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This Supplemental Appendix contains proofs and additional results for the paper

“Inference After Estimation of Breaks.” Section A collects proofs of the formal uniform

asymptotic validity statements made in Section 4.2 of the main text. Section B contains

a description of and theoretical results for confidence intervals based upon uniformly most

accurate unbiased confidence intervals in the conditional norm-maximization problem.

Finally, Section C presents additional Monte Carlo simulation results for the confidence

intervals discussed both in the main text and in Section B of this Supplemental Appendix.

A Proofs of Uniform Asymptotic Validity Results

To prove uniformity in norm-maximization settings, we rely on some of the lemmas in

AKM, along with a few additional results.

Lemma 1

Under Assumptions 2 and 4, for any sequence of confidence sets CSn, any sequence of sets

Cn(P) indexed by P , Cn(P)=1

n⇣

Xn,Yn,b⌃n

⌘

2Cn(P)
o
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sup

P2Pn

�

�

�

PrP

n
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⇣
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⌘
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1
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⇤
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⇤
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⇤
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⇣
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Proof: Follows by the same argument as in the proof of Lemma 5 in AKM. ⇤
To state the next lemma, for Z

˜✓,n,j(✓) the jth element of Z
˜✓,n(✓), let us define
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Based on these objects, let us further define
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⇣
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.

Lemma 2

Under Assumptions 3 and 1, for any {ns} and {Pns} satisfying conditions (1) and (2) of
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Lemma 1,

⇣

Yns,ˆ⌃ns,ˆ✓ns,`
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where the objects on the right hand side are calculated based on (X⇤,Y ⇤,⌃⇤
) for
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!
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Proof: Note that Assumption 1 along with condition (2) of Lemma 1 imply that
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⇣

Ans

⇣
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⇣
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where this convergence holds jointly over all

⇣

✓,˜✓
⌘

2⇥

2. If A⇤
⇣

˜✓,✓
⌘

6=0, another application

of the continuous mapping theorem implies that
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⇣

˜✓,✓
⌘

,GZ,ns

⇣

˜✓,✓
⌘
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17Note that we allow the possibility that
⇣
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⌘
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Z
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may be complex-valued.
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If instead A⇤
⇣

˜✓,✓
⌘

=0, note that
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˜✓,✓
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n
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⇣

˜✓,✓
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o
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a!0

�b�
p
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2a
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8

<
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�
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if b<0

�1 if b>0
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a!0
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=

8
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c
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Hence, if A⇤
⇣

✓,˜✓
⌘
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˜✓,✓
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�
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⇣
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⌘
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⌘
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˜✓,✓
⌘
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⇣

˜✓,✓
⌘
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˜✓,✓
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o
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Z

⇣

˜✓,✓
⌘

,

with the convention that 1·0=0. Finally, another application of the continuous mapping

theorem shows that when A⇤
⇣

˜✓,✓
⌘

=0,

HZ,ns

⇣

˜✓,✓
⌘

!dH
⇤
Z

⇣

˜✓,✓
⌘

.
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Since all of these convergence results hold jointly over

⇣

✓,˜✓
⌘

2⇥

2, another application

of the continuous mapping theorem implies that

⇣

`1Z,ns

⇣

˜✓
⌘

,`2Z,ns

⇣

˜✓,✓
⌘
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⇣

˜✓,✓
⌘
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˜✓
⌘⌘
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˜✓
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⇣

˜✓,✓
⌘

,u2⇤Z

⇣

˜✓
⌘⌘

.

Moreover,

ˆ✓ is almost everywhere continuous in X⇤
, so that (Yns,ˆ⌃ns,ˆ✓ns)!d (Y

⇤,⌃⇤,ˆ✓),

where this convergence occurs jointly with that above. Thus, we have established the

desired result. ⇤
To state our next two lemmas, we consider sets that can be written as finite unions

of disjoint intervals, Y

K
=[

K
k=1

⇥

`k,uk
⇤

.

Lemma 3

For FTN

�

·;µ,⌃Y (✓),Y
K
�

the distribution function for ⇣ with

⇣⇠⇠|⇠2Y

K,⇠⇠N(µ,⌃Y (✓)),

FTN

�

Y (✓);µ,⌃Y (✓),Y
K
�

is continuous on the set

(

(Y (✓),µ,⌃Y (✓))2R3,`12 [�1,1),
�

`k
 K

k=2

2RK�1,
�

uk
 K�1

k=1

2RK�1,uK2(�1,1]
:⌃Y (✓)>0,

X

k

�

�

�

uk�`k
�

�

�

>0,uk�`k�uk�1

for all k

)

.

