
i=1

ωi

∫
(φ∗

Ω̄−φah)fθidν+

M1∑
i=1

(ω′
i−ωi)

∫
(φ∗

Ω̄−φah)fθidν︸ ︷︷ ︸
=:γi

=ϕ(Ω̄)+γ⊺(Ω̄′−Ω̄)

and thus γ∈∂ϕ(Ω̄). □
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A.3 Details for the Applications Considered in Section 6

For all applications we use 300,000 simulation draws to evaluate rejection probabilities.

The choice of {hk} is common across all applications. In particular,

hk=


0.01 if mini=1,...,M1{γi}<−0.02

0.001 if −0.02≤mini=1,...,M1{γi}<−0.002

0.0001 otherwise,

where γ=(γ1,...,γM1) is defined in step 2.(a) of the algorithm in Section 4.2. Furthermore,

the number of iterations for the outer loop is set equal to 1,000.

A.3.1 Details for the Homoskedastic Linear IV Model

The draws of Q are obtained through baseline draws of S and T , given by two independent

sets of draws from N (0,Ik), which are standardized across all simulation draws. The

conditional critical values for the CLR test are obtained using 1,000,000 simulation draws.

The choice of {h̃k} is common for the two designs (fixed-Ω and fixed-Σ). In particular,

h̃k=


0.01 if maxi=1,...,M0{τi}>0.02

0.001 if 0.02≥maxi=1,...,M0{τi}>0.002

0.0001 otherwise,

where τ = (τ1, ... , τM0) is defined in step 2.(a) of the algorithm in Section 4.1. Fur-

thermore, the number of iterations for the inner loop is set equal to 1,000. In both

designs, we take Θf
0 = {(β,λ) : β = 0,λ ∈ {0,2, ... ,150}} and Θf

1 = {(b/
√
λ,λ) : b ∈

{−3.5,−3,...,−0.5,0.5,1,...,3.5}, λ∈{0.1,10,20,...,170}}. And in the fixed-Σ design, we take

Θ̄0={(β,λ):β=0, λ∈{1,5,10,15,20,30,40,50,70,...,150,175,...,300}} and

Θ̄1={(β,λ):β∈{−40,−30,−20,−10,−2.5,−1,1,6,20,30}, λ=1}

∪{(b/
√
λ,λ):b∈{−40,−30,−20,−10,−5,−1,1,5,10,20,30}, λ=5}

∪{(b/
√
λ,λ):b∈{−40,−30,−20,−10,−6,−1,1,5,10,20,30}, λ=10}

∪{(b/
√
λ,λ):b∈{−40,−30,−20,−10,−7.5,−2,2,10,20,30}, λ=15}

∪{(b/
√
λ,λ):b∈{−30,−10,−5,−3,3,7,10,20,40}, λ=20}

∪{(b/
√
λ,λ):b∈{−3,−1,2,4,6,8}, λ=30}
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∪{(b/
√
λ,λ):b∈{−3,2,4,6,8}, λ=40}

∪{(b/
√
λ,λ):b∈{−3,2,4}, λ∈{50,70,...,150,175,...,300}}.
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(a) k=5 and Ω12=0.5
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(b) k=10 and Σ12=0.5

Figure 9: Null rejection probabilities of tests underlying APEs and CLR test.

Figure 9 shows the null rejection probabilities of the tests underlying the APEs and

of the CLR test on Θf
0. Panel (a) reports the results for k=5 and Ω12=0.5 and panel (b)

for k=10 and Σ12=0.5. All probabilities are computed using 300,000 simulation draws,

which are independent across the values in Θf
0. In each panel, the test underlying the

corresponding APE and the CLR test yield virtually identical null rejection probabilities.

Although the rejection probabilities of both tests can exceed the nominal level, we know

that for the CLR test any such excess is solely due to simulation error since the CLR test

controls size by construction. Because the two tests coincide so closely in both designs,

we conclude that the tests underlying the APEs effectively control size.

A.3.2 Details for the Boundary Problem

The baseline draws used to obtain the draws of Y are standardized across all simulations

and also symmetrized. The parameter h̃k is set equal to 0.01 for all k and the number

of iterations for the inner loop is set equal to 1,000. As mentioned in the main text, we

follow Elliott et al. (2015) in discretizing Θ0 in terms of “base” distributions. Our “base”

distributions are uniform distributions for δ on the following intervals: [0,0.00001], [0,0.04],

[1.99,2.01], [0,0.5], [0.5,1], . . . , [12,12.5]. We take Θf
0={(β,δ):β=0,δ∈{0,0.1,...,7}} and

Θf
1={(β,δ):β∈{−3.5,−3,...,−0.5,0.5,1,...,3.5}, δ∈{0,0.5,...,8}}.
Figure 10 shows the null rejection probabilities of the test underlying the APE and the
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Figure 10: Null rejection probabilities of test underlying APE and test implied by IICI.

test implied by the IICI on Θf
0. All probabilities are computed using 300,000 simulation

draws, which are independent across the values in Θf
0 . Although the null rejection probabil-

ities for both tests can exceed the nominal level, we know that for the test implied by the

IICI this is only due to simulation error given that Cox (2024) proves that the IICI has uni-

formly correct coverage. Since the maximal null rejection probability of the test underlying

the APE is very close to α and the null rejection probability of the test implied by the IICI

over the entire grid, we conclude that the test underlying the APE effectively controls size.
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Figure 11: Weights underlying the APE for the test implied by the IICI
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Figure 11 shows the weights underlying the APE corresponding to the test implied

by the IICI. Apparently the test implied by the IICI does not prioritize power at positive

alternatives β > 0 when the value of the nuisance parameter δ is small and ρ = 0.7.

Interestingly, the region of the alternative parameter space receiving little weight by the

APE also roughly corresponds to where we see the largest power differences between the

APE and the power of the test implied by the IICI in Figure 8.
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