Supplement to the paper

Inference on Winners

Isaiah Andrews Toru Kitagawa Adam McCloskey

September 16, 2019

This supplement contains proofs and additional results for the paper “Inference on
Winners.” Section A collects proofs for results stated in the main text. Section B contains
additional details and derivations for the EWM example introduced in Section 3 of the
paper. Section C constructs procedures that dominate conventional sample splitting as
discussed in Section 4.3 of the paper. Section D translates our finite-sample results for the
normal model to uniform asymptotic results over large classes of data generating processes.
Section E reports additional simulation results for the stylized example of Section 2 of the
paper. Finally, Section F reports additional simulations results for the EWM simulations

discussed in Section 6 of the paper.

A Proofs

Proof of Proposition 1 For ease of reference, let us abbreviate (Y (0),uy (0),Z;) by
(Y,fiy,Z). Let Y(—0) collect the elements of Y other than Y(f) and define juy (—0)

analagously. Let

evcarca(sen( V) (1)) (1)
consires (D) 2)

Pz =px— (EXY('aé)/EY(é)>#Y-

Here we use A" to denote the Moore-Penrose pseudoinverse of a matrix A. Note that
(Z,Y,Y*) is a one-to-one transformation of (X,Y), and thus that observing (Z,Y,Y*) is

equivalent to observing (X,Y"). Likewise, (fiz,fy,u3 ) is a one-to-one linear transformation

T o=

and
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of (px,uy ), and if the set of possible values for the latter contains an open set, that for
the former does as well (relative to the appropriate linear subspace).

Note, next, that since (Z,Y,Y*) is a linear transformation of (X,Y), (Z,Y,Y*) is jointly
normal (with a potentially degenerate distribution). Note next that (Z,Y,Y*) are mutually
uncorrelated, and thus independent. That Z and Y are uncorrelated is straightforward

to verify. To show that Y* is likewise uncorrelated with the other elements, note that we
can write C'ov <Y*,(}~/,X’)’> as

{5 ))cemfrin( D)l () w(( 7))

For VAV" an eigendecomposition of Vm‘((f/,X Y > (so VV'=1I), note that we can write

v<( v ))v(( v >>:vw

for D a diagonal matrix with ones in the entries corresponding to the nonzero entries of

A and zeros everywhere else. For any column v of V' corresponding to a zero entry of D,

~ /
v Var((Y,X ! ) )v:O, so the Cauchy-Schwarz inequality implies that

colv(a)( 1 ) )o-o
OOU<Y<—9),< f{ ))VDV’:OOU<Y<—9),< f{ ))VV’zC%(Y(—@),( f{ >>

~ /
so Y* is uncorrelated with (Y,X ! > )
Using independence, the joint density of (Z ,?,Y*) absent truncation is given by

InzGiiz) g Uity ) vy (0750y)
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for fy normal densities with respect to potentially degenerate base measures:

Inz(Ziz) = dét(27r22)—%exp (—%(é—ﬁz)lEin(é—ﬂzo

o~ 1 (?Q—ﬁY)2>
Ny (Uiy ) =21y ) 2exp| ————
Iy Tify) = ( ) p( >,

x, x "~ -1 1 * o~k * *
Iy (y'5py ) =det (2 Xy~ 2exp(—§(y —iiy) Sy (y —HY)),

where det(A) denotes the pseudodeterminant of a matrix A, ¥, =Var(Z), Sy =%y (6),
and Yy« =Var(Y™).
The event {X ex (é,’y)} depends only on (Z,Y) since it can be expressed as

- N v (-0) ~ N
7425 ) e x|
Yy (0)
so conditional on this event Y* remains independent of (Z ,f/) In particular, we can write
the joint density conditional on {X eXx (é,’y)} as

{(+5m (O (0)'7) e X(0.7)]
Pra,in {X€X(03)}

fN,Z(E;ﬁZ)fN,f/ Wity ) fvy= (U5 hy)- (20)

The density (20) has the same structure as (5.5.14) of Pfanzagl (1994), and satisfies proper-
ties (5.5.1)-(5.5.3) of Pfanzagl (1994) as well. Part 1 of the proposition then follows immedi-
ately from Theorem 5.5.9 of Pfanzagl (1994). Part 2 of the proposition follows by using Theo-
rem 5.5.9 of Pfanzagl (1994) to verify the conditions of Theorem 5.5.15 of Pfanzagl (1994). [

Proof of Proposition 2 In the proof of Proposition 1, we showed that the joint density of
(Z,Y,Y*) (defined in that proof) has the exponential family structure assumed in equation
4.10 of Lehmann and Romano (2005). Moreover, Assumption 1 implies that the parameter
space for (ux,puy) is convex and is not contained in any proper linear subspace. Thus, the
parameter space for (fiz,fiy i3 ) inherits the same property, and satisfies the conditions
of Theorem 4.4.1 of Lehmann and Romano (2005). The result follows immediately. [J
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Proof of Proposition 3 Let us number the elements of © as {01,82,...,0‘@}, where
X(6,) is the first element of X, X (6) is the second element, and so on. Let us fur-
ther assume without loss of generality that 6 = 6,. Note that the conditioning event
{maxpco X (0)=X(6,)} is equivalent to {M X >0}, where

1 -1 0 0 .. O
(1 0 =10 .. 0
10 0 0 .. -1

isa (|©|—1) x || matrix and the inequality is taken element-wise. Let A= [— M Ogel-1)x|e| ] ,
where 0(o|-1)xje| denotes the (|©]—1) x |©| matrix of zeros. Let W= (X",Y”)" and note
that we can re-write the event of interest as {IW: AW <0} and that we are interested

in inference on 1’y for n the 2|©|x 1 vector with one in the (|©|+1)st entry and zeros
everywhere else. Define

Zz=W—cY(0),
for ¢ = Cov(W,Y ())/Sy(f), noting that the definition of Z; in (11) corresponds to
extracting the elements of Z7 corresponding to X. By Lemma 5.1 of Lee et al. (2016),
(W:AW <0} = {W:E(é,Zg) <Y(6) <U(8,2)V(8,Z) zo},
where for (v); the jth element of a vector v,

L@ (A2
( ’Z)_j:(rfrllc?fi() (Ac);

Note, however, that
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and

01;01) - EXY<0179])
Sy () '

Yxy(
(Ac) =
Hence, we can re-write

—(AZ5); v (01)(Z(0;)— Z5(6))
(Ac); — Exy(61,01)—Exy(61,6;)’

Yy (01)(Z3(0;) = Z3(61))

L£(0.2)= :
( 9) j:ZXy(91,91)>EXY(91»9j)EXY<(91791)_EXY(Ql’ej)
5 Sy (01)(Z5(6;) — Z5(61))
Z/{ G,Zik == )
( 9) jzzxy(91,91)<ZXY(9179j)EXY<91791>_ny(ebej)
and
V(0,25) = min —(Z(05)—Z5(0))-

JXxy (01,01)=Sxy (01,0)

Note, however, that these are functions of Zj, as expected. The result follows. [

Proof of Lemma 1 Recall that conditional on Z; =23, 6=0 and 4=+ if and only if
Y(é) ey(é,’y,z(;). Hence, the assumption of the lemma implies that

PT,UY,m {Y(é) ey(év;%zé”zé:zé,m} —1L

Note, next, that both the conventional and conditional confidence intervals are equivari-
ant under shifts, in the sense that the conditional confidence interval for 1y () based on ob-
serving Y (0) conditional on Y (A) €Y (éﬁ,Zé) is equal to the conditional confidence interval
for 11y (f) based on observing Y (6) — % (A) conditional on Y () —i%-(8) € V(8,7,2;) — 1 ()

for any constant 1j-(¢). Hence, rather than considering a sequence of values py,, we can

fix some pj- and note that

Pri {Y O) €Vl Zy= 25 } 1,

where V' =)(0.7,23) — pty,m(0) +145-(0). Confidence intervals for jiy,,(#) in the original
problem are equal to those for 1% () in the new problem, shifted by juy-, (8) — - (A). Hence,
to prove the result it suffices to prove the equivalence of conditional and conventional
confidence intervals in the problem with py fixed (and likewise for estimators).

To prove the result, we make use of the following lemma, which is proved below. First,

we must introduce the following notation. Let (¢ gr(pty,0,)),Cu.pr(t4y0,))) denote the
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critical values for an equal-tailed test of Hy : py(8) = py for Y(8) ~ N (uy (é),Ey(é))

conditional on Y'(§) €Y. That is, (¢ gr(ty,0,Y),Cu,er(thy0,Y)) solve

(8]
Frn(cLer(py0.)iiv0,Y) = 5

«
Fry (Cu,ET(My,o,y) WY,OQ’) =1— 5

where Firn (-;py0,Y) is the distribution function for the normal distribution N ([Lyp,Zy(Q))
truncated to ). Similarly, let (¢, (ty.0,)),cuv(tv,0,))) denote the critical values for the
corresponding unbiased test. That is, (¢, (py0,)),Cuv(1y0,))) solve

Pr{ce [Cl,U(HY,my)aCu,U(Mxo,y)]} =l—-a

EICHCE [au(pyod)cuv(pyvoY)} = (1—a)E[(]
for ¢ ~E|€€Y where £~N<um,2y(9)>.