Proof: Note that we can write

FTN

�

Y (✓);µ,⌃Y (✓),Y
K
�

=

P

k1
�

Y (✓)�`k
 

✓

FN

✓

uk^Y (✓)�µ
p

⌃Y (✓)

◆

�FN

✓

`k�µ
p

⌃Y (✓)

◆◆

P

k

✓

FN

✓

uk�µ
p

⌃Y (✓)

◆

�FN

✓

`k�µ
p

⌃Y (✓)

◆◆ .

Hence, we trivially obtain continuity for ⌃Y (✓)>0,Y (✓)2R,µ2R, 0<
P

k

�

�uk�`k
�

�<1.

Moreover, as in the proof of Lemma 9 of AKM we retain continuity as we allow `1!�1

and/or uK!1, in the sense that for a sequence of sets Y

K
m with

�

`km,u
k
m

 K

k=1

!

�

`k1,uk1
 K

k=1

with `11=�1 and/or uK1=1 and the other elements finite,

FTN

�

Y (✓);µ,⌃Y (✓),Y
K
m

�

!FTN

�

Y (✓);µ,⌃Y (✓),Y
K
1
�

. ⇤
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Lemma 4

Under Assumptions 1-4, for either Cn=1

n

ˆ✓n=˜✓
o

or

Cn=1

n

ˆ✓n=˜✓,µY,n

⇣

ˆ✓n,Pn

⌘

2CS�
P,n

o

,

there exists ">0 such that

liminf

n!1
inf

p2Pn

PrP{Cn=1}�".

Hence, for any sequence of variables Vn,

limsup

n!1
sup

P2Pn

|EP [Vn|Cn=1]|PrP{Cn=1}=0

if and only if

limsup

n!1
sup

P2Pn

|EP [Vn|Cn=1]|=0.

Proof of Lemma 4 By the same argument as in the proof of Lemma 5 in AKM, it

suffices to consider sequences as in Lemma 1, where by Assumption 4,

kµ⇤
Xk+kµ⇤

Y kC.

Note, next, that for (X⇤0,Y ⇤0
)

0
⇠N((µ⇤0

X,µ
⇤0
Y )

0,⌃), ⌃X full-rank, and

ˆ✓⇤=argmax✓2⇥kX
⇤
(✓)k,

ˆ✓⇤ has full support. Moreover,

ˆ✓⇤ is almost everywhere continuous in X⇤, so by the contin-

uous mapping theorem,

ˆ✓ns!d
ˆ✓⇤ under {ns}, {Pns}. Moreover, Pr

n

ˆ✓⇤=˜✓
o

is continuous

in µ⇤
X and ⌃X, and the set of µ⇤

X, ⌃X values we consider is compact. Hence, Pr
n

ˆ✓⇤=˜✓
o

is

bounded away from zero, from which the bound for Cn=1

n

ˆ✓n=˜✓
o

follows. The claim for

Cn=1

n

ˆ✓n=˜✓,µY,n

⇣

ˆ✓n,Pn

⌘

2CS�
P,n

o

,

follows by the same argument, using almost everywhere continuity of CS�
P in the limit

problem. The final claim is then immediate. ⇤

Proof of Proposition 3 As in the proof of Proposition 9 of AKM, note that

µ̂↵,n�µY,n

⇣

ˆ✓n;P
⌘

() µY,n

⇣

ˆ✓n;P
⌘

2CSU,�,n
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for CSU,�,n=(�1,µ̂↵,n]. Hence, by Lemmas 1 and 4, to prove that (11) holds it suffices

to show that for all {ns} and {Pns} such that conditions (1) and (2) of Lemma 1 hold

with Cn=1

n

ˆ✓n=˜✓
o

, we have

lim

s!1
PrPns

n

µ̂Y,ns

⇣

ˆ✓ns;Pns

⌘

2CSU,�,ns|
ˆ✓ns=

˜✓
o

=↵. (16)

