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This supplement contains proofs and additional results for the paper “Inference on

Winners.” Section A collects proofs for results stated in the main text. Section B contains

additional details and derivations for the EWM example introduced in Section 3 of the

paper. Section C constructs procedures that dominate conventional sample splitting as

discussed in Section 4.3 of the paper. Section D translates our finite-sample results for the

normal model to uniform asymptotic results over large classes of data generating processes.

Section E reports additional simulation results for the stylized example of Section 2 of the

paper. Finally, Section F reports additional simulations results for the EWM simulations

discussed in Section 6 of the paper.

A Proofs

Proof of Proposition 1 For ease of reference, let us abbreviate (Y (✓̃),µY (✓̃),Z˜✓) by

(Ỹ , µ̃Y ,Z̃). Let Y (�✓̃) collect the elements of Y other than Y (✓̃) and define µY (�✓)

analagously. Let

Y ⇤=Y (�✓̃)�Cov
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and

µ̃Z=µX�
⇣

⌃XY (·,✓̃)/⌃Y (✓̃)
⌘

µY .

Here we use A+ to denote the Moore-Penrose pseudoinverse of a matrix A. Note that

(Z̃,Ỹ ,Y ⇤) is a one-to-one transformation of (X,Y ), and thus that observing (Z̃,Ỹ ,Y ⇤) is

equivalent to observing (X,Y ). Likewise, (µ̃Z,µ̃Y ,µ
⇤
Y ) is a one-to-one linear transformation
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of (µX,µY ), and if the set of possible values for the latter contains an open set, that for

the former does as well (relative to the appropriate linear subspace).

Note, next, that since (Z̃,Ỹ ,Y ⇤) is a linear transformation of (X,Y ), (Z̃,Ỹ ,Y ⇤) is jointly

normal (with a potentially degenerate distribution). Note next that (Z̃,Ỹ ,Y ⇤) are mutually

uncorrelated, and thus independent. That Z̃ and Ỹ are uncorrelated is straightforward

to verify. To show that Y ⇤ is likewise uncorrelated with the other elements, note that we

can write Cov
⇣

Y ⇤,(Ỹ ,X 0)0
⌘

as

Cov

 

Y (�✓̃),

 

Ỹ

X

!!

�Cov

 

Y (�✓̃),

 

Ỹ

X

!!

V ar

  

Ỹ

X

!!

+

V ar

  

Ỹ

X

!!

.

For V⇤V 0 an eigendecomposition of V ar
⇣

(Ỹ ,X 0)0
⌘

(so V V 0=I), note that we can write

V ar

  

Ỹ

X

!!

+

V ar

  

Ỹ

X

!!

=VDV 0

for D a diagonal matrix with ones in the entries corresponding to the nonzero entries of

⇤ and zeros everywhere else. For any column v of V corresponding to a zero entry of D,

v0V ar

✓

⇣

Ỹ ,X 0
⌘0
◆

v=0, so the Cauchy-Schwarz inequality implies that

Cov

 

Y
⇣

�✓̃
⌘

,

 

Ỹ

X

!!

v=0.

Thus,

Cov

 

Y
⇣

�✓̃
⌘

,

 

Ỹ

X

!!

VDV 0=Cov

 

Y
⇣

�✓̃
⌘

,

 

Ỹ

X

!!

V V 0=Cov

 

Y
⇣

�✓̃
⌘

,

 

Ỹ

X

!!

,

so Y ⇤ is uncorrelated with
⇣

Ỹ ,X 0
⌘0
.

Using independence, the joint density of (Z̃,Ỹ ,Y ⇤) absent truncation is given by

fN,˜Z(z̃;µ̃Z)fN,˜Y (ỹ;µ̃Y )fN,Y ⇤(ỹ⇤;µ⇤
Y )
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for fN normal densities with respect to potentially degenerate base measures:

fN,˜Z(z̃;µ̃Z)=d̃et(2⇡⌃
˜Z)

�1
2exp

✓

�1

2
(z̃�µ̃Z)

0⌃+

˜Z
(z̃�µ̃Z)

◆

fN,˜Y (ỹ;µ̃Y )=(2⇡⌃
˜Y )

�1
2exp

✓

�(ỹ�µ̃Y )2

2⌃
˜Y

◆

fN,Y ⇤(y⇤;µ⇤
Y )=d̃et(2⇡⌃Y ⇤)�

1
2exp

✓

�1

2
(y⇤�µ̃⇤

Y )
0⌃+

Y ⇤(y⇤�µ⇤
Y )

◆

,

where d̃et(A) denotes the pseudodeterminant of a matrix A, ⌃
˜Z=V ar(Z̃), ⌃

˜Y =⌃Y (✓̃),

and ⌃Y ⇤=V ar(Y ⇤).

The event
n

X2X (✓̃,�̃)
o

depends only on (Z̃,Ỹ ) since it can be expressed as

( 

Z̃+
⌃XY (·,✓̃)
⌃Y (✓̃)

Ỹ

!