Lemma 3

Suppose that we observe Y (0) ~ N (My<é>,2y(é)> conditional on Y (0) falling in a
set V. If we hold (Ey(@),uw) fized and consider a sequence of sets Y, such that
Pr{Y(é) Eym} — 1, we have that for

Per(pyo)=1 {Y(é) & lener(py,0.Ym) Cupr(1y,0.Ym)] } (21)
and
Bu (o) =1{ Y O) e (v ). cur (avo D)}, (22)
(e (1y,0.YVm) Cupr(ty.0,Vm)) = (/W,o —ca N\ Sy (0),pvo+ca v/ Ey (9))
and

(1, (ky:0:Ym) Cutr (1y,0,Ym)) = (MY,U—C‘;,N\/ EY@)>MKO+C%,N\/ Ey(é))

To complete the proof, first note that C'Sgr and C'Sy are formed by inverting (families

of) equal-tailed and unbiased tests, respectively. Let C'S,, denote a generic conditional
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confidence interval formed by inverting a family of tests

Omlity) = 1Y O) & lalivo Vi) culimvo V) |

Hence, we want to show that
Sty [V (O)=cg,3Y (B)+c5.]. (23)

as m— oo, for C'S,, formed by inverting either (21) or (22).
We assume that C'S,, is a finite interval for all m, which holds trivially for the equal-
tailed confidence interval C'Sgr, and holds for Cy by Lemma 5.5.1 of Lehmann and

Romano (2005). For each value pyo our Lemma 3 implies that

Pm(ky0) = 1{Y (9) ¢ [vo—canovotes n] }

for ¢, equal to either (21) or (22). This convergence in probability holds jointly for all
finite collections of values pyo, however, which implies (23). The same argument works
for the median unbiased estimator ﬂ%, which can also be viewed as the upper endpoint

of a one-sided 50% confidence interval. [J

Proof of Proposition 4 We prove this result for the unconditional case, noting that
since Prum{é’:é,ﬁ/:i} — 1, the result conditional on {9:5,&:§} follows immediately.

Note that by the law of iterated expectations, Pry,, {9:0,&:'7} — 1 implies that
Pmyym{ézé,&:ﬂZ@} —, 1. Hence, if we define
9y s2) = Pryy {é:éﬁ::ﬂZé:Z},

we see that g(fty.m,Z3) —p 1.

Note, next, that for d the euclidian distance between the endpoints, if we define
he(py ,2) = Pr, {d(CSy,CSn) >¢e| Zz =z},
Lemma 1 implies that for any sequence (fty,m,2m) such that g(tty,m,zm) = 1, he(fym,2m) — 0.

Hence, if we define G(0)={(py,2): g(uy,z) >1—-3} and H(e) ={(uy,2): he(py,z) <e}, we
see that for all £ >0 there exists §(¢) >0 such that G(d(g)) CH(e).
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Hence, since our argument above implies that for all § >0,

Pry, {(ym:Z5) €G(0)} =1,

we see that for all £ >0,
Pr, {(pym Zs) €M)} —1

as well, which suffices to prove the desired claim for confidence intervals. The same

argument likewise implies the result for our median unbiased estimator. [

Proof of Proposition 5 Provided 0 is unique with probability one, we can write

Pru{u(@) ECS} = Z Pm{ézé,’yzi}Pru{u(é) EC’S|9=§,&:’?}.

feO el

Since Zéeeﬁelﬂpm{ézéﬁ:i} =1, the result of the proposition follows immediately. [

Proof of Lemma 2 The assumption of the lemma implies that X (6) — X (6) has a
non-degenerate normal distribution for all ;. Since © is finite, almost-sure uniqueness of

6 follows immediately.

Proof of Proposition 6 The first part of the proposition follows immediately from
Proposition 2. For the second part of the proposition, note that for C'S? either of the

hybrid confidence intervals,
Pru{uy(é) € C’SH} :Pm{uy(é) € CSg} X

> Prd0=04=3luy ) eCS} | Pro{uv () eCS™19=04=7.1y B) € C S}

6eO Fer

>(1- ﬁ)

_a,

:Pr#{py(ﬁ)eCSﬁ} 5> 6

where the second equality follows from the first part of the proposition. The upper bound
follows by the same argument and the fact that P?”M{ 1y (0) € CS?,} <1.0

Proof of Proposition 7 We first establish uniqueness of j12. To do so, it suffices to show
that FE (Y (0);y(9),0,7,7;) is strictly decreasing in puy (). Note first that this holds for the

truncated normal assuming truncation that does not depend on py-(6) by Lemma A.1 of Lee
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et al. (2016). When we instead consider F& (Y (6);uy(9),0,7,25), we impose truncation to

v(#)e {mé)—cm/ Sy (8) oy (B) 45 Ey@} |

~ ~ ~ ~

Since this interval shifts upwards as we increase py (0), Fiy(Y(0); 1y (0),0,7,7;) is a
fortiori decreasing in py (A). Uniqueness of jiff for o € (0,1) follows. Note, next, that
ER(Y (0);y(8),0,7,Z;5) € {0,1} for py (8) & CSh from which we immediately see that
plrecsy.

Finally, note that for yy-(0) the true value,

Ein (Y (0):v(9).0.7.25) ~ U[0,1]

conditional on {92@,&2&,%:2@”3/(9)EC’S]@}. Since FH (Y (0);py(0),0,7,2;) is de-

creasing in piy (6),
Pry{ it > iy 010 =0.5=7,7) = i1 (B) € CS} }

_ pm{ FE (Y (0)i10v(0),0,7,25) > 1—l0=0.4=7,Z, = 25,11y (8) € 0553} =a,

and thus 1 is a-quantile-unbiased conditional on {é:é,’y:i,Z@ — 25,1y (A) € CS]@}. We
can drop the conditioning on Z; by the law of iterated expectations, and a-quantile-
unbiasedness conditional on juy-(6) € C’Sf, follows by the same argument as in the proof

of Proposition 5.

Proof of Lemma 3 Note that we can assume without loss of generality that py,,=0 and

Sy (f) =1 since we can define Y*(0) = (Y(é)—uw) /7/Zy(0) and consider the problem

of testing that the mean of Y*(0) is zero (transforming the set ), accordingly). After

deriving critical values (¢f,cf) in this transformed problem, we can recover critical values

for our original problem as (¢;,¢,) =1/ Xy (0)(¢],c)+pyo. Hence, for the remainder of the

proof we assume that py =0 and Xy (0)=1.

Equal-Tailed Test We consider first the equal-tailed test. Note that this test rejects
if and only if

Y(Q) € [CZ,ET(y)acu,ET(y)]a
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where we suppress the dependence of the critical values on jiy,p =0 for simplicity, and
(c,er(Y)cuer(Y)) solve
Frn(aer(Y),Y)=

| R

Frn(cuzr(Y).Y)= 1—%.

for Fry(-,Y) the distribution function of a standard normal random variable truncated

to ). Recall that we can write the density corresponding to Fry(y,)) as ;T{?ggj} In(y)

where fy is the standard normal density and Pr{{ €Y} is the probability that €} for

¢~ N(0,1). Hence, we can write

fi’ool{@ey}fN@)dg

) =" p ey

Note that that for all y we can write

Frn(Y:Ym) =am(y) +Fn(y),

where Fly is the standard normal distribution function and

L MBE N 5)d)

am(y) Pr{ileY.}

—Fn(y).

Recall, however, that Pr{{€Y,,}—1 and

[ eyt rat|=| [ 1en) -

-/ G} i ()45 < Pr{EE Y} —0

for all y, so a,,(y) —0 for all y. Theorem 2.11 in Van der Vaart (1998) then implies that
., (y) — 0 uniformly in y as well.
Note next that

«

Frn(cer(Vm)Ym) =am(cer(Vm)) +Fn(cer(Vm)) = 5

implies

apr(Vm)=Fy' (% —am(Cz,ET(ym))> ;
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and thus that ¢ gr (Vm) — F ng (%) Using the same argument, we can show that
Cumr(Vm) —>F1§1(1—%), as desired.

Unbiased Test We next consider the unbiased test. Recall that critical values
au(Y), cuu(Y) for the unbiased test solve

PriCelav).carV)]} =1~

ElCH{Celev ) cuu (V)3 =1—a) E[(]
for (~¢|€€Y where E~N(0,1).

Note that for (,, the truncated normal random variable corresponding to Y,,, we can

write
Pr{Gn € la,cu]} = am(ci,en) +(Fn(cn) — Fx(a))
with
am(cr,cu) = (Fiv () = Pr{Cn <a}) = (Fy(cw) = Pr{Cn <cu}).
As in the argument for equal-tailed tests above, we see that both Fy(c,)— Pr{(,<c,}
and Fiy(¢;)—Pr{¢n<c¢} converge to zero pointwise, and thus uniformly in ¢, and ¢ by

Theorem 2.11 in Van der Vaart (1998). Hence, a,,(c;,¢,) — 0 uniformly in (¢,c,).

Note, next, that we can write

E[Gn1{Gm € el Y = [EH{E € [ercul }4-m(crrcu)

for

bin(ci,cu) = ElGn{Gm € [ar,cu] } = [EH{E € [ar,cu]}]

:/l (%_1) yfn(y)dy.

Note, however, that

/ eV~ Dty )dy < EIE1H{E L))

)

Hence, since

/l (%—Hye}im}) yfzv(y)dy‘
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< ‘ (m_l) ‘Eﬂfu{fezym}]s ‘ (@—1) ’JP(TM

by the Cauchy-Schwartz Inequality, where the right hand side tends to zero and doesn’t
depend on (¢;,¢,), by (cr,c,) converges to zero uniformly in (¢,c,).

Next, let us define (¢;,,¢um) as the solutions to
Pri(n€la,cl}=1-a

E[le{gm S [Clacu]}] = (1_O‘)E[Cm]’

From our results above, we can re-write the problem solved by (¢;,Cum) as
Fn(cu)—Fn(a)=1—a—ap(c,cy)

ElgH{E € [acull] = (1 =) ElGn] = bm(ci,cu).

Letting

= SUp|am<Cl,Cu) | )

C1,Cu

I_)m:sup]bm(cl7cu)|

Cl5Cu,

we thus see that (¢m,¢um) solves
Fn(cu)—Fy(a)=1—a—a,

ElEH{E elancu]}] =(1—a)ElGn]=by,

for some a, € [—am,an), b}, € [—Z)m,gm}. We will next show that for any sequence of
values (a;,,b;,) such that a}, € [~@n,a) and b, € [=b,,by,] for all m, the implied solutions
(@, b5), Cum(alybr,) converge to Fiy' (%) and Fy'(1—%). This follows from the next

lemma, which is proved below.