To this end, note that for FTN

�

Y (✓);µ,⌃Y (✓),Y
K
�

as defined in the statement of Lemma

3, the estimator µ̂↵,n solves

FTN

⇣

Yn

⇣

ˆ✓n

⌘

;µ,b⌃Y,n

⇣

ˆ✓n

⌘

,Yn

⌘

=1�↵,

for

Yn=

\

✓2⇥:An(˜✓,✓)>0,DZ,n(
˜✓,✓
)

�0

h

`1Z,n

⇣

˜✓
⌘

,u1Z,n

⇣

˜✓,✓
⌘i

\

h

`2Z,n

⇣

˜✓,✓
⌘

,u2Z,n

⇣

˜✓
⌘i

(17)

(see Proposition 1). The set Yn can be written as a finite union of disjoint intervals by

DeMorgan’s Laws.

The cdf FTN

⇣

Yn

⇣

ˆ✓n

⌘

;µ,b⌃Y,n

⇣

ˆ✓n

⌘

,Yn

⌘

is strictly decreasing in µ as argued in the proof

of Proposition 8 of AKM, and is increasing in Yn

⇣

ˆ✓
⌘

. Hence, µ̂↵,n�µY,n

⇣

ˆ✓n;P
⌘

if and only if

FTN

⇣

Yn

⇣

ˆ✓n

⌘

;µY,n

⇣

ˆ✓n;P
⌘

,b⌃Y,n

⇣

ˆ✓n

⌘

,Yn

⌘

�1�↵.

Lemma 2 shows that

⇣

Yn

⇣

ˆ✓ns

⌘

,b⌃Y,ns

⇣

ˆ✓ns

⌘

,Yns,ˆ✓ns

⌘

converges in distribution as s!1,

18

so since FTN is continuous by Lemma 3 while argmax✓kX
⇤
(✓)k is almost everywhere

continuous for X⇤
, the continuous mapping theorem implies that

⇣

FTN

⇣

Yns

⇣

ˆ✓ns

⌘

;µY,ns

⇣

˜✓;Pns

⌘

,b⌃Y,ns

⇣

ˆ✓ns

⌘

,Yns

⌘

,1
n

ˆ✓ns=
˜✓
o⌘

!d

⇣

FTN

⇣

Y ⇤
⇣

ˆ✓
⌘

;µY,ns

⇣

˜✓;Pns

⌘

,⌃⇤
Y

⇣

ˆ✓
⌘

,Y⇤
⌘

,1
n

ˆ✓=˜✓
o⌘ ,

where Y

⇤
is the analog of Yn calculated based on (X⇤,Y ⇤,⌃⇤

).

Since we can write

PrPns

n

FTN

⇣

Yns

⇣

ˆ✓ns

⌘

;µY,ns

⇣

˜✓;Pns

⌘

,b⌃Y,ns

⇣

ˆ✓ns

⌘

,Yns

⌘

�1�↵|ˆ✓ns=
˜✓
o

18Since Yn can be represented as a finite union of intervals, we use Yn!dY
⇤ to denote joint convergence

in distribution of (i) the number of intervals and (ii) the endpoints of the intervals.
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and by construction
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and Pr
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o

=p⇤>0 by Assumption 4, we thus have that
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which verifies (16).

Since this argument holds for all

˜✓2⇥, and Assumptions 1 and 2 imply that for all

✓,˜✓2⇥ with ✓ 6=˜✓,

lim

n!1
sup

P2Pn

PrP

n

kXn(✓)k=
�

�

�

Xn

⇣

˜✓
⌘

�

�

�

o

=0,

Lemma 6 of AKM implies (12). ⇤

Proof of Corollary 2 Follows from Proposition 3 by the same argument used to prove

Corollary 1 of AKM. ⇤

Proof of Proposition 4 Follows by the same argument as in the proof of Proposition

11 of AKM. ⇤

Proof of Proposition 5 Follows by an argument along the same lines as in the proof of

Proposition 12 of AKM, using Lemmas 1, 2, 3, and 4 in place of Lemmas 5, 8, and 9 in AKM,

and using the conditioning event {Yn(
ˆ✓n)2Y

H
n }={Yn(

ˆ✓n)2Yn}\

n

µY,n

⇣

ˆ✓n,Pn

⌘

2CS�
P,n

o

.