2X (✓̃,�̃)

)

,

so conditional on this event Y ⇤ remains independent of (Z̃,Ỹ ). In particular, we can write

the joint density conditional on
n

X2X (✓̃,�̃)
o

as

1
n⇣

z̃+⌃XY (·,✓̃)⌃Y (✓̃)�1ỹ
⌘

2X (✓̃,�̃)
o

Prµ̃Z ,µ̃Y

n

X2X (✓̃,�̃)
o fN,˜Z(z̃;µ̃Z)fN,˜Y (ỹ;µ̃Y )fN,Y ⇤(ỹ⇤;µ⇤

Y ). (20)

The density (20) has the same structure as (5.5.14) of Pfanzagl (1994), and satisfies proper-

ties (5.5.1)-(5.5.3) of Pfanzagl (1994) as well. Part 1 of the proposition then follows immedi-

ately from Theorem 5.5.9 of Pfanzagl (1994). Part 2 of the proposition follows by using Theo-

rem 5.5.9 of Pfanzagl (1994) to verify the conditions of Theorem 5.5.15 of Pfanzagl (1994). ⇤

Proof of Proposition 2 In the proof of Proposition 1, we showed that the joint density of

(Z̃,Ỹ ,Y ⇤) (defined in that proof) has the exponential family structure assumed in equation

4.10 of Lehmann and Romano (2005). Moreover, Assumption 1 implies that the parameter

space for (µX,µY ) is convex and is not contained in any proper linear subspace. Thus, the

parameter space for (µ̃Z,µ̃Y ,µ
⇤
Y ) inherits the same property, and satisfies the conditions

of Theorem 4.4.1 of Lehmann and Romano (2005). The result follows immediately. ⇤
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Proof of Proposition 3 Let us number the elements of ⇥ as
�

✓
1

,✓
2

,...,✓|⇥|
 

, where

X(✓
1

) is the first element of X, X(✓
2

) is the second element, and so on. Let us fur-

ther assume without loss of generality that ✓̃ = ✓
1

. Note that the conditioning event

{max✓2⇥X(✓)=X(✓
1

)} is equivalent to {MX�0}, where

M⌘

0

B

B

B

B

@

1 �1 0 0 ... 0

1 0 �1 0 ... 0
...

...
...

...
...

...

1 0 0 0 ... �1

1

C

C

C

C

A

is a (|⇥|�1)⇥|⇥|matrix and the inequality is taken element-wise. LetA=
h

� M 0
(|⇥|�1)⇥|⇥|

i

,

where 0
(|⇥|�1)⇥|⇥| denotes the (|⇥|�1)⇥|⇥| matrix of zeros. Let W =(X 0,Y 0)0 and note

that we can re-write the event of interest as {W :AW0} and that we are interested

in inference on ⌘0µ for ⌘ the 2|⇥|⇥1 vector with one in the (|⇥|+1)st entry and zeros

everywhere else. Define

Z⇤
˜✓
=W�cY (✓̃),

for c = Cov(W,Y (✓̃))/⌃Y (✓̃), noting that the definition of Z
˜✓ in (11) corresponds to

extracting the elements of Z⇤
˜✓
corresponding to X. By Lemma 5.1 of Lee et al. (2016),

{W :AW0}=
n

W :L(✓̃,Z⇤
˜✓
)Y (✓̃)U(✓̃,Z⇤

˜✓
),V(✓̃,Z⇤

˜✓
)�0

o

,

where for (v)j the jth element of a vector v,

L(✓̃,z)= max
j:(Ac)j<0

�(Az)j
(Ac)j

U(✓̃,z)= min
j:(Ac)j>0

�(Az)j
(Ac)j

V(✓̃,z)= min
j:(Ac)j=0

�(Az)j.

Note, however, that
�

AZ⇤
˜✓

�

j
=Z

˜✓(✓j)�Z
˜✓(✓1)
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and

(Ac)j=�⌃XY (✓1,✓1)�⌃XY (✓1,✓j)

⌃Y (✓1)
.

Hence, we can re-write

�(AZ⇤
˜✓
)j

(Ac)j
=

⌃Y (✓1)(Z˜✓(✓j)�Z
˜✓(✓1))

⌃XY (✓1,✓1)�⌃XY (✓1,✓j)
,

L(✓̃,Z⇤
˜✓
)= max

j:⌃XY (✓1,✓1)>⌃XY (✓1,✓j)

⌃Y (✓1)(Z˜✓(✓j)�Z
˜✓(✓1))

⌃XY (✓1,✓1)�⌃XY (✓1,✓j)
,

U(✓̃,Z⇤
˜✓
)= min

j:⌃XY (✓1,✓1)<⌃XY (✓1,✓j)

⌃Y (✓1)(Z˜✓(✓j)�Z
˜✓(✓1))

⌃XY (✓1,✓1)�⌃XY (✓1,✓j)
,

and

V(✓̃,Z⇤
˜✓
)= min

j:⌃XY (✓1,✓1)=⌃XY (✓1,✓j)
�(Z

˜✓(✓j)�Z
˜✓(✓1)).

Note, however, that these are functions of Z
˜✓, as expected. The result follows. ⇤

Proof of Lemma 1 Recall that conditional on Z
˜✓=z

˜✓, ✓̂= ✓̃ and �̂= �̃ if and only if

Y (✓̃)2Y(✓̃,�̃,z
˜✓). Hence, the assumption of the lemma implies that

PrµY,m

n

Y (✓̃)2Y(✓̃,�̃,Z
˜✓)|Z˜✓=z

˜✓,m

o

!1.