Lemma 4

Suppose that ¢, and ¢, solve
Pr{¢c€lo,c)}=1—a+ay,
ElEH{¢ €lac]t]=dm
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for ap,, dy,—0. Then (cpm,Cum) — (_C%,NaC%,N)-

Using this lemma, since E[(,]—0 as m— 00 we see that for any sequence of values
(ak, b)) —0,

(Cl,m(a;knabjn)7Cu,m(a:n7b:<n)> — (_C%,N7C%,N) .

However, since @, ,b,, — 0 we know that the values a*, and b¥, corresponding to the true Cloms

Cum must converge to zero. Hence (¢m,Cum) — (—0%7 NyCe, N) as we wanted to show. [

Proof of Lemma 4 Note that the critical values solve

[ Fx(ew)=Fn(a)—(1-a)—an _
f Gt )_( Jo N W)y —d, ) '

We can simplify this expression, since a% In(w)=—yfn(y), so

/ i)y = fle)— f(c)

5
We thus must solve the system of equations

Fn(cu)—Fn(a)=(1—a)—ay,

In(a)—fnlew)=dn

or more compactly g(c)—v,, =0, for
Fn(c,)—Fn(c am+(1—a
T A B (s}
fnl(e) = f(cu) dim
Note that for v, =(1—a,0)" this system is solved by c= (—c%,N,c%,N). Further,
0 —fn(a) In(ew)
a_g(c) = ’
C _leN<Cl) Cqu(Cu)
which evaluated at c= (—C%,N,C%’N) is equal to

( —fnlesn)  fulesn) >

ce nfn(cen) canfu(can)
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and has full rank for all o€ (0,1). Thus, by the implicit function theorem there exists an
open neighborhood V' of v, = (1—a,0) such that g(c¢)—v=0 has a unique solution ¢(v)
for veV and ¢(v) is continuously differentiable. Hence, if we consider any sequence of

values vy, = (1—a,0), we see that
—Ca
o) 2N,
C%N

B Additional Results: Details for Empirical Welfare Maximiza-

tion Example

again as we wanted to show. [J

Here, we derive the form of the conditioning event ), (1,7;) discussed in Section 4.2,

including for cases when Yxy () —Xxy (0,0) <0. Note that we can write

Sxy(0)—Sxy (0.0) .
Xy (0)

{X(é)—X(O)zc}:{Zé(é)—Zé(O)—l— - Y(@)>cp.

Rearranging, we see that
Sy (0)(e—25(0)+2;(0)) ) . .
yy= E)(Y(é)—zxy(é,()) if EXY(H)_EXY<Q7O) >0

LSy O(—z0)+70) | . ~ ~
VY S e 00 if Y¥xy(0)—2xy(0,0)<0

Y(1Z) =4 if Yxy (0)—Sxy(0,0)=0
and Z;(0)— Z;(0) >c¢
g if Y xy (0)—Sxy (8,0)=0

\

C Alternatives to Conventional Sample Splitting

In Section 4.3 of the main text, we discuss the relationship of our conditional approach to
conventional sample splitting methods and note that the results of Fithian et al. (2017) im-
ply that traditional sample splitting methods are dominated in our setting. Here, we derive
optimal split-sample confidence intervals and estimators as well as easy-to-implement con-

fidence intervals and estimators that dominate their conventional split-sample counterparts
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in the asymptotic version of the split-sample problem.

The Split-Sample Limit Experiment Let 7 denote the fraction of the full sample
used to compute the estimated maximum and (X} V1) and (X2,Y?) denote rescaled data

corresponding to the first and second portions of the data such that
(Xrlza}/nl) = T_l/2 (X[Tn} a}/[rn])a

(sty;zz) = (1 _T)il ((Xnvyn) - \/;(X[T'n}-&—l?}/[rn}—i-l))

with [a] denoting the nearest integer to a€R. Finally, let 6} = argmaxgee X2 (6) or 61 =
argmaxgee || X 1(0)||, as in Andrews et al. (2019), denote the estimated maximum from the

first part of the sample. In large samples, (X! V1), (X2,Y?) and 9,11 behave according to*

Xl
( 1 )NN(%E),

and

0" = argmax,o X ' (6)
or
0! = argmaxy.g ||X1(9) H,

where c=(1—7)/7 and (X*Y'!) is independent of (X?Y?). This is the generalization of the
asymptotic problem discussed in Section 4.3 of the main text to arbitrary sample splits.?!

Traditional sample splitting methods base inference on Y2(6). Since Y2 is independent
of X', and thus of #*, this ensures the (conditional) median-unbiasedness of conventional
split-sample estimates Y2(91) and the (conditional) validity of conventional split-sample

confidence intervals

CSg= [Y?(él) —\/ 18y (0 ajon, Y01 +/ clzy(él)ca/2,N]

2The quantity 3 in the exposition of this section corresponds to the quantity ¥ in the main text,
multiplied by 771
2For simplicity of exposition, in this section we suppress the possibility of using additional conditioning

variables 4, =~ (X }L) with asymptotic counterpart 4=+ (X 1) .
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but does not make full use of the information in the data. To derive optimal procedures
in the sample splitting framework, we first derive a sufficient statistic for the unknown
parameter ;o conditional on {91 =0 } and then apply classical exponential family results

as in Section 4 of the main text.

Optimal Estimators and Confidence Sets The joint (unconditional) density of
(X1 Y1 X2 Y?) is proportional to

1 X! / X! X2 , X?
(G (G (00) ) (7))
The conditional density given {91 :é} is thus propotional to
{xtex(s)} L x L x
1P| 3 IR N R U B IR
Pr{xrexi(d)} Y Y

() ()

with X1(0)={X":0=0}, which we can re-write as

g1 (X Y1) 9o (X2 Y ) h(p)exp (( ;(11 )—i—c( );z )) S

for

and
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: : . X X! X? :
This exponential family structure shows that = +c is
Y™ y! Y?

sufficient for ;. Hence, for any function of (X!, Y1 X2Y?), there exists a (potentially
randomized) function of (X*Y™*) with the same distribution for all p. Thus, to study
questions of optimality it is without loss to limit attention to confidence intervals and
estimators that depend only on (X*Y™*).

Now that we have derived a sufficient statistic (X*,Y™*) for p, we turn to the question

of how to construct optimal estimators and confidence intervals for py (6) conditional on
{9:é} Note that the unconditional density of (X*,Y™) is proportional to

1 X ([ x
exp —2+20<< - )—(1+c)u) by (( v )—(1+c)u)

The density of (X*,Y*) given {91 :é} is thus proportional to

Ploen@at (o (e o[
Pru{XleXl(é)} eXp(_2+2c<< v >—(1+C)M> b << v >—(1—|—c)u>),

where we have used sufficiency to drop dependence of the numerator on .

This joint distribution has the same exponential family structure used to derive the
optimal estimators and confidence intervals in the main text (see the proofs of Propositions
1 and 2). Hence, the same arguments deliver optimal procedures for the split-sample

setting. Specifically, for

7= ( ;( )— (cm(( ;( >,Y*<é>>/2w (9))1/(9)

where Yy« denotes the variance of Y*, we can re-write

ol (30 oo 32 )] oo (e 03520

for Y- the variance of Z*, A* the Moore-Penrose pseudoinverse of a matrix A, and

== (o () 3) v (v () - )
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This expression shows that when we are interested in inference on py (#) conditional on
{91 =0 }, fiz+ 1s the nuisance parameter, and Z7 is minimal sufficient for this parameter
relative to observing (X', Y1 X2 Y?).

If we let Fiig(Y*(0); puy-(0),0, 2*) denote the conditional distribution function of
Y*Z* = z*,@l = é, then the same arguments used to prove Proposition 1 show that

the optimal o quantile-unbiased estimator figg , in the sample splitting problem solves
Fos(Y*(0");(140) 550,75 =1—v.

Likewise, the same arguments used to prove Proposition 2 show that the optimal two-sided

unbiased test rejects Hy: py (0) = p1y,p when
Y(0)¢[a(%5).cu(%5)],
where ¢(2), ¢,(2) solve

Pri{¢ela(z).cu(2)]} =1-a, E[(H{CEa(2)cu(2)]}] = (1—a) E[(]

with ¢ distributed according to Féq(+;(1+c) um,é,z). These optimal procedures condition
on Z; rather than (X',Y!) and so, unlike conventional sample splitting, continue to treat

(X1 Y1) as random for inference.

Feasible Dominating Estimators and Confidence Sets To implement the optimal
split-sample proecdures, we need to evaluate (or at least be able to draw from) the condi-
tional distribution Fiig(;(14-¢)py0,0,2). Unfortunately, however, it is not computationally
straightforward to do so since Y*|Z* —2* 1 =0 is distributed as a normal random vari-
able truncated to a dependent random set. We thus introduce side constraints to derive
procedures that, although they are not fully optimal in the unconstrained problem, are
computationally straightforward to implement and dominate conventional sample splitting
procedures. These computationally feasible procedures are optimal within the class of

split-sample procedures that condition on {91 :é} and the realizations of

Zi=X'— (2XY (9) /Sy (9) ) y' (9)

for 1=1,2, where (Zg,Zg) is a sufficient statistic for the nuisance parameter px. Since
Y2(6Y)|{6" zé,(Zél,Zg) = (21,21} ~Y?2(h), the conventional split-sample estimator Y2(6")
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and confidence interval C'Sgg fall within the class of split-sample conditional procedures
that condition on {60! = 0} and (Z3,7%). These conventional procedures are therefore
dominated by the optimal procedures within this class, which we now describe.
Standard exponential family arguments show that (Zél,Zg) is sufficient for the nuisance
parameter x and, conditional on {#' =6} and (Zél,Zg), optimal estimation and inference

is based upon the conditional distribution of Y*(#). Note that since Y?(6) is independent
of (Z3,7%) and both 0" and Y?2(0) are independent of Zz,

YO0 =0,(2},22) = (=" D)}~ Y (O) {0 =02} =2} +cY (D).

Thus, the feasible dominating split-sample procedures rely upon the computation of the
distribution function of Y'(6)[{6" :é,Zél —=2'}+¢Y?(6). We now describe a fast method
for computing this object.