⇤

Proof of Corollary 3 Follows by the same argument as in the proof of Corollary 2 in

AKM. ⇤

B Uniformly Most Accurate Unbiased Confidence Intervals

This section provides uniform asymptotic results for the uniformly most accurate unbiased

confidence sets of AKM, and related procedures, in the norm-maximization setting.

In the inference problem that conditions on

ˆ✓ and �̂, rather than considering equal-tailed
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intervals, we can alternatively consider confidence intervals that are unbiased, in the sense

that the probability of covering any given false parameter value is bounded above by 1�↵.

AKM develop a confidence interval, CSU , that is uniformly most accurate unbiased in the

conditional problem, in the sense that it has a weakly lower probability of covering any

given incorrect parameter value than does any other unbiased confidence set while still

maintaing correct conditional coverage 1�↵:

Prµ

n

µY (
˜✓)2CSU |

ˆ✓=˜✓,�̂= �̃
o

=1�↵ for all µ, ˜✓, �̃.

See AKM for the construction of these confidence sets.

The feasible versions of these intervals CSU,n are defined identically to CSU after

replacing

ˆ✓ by

ˆ✓n, Y by Yn, ⌃ by

ˆ

⌃n, and Z
˜✓ by Z

˜✓,n. Here we establish that these feasible

intervals have correct coverage both conditionally and unconditionally.

Proposition 6

Under Assumptions 1-4,

lim
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�

�
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for all ˜✓2⇥, and
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�
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Proof: Note that by the definition of CSU,n
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() Yn

⇣

ˆ✓n

⌘

2

h
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⇣
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⇣

ˆ✓n

⌘

,Yn
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⇣

µY,n

⇣

ˆ✓n;P
⌘

,b⌃Y,n

⇣

ˆ✓n

⌘

,Yn

⌘i

where Yn is as defined in (17) while (cl(µ,⌃Y (✓),Yn),cu(µ,⌃Y (✓),Yn)) are as defined imme-

diately before Lemma 5 below, after replacing Y

K
with Yn.

By Lemmas 1 and 4, to prove that (18) holds it suffices to show that for all {ns} and

{Pns} satisfying conditions (1) and (2) of Lemma 1,

lim

s!1
PrPns

n

µY,ns

⇣

ˆ✓ns

⌘

2CSU,ns|
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˜✓
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=1�↵.
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Thus, it suffices to show that
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To this end, note that by Lemma 2,
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and thus, by Lemma 5 and the continuous mapping theorem,
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By construction,
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as we wanted to show, so (18) follows by Lemma 5 of AKM.

Since this result again holds for all

˜✓ 2 ⇥, (19) follows immediately by the same

argument as in the proof of Proposition 3. ⇤
19Note that when ✓̂= ✓̃, Y⇤ is either equal to the real line or contains at least one interval with a

continuously distributed endpoint. Hence, the almost-everywhere continuity established in Lemma 5 is
sufficient for us to apply the continuous mapping theorem.
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AKM also introduces the analogous 1�↵ level hybrid confidence interval, CSH
U , that

modifies the conditioning set in its construction to condition on both

ˆ✓ and the event that

µY (
ˆ✓)2CS�

P for some 0�↵. Again, the feasible versions of these intervals CSH
U,n are

defined identically to CSU after replacing

ˆ✓ by

ˆ✓n, Y by Yn, ⌃ by

ˆ

⌃n, and Z
˜✓ by Z

˜✓,n.

These intervals again have asymptotically correct unconditional coverage.

Proposition 7

Under Assumptions 1-4,
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1�↵

1��
1�↵+�.

Proof: Follows by the same argument as the proof of Proposition 5, using Lemma 5

rather than Lemma 3. ⇤
To state the following lemma, let

�

cl
�

µ,⌃Y (✓),Y
K
�

,cu
�

µ,⌃Y (✓),Y
K
��

(20)

solve

Pr{⇣2 [cl,cu]}=1�↵

E[⇣1{⇣2 [cl,cu]}]=(1�↵)E[⇣]

for ⇣ as in Lemma 3.

Lemma 5
The function (20) is continuous in

�

µ,⌃Y (✓),Y
K
�

for Lebesgue almost-every
�

`k,uk
 K

k=1

on the set
(

(µ,⌃Y (✓))2R2,`12 [�1,1),
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`k
 K
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2RK�1,
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 K�1
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2RK�1,uK2(�1,1]
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X
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�>0,uk�`k�uk�1
for all k

)

.