Note, next, that both the conventional and conditional confidence intervals are equivari-

ant under shifts, in the sense that the conditional confidence interval for µY (✓̃) based on ob-

serving Y (✓̃) conditional on Y (✓̃)2Y(✓̃,�̃,Z
˜✓) is equal to the conditional confidence interval

for µY (✓̃) based on observing Y (✓̃)�µ⇤
Y (✓̃) conditional on Y (✓̃)�µ⇤

Y (✓̃)2Y(✓̃,�̃,Z
˜✓)�µ⇤

Y (✓̃)

for any constant µ⇤
Y (✓̃). Hence, rather than considering a sequence of values µY,m, we can

fix some µ⇤
Y and note that

Prµ⇤
Y

n

Y (✓̃)2Y⇤
m|Z˜✓=z

˜✓,m

o

!1,

where Y⇤
m=Y(✓̃,�̃,Z

˜✓)�µY,m(✓̃)+µ⇤
Y (✓̃). Confidence intervals for µY,m(✓̃) in the original

problem are equal to those for µ⇤
Y (✓̃) in the new problem, shifted by µY,m(✓̃)�µ⇤

Y (✓̃). Hence,

to prove the result it suffices to prove the equivalence of conditional and conventional

confidence intervals in the problem with µY fixed (and likewise for estimators).

To prove the result, we make use of the following lemma, which is proved below. First,

we must introduce the following notation. Let (cl,ET (µY,0,Y),cu,ET (µY,0,Y)) denote the
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critical values for an equal-tailed test of H
0

: µY (✓̃) = µY,0 for Y (✓̃)⇠N
⇣

µY (✓̃),⌃Y (✓̃)
⌘

conditional on Y (✓̃)2Y. That is, (cl,ET (µY,0,Y),cu,ET (µY,0,Y)) solve

FTN(cl,ET (µY,0,Y);µY,0,Y)= ↵

2

FTN(cu,ET (µY,0,Y);µY,0,Y)=1�↵

2
,

where FTN(·;µY,0,Y) is the distribution function for the normal distributionN
⇣

µY,0,⌃Y (✓̃)
⌘

truncated to Y. Similarly, let (cl,U(µY,0,Y),cu,U(µY,0,Y)) denote the critical values for the
corresponding unbiased test. That is, (cl,U(µY,0,Y),cu,U(µY,0,Y)) solve

Pr{⇣2 [cl,U(µY,0,Y),cu,U(µY,0,Y)]}=1�↵

E[⇣1{⇣2 [cl,U(µY,0,Y),cu,U(µY,0,Y)]}]=(1�↵)E[⇣]

for ⇣⇠⇠|⇠2Y where ⇠⇠N
⇣

µY,0,⌃Y (✓̃)
⌘

.

Lemma 3

Suppose that we observe Y (✓̃) ⇠ N
⇣

µY (✓̃),⌃Y (✓̃)
⌘

conditional on Y (✓̃) falling in a

set Y. If we hold
⇣

⌃Y (✓̃),µY,0

⌘

fixed and consider a sequence of sets Ym such that

Pr
n

Y (✓̃)2Ym

o

!1, we have that for

�ET (µY,0)=1
n

Y (✓̃) 62 [cl,ET (µY,0,Ym),cu,ET (µY,0,Ym)]
o

(21)

and

�U(µY,0)=1
n

Y (✓̃) 62 [cl,U(µY,0,Ym),cu,U(µY,0,Ym)]
o

, (22)

(cl,ET (µY,0,Ym),cu,ET (µY,0,Ym))!
✓

µY,0�c↵
2 ,N

q

⌃Y (✓̃),µY,0+c↵
2 ,N

q

⌃Y (✓̃)

◆

and

(cl,U(µY,0,Ym),cu,U(µY,0,Ym))!
✓

µY,0�c↵
2 ,N

q

⌃Y (✓̃),µY,0+c↵
2 ,N

q

⌃Y (✓̃)

◆

.

To complete the proof, first note that CSET and CSU are formed by inverting (families

of) equal-tailed and unbiased tests, respectively. Let CSm denote a generic conditional
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confidence interval formed by inverting a family of tests

�m(µY,0)=1
n

Y (✓̃) 62 [cl(µY,0,Y⇤
m),cu(µY,0,Y⇤

m)]
o

.

Hence, we want to show that

CSm!p

h

Y (✓̃)�c↵
2 ,N

,Y (✓̃)+c↵
2 ,N

i

, (23)

as m!1, for CSm formed by inverting either (21) or (22).

We assume that CSm is a finite interval for all m, which holds trivially for the equal-

tailed confidence interval CSET , and holds for CU by Lemma 5.5.1 of Lehmann and

Romano (2005). For each value µY,0 our Lemma 3 implies that

�m(µY,0)!p1
n

Y
⇣

✓̃
⌘

/2⇥µY,0�c↵
2 ,N

,µY,0+c↵
2 ,N

⇤

o

for �m equal to either (21) or (22). This convergence in probability holds jointly for all

finite collections of values µY,0, however, which implies (23). The same argument works

for the median unbiased estimator µ̂1
2
, which can also be viewed as the upper endpoint

of a one-sided 50% confidence interval. ⇤

Proof of Proposition 4 We prove this result for the unconditional case, noting that

since Prµm

n

✓̂= ✓̃,�̂= �̃
o

!1, the result conditional on
n

✓̂= ✓̃,�̂= �̃
o

follows immediately.