In analogy with full sample inference, let
V(B2 = {yl 2 (EXY (9) /Sy (é))yl eXl(é)}

so that conditional on {#* = #} and zZy = 2, Y1(6) follows a one-dimensional trun-
cated normal distribution with truncation set Y'(0,z'). Note that in both the level
and norm maximization contexts, yl(é,zl) can be expressed as a finite union of disjoint
intervals: Y(0,2") = Ur_, [€x(2"),ux(2")], where the dependence of £;(z') and uy(2") for
k=1,...K on 0 is suppressed for notational simplicity. Note that Y(6)[{6" :@,Zél =2}
is distributed as £'|¢t € Y1(0,21), where &' ~ N(uy(6),2y(0)). The density function of
Y(0)|{6" :é,Zél =2'} is thus

Zlefzv((yl—w(é))/ EY@))lwk(zl)Sylsukw))

Fih)= Vo O (B () - Oy ) - ()05 ®)))

and ¢Y2(9) has density function f2(y%)=c /2%y (0) /2 fy ((yz—cu)/ cEy(é)). There-

fore, since Y(0)|{0* = é,Zél —2'} and ¢Y?(0) are independent, the density function of
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Y*(0)|{6" :é,Zél =2'} is equal to

S i (=m0 20 @) (- @)/ o2 @) )
VS O (P ()= @)/ 0)) ~F () 0)//550))

with corresponding distribution function
Fis(y v (0).0.2")

S (e @) B (0 @) @) )
VIO (7 () -y Oy ®)) (6= 05 0))
B| (=€~ @)/ 2 ®) )16 €U )

S (o (e - @)/ 20 @) )~ (610 Oy 5r10))

b

where the expectation is taken with respect to &' ~ N (uy (A),5y (A)). This latter expression
for Fés(y*;puy (0),0,2") is very easy to compute by generating normal random variables in
standard software packages. This makes the computation of optimal estimators, tests and
confidence intervals within the class discussed here computationally straightforward.
Similarly to the optimal case above, the same arguments used to prove Proposition 1
show that the optimal o quantile-unbiased estimator ﬂ?s,a in the sample splitting problem

that conditions on {#' =6} and the realizations of Z3 and Z3 solves
(Y*(el)ﬂssaﬂ Z(;): -

Therefore, our (equal-tailed) alternative split-sample confidence interval is C4g =[5, /20 . Ja)-
Likewise, the same arguments used to prove Proposition 2 show that the optimal two-sided

unbiased test rejects Ho: pty () = j1y0 when

Y(0)¢ [a(Z5).cu(%3)];
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where ¢(2), ¢,(z) solve

Pr{¢ela(z),cu(2)]} =1—a, E[CI{¢€[a(z)cu(2)]}] = (1—a) E[(]

with ¢ distributed according to F. ?g(';ﬂxmé,z)- These dominating procedures condition
on Z; rather than (X'Y"), and so unlike conventional sample splitting continue to treat

(X1Y") as random for inference.

D Uniformity Results

In this section, we show that the results derived in the main text for the finite-sample
normal model translate to uniform asymptotic results over a large class of data generating
processes for level-maximization problems. To state and prove these results, it will be
important to distinguish between finite-sample and asymptotic objects. To keep this
distinction clear, we will subscript finite-sample objects by the sample size, writing X,
Y,, in, and so on. Moreover, the estimators and confidence intervals i », ﬂgn, CSErm,
CSEr o CSum, CS{f, and CSp,, are equal to their asymptotic counterparts fia, i}, CSer,
CSE., CSy, CSH and CSp after replacing X, Y, ¥ with X,,, Y, S

With this notation, we aim to prove, for example, that for fi,, our a-quantile unbiased
estimator calculated using (Xn,Yn,§n>, Ly (0;P) the analog of 11y () in the sample of

size n, and data generating process P,

tim sup | Pro{ fian oy (03P } o] =0,
n—oOpep,

SO flan 18 (unconditionally) asymptotically a-quantile unbiased uniformly over the (possibly

sample-size dependent) class of data generating processes P,,. Moreover, we will show that

for all H€ O

tim sup | Prp o > v (B0 16,=0} —a| Pro{ 0, =0} =0,

n—oOpep,

so asymptotic quantile unbiasedness also holds conditional on the event {én:é} provided
this event occurs with non-trivial asymptotic probability. One could use arguments along
the same lines as those below to derive results for additional conditioning variables ,,, but
since such arguments would be case-specific, and we do not pursue such an extension here.

Asymptotic uniformity results for conditional inference procedures that, like our correc-
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tions, rely on truncated normal distributions were previously established by Tibshirani et al.
(2018). Their results cover a class of models that nests our level maximization problem
but impose an assumption that implies bounded asymptotic means. Since we do not
impose this assumption in our analysis of level-maximization, our results on conditional
confidence intervals are not nested by theirs. Moreover, these authors do not cover hybrid
inference procedures, which are new to the literature, and also do not provide results for
quantile-unbiased estimation. Our proofs are based on subsequencing arguments as in An-
drews et al. (2018), though due to the differences in our setting (our interest in conditional
inference, and the fact that our target is random from an unconditional perspective) we
cannot directly apply their results. In the subsequent analysis, Fiy and fy denote the cdf
and pdf of the standard normal distribution.

D.1 Asymptotic Validity for Level Maximization

Section D.1.1 collects the assumptions we use to prove uniform asymptotic validity. Section
D.1.2 then states our uniformity results. Section D.1.3 collects a series of technical lemmas
which we use to prove our uniformity results. Finally, Sections D.1.4 and D.1.5 collect

proofs for the lemmas and the uniformity results, respectively.
D.1.1 Assumptions

To derive our asymptotic uniformity results, we use the fact that all our estimates and
confidence intervals are functions of (Xn,Y;L,in>. Hence, to derive our results it suffices

to state assumptions in terms of the behavior of these objects.

Assumption 2

QOur estimator EA]n is uniformly consistent for some function L(P),

lim sup Prp{’ in—E(P)H >5}:O

TL—)OOpepn

for all € >0.

This assumption requires that our variance estimator 3., be consistent for some X(P),
which our later assumptions will take to be the asymptotic variance matrix of (X! ,Y)’

under P, uniformly over P,.

Assumption 3

There exists a finite \>0 such that for Amin(A) and Amax(A) the minimum and mazimum
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eigenvalues of a matriz A,
1/ A< i (Ex (P) € dmax (Ex (P)) < for all PEP,

and

1Ay (0;P) <\ for all €O and all PEP,.

This assumption bounds the variance matrix Xy (P) above and away from singularity,
and likewise bounds the diagonal elements of ¥y (P) above and away from zero. This
ensures that the set of covariance matrices consistent with P € P, is a subset of a compact

set, and that X,,(f) has a unique maximum with probability tending to one.

Assumption 4
For BLy the class of Lipschitz functions that are bounded in absolute value by one and
have Lipschitz constant bounded by one, and {p~ N(0,%(P)),

Xn_ﬂX,n(P)
I ( Y fuya(P) )

for some sequence of functions pux,(P) and iy, (P).

Ep ~E[f(€r)]| =0

lim sup sup
n—=0pcp, fEBL,

Bounded Lipschitz distance metrizes convergence in distribution, so uniform conver-
gence in bounded Lipschitz, as we assume here, is one formalization for uniform convergence

in distribution. Hence, this assumption requires that
(X, = pxa(P) Y= pyn(P))

be asymptotically N(0,3(P)) distributed, uniformly over P€P,,.
D.1.2 Level Maximization Uniformity Results

For 0, —argmaxy X, (f) we obtain the following results.

Proposition 8

Under Assumptions 2-4, for 9n:argmax€Xn(6) and fi,, , the a-quantile unbiased estimator,

lim sup Prp{ﬂa,n > by (@mP) |9n :9} —a‘Prp{én :é} =0, (24)

n—oopep,
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for all 0€©, and
lim sup P?”P{/lam >y p <9H;P> } —a’ =0. (25)

n—0opep,

Corollary 1
Under Assumptions 2-4, for @n =argmaxyX,,(0) and CSgr,, the level 1 —a equal-tailed

confidence interval,

lim sup PTP{/LKn<9n;P>GCSETm‘én:é}—(1—(1)‘P7’p{én:é}:0,

n—0opep,

for all 0O, and

lim sup PTP{,[,LK”(én;P) EC’SETm}—(l—a)‘:O.

n—oopep,

Proposition 9
Under Assumptions 2-4, for 9n = argmaxy X, () and CSy,, the level 1 — o unbiased

confidence interval,

lim sup Prp{uxn(én;P> EC’SU,nlén:é}—(l—a)‘Prp{@n:é}:O, (26)

n—=0pep,

for all0€®©, and

lim sup Prp{uxn(én;P> EC’SUVn}—(l—oz)‘:(). (27)

’I’LA)OOPE'PTL

Proposition 10
Under Assumptions 2-4, for 6, = argmaxy X, (#) and CSp,, the level 1 —« projection

confidence interval,

liminf inf Prp{uy,n (én;P> ecsp,n} >1—a. (28)

n—oo PeEP,

Proposition 11
Under Assumptions 2-4, for 6, = argmaxy X, (6), ﬂfm the a-quantile unbiased hybrid

estimator based on initial confidence interval CS}B%, and

cH (é;P) _ 1{én — 041y (9n;P) c CSﬁ,n},
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we have

lim sup ’Prp{,&g’nZuxn (@mP)]CE(é;P) = } ‘Ep{ (9 P)} 0, (29)

n—=opep,

for all 6€©. Moreover

limsup sup Prp{ﬂgn > fbyn <9n;P> } —oz‘ <max{a,l1—a}p. (30)

n—oo PeP,

Corollary 2 )
Under Assumptions 2-4, for 6, = argmaxyX,,(0) and C’Sé{Tm the level 1 —« equal-tailed

hybrid confidence set based on initial confidence interval CSgn,

Jim_sup Prp{uy" <0n,P) ecst, |t (9 P) 71} - 1—; EP{CH (9 P)} 0, (31)
for all 0O,
11711130%%3;”1%{ v (BiP) €Ot } 21— (32)
and
1171?5011;)52}3"1%{ fvm (Gn,P) c CSETn} < 1_—; 1—atB. (33)

Proposition 12
Under Assumptions 2-4, for 6, =argmaxyX,,(6) and CS{,, the level 1—o unbiased hybrid

confidence interval based on initial confidence interval C’S]’gn,

i sup Prp{uyﬂ <0n,P> ccst ot (9 P) - 1} . 1_—;‘ Ep{cf (é;P) } —0,
for all 0O,
liminf inf Prp { . <9n,P) = ngn} >1-
and .
llgolipgélgnprp{ . <9n,P> c ngn} gsi-ats

D.1.3 Auxiliary Lemmas
This section collects lemmas that we will use to prove our uniformity results.