Moreover, if we fix any (µ,⌃Y (✓)) in this set, and fix all but one element of
�

`k,uk
 K

k=1

,

(20) is almost-everywhere continuous in the remaining element.
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Proof: Note that
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Using analogous reasoning to that in the proof of Lemma 10 in AKM, we can write

(20) as the solution to

g
⇣

c;µ,
p

⌃Y (✓),Y
K
⌘

=0 (21)

for

g
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⌘

=
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Note that by construction
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so to prove continuity it suffices to consider the case with µ=0.
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though it is non-differentiable if cu2
�

uk,`k
 

or cl2
�

uk,`k
 

for some k.

Note, however, that if we fix all but one element of

�

`k,uk
 K

k=1

and change the remaining

element, there exists a solution c to (21) with cu2 (`j,uj) and cl 2
�

`k,uk
�

for some j,k

Lebesgue almost-everywhere by arguments along the same lines as in the proof of Lemma

10 of AKM. Likewise, the set of values such that there exists a solution c to (21) with

cl=cu has Lebesgue measure zero. The implicit function theorem thus implies that (20)

is almost-everywhere continuously differentiable in the element we have selected. Since we

can repeat this argument for each element of

�

`k,uk
 K

k=1

, we obtain that (20) is elementwise

continuously differentiable in

�

`k,uk
 K

k=1

Lebesgue almost everywhere. Moreover, as in the

proof of Lemma 10 of AKM, the form of (20) implies that the same remains true if we

take `1!�1 or uK!1. ⇤

C Additional Results for Tipping Point Simulations

We begin by presenting results analogous to those presented in Tables 1 and 2 of the main

text for the conditional and hybrid confidence intervals based upon the uniformly most accu-

rate unbiased approach. More specifically, Table 5 reports the unconditional coverage proba-
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bility for the confidence intervals CSU and CSH
U while Table 6 compares the lengths of CSU

andCSH
U toCS↵

P . The values in these two tables can be seen to be quite similar to the values

corresponding to the confidence intervals CS and CSH
in Tables 1 and 2 of the main text.

Table 5: Unconditional Coverage Probability

DGP CSU CSH
U

Chicago Data Calibration

(i) 0.95 0.949

(ii) 0.95 0.955

(iii) 0.946 0.951

Los Angeles Data Calibration

(i) 0.948 0.948

(ii) 0.952 0.956

(iii) 0.951 0.954

This table reports the unconditional coverage probability of µY (✓̂) for the conditionally valid uniformly
most accurate unbiased confidence interval (CSU) and the hybrid confidence interval based upon the
uniformly most accurate unbiased conditional confidence interval (CSH

U ), both evaluated at the nominal
coverage level of 95%. In the Chicago (Los Angeles) data calibrations, the covariance matrix ⌃ is set
equal to a consistent estimate from the Chicago (Los Angeles) Card et al. (2008) data. The column
“DGP” refers to the specification of the nuisance function ⌃Cg(·), which along with other parameters,
determines the value of the mean vector µ (see Appendix A.1 of the main text for details). The function
⌃Cg(·) is set equal to the value it takes when there is no coefficient change in DGP (i), the value it takes
when there is a single large coefficient change in DGP (ii) and its data-calibrated value in DGP (iii).
For DGP (ii) the true threshold location is set to equal the estimate from the Card et al. (2008) data. All
other parameters that determine µ are set equal to consistent estimates from the Card et al. (2008) data.

Tables 7 and 8 provide the ratios of the 5

th
, 25

th
, 50

th
, 75

th
and 95

th
quantiles of the

lengths of CS, CSU , CS
H

and CSH
U relative to the corresponding length quantiles of

CS↵
P for the tipping point data-calibrated designs described in Section 6 of the main text.

Looking at the upper quantiles in Table 7, we can see that the conditional confidence

intervals CS and CSU can become very wide in the absence of a clear break. Conversely,

as seen in Table 8, the hybrid intervals CSH
and CSH

U dominate CS↵
P across all quantiles

and simulation designs we examined.