Note that by the law of iterated expectations, Prµm

n

✓̂= ✓̃,�̂= �̃
o

! 1 implies that

PrµY,m

n

✓̂= ✓̃,�̂= �̃|Z
˜✓

o

!p1. Hence, if we define

g(µY ,z)=PrµY

n

✓̂= ✓̃,�̂= �̃|Z
˜✓=z

o

,

we see that g(µY,m,Z˜✓)!p1.

Note, next, that for d the euclidian distance between the endpoints, if we define

h"(µY ,z)=PrµY {d(CSU ,CSN)>"|Z
˜✓=z},

Lemma 1 implies that for any sequence (µY,m,zm) such that g(µY,m,zm)!1, h"(µY,m,zm)!0.

Hence, if we define G(�)={(µY ,z):g(µY ,z)>1��} and H(")={(µY ,z):h"(µY ,z)<"}, we
see that for all ">0 there exists �(")>0 such that G(�("))✓H(").
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Hence, since our argument above implies that for all �>0,

Prµm{(µY,m,Z˜✓)2G(�)}!1,

we see that for all ">0,

Prµm{(µY,m,Z˜✓)2H(")}!1

as well, which suffices to prove the desired claim for confidence intervals. The same

argument likewise implies the result for our median unbiased estimator. ⇤

Proof of Proposition 5 Provided ✓̂ is unique with probability one, we can write

Prµ

n

µ(✓̂)2CS
o

=
X

˜✓2⇥,�̃2�

Prµ

n

✓̂= ✓̃,�̂= �̃
o

Prµ

n

µ(✓̃)2CS|✓̂= ✓̃,�̂= �̃
o

.

Since
P

˜✓2⇥,�̃2�Prµ

n

✓̂= ✓̃,�̂= �̃
o

=1, the result of the proposition follows immediately. ⇤

Proof of Lemma 2 The assumption of the lemma implies that X(✓̃)�X(✓) has a

non-degenerate normal distribution for all µ. Since ⇥ is finite, almost-sure uniqueness of

✓̂ follows immediately.

Proof of Proposition 6 The first part of the proposition follows immediately from

Proposition 2. For the second part of the proposition, note that for CSH either of the

hybrid confidence intervals,

Prµ

n

µY (✓̂)2CSH
o

=Prµ

n

µY (✓̂)2CS�
P

o

⇥

X

˜✓2⇥,�̃2�

Prµ

n

✓̂= ✓̃,�̂= �̃|µY (✓̂)2CS�
P

o

Prµ

n

µY (✓̃)2CSH|✓̂= ✓̃,�̂= �̃,µY (✓̃)2CS�
P

o

=Prµ

n

µY (✓̂)2CS�
P

o1�↵

1��
�(1��)

1�↵

1��
=1�↵,

where the second equality follows from the first part of the proposition. The upper bound

follows by the same argument and the fact that Prµ
n

µY (✓̂)2CS�
P

o

1. ⇤

Proof of Proposition 7 We first establish uniqueness of µ̂H
↵ . To do so, it suffices to show

that FH
TN(Y (✓̃);µY (✓̃),✓̃,�̃,Z˜✓) is strictly decreasing in µY (✓̃).Note first that this holds for the

truncated normal assuming truncation that does not depend on µY (✓̃) by Lemma A.1 of Lee
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et al. (2016). When we instead consider FH
TN(Y (✓̃);µY (✓̃),✓̃,�̃,Z˜✓), we impose truncation to

Y (✓̃)2


µY (✓̃)�c�

q

⌃Y (✓̃),µY (✓̃)+c�

q

⌃Y (✓̃)

�

.

Since this interval shifts upwards as we increase µY (✓̃), FH
TN(Y (✓̂);µY (✓̃), ✓̃, �̃,Z˜✓) is a

fortiori decreasing in µY (✓̃). Uniqueness of µ̂H
↵ for ↵ 2 (0,1) follows. Note, next, that

FH
TN(Y (✓̃);µY (✓̃),✓̃,�̃,Z˜✓)2 {0,1} for µY (✓̃) 62CS�

P from which we immediately see that

µ̂H
↵ 2CS�

P .

Finally, note that for µY (✓̃) the true value,

FH
TN(Y (✓̂);µY (✓̃),✓̃,�̃,Z˜✓)⇠U[0,1]

conditional on
n

✓̂= ✓̃,�̂= �̃,Z
ˆ✓=z

˜✓,µY (✓̃)2CS�
P

o

. Since FH
TN(Y (✓̂);µY (✓̃),✓̃,�̃,Z˜✓) is de-

creasing in µY (✓̃),

Prµ

n

µ̂H
↵ �µY (✓̃)|✓̂= ✓̃,�̂= �̃,Z

ˆ✓=z
˜✓,µY (✓̃)2CS�

P

o

=Prµ

n

FH
TN(Y (✓̂);µY (✓̃),✓̃,�̃,Z˜✓)�1�↵|✓̂= ✓̃,�̂= �̃,Z

ˆ✓=z
˜✓,µY (✓̃)2CS�

P

o

=↵,

and thus µ̂H
↵ is ↵-quantile-unbiased conditional on

n

✓̂= ✓̃,�̂= �̃,Z
ˆ✓=z

˜✓,µY (✓̃)2CS�
P

o

. We

can drop the conditioning on Z
˜✓ by the law of iterated expectations, and ↵-quantile-

unbiasedness conditional on µY (✓̃)2CS�
P follows by the same argument as in the proof

of Proposition 5.