Lemma 5

Under Assumption 3, for any sequence of confidence intervals C'S,,, any sequence of sets
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Cn(P) indexed by P, C,(P)= {(Xn,Yn,Z ) ECn(P)}, and any constant «, to show that

limsup sup Prp{ﬂym <9n;P> €CS,|C(P)= 1} —O{‘PTP{Cn(P) =1}=0

n—oo PeP,
it suffices to show that for all subsequences {ns} C{n}, {P,.} €P>®=x>2 P, with:

1. ¥(P,,)—X*eS for

S={Z:1/A< Auin(Ex) CAmax(Ex) SAL/AS Sy (0) <A, (34)

2. Prp, {C, (P,,)=1}—p*€(0,1], and

My = {,uX € [—00,0]® :meaqu(Q):O},

we have
lim Prp, {,qus (@ns ;Pns> €CS,,|Ch.(P,,)= 1} =q. (35)

5§—00

Lemma 6

For a collection of sequences of sets Cy,1(P),....Cn.s(P) and

C,i(P)= 1{ (Xn,Yn,in) ECW-(P)},

lim sup Prp{C, ;(P)=1,C, y(P)=1}=0 for all j#j'

n—oopcp,

and

lim sup Prp{,uyn(Qn,P>€CS |Cj(P)= 1}—(1—04)‘PTP{Cn7]‘(P):1}:O

noopep,

for all 5, then

liminf inf Prp{uyn <0n,P> eCS, } (1—a)-liminf inf ZPTP{CM (P)=1}

n—oo PeP, n—oo PeP, ;
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and

limsup sup P?"p{uym <9n;P> eCs, }<1 aoliminf inf ZPTP{Cn] P)=1}.

n—oo PEP, n—oo Pep,

To state the next lemma, define

ﬁ(é Z 2) - max o é> <Z(0) _Z<~ ) (36)
Y 0cO ny(é)>2)(y<é 9) ZXY <é> _ZXY (é,@)

U (é A z) - min o (9> <Z<9> 2 ( > (37)
o 0cO:xy (é)<ZXY @79) EXY (é) _EXY (é,e) 7

where we define a maximum over the empty set as —oo and a minimum over the empty

Xo\ [ Xu—maxgpx(0;P)
Y, Yo —pyn(P) ’
we next show that using (X,’;,Y;L*,f]n> in our calculations yields the same bounds £ and

U as using <Xn,Y;L,§]n>, up to additive shifts

set as +o0o. For

Lemma 7

For E(é,Z,E) andU(é,Z,E) as defined in (36) and (37), and

S v (9,@)

(i)

5(97Z§,nv§n> :ﬁ(é,zém,in) — bty (é;P)
U(0.23,.50) =U(8.2,50 ) v (0:P).

For brevity, going forward we use the shorthand notation

50 z=xi0- 200

Zp ,=Xn(0)— = @0
Yn

we have

<£<9 oS ) u(e S ) E(é,ng,in) u (é,zgﬂ,in)) = (L U L2 ).
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Lemma 8
Under Assumptions 2 and /4, for any {ns} and {P,.} satisfying conditions (1)-(3) of

Lemma 5 and any 0 with Wy (é) > —00,
(K‘Z 7'6;:3 72/[:575\17157@713) —d (Y*7£*7U*7Z*7é>7

where the objects on the right hand side are calculated based on (Y*, X*3*) for

X* * *
(Y* )NN<M 72)

with p* = (., 0)'.

Lemma 9

For Fy again the standard normal distribution function, the function

<Y(9)/\M—u> _ ( L—p )

MU Va0 Sy (6)

Frn (Y (6)1.y (6).L.2) = Ye)=0 63
Py e ) —Fy | 22

N( zy(m) N(\/zyw))
is continuous in (Y (6),u,2y (0),LU) on the set
{(Y(0),1.5y(0) eR®, LeRU{—00} U eRU{o0}: Ty (0) >0,L <Y (6) <U}.
To state the next lemma, let (¢;(u, 2y (0),LU),cu(p.2y (8),LU)) solve

Pr{Celg,cl)}t=1—a

ElCH{Celenc]}] =(1—a)E[(]

for

CN§|£ € [£7u]7§N N(M72Y<9>)'

Lemma 10
The function (¢;(p,2y (8),LU),cu(p,2y (0),LU)) satisfies

(Cl (M?EY (‘9) 7£7u) »Cu (M7EY (0) ,E,U))
= (:u—i_cl (O,Ey(@),E—,u,Z/l—u),u+cu(0,2y(9),£—u,L[—u))
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and is continuous in (11,Yy (0),LU) on the set
{(1.2y(0)) eER* L e RU{—00} U eRU{o0}: Sy (0) >0,L<U}.

D.1.4 Proofs for Auxiliary Lemmas

Proof of Lemma 5 To prove that

Prp{um (9n;P> eCSn|Cn(P):1}—a‘Prp{Cn(P)zl}:O

limsup sup
n—oo PeP,

it suffices to show that

liminf inf (PTP{MYJL (9n;P> €CS,|Co(P) = 1} —a) Prp{C(P)=1}>0 (39)
and
limsup sup (Prp{,qu <9n;P> €CS,|Cr(P)= 1} —a) Prp{C,(P)=1}<0. (40)

n—oo PepP,

We prove that to show (39), it suffices to show that for all {ns}, {P,,} satisfying conditions
(1)-(3) of the lemma,

liminf Prp,_ {,uyms (éns ;Pn5> €CS,.|Ch.(Po)= 1} >a. (41)

S—00

An argument along the same lines implies that to prove (40) it suffices to show that

limsupPrp,_ {MY,ns <9n ;Pns) €CS,.|Ch.(Po,)= 1} <a. (42)

§—00

Note, however, that (41) and (42) together are equivalent to (35).

Towards contradiction, suppose that (39) fails, so

liminf inf <Prp{uxn(@n;P> ECSn|Cn(P):1}—a)Prp{Cn(P):1}<—5,

n—oo PepP,

for some € >0 but that (41) holds for all sequences satisfying conditions (1)-(3) of the

lemma. Then there exists an increasing sequence of sample sizes n, and some sequence
{an} with P, €P,, for all ¢ such that

limsup (PT'an {,u,qu (9%;an> €CSy,|Cr, (an) = 1} —a) PT'an {qu (an) = 1} <—e. (43)

q—00
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We want to show that there exists a further subsequence {n,} C{n,} satistying (1)-(3) in
the statement of the lemma, and so establish a contradiction.

Note that since the set S defined in (34) is compact (e.g. in the Frobenius norm),
and Assumption 3 implies that X (an) €S for all g, there exists a further subsequence
{n,} C{n,} such that

lim (P, ) —»X*

7—00
for some ¥*€S.
Note, next, that Prp, {Cy, (P, )=1}€[0,1] for all r, and so converges along a sub-
sequence {n;} C{n,}. However, (43) implies that Prp, {C,, (P, )=1}> £ for all r, and

thus that
PrPnt{Cnt(Pnt):l} pe [i’l]'
«Q

Finally, let us define
Hoxn(P) = px () —maji (0:P),

and note that u%, (P) <0 by construction. Since %, (P) is finite-dimensional and
maxp/t ,,(P;0) =0, there exists some 6 € © such that 1% ,,(P;0) is equal to zero infinitely of-
ten. Let {n,} C{n;} extract the corresponding sequence of sample sizes. The set [—00,0]!®!
is compact under the metric d(ux,fix) = ||[Fn(ux) — Fy(fix)| for Fy(-) the standard
normal cdf applied elementwise, and ||-|| the Euclidean norm. Hence, there exists a further
subsequence {n,} C{n,} along which y/% , (P,,) converges to a limit in this metric. Note,
however, that this means that i, (F,,) converges to a limit ;* € M* in the usual metric.

Hence, we have shown that there exists a subsequence {n,} C{n,} that satisfies (1)-(3).