Table 9 reports the same quantiles of the studentized absolute errors of µ̂1
2
, µ̂H

1
2
and

Y (ˆ✓). The main features of this table are similar to those of Table 7: the unconditional

estimator µ̂1
2
can exhibit very large absolute errors while the hybrid estimator µ̂H

1
2
does

not exhibit such extreme values. In addition, note that the hybrid estimator µ̂H
1
2
not only

exhibits minimal bias, in contrast to the standard estimator Y (

ˆ✓), but also exhibits lower

studentized absolute errors across most quantiles and designs considered.
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Table 6: Length of Confidence Sets Relative to CS↵
P in Tipping Point Simulations

Median Length Relative to CS↵
P Probability Longer than CS↵

P

DGP CSU CSH
U CSU CSH

U

Chicago Data Calibration

(i) 1.38 0.94 0.89 0

(ii) 0.72 0.74 0 0

(iii) 0.93 0.87 0.44 0

Los Angeles Data Calibration

(i) 1.29 0.85 0.62 0

(ii) 0.68 0.69 0 0

(iii) 0.70 0.72 0.19 0

This table reports the median length of the conditionally valid uniformly most accurate unbiased
confidence interval (CSU) and the hybrid confidence interval based upon the uniformly most accurate
unbiased conditional confidence interval (CSH

U ), divided by the median length of the projection confidence
interval (CS↵

P ), as well as the frequency with which CSU and CSH
U is longer than CS↵

P . In the Chicago
(Los Angeles) data calibrations, the covariance matrix ⌃ is set equal to a consistent estimate from the
Chicago (Los Angeles) Card et al. (2008) data. The column “DGP” refers to the specification of the
nuisance function ⌃Cg(·), which along with other parameters, determines the value of the mean vector
µ (see Appendix A.1 of the main text for details). The function ⌃Cg(·) is set equal to the value it takes
when there is no coefficient change in DGP (i), the value it takes when there is a single large coefficient
change in DGP (ii) and its data-calibrated value in DGP (iii). For DGP (ii) the true threshold location
is set to equal the estimate from the Card et al. (2008) data. All other parameters that determine µ
are set equal to consistent estimates from the Card et al. (2008) data.
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Table 7: Ratios of Length Quantiles Relative to CS↵
P

CS Quantile CSU Quantile

DGP 5

th
25

th
50

th
75

th
95

th
5

th
25

th
50

th
75

th
95

th

Chicago Data Calibration

(i) 0.88 1.13 1.33 1.54 1.87 0.92 1.20 1.38 1.58 1.89

(ii) 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.74

(iii) 0.74 0.74 0.82 1.22 3.30 0.74 0.76 0.93 1.45 3.65

Los Angeles Data Calibration

(i) 0.92 1.27 1.26 0.99 0.76 0.94 1.31 1.29 1.00 0.77

(ii) 0.68 0.68 0.68 0.68 0.68 0.67 0.68 0.68 0.68 0.69

(iii) 0.68 0.68 0.68 0.79 2.12 0.68 0.68 0.70 0.89 2.32

This table reports the 5th, 25th, 50th, 75th and 95th quantiles of the length of the conditionally valid
equal-tailed confidence interval (CS) and conditionally valid uniformly most accurate unbiased confidence
interval (CSU), divided by the corresponding length quantiles of the projection confidence interval (CS↵

P ).
In the Chicago (Los Angeles) data calibrations, the covariance matrix ⌃ is set equal to a consistent
estimate from the Chicago (Los Angeles) Card et al. (2008) data. The column “DGP” refers to the
specification of the nuisance function ⌃Cg(·), which along with other parameters, determines the value
of the mean vector µ (see Appendix A.1 of the main text for details). The function ⌃Cg(·) is set equal
to the value it takes when there is no coefficient change in DGP (i), the value it takes when there is
a single large coefficient change in DGP (ii) and its data-calibrated value in DGP (iii). For DGP (ii) the
true threshold location is set to equal the estimate from the Card et al. (2008) data. All other parameters
that determine µ are set equal to consistent estimates from the Card et al. (2008) data.
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Table 8: Ratios of Length Quantiles Relative to CS↵
P