Proof of Lemma 3 Note that we can assume without loss of generality that µY,0=0 and

⌃Y (✓̃)=1 since we can define Y ⇤(✓̃)=
⇣

Y (✓̃)�µY,0

⌘

/
q

⌃Y (✓̃) and consider the problem

of testing that the mean of Y ⇤(✓̃) is zero (transforming the set Ym accordingly). After

deriving critical values (c⇤l ,c
⇤
u) in this transformed problem, we can recover critical values

for our original problem as (cl,cu)=
q

⌃Y (✓̃)(c⇤l ,c
⇤
u)+µY,0. Hence, for the remainder of the

proof we assume that µY,0=0 and ⌃Y (✓̃)=1.

Equal-Tailed Test We consider first the equal-tailed test. Note that this test rejects

if and only if

Y (✓̃) 62 [cl,ET (Y),cu,ET (Y)],

50



where we suppress the dependence of the critical values on µY,0=0 for simplicity, and

(cl,ET (Y),cu,ET (Y)) solve
FTN(cl,ET (Y),Y)= ↵

2

FTN(cu,ET (Y),Y)=1�↵

2
.

for FTN(·,Y) the distribution function of a standard normal random variable truncated

to Y. Recall that we can write the density corresponding to FTN(y,Y) as 1{y2Y}
Pr{⇠2Y}fN(y)

where fN is the standard normal density and Pr{⇠2Y} is the probability that ⇠2Y for

⇠⇠N(0,1). Hence, we can write

FTN(y,Y)=
R y

�11{ỹ2Y}fN(ỹ)dỹ
Pr{⇠2Y} .

Note that that for all y we can write

FTN(y,Ym)=am(y)+FN(y),

where FN is the standard normal distribution function and

am(y)=

R y

�11{ỹ2Ym}fN(ỹ)dỹ
Pr{⇠2Ym} �FN(y).

Recall, however, that Pr{⇠2Ym}!1 and

�

�

�

�

Z y

�1
1{ỹ2Ym}fN(ỹ)dỹ�FN(y)

�

�

�

�

=

�

�

�

�

Z y

�1
[1{ỹ2Ym}�1]fN(ỹ)dỹ

�

�

�

�

=

Z y

�1
1{ỹ 62Ym}fN(ỹ)dỹPr{⇠ 62Ym}!0

for all y, so am(y)!0 for all y. Theorem 2.11 in Van der Vaart (1998) then implies that

am(y)!0 uniformly in y as well.

Note next that

FTN(cl,ET (Ym),Ym)=am(cl,ET (Ym))+FN(cl,ET (Ym))=
↵

2

implies

cl,ET (Ym)=F�1

N

⇣↵

2
�am(cl,ET (Ym))

⌘

,
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and thus that cl,ET (Ym) ! F�1

N

�

↵
2

�

. Using the same argument, we can show that

cu,ET (Ym)!F�1

N

�

1�↵
2

�

, as desired.

Unbiased Test We next consider the unbiased test. Recall that critical values

cl,U(Y), cu,U(Y) for the unbiased test solve

Pr{⇣2 [cl,U(Y),cu,U(Y)]}=1�↵

E[⇣1{⇣2 [cl,U(Y),cu,U(Y)]}]=(1�↵)E[⇣]

for ⇣⇠⇠|⇠2Y where ⇠⇠N(0,1).

Note that for ⇣m the truncated normal random variable corresponding to Ym, we can

write

Pr{⇣m2 [cl,cu]}=am(cl,cu)+(FN(cu)�FN(cl))

with

am(cl,cu)=(FN(cl)�Pr{⇣mcl})�(FN(cu)�Pr{⇣mcu}).

As in the argument for equal-tailed tests above, we see that both FN(cu)�Pr{⇣mcu}
and FN(cl)�Pr{⇣mcl} converge to zero pointwise, and thus uniformly in cu and cl by

Theorem 2.11 in Van der Vaart (1998). Hence, am(cl,cu)!0 uniformly in (cl,cu).

Note, next, that we can write

E[⇣m1{⇣m2 [cl,cu]}]=[⇠1{⇠2 [cl,cu]}]+bm(cl,cu)

for

bm(cl,cu)=E[⇣m1{⇣m2 [cl,cu]}]�[⇠1{⇠2 [cl,cu]}]

=

Z cu

cl

✓

1{y2Ym}
Pr{⇠2Ym}�1

◆

yfN(y)dy.

Note, however, that

Z cu

cl

(1{y2Ym}�1)yfN(y)dyE[|⇠|1{⇠ 62Ym}].

Hence, since

�

�

�

�

Z cu

cl

✓

1{y2Ym}
Pr{⇠2Ym}�1{y2Ym}

◆

yfN(y)dy

�

�

�

�
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
�

�

�

�

✓

1

Pr{⇠2Ym}�1

◆

�

�

�

�

E[|⇠|1{⇠ 62Ym}]
�

�

�

�

✓

1

Pr{⇠2Ym}�1

◆

�

�

�

�

p

P(⇠ 62Ym)

by the Cauchy-Schwartz Inequality, where the right hand side tends to zero and doesn’t

depend on (cl,cu), bm(cl,cu) converges to zero uniformly in (cl,cu).

Next, let us define (cl,m,cu,m) as the solutions to

Pr{⇣m2 [cl,cu]}=1�↵

E[⇣m1{⇣m2 [cl,cu]}]=(1�↵)E[⇣m].