By supposition, (41) must hold along this subsequence. Thus,

liminf (Pr Po. { Y ng (éng P ns> €CSy,

n—oo

Cns(Pns)zl}_O‘>PrP{Cns (Pns):1}207

which contradicts (43). Hence, we have established a contradiction and so proved that (41)
for all subsequences satisfying conditions (1)-(3) of the lemma implies (39). An argument
along the same lines shows that (42) along all subsequences satisfying conditions (1)-(3)

of lemma implies (40). O

Proof of Lemma 6 Let us define
Cny+1(P)=1{C, ;(P)=0 for all je{1,....J}}.
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Note that

Prp{pJYn <9n;P> EC’Sn}
z”lprp{m(en,p)ecs Cpoi(P) = 1}prp{cn,j(p):1}+o<1)

where the o(1) term is negligible uniformly over P€P, as n— oo. Hence,

P?"P{/,Lyn <9n;P> GCSn}—(l—a)
—ZHl(Prp{uyn(Qn,P)EC’S Ci(P)= 1}—(1—a))PrP{cn,j(P):1}+0(1)

and
lznj)loléf]grelf PTP{/,LYTL <9n,P) eCs, } (1—a)
~liminf inf : (P?"p{ . (9n;P> €CS,|Ch (P)= 1} —a —a)) Prp{C,,;(P)=1}

=liminf inf (Prp{uyn<9n,P>€CS |Crs1(P)= 1}—(1—&))Prp{CnJH(P):l}

n—oo PEP,

—(1—a)limsup sup Prp{C,, j+1(P)=1}

n—oo PePpP,

—(1—a) (1 —liminf inf iPTP{On,j (P)= 1})

n—oo PEP,~
Jj=1

which immediately implies that

liminf inf Prp{uyn<9n,P) cCS, } (1— oz)hmmf inf ZPTP{CM( )=1}.

n—oo PEP, n—oo PEP, n'

Likewise,
limsup sup PTP{,MY,” <9n;P> € C’Sn} —(1—a)

n—oo PeP,

J+1

=limsup sup Z(Prp{uyﬂ<0n,P>eCS |Chi(P)= 1}—(1—04))Prp{0n7j(P):1}

n—o0 PG’Pn

—limsup sup (P?“p{ Ly (@n;P> €CS,|Chyin(P)= 1} —a —a)) Prp{Cosi1(P)=1}

n—oo PepP,
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<a-limsup sup Prp{C,, j41(P)=1}= a(l liminf inf ZPTP{C’,”( )= 1})

n—oo PeP, n—oo PeP

This immediately implies that

limsup sup PT‘p{,uym <9n;P> € C’Sn} <1—q-liminf inf ZPTP{CW (P)=1},

n—oo PeP, n—oo PeP,

as we wanted to show. J

Proof of Lemma 7 Note that

Hyn (0 P)

Zg,n = Zé,n _mQaXMX,n(QaP) +§XY,n ( é)
SO

0-25,0) 200200 (o) 5o ) 2200,

Sy (0)

The result follows immediately. [

Proof of Lemma 8 By Assumption 4

< an _Ilj/XynS (Pns)

—d N(O,E*)
Yn‘s_l"LKna(Pn.s) >

Hence, by Slutsky’s lemma

s _ s maXQMX, .s( .5) —>d NN(ILL*7E*)
}/ﬂz Yns _/’LY»TLS (Pne> Y*
We begin by considering one 6 € @\{9} at a time. Since in —p 2" by Assumption
2, if Ty (9) Yy (é,e) £0 then

B (0)(7,.0-7,.0)) | 0)(%0-%())

S v, (9) Sy, (e 9) T (9) - (9 9) ’
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where the terms on the right hand side are based on (X*,Y* ¥*). The limit is finite if
Wi (0) > —o0, while otherwise % (#)=—o00 and

st (9) (Zg(e)—zg (9)) ) {oo if T3, (9) _sr (é,e) >0

ey (0) S5y (00) | +o0 i S5y (8) Sy (8.0) <0

If instead iy (0) Yy (é,@) —0, then since 3% has full rank,

2(0)~ 2 (8) =x*(0)-x"(0)

is normally distributed with non-zero variance. Hence, in this case

v (0) (2,,50)-2;,4(9))

S v, (9) Sy (é,e)

— 00. (44)

Let us define
o (9) - {ee@\ézz;y (9) S, (é,e) 7éo}.
The argument above implies that

L n0kes0)
0O (é):fxy,ns (é)>§XY,ns (979) iXY,ns <é> - iXans <~’0

e . St (e) ~Zg 6)— Zg~<é>
003350y (0)> 5y (30) z;(y(e S X

)
and ~
R
066" (0):Sxv.ns (0)<Sxvins (00)  Syy, < > v, (

i O5O-%0)

0€0:5%y (0)<Siy (00) Y%y (é) N 39 (6 9)

By (44), the same convergence holds when we minimize and maximize over O rather than
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©*(6). Hence,
(Lr U ) —a (L2 U").

Moreover, 9ns is almost everywhere continuous in X7 , so
<K’Iz7ins 7éns> —>d (Y*72*7é>
by the continuous mapping theorem, and this convergence holds jointly with that for

(/J;is ,Z/{,’;S). Hence, we have established the desired convergence. [

Proof of Lemma 9 Continuity for 3y (0) > 0,£ <Y (§) <U with all elements finite
is immediate from the functional form. Moreover, for fixed (Y (),u,2y(0)) € R® with
Yy(@)>0and L<Y(0)<U,

F Y(ONA—p _F L—p F Y(0)—p _F L—p
N( =0 ) Y\ VEO N\ ) T\ o)
N 00 ) L—p )

=

(LU)—(—00,00) e r == _ ‘
Fy| 42 ) —Fy | £ Fy|—==)-F ES
<\/2y<0>) N<\/zy<9>) N( zyw)) N( zyw))

Hence, we obtain the desired result. []

Proof of Lemma 10 Note that for fy again the standard normal density,

I UNcu—p _F LNej—p
N( zy(m) N<\/zy(e> .

U—p . L—p
by (\/zy(m) Ew (\/we))

P’I“{CG[C[,CU]}: (u26l7cu2£)7
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Xy (0) (f N (—ﬁ\g;_(g)) —In <—w\;§9’;> )

(e el =PriCelacl} | u+ (”—w) - (ﬁ)

r(ee) () ) Ve O () ()

F kL_F _Lop
N( me N( &w)

vao(r( ) - (J55))

El(]=p+
Fy| = ) —Fy | £
N( &WQ N( &w)

Thus, we can write (¢;(u,2y (0),LU),cu(p,2y (0),LU)) as the solution to the following

system of equations:

UNcy,—p LVe—p U—pu L—p B
FN( zyw))_FN( zy<9>>_<1_“)<FN< zyw))_FN( zyw)))_o )

and
UNc,— 1L LN e —p LN e — UNey,— 1
’“‘(FN< zyw))_FN( M))))* EY(Q)(“( me))_ﬁv( mm))
U—pn L—pu
‘“‘“”(FN( Ey<9>>‘FN< w))
—<1—a>\/zy<9><fN< éy‘;) ( 9)>
(

such that ¢, <U and ¢, > L. Note, however, that since any ¢ = (¢;,¢,) that solves this

and

system must satisfy (45), we can also write
(c(p, Xy (0),LU)cu(p,Zy (0),LU))
as the solution to

9(0;u,\/m,ﬁ,u> _
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such that ¢, <Y and ¢, > L, for

9(0;%\/21/(9):51/{)
_ FN(UAECZ(»)_FN e )=o) FN(\/ME;((») _FN< 5 ))
n(ge) () (n () (35))

This implies that

g(C;/m/ ZY(H),E,U) Zg(c—(u,u)’;O,\/ Xy (0),L—pU —u),

from which the first result of the lemma follows immediately.

To prove the second part of the lemma, note that by the first part of the lemma it

suffices to prove continuity of

(c(0.Zy (0),LU),cu(0.5y (0),LU)). (46)
Recall that (46) solves
Pr{Ce€le,c)t=(1—a) (47)
and
E[CH{¢ e} =(1-a)E[(] (48)

for ¢ ~ &|€ € [L,U] where £ ~ N(0,3y(0)). Note, however, that since £ <U, (47) im-
plies that any solution has ¢ < ¢,, and that we cannot have both ¢, < £ and ¢, > U.
Note, next, that if ¢, = £, then since ¢, < U, E[C|C € [a,c.]] < E[(], and thus that
E[(1{(e]a,cu)}] < (1—a)E[(]. Since the same argument applies when ¢, =U, we see that
for any solution (46), £L<¢ <c, <U.

Note, next, that g(c;O,\/m ,E,Z/{) is almost everywhere differentiable with respect

to ¢ with derivative 5
EY (c;O,\/m,E,LO:
~1(a> L) (/S @) VI @) ew<t)f(c/ VEr D)) /S 0)
~Ua>L)af(a/v/Sr ) /Sr(0)  Ue<Ueufv (e V/Er)/Er(0)

The first row is zero if and only if ¢; < £ and ¢, >U, which as argued above cannot
be a solution to g(c;O,w/Ey(é’),E,LO =0 for £L<U finite. The second row is zero if and

7



only if either (i) ¢ < £ and ¢, >U or (ii) ¢ =c¢, =0, which again cannot be a solution.
Finally, apart from the cases just mentioned, the rows are proportional if and only if either
(i) a<L, (ii) ¢, >U or (iii) ¢ =c,, none of which can be a solution. Hence, the implicit

function theorem implies continuity on
{Ey(0)eRLERUER: Xy (0)>0,L<U}.

To complete the proof, we need to establish continuity at infinity. Note, however, that we

can write
9(e0.v/Er(0).LU) =3(c0.Zy (6),Fn (L), F@0))
where g is continuous in all arguments and Fiy(+) is continuous at infinity. Hence, another
application of implicit function theorem implies that
(C[(O,EY(9)7£,U),CH(O7ZY(0),£,U>)
are continuous on

{Sy(0)>0,L<U:(Zy(0),Y (0)) eER*,L e RU{—00} U eRU{o0} },

as we wanted to show. [J
D.1.5 Proofs for Uniformity Results

Proof of Proposition 8 Note that
:D“oam 2 Hyn <én7P> <~ My mn <9n,P> € C(SU7—,n

for C'Sy,—, = (=00, fian]. Hence, by Lemma 5, to prove that (24) holds it suffices to
show that for all {ns} and {B,,} such that conditions (1)-(3) of the lemma hold with
Cn(P)zl{én:é}, we have

lim Prp, { . (en ;Pns> eCSpn |, = é} —a. (49)

§—00

To this end, recall that for Fry (Y (0);1,2y (60),LU) as defined in (38), the estimator
flan sOlves

Fry (Yn (9n) ;u,iym (9n) ,En,Z/In> =1—a,
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where (L, U,) are defined following Lemma 7. This cdf is strictly decreasing in u as argued
in the proof of Proposition 7, and is increasing in Y, (9) Hence, ftqn> ptyn <@H;P> if and
only if

Fry <Yn <9n> sy n <9n;P> ,iym (971) ,£n,Z/{n> >1—a.