CSH
Quantile CSH

U Quantile

DGP 5

th
25

th
50

th
75

th
95

th
5

th
25

th
50

th
75

th
95

th

Chicago Data Calibration

(i) 0.69 0.91 0.94 0.93 0.96 0.60 0.90 0.94 0.93 0.96

(ii) 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.75

(iii) 0.75 0.75 0.82 0.93 0.97 0.76 0.78 0.87 0.94 0.97

Los Angeles Data Calibration

(i) 0.73 0.91 0.86 0.82 0.76 0.65 0.91 0.85 0.82 0.76

(ii) 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.70

(iii) 0.69 0.69 0.70 0.79 0.91 0.68 0.69 0.72 0.84 0.92

This table reports the 5th, 25th, 50th, 75th and 95th quantiles of the length of the hybrid confidence interval
based upon the equal-tailed conditional confidence interval (CSH) and the hybrid confidence interval based
upon the uniformly most accurate unbiased conditional confidence interval (CSH

U ), divided by the corre-
sponding length quantiles of the projection confidence interval (CS↵

P ). In the Chicago (Los Angeles) data cal-
ibrations, the covariance matrix ⌃ is set equal to a consistent estimate from the Chicago (Los Angeles) Card
et al. (2008) data. The column “DGP” refers to the specification of the nuisance function⌃Cg(·), which along
with other parameters, determines the value of the mean vector µ (see Appendix A.1 of the main text for de-
tails). The function⌃Cg(·) is set equal to the value it takes when there is no coefficient change in DGP (i), the
value it takes when there is a single large coefficient change in DGP (ii) and its data-calibrated value in DGP
(iii). For DGP (ii) the true threshold location is set to equal the estimate from the Card et al. (2008) data.
All other parameters that determine µ are set equal to consistent estimates from the Card et al. (2008) data.
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Table 9: Quantiles of
�

�

�

µ̂�µY (✓̂)
�

�

�

/

q

⌃Y (✓̂)

µ̂1
2
Quantile µ̂H

1
2
Quantile Y (

ˆ✓) Quantile

DGP 5

th
25

th
50

th
75

th
95

th
5

th
25

th
50

th
75

th
95

th
5

th
25

th
50

th
75

th
95

th

Chicago Data Calibration

(i) 0.15 0.74 1.51 2.65 6.38 0.15 0.71 1.38 2.02 2.63 0.81 1.16 1.52 1.95 2.70

(ii) 0.06 0.32 0.66 1.14 1.95 0.06 0.32 0.66 1.14 1.95 0.06 0.32 0.66 1.14 1.95

(iii) 0.08 0.38 0.83 1.50 4.81 0.08 0.38 0.83 1.48 2.94 0.07 0.34 0.71 1.19 2.05

Los Angeles Data Calibration

(i) 0.13 0.67 1.38 2.32 5.25 0.13 0.64 1.29 1.93 2.60 1.07 1.45 1.80 2.20 2.89

(ii) 0.07 0.32 0.67 1.14 1.93 0.07 0.32 0.67 1.14 1.93 0.07 0.32 0.67 1.14 1.93

(iii) 0.07 0.35 0.74 1.31 2.56 0.07 0.35 0.74 1.30 2.46 0.06 0.33 0.68 1.17 2.00

This table reports the the 5th, 25th, 50th, 75th and 95th quantiles of the studentized absolute estimation error for the conditionally median-unbiased
estimator (µ̂1

2
), the hybrid estimator (µ̂H

1
2
) and the conventional estimator (Y (✓̂)). In the Chicago (Los Angeles) data calibrations, the covariance

matrix ⌃ is set equal to a consistent estimate from the Chicago (Los Angeles) Card et al. (2008) data. The column “DGP” refers to the specification
of the nuisance function ⌃Cg(·), which along with other parameters, determines the value of the mean vector µ (see Appendix A.1 of the main text for
details). The function ⌃Cg(·) is set equal to the value it takes when there is no coefficient change in DGP (i), the value it takes when there is a single
large coefficient change in DGP (ii) and its data-calibrated value in DGP (iii). For DGP (ii) the true threshold location is set to equal the estimate
from the Card et al. (2008) data. All other parameters that determine µ are set equal to consistent estimates from the Card et al. (2008) data.
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C.1 Additional Results for Split-Sample Approaches

Table 10 provides the ratios of the 5

th
, 25

th
, 50

th
, 75

th
and 95

th
quantiles of the length

of our newly proposed equal-tailed split-sample confidence interval CSA
SS relative to the

corresponding length quantiles of the conventional split-sample confidence interval CSSS

for each of the tipping point data-calibrated designs described in Section 6 of the main

text. Since every entry in this table is less than one, we can see that the dominance result

illustrated in Table 4 of the main text is further reinforced: the length quantiles of CSA
SS are

shorter than those of CSSS across all quantiles and simulation designs considered. Table

11 reports the same quantiles of the studentized absolute errors of our newly proposed

split-sample estimator µ̂A
SS,12

and those of the conventional split-sample estimator Y 2

(

ˆ✓1).