From our results above, we can re-write the problem solved by (cl,m,cu,m) as

FN(cu)�FN(cl)=1�↵�am(cl,cu)

E[⇠1{⇠2 [cl,cu]}]=(1�↵)E[⇣m]�bm(cl,cu).

Letting

ām=sup
cl,cu

|am(cl,cu)|,

b̄m=sup
cl,cu

|bm(cl,cu)|

we thus see that (cl,m,cu,m) solves

FN(cu)�FN(cl)=1�↵�a⇤m

E[⇠1{⇠2 [cl,cu]}]=(1�↵)E[⇣m]�b⇤m

for some a⇤m 2 [�ām,ām], b⇤m 2 ⇥�b̄m,̄bm
⇤

. We will next show that for any sequence of

values (a⇤m,b
⇤
m) such that a⇤m2 [�ām,ām] and b⇤m2⇥�b̄m,̄bm

⇤

for all m, the implied solutions

cl,m(a⇤m,b
⇤
m), cu,m(a

⇤
m,b

⇤
m) converge to F�1

N

�

↵
2

�

and F�1

N

�

1�↵
2

�

. This follows from the next

lemma, which is proved below.

Lemma 4

Suppose that cl,m and cu,m solve

Pr{⇠2 [cl,cu]}=1�↵+am,

E[⇠1{⇠2 [cl,cu]}]=dm
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for am, dm!0. Then (cl,m,cu,m)!
��c↵

2 ,N
,c↵

2 ,N

�

.

Using this lemma, since E[⇣m]!0 as m!1 we see that for any sequence of values

(a⇤m,b
⇤
m)!0,

(cl,m(a
⇤
m,b

⇤
m),cu,m(a

⇤
m,b

⇤
m))!

��c↵
2 ,N

,c↵
2 ,N

�

.

However, since ām,̄bm!0 we know that the values a⇤m and b⇤m corresponding to the true cl,m,

cu,m must converge to zero. Hence (cl,m,cu,m)!
��c↵

2 ,N
,c↵

2 ,N

�

as we wanted to show. ⇤

Proof of Lemma 4 Note that the critical values solve

f(am,dm,c)=

 

FN(cu)�FN(cl)�(1�↵)�am
R cu
cl
yfN(y)dy�dm

!

=0.

We can simplify this expression, since @
@yfN(y)=�yfN(y), so

Z cu

cl

yfN(y)dy=fN(cl)�fN(cu).

We thus must solve the system of equations

FN(cu)�FN(cl)=(1�↵)�am

fN(cl)�fN(cu)=dm

or more compactly g(c)�vm=0, for

g(c)=

 

FN(cu)�FN(cl)

fN(cl)�fN(cu)

!

, vm=

 

am+(1�↵)

dm

!

.

Note that for vm=(1�↵,0)0 this system is solved by c=
��c↵

2 ,N
,c↵

2 ,N

�

. Further,

@

@c
g(c)=

 

�fN(cl) fN(cu)

�clfN(cl) cufN(cu)

!

,

which evaluated at c=
��c↵

2 ,N
,c↵

2 ,N

�

is equal to

 

�fN
�

c↵
2 ,N

�

fN
�

c↵
2 ,N

�

c↵
2 ,N

fN
�

c↵
2 ,N

�

c↵
2 ,N

fN
�

c↵
2 ,N

�

!
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and has full rank for all ↵2(0,1). Thus, by the implicit function theorem there exists an

open neighborhood V of v1=(1�↵,0) such that g(c)�v=0 has a unique solution c(v)

for v2V and c(v) is continuously differentiable. Hence, if we consider any sequence of

values vm!(1�↵,0), we see that

c(vm)!
 

�c↵
2 ,N

c↵
2 ,N

!

,

again as we wanted to show. ⇤

B Additional Results: Details for Empirical Welfare Maximiza-

tion Example

Here, we derive the form of the conditioning event Y� (1,Z˜✓) discussed in Section 4.2,

including for cases when ⌃XY (✓̃)�⌃XY (✓̃,0)0. Note that we can write

n

X(✓̃)�X(0)�c
o

=

(

Z
˜✓(✓̃)�Z

˜✓(0)+
⌃XY (✓̃)�⌃XY (✓̃,0)

⌃Y (✓̃)
Y (✓̃)�c

)

.

Rearranging, we see that

Y�(1,Z˜✓)=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

⇢

y :y� ⌃Y (

˜✓)(c�Z✓̃(
˜✓)+Z✓̃(0))

⌃XY (

˜✓)�⌃XY (

˜✓,0)

�

if ⌃XY (✓̃)�⌃XY (✓̃,0)>0
⇢

y :y ⌃Y (

˜✓)(c�Z✓̃(
˜✓)+Z✓̃(0))

⌃XY (

˜✓)�⌃XY (

˜✓,0)

�

if ⌃XY (✓̃)�⌃XY (✓̃,0)<0

R
if ⌃XY (✓̃)�⌃XY (✓̃,0)=0

and Z
˜✓(✓̃)�Z

˜✓(0)�c

; if ⌃XY (✓̃)�⌃XY (✓̃,0)=0

and Z
˜✓(✓̃)�Z

˜✓(0)<c.

.