Note, next, that by Lemma 7 and the form of the function Fry,

Fru <Yn (en) Uiy (@H;P) Sy (én> ,Ln,un) — Fry (Yn (en) 0.5y (en) L ,u;) ,

SO flamn = [y n <@n;P> if and only if
Fry (Y (9 ) 05y (en) ,ﬁ;;,u;;) >1-a.

Lemma 8 shows that <Yn* (9n> ,ixns <9n> Ly Uy 9n> converges in distribution as s — oo,
so since Fry is continuous by Lemma 9 while argmaxyX*(6) is almost surely unique and

continuous for X* as in Lemma 8, the continuous mapping theorem implies that

(FTN<Y (9%),0 Sy <0ns>,£* u*) {énszé})
iy (FTN (Y (e);o,z*y (9) ,L*,u*), {é:é}).

Since we can write

A

Prp, {FTN (Yn (en) 05y, (en) LU ) 1—ald,, :é}

., [1{FTN<Y <9n5),0 Sy, (9%),5* u*>>1 a}l{é Szé}]

Ep

) |

and by construction (see also Proposition 1 in the main text),

Fry (Y* (9) 0,55 (e) ,c*,u*,é) 0=0~U10,1],
and Pr{@:é} =p* >0, we thus have that

Pre, { Fox (Y (8. ) 05w, (00.) £3, 24, ) 2 1-0lp, =0
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—>Pr{FTN (Y* <@> ;0,25 (9) ,L’*,U*) > 1—a]9:é} =q,
which verifies (49).
Since this argument holds for all € ©, and Assumptions 3 and 4 imply that for all
0,0 €O with 0£0,
lim sup Prp{Xn(Q) =X, (é) } =0,

n—0opep,

Lemma 6 implies (25). O
Proof of Corollary 1 By construction, C'Sgr, = [ﬂa /25— /27n:|, and fi1_a/2.5 > fla/2,n
for all < 1. Hence,
Prp{ﬂxn <9n;P> € C’SET7n|9n :é}
= PTP{/-LKH <én7P> S ﬂlfa/zn‘én :é} _PTP{[LY,n <én7P> S ,&a/Q,n’én :é},
so the result is immediate from Proposition 8 and Lemma 6. [J

Proof of Proposition 9 Note that by the definition of C'Sy;,,

My n (@n;P) € CSun
v (5 € [ (3P) () 028 ) s (3P) () 28

where

(Cl (PJ?EY (9) ,ﬁ,U) 1Cu (MaEY (9) 7[”1/{))

are defined immediately before Lemma 10. Hence, by Lemmas 7 and 10,

. <9n;P> €CSun
—Y (en) e [cl (o,iym <9n> ,ﬁ;;,u;;) e (o,iyﬂ (én> ,L;;,u;;ﬂ .

By Lemma 5, to prove that (26) holds it suffices to show that for all {ns} and {P,,}
satisfying conditions (1)-(3) of Lemma 5,

lim Prp,_ {,uym (@ns> € CSyn, |@ns :é} =1—q.

5§—00
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Thus, it suffices to show that

o [a(08 (8).e000) |
lim Prp, { Y, (9n3> € ~ . O,,=0 p=1—a.
e (05w, (ens),ﬁzs u:,)|

To this end, note that by Lemma 8§,
(Y* cou zné,1{0 9}) "y (Y*,c*,u*,z*,1{é=é}>,

and thus, by Lemma 10 and the continuous mapping theorem, that

St tasiy

By construction (see also Proposition 2 in the main text),

pr{y (0 e a(0.02655 (9)) ea(06°2053 (3)) 0=} =1 -0,

and Y* (é) |9:§,£* U* follows a truncated normal distribution, so

Pr{Y* (0) o (o,z; (0) L ,u*) } :PT{Y* (e) —c, (0,2; (0) L ,u*) } —0.

Hence,

Prp, ¢ ozYn s )5 L5 U ) a0,y 0, (6, ,c* U ) |16, =0
e 5005

Gns =0

Epng [
E[1{y*(0)e[a (0,55 (0),*u*), cuéO 53 (0),£5u*)| }1{0=0}]

B[1{0=}]

=1—q,

as we wanted to show, so (26) follows by Lemma 5.
Since this result again holds for all § € ©, (27) follows immediately by the same

argument as in the proof of Proposition 8. [J

Proof of Proposition 10 By the same argument as in the proof of Lemma 5, to show
that (28) holds it suffices to show that for all {ns}, {P,.} satistying conditions (1)-(3) of
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Lemma 5,

liminf Prp, {,U,y’ns (9n,Pn> € CSpmS} >1—a.

n—oo

To this end, note that
Y g (9% ;Pns> €CSpp, ifandonlyif Yy (9%) € [—ca (iyms> f]y <éns) Car (iym> iy (9%)

for c,(2y) the 1—a quantile of maxy|£(0)|/+/2y (f) where £~ N(0,Xy ). Next, note that
ca(XZy) is continuous in ¥ on S as defined in (34). Hence, for all 0, ¢, (3y)/Zy () is

continuous as well. Assumptions 2 and 4 imply that
<Y;Z7§nsaéns> —d (Y*a2*79)a

which by the continuous mapping theorem implies
(x;; (5,) (v ay(@ns))ﬂ <Y*(9),ca<z;> 2;(@)).

Hence, since Pr{ )Y* (9) —ca(Z3 )4 [ 2% <@> :0} =0,

Pre, (i, (00172, ) €C5m, ) %pr{y* (9)<

—ea(55) 2;(@),%(2;) z;(@)” (50)

where the right hand side is at least 1—a by construction. [J

Proof of Proposition 11 Note that

~

if and only if
v (BuiP) €CSIL,

for C'Sf]_,, = (—oo,jl!,]. Hence, by Lemma 5, to prove that (29) holds it suffices to
show that for all {ns} and {B,,} such that conditions (1)-(3) of the lemma hold with
Cn(P)= 1{@,1:9,#3/,” <§n;Pn> € CSIB;:”}, we have

hm PTpns {/lY,ns (éns7P’rLs> € CS(I}{,_,n@nS :é,Mans <énsapns> € CS]ﬂD,ns } =Q.

S§—00
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Recall that for Fry (Y (6);,5y (0),LU) defined as in (38), il solves

Fry (Yn (@) 1.5y <9n> L (1) Uy (N)) =1-a,

for

£nH<M) :max{/v‘m/ﬁ Ca (ZYn }

U (1) =min{umu+ca (iyn }

The proof of Proposition 7 shows that Fry (Y (8 >,p,,2yn (9 ) LH () U (,u)) is strictly

decreasing in p, so for a given value py,

jill, > pyo <= Fry (Yn <9n> 0,2y (én> ,ﬁg(uxo),blf(uxo)> >1—a.
As in the proof of Proposition 8

Fry (Yn (en) iy (9n;P ) zYn(

o)

whore £ =] €5, (S, ) B (8) f and v =min{ o (S ) S (0)}

SO ,&gn > Uy n (@mP) if and only if

(o (182 2 o 0.

LI
Sy ( )L:H*UH*>

)

FTN (3/7—:( (én> ;07§Y,n (én> acf* auqf[*> Z 1—a.
Lemma 8 implies that
(Y;saixnyﬁnH: 7U7Z*aéns> —d <Y*a2§/7£H* 7uH*7é>7

where £7* and UH* are equal to L£7* and UH* after replacing (Xn,Yn,in) with (X,Y,¥%).
Then by the continuous mapping theorem and (50),

(Fow (42, (3.0 va, (0 ),,cg*,ug*) { v (P ) <52, )

o ) ) s s )
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Hence, by the same argument as in the proof of Proposition 8,

~ ~

lim Prp, { . (éns ;Pns> cCST 10, =0 piyn. (éns ;Pns> ccsy } —a,
8—00 s ’ )bs

as we aimed to show.
To prove (30), note that for cs, U = (i1l 1,00),

,u >,UYn(9naP> <:}NY7L< n >€OSU+7L

and thus that the argument above proves that

lim sup PT’P{Myn<9n7P> EC’SU+n|CH<0 P>}—(1—a)‘PrP{C£{<é;P>}:0

n—oopep,

for CH (é;P) as in the statement of the proposition. Since
ZPTP{(@ =0,y n, <9n9,Png> ECSIBDn } Prp{uxns (@nS;PnS> ECSJ’gnS}—i-o(l),

and Proposition 10 shows that

liminf inf PTP{MynS(enS,PnS>€CS]€ } 1-5,

s—00 P€EPp,

Lemma 6 together with (29) implies that

liminf inf Prp{,uom <lyn (8n,P> } >(1-a)(1-p)=(1—a)—p(1—a)

n—oo PEP,

and
limsup sup Prp{,uan<uy71 <9n,P> } <l—-a(l1-F)=(1—a)+pa

n—oo PeP,

from which the second result of the proposition follows immediately. [

Proof of Corollary 2 Note that by construction

H | ~H ~H
CSET,n— K oa—p Ky a=B s
20-5)° 2(1-5)
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where ﬂz%,% o < ﬂf_ P provided i‘%g < 1. Hence,

PTP{MY,n <@n;P) GCSgT,n|Cf <é,P>}

_ py«p{ ¥ (én;P) <pf ., o (é,P) } —P?”p{ 1Y (én;P) <pfl_, |cH (é,P) }

31-5) 30-5)
so Proposition 11 immediately implies (31).

Equation (51) in the proof of Proposition 11 together with Lemma 6 implies that

l—«o
1-3

so (32) holds. We could likewise get an upper bound on coverage using Lemma 6, but

liminf inf P’T’p{,uym (9n;P> EC’Sng} > (1-p)=1-«

n—oo PeP,

obtain a sharper bound by proving the result directly. Specifically, note that
tvn <9n;Pn> €CSH. = piyn (9n;Pn> e
Hence,

P’I"P{[Lym <9n;P> ECSgTﬂ}
:Prp{,uy,n <9n;P> ECSET,anm, (@n;Pn> 6CS£7n}Pr{uxn <9n;Pn) EC’S]@)H}.