Though both of these estimators are median-unbiased for µY (
ˆ✓1), µ̂A

SS,12
dominates Y 2

(

ˆ✓1) in

terms of studentized absolute errors across all quantiles and simulation designs considered.

Table 10: Ratios of Length Quantiles of CSA
SS Relative to CSSS

Quantile

DGP 5

th
25

th
50

th
75

th
95

th

Chicago Data Calibration

(i) 0.69 0.79 0.83 0.84 0.87

(ii) 0.57 0.58 0.58 0.58 0.58

(iii) 0.59 0.59 0.64 0.73 0.86

Los Angeles Data Calibration

(i) 0.74 0.85 0.78 0.68 0.57

(ii) 0.57 0.58 0.58 0.58 0.58

(iii) 0.57 0.58 0.59 0.66 0.81

This table reports the the 5th, 25th, 50th, 75th and 95th quantiles of the length of the alternative
split-sample confidence interval (CSA

SS), divided by the corresponding length quantiles of the conventional
split-sample confidence interval (CSSS). In the Chicago (Los Angeles) data calibrations, the covariance
matrix ⌃ is set equal to a consistent estimate from the Chicago (Los Angeles) Card et al. (2008) data.
The column “DGP” refers to the specification of the nuisance function ⌃Cg(·), which along with other
parameters, determines the value of the mean vector µ (see Appendix A.1 of the main text for details). The
function ⌃Cg(·) is set equal to the value it takes when there is no coefficient change in DGP (i), the value it
takes when there is a single large coefficient change in DGP (ii) and its data-calibrated value in DGP (iii).
For DGP (ii) the true threshold location is set to equal the estimate from the Card et al. (2008) data. All
other parameters that determine µ are set equal to consistent estimates from the Card et al. (2008) data.
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Table 11: Quantiles of
�

�

�

µ̂�µY (✓̂
1)
�

�

�

/

q

⌃Y (✓̂)1

µ̂A
SS,12

Quantile Y 2

(

ˆ✓1) Quantile

DGP 5

th
25

th
50

th
75

th
95

th
5

th
25

th
50

th
75

th
95

th

Chicago Data Calibration

(i) 0.05 0.27 0.57 0.95 1.61 0.06 0.31 0.67 1.15 1.97

(ii) 0.04 0.18 0.38 0.65 1.13 0.06 0.31 0.66 1.14 1.96

(iii) 0.04 0.21 0.44 0.77 1.38 0.07 0.32 0.67 1.15 2.00

Los Angeles Data Calibration

(i) 0.05 0.25 0.55 0.93 1.56 0.07 0.32 0.69 1.16 1.96

(ii) 0.04 0.18 0.39 0.66 1.13 0.06 0.31 0.67 1.15 1.96

(iii) 0.04 0.20 0.42 0.71 1.25 0.06 0.32 0.68 1.16 1.98

This table reports the the 5th, 25th, 50th, 75th and 95th quantiles of the studentized absolute estimation
error of the median-unbiased alternative split-sample estimator (µ̂A

1
2 ,SS

) and of the conventional

split-sample estimator (Y 2(✓̂1)). In the Chicago (Los Angeles) data calibrations, the covariance matrix ⌃
is set equal to a consistent estimate from the Chicago (Los Angeles) Card et al. (2008) data. The column
“DGP” refers to the specification of the nuisance function ⌃Cg(·), which along with other parameters,
determines the value of the mean vector µ (see Appendix A.1 of the main text for details). The function
⌃Cg(·) is set equal to the value it takes when there is no coefficient change in DGP (i), the value it takes
when there is a single large coefficient change in DGP (ii) and its data-calibrated value in DGP (iii).
For DGP (ii) the true threshold location is set to equal the estimate from the Card et al. (2008) data. All
other parameters that determine µ are set equal to consistent estimates from the Card et al. (2008) data.
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