C Alternatives to Conventional Sample Splitting

In Section 4.3 of the main text, we discuss the relationship of our conditional approach to

conventional sample splitting methods and note that the results of Fithian et al. (2017) im-

ply that traditional sample splitting methods are dominated in our setting. Here, we derive

optimal split-sample confidence intervals and estimators as well as easy-to-implement con-

fidence intervals and estimators that dominate their conventional split-sample counterparts
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in the asymptotic version of the split-sample problem.

The Split-Sample Limit Experiment Let ⌧ denote the fraction of the full sample

used to compute the estimated maximum and (X1

n,Y
1

n ) and (X2

n,Y
2

n ) denote rescaled data

corresponding to the first and second portions of the data such that

(X1

n,Y
1

n )=⌧�1/2(X
[⌧ ·n],Y[⌧ ·n]),

(X2

n,Y
2

n )=(1�⌧)�1

�

(Xn,Yn)�
p
⌧(X

[⌧ ·n]+1

,Y
[⌧ ·n]+1

)
�

with [a] denoting the nearest integer to a2R. Finally, let ✓̂1n=argmax✓2⇥X1

n(✓) or ✓̂
1

n=

argmax✓2⇥kX1

n(✓)k, as in Andrews et al. (2019), denote the estimated maximum from the

first part of the sample. In large samples, (X1

n,Y
1

n ), (X
2

n,Y
2

n ) and ✓̂1n behave according to23

 

X1

Y 1

!

⇠N(µ,⌃),

 

X2

Y 2

!

⇠N
�

µ,c�1⌃
�

and

✓̂1=argmax✓2⇥X
1(✓)

or

✓̂1=argmax✓2⇥
�

�X1(✓)
�

�,

where c=(1�⌧)/⌧ and (X1,Y 1) is independent of (X2,Y 2). This is the generalization of the

asymptotic problem discussed in Section 4.3 of the main text to arbitrary sample splits.24

Traditional sample splitting methods base inference on Y 2(✓̂1). Since Y 2 is independent

of X1, and thus of ✓̂1, this ensures the (conditional) median-unbiasedness of conventional

split-sample estimates Y 2(✓̂1) and the (conditional) validity of conventional split-sample

confidence intervals

CSSS=



Y 2(✓̂1)�
q

c�1⌃Y (✓̂1)c↵/2,N ,Y
2(✓̂1)+

q

c�1⌃Y (✓̂1)c↵/2,N

�

23The quantity ⌃ in the exposition of this section corresponds to the quantity ⌃ in the main text,
multiplied by ⌧�1.

24For simplicity of exposition, in this section we suppress the possibility of using additional conditioning
variables �̂n=�

�

X1
n

�

with asymptotic counterpart �̂=�
�

X1
�

.
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but does not make full use of the information in the data. To derive optimal procedures

in the sample splitting framework, we first derive a sufficient statistic for the unknown

parameter µ conditional on
n

✓̂1= ✓̃
o

and then apply classical exponential family results

as in Section 4 of the main text.

Optimal Estimators and Confidence Sets The joint (unconditional) density of
(X1,Y 1,X2,Y 2) is proportional to

exp

0

@�1

2

  

X1

Y 1

!

�µ

!

0

⌃�1

  

X1

Y 1

!

�µ

!

1

Aexp

0

@�c

2

  

X2

Y 2

!

�µ

!

0

⌃�1

  

X2

Y 2

!

�µ

!

1

A.

The conditional density given
n

✓̂1= ✓̃
o

is thus propotional to

1
n

X12X 1

⇣

✓̃
⌘o

Prµ

n

X12X 1

⇣

✓̃
⌘oexp

0

@�1

2

  

X1

Y 1

!

�µ

!

0

⌃�1

  

X1

Y 1

!

�µ

!

1

A⇥

exp

0

@�c

2

  

X2

Y 2

!

�µ

!

0

⌃�1

  

X2

Y 2

!

�µ

!

1

A

with X 1(✓̃)={X1 : ✓̂= ✓̃}, which we can re-write as

g
1

�

X1,Y 1

�

g
2

�

X2,Y 2

�

h(µ)exp

0

@

  

X1

Y 1

!

+c

 

X2

Y 2

!!

0

⌃�1µ

1

A

for

g
1

�

X1,Y 1

�

=1
n

X12X 1

⇣

✓̃
⌘o

exp

0

@�1

2

 

X1

Y 1

!

0

⌃�1

 

X1

Y 1

!

1

A,

g
2

�

X2,Y 2

�

=exp

0

@�c

2

 

X2

Y 2

!

0

⌃�1

 

X2

Y 2

!

1

A,

and

h(µ)=
1

Prµ

n

X12X 1

⇣

✓̃
⌘oexp

✓

�1+c

2
µ0⌃�1µ

◆

.
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This exponential family structure shows that

 

X⇤

Y ⇤

!

=

  

X1

Y 1

!

+c

 

X2

Y 2

!!

is

sufficient for µ. Hence, for any function of (X1,Y 1,X2,Y 2), there exists a (potentially

randomized) function of (X⇤,Y ⇤) with the same distribution for all µ. Thus, to study

questions of optimality it is without loss to limit attention to confidence intervals and

estimators that depend only on (X⇤,Y ⇤).

Now that we have derived a sufficient statistic (X⇤,Y ⇤) for µ, we turn to the question

of how to construct optimal estimators and confidence intervals for µY (✓̃) conditional on
n

✓̂= ✓̃
o

. Note that the unconditional density of (X⇤,Y ⇤) is proportional to

exp

0

@� 1

2+2c

  

X⇤

Y ⇤

!