By the first part of the proposition, this implies that

o 1— N
limsup sup Prp{uym <9n;P> € CSng} < —alimsup sup Pr{uxn (Qn;Pn> € C’Sfin}
n—oo PEP, ’ 1_6 n—oo PEP, ’

—_

—Q
S_

_6’

—_

so (33) holds as well.

Proof of Proposition 12 The first part of the result follows by the same argument as in
the proof of Proposition 9, where as in the proof of Proposition 11 we use the conditioning
event {9n :é,,uym (én;Pn> € C’S]@’n} and replace (L,,U,) by (ﬁf U ) The second part

of the result follows by the same argument as in the proof of Corollary 2. [
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E Additional Simulation Results for Stylized Example

In the stylized example discussed in Section 2 of the main text, we focus on the median length
of confidence intervals and the median absolute error of estimators. In this section, we report
results for other quantiles, in particular that 7-th quantiles for 7€ {0.05,0.25,0.5,0.75,0.95}.

Figures 6 and 7 show the unconditional quantiles of the length of the 95% confidence
intervals C'Sy and C'Sgr, for cases with |©|=2, 10, and 50 policies. In each case and
for each 7 € {0.05,0.25,0.5,0.75,0.95}, the 7-th quantile is monotonically decreasing in
w1(61)—p(0_1). Noting the different scales of the y-axes, we see that the upper quantiles
grow as the number of policies increase, particularly for small p(6;)—pu(0_1).

Figures 8 and 9 show the unconditional quantiles of the length of 95% hybrid confidence
intervals C'S{ and CSH, with 8=0.005. Compared with Figures 6 and 7, the upper
quantiles are much smaller, especially for small p(6;)—p(6-1). This substantial reduction
in length directly comes from the construction of the hybrid confidence intervals, which
ensures that C'Sf and C'SE. are contained in C’Slfi. For the case of |©]|=50, even the 95%
quantiles of the length of C'S and C'SH,. are shorter than the length of C'Sp uniformly
over the range of p(6;)—pu(0_1) values we consider.

Figures 10, 11, and 12 examine the performance of point estimators for ,u(@) They plot
the unconditional quantiles of the absolute error of the conventional estimator, the median
unbiased estimator, and the hybrid estimator, respectively. In spite of the severe median
bias shown in Figure 1 in the main text, the distribution of the conventional estimator is
relatively concentrated compared to that of the median unbiased estimator. In particular,
the upper quantiles of the absolute errors of i/, are very large for small 1(6;)—pu(6-1)
(similar to the quantile plots of the length of C'Sy; and C'Sgr shown in Figures 6 and 7).

At the cost of a small median bias, the hybrid estimator substantially reduces the
absolute errors (Figure 12). The 95% quantile of the absolute errors of the hybrid estimator
is overall similar to the 95% quantile of the absolute errors of the conventional estimator
with a notable exception of the case of 2 policies. In contrast, for |©| = 10 and 50, and
for quantiles other than 95%, the hybrid estimator outperforms the conventional estimator
over a wide range of values for j(6;)—p(6_1). These numerical results show that the hybrid

estimator successfully reduces bias without greatly inflating the variability of the estimator.

F Additional Results for EWM Simulations

Tables 4 and 5 provide the ratios of the 5, 25t 50 75! and 95" quantiles of the lengths of
CSgr, CSy, CSH. and CSH relative to the corresponding length quantiles of C'Sp for the
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Figure 6: Quantiles of the length of 95% conditionally UMAU confidences sets C'Sy;.
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Figure 7: Quantiles of the length of 95% conditionally equal-tailed confidences sets CSgr.
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Figure 8: Quantiles of the length of 95% hybrid confidence intervals ng , with 5=0.005.
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Figure 9: Quantiles of the length of 95% hybrid confidence intervals C'S gT, with £=0.005.
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Figure 10: Quantiles of the absolute error of the conventional estimator (i.e. of | X (8)—pu(0))).
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estimator (i.e. of |ﬂ1/2—u(@)\).
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Figure 12: Quantiles of the absolute error of the hybrid estimator (i.e. of | ﬂﬁQ—u(é)D with
£=0.005.
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EWM data-calibrated designs described in Section 6 of the main text. Looking at the upper
quantiles in Table 4, we can see that the conditional confidence intervals C'Sgr and C'Sy can
become very wide when the maximal element of 1y is not well-separated from the others.
On the other hand, Table 5 shows that the hybrid approach is very successful at mitigating
this problem. Indeed, C'SE,. and C'SH dominate C'Sp across nearly all quantiles and simula-
tion designs considered. Table 6 reports the same quantiles of the studentized absolute errors

of i 1, fitf and Y (). Here we can sce that, although the hybrid estimator i does not dom-
2 2

inate the conventional estimator Y'(#) according to this performance measure, it does domi-
nate ,&% across all quantiles and DGPs considered. This dominance is especially pronounced
at higher quantiles. The underlying message here is a bit more nuanced than that which ap-

plies to the confidence intervals: when minimal bias is desired, 17 is the preferred estimator.
2

Table 4: Ratios of Length Quantiles Relative to C'Sp

CSgr Quantile C'Sy Quantile
DGP 5th 25th  50th Eth Qpth 5th 9nth  pgth 75t g5th
Class of Threshold Policies
(i) 075 132 117 197 888 0.75 148 127 194 7.17
(i1) 074 075 0.75 0.75 076 0.74 0.75 075 0.75 0.75
(iii) 074 074 082 122 330 0.74 0.76 093 145 3.65
Class of Interval Policies
(i) 1.11 141 154 231 1078 127 154 1.65 191 872
(ii) 0.63 063 0.63 0.64 064 063 063 064 0.64 0.64
(iii) 066 071 0.78 1.14 439 0.70 0.76 088 136 3.61

Table 5: Ratios of Length Quantiles Relative to C'Sp

CSH. Quantile CSH Quantile
DGP Hth onth  goth  7gth gsth  gth o5th  5th  75th  g5th
Class of Threshold Policies

(i) 0.76 085 0.63 093 099 0.76 0.77 064 095 1.01

(ii) 0.76 076 0.76 0.77 0.77 0.76 0.76 0.76 0.76 0.77

(iii) 0.77 078 084 092 098 0.79 081 089 0.96 1.00
Class of Interval Policies

(i) 0.75 076 0.77 0.85 0.88 0.63 074 0.76 0.86 0.89

(ii) 0.64 065 065 0.65 0.65 064 065 0.65 0.65 0.65

(iii) 0.67 0.72 0.76 085 089 0.69 0.76 0.81 0.88 0.92
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Table 6: Quantiles of )ﬂ—,uy(@)‘/\/zy(é)

il 1 Quantile

(4 Quantile

Y (A) Quantile

DGP 5th 9 5th 5oth 7 5th 9 5th 5th 9 5th 2 50th 7 5th 9 5th 5th 92 5th 50th 7 5th 9 5th
Class of Threshold Policies
(i) 0.11 054 1.11 201 1065 0.11 053 1.10 1.91 3.04 0.11 047 088 1.36 2.14
(ii) 0.06 031 0.67 1.15 197 0.06 031 067 1.15 197 0.06 031 067 1.16 1.97
(iii) 0.08 036 080 143 3.60 0.08 036 079 143 290 0.06 0.31 067 1.15 193
Class of Interval Policies
(i) 0.14 068 142 261 1751 0.14 067 1.39 221 3.07 052 094 130 1.75 249
(ii) 006 031 065 113 192 0.06 031 065 1.13 192 0.06 031 065 1.14 1.92
(iii) 0.08 040 0.86 1.57 515 0.08 040 086 1.57 3.46 0.07 032 069 1.16 1.96




Table 7: Unconditional Coverage Probability with Estimated Variance Matrix

DGP CSgr CSy C’SgT C’S{,{ CSp CSy
Class of Threshold Policies

(i) 0944 0945 0948 0.948 0.984 0.916

(ii) 095 095 0954 00953 0.990 0.95

(iii) 0946 0.946 0950 0.951 0.991 0.948
Class of Interval Policies

(i) 0.948 0.950 0952 0.954 0.989 0.821

(ii) 0.953 0.953 0956 0.957 0.997 0.952

(iii) 0.947 0947 0953 0.953 0.997 0.948

Table 8: Length of Confidence Sets Relative to C'Sp in EWM Simulations with Estimated
Variance Matrix

DGP Median Length Relative to C'Sp  Probability Longer than C'Sp
CSgr CSy CSH., CSH  CSpr CSy CSH. CsH
Class of Threshold Policies

(i) 1.16 127 0.65 0.66 0.70 0.79 0.05 0.3

(ii) 0.74 0.74 0.76 0.76 0 0 0 0

(iii) 083 092 0.83 0.90 032 042 0.03 0.24
Class of Interval Policies

(i) 1.51 160 0.74 0.73 0.78  0.88 0 0

(ii) 0.63 0.63 0.65 0.65 0 0 0 0

(iii) 0.78 0.89 0.77 0.82 0.33 0.42 0 0

Supplement References

Andrews, D. W. K., Cheng, X., and Guggenberger, P. (2018). Generic results for establishing

the asymptotic size of confidence sets and tests. Forthcoming in Journal of Econometrics.

96



Table 9: Bias and Median Absolute Error of Point Estimators with Estimated Variance Matrix

) 1L o (6) Ji—ux 0)]
DGP Pm{u>ux(9)} 2 Medu(,/—gx(g)) Medﬂ( x(0)

R XO) o @ XO) o X(0)
(Class of Threshold Policies
(i) -0.005 -0.004 0.397 -0.02 -0.02 082 1.12 1.11 0.86
(ii) 0.009 0.009 0.009 0.02 0.02 002 067 067 0.67
(iii) 0.006 0.006 0.104 0.02 002 026 080 0.79 0.67
Class of Interval Policies
(i) 0.006 0.006 0500 0.04 004 130 142 139 1.30
(i1) 0.009 0.009 0.009 0.02 0.02 0.02 065 065 0.65
(iii) 0.003 0.003 0.150 0.01 0.01 036 085 0.85 0.67
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