�(1+c)µ

!

0

⌃�1

  

X⇤

Y ⇤

!

�(1+c)µ

!

1

A.

The density of (X⇤,Y ⇤) given
n

✓̂1= ✓̃
o

is thus proportional to

Pr
n

X12X 1
⇣

✓̃
⌘

|X⇤,Y ⇤

o

Prµ

n

X12X 1
⇣

✓̃
⌘o exp

0

@� 1

2+2c

  

X⇤

Y ⇤

!

�(1+c)µ

!

0

⌃�1

  

X⇤

Y ⇤

!

�(1+c)µ

!

1

A,

where we have used sufficiency to drop dependence of the numerator on µ.

This joint distribution has the same exponential family structure used to derive the

optimal estimators and confidence intervals in the main text (see the proofs of Propositions

1 and 2). Hence, the same arguments deliver optimal procedures for the split-sample

setting. Specifically, for

Z⇤
˜✓
=

 

X⇤

Y ⇤

!

�
 

Cov

  

X⇤

Y ⇤

!

,Y ⇤
⇣

✓̃
⌘

!

/⌃Y ⇤

⇣

✓̃
⌘

!

Y ⇤
⇣

✓̃
⌘

,

where ⌃Y ⇤ denotes the variance of Y ⇤, we can re-write

exp

   

X1

Y 1

!

+c

 

X2

Y 2

!!

⌃�1µ

!

=exp
⇣

Y ⇤
⇣

✓̃
⌘

µY ⇤

⇣

✓̃
⌘

/⌃Y ⇤

⇣

✓̃
⌘

+Z⇤
˜✓
⌃+

Z⇤µZ⇤

⌘

for ⌃Z⇤ the variance of Z⇤, A+ the Moore-Penrose pseudoinverse of a matrix A, and

µZ⇤=(1+c)µ�
 

Cov

  

X⇤

Y ⇤

!

,Y ⇤
⇣

✓̃
⌘

!

/V ar
⇣

Y ⇤
⇣

✓̃
⌘⌘

!

µY ⇤

⇣

✓̃
⌘

.
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This expression shows that when we are interested in inference on µY (✓̃) conditional on
n

✓̂1= ✓̃
o

, µZ⇤ is the nuisance parameter, and Z⇤
˜✓
is minimal sufficient for this parameter

relative to observing (X1,Y 1,X2,Y 2).

If we let F ⇤
SS(Y

⇤(✓̃);µY ⇤(✓̃), ✓̃, z⇤) denote the conditional distribution function of

Y ⇤|Z⇤ = z⇤, ✓̂1 = ✓̃, then the same arguments used to prove Proposition 1 show that

the optimal ↵ quantile-unbiased estimator µ̂⇤
SS,↵ in the sample splitting problem solves

F ⇤
SS(Y

⇤(✓̂1);(1+c)µ̂⇤
SS,↵,✓̃,Z

⇤
˜✓
)=1�↵.

Likewise, the same arguments used to prove Proposition 2 show that the optimal two-sided

unbiased test rejects H
0

:µY (✓̃)=µY,0 when

Y ⇤(✓̃) 62⇥cl
�

Z⇤
˜✓

�

,cu
�

Z⇤
˜✓

�⇤

,

where cl(z), cu(z) solve

Pr{⇣2 [cl(z),cu(z)]}=1�↵, E[⇣1{⇣2 [cl(z),cu(z)]}]=(1�↵)E[⇣]

with ⇣ distributed according to F ⇤
SS(·;(1+c)µY,0,✓̃,z). These optimal procedures condition

on Z⇤
˜✓
rather than (X1,Y 1) and so, unlike conventional sample splitting, continue to treat

(X1,Y 1) as random for inference.

Feasible Dominating Estimators and Confidence Sets To implement the optimal

split-sample proecdures, we need to evaluate (or at least be able to draw from) the condi-

tional distribution F ⇤
SS(·;(1+c)µY,0,✓̃,z). Unfortunately, however, it is not computationally

straightforward to do so since Y ⇤|Z⇤=z⇤,✓̂1= ✓̃ is distributed as a normal random vari-

able truncated to a dependent random set. We thus introduce side constraints to derive

procedures that, although they are not fully optimal in the unconstrained problem, are

computationally straightforward to implement and dominate conventional sample splitting

procedures. These computationally feasible procedures are optimal within the class of

split-sample procedures that condition on {✓̂1= ✓̃} and the realizations of

Zi
˜✓
=Xi�

⇣

⌃XY

⇣

·,✓̃
⌘

/⌃Y

⇣

✓̃
⌘⌘

Y i
⇣

✓̃
⌘

for i=1,2, where (Z1

˜✓
,Z2

˜✓
) is a sufficient statistic for the nuisance parameter µX. Since

Y 2(✓̂1)|{✓̂1= ✓̃,(Z1

˜✓
,Z2

˜✓
)=(z1,z1)}⇠Y 2(✓̃), the conventional split-sample estimator Y 2(✓̂1)
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and confidence interval CSSS fall within the class of split-sample conditional procedures

that condition on {✓̂1 = ✓̃} and (Z1

˜✓
,Z2

˜✓
). These conventional procedures are therefore

dominated by the optimal procedures within this class, which we now describe.

Standard exponential family arguments show that (Z1

˜✓
,Z2

˜✓
) is sufficient for the nuisance

parameter µX and, conditional on {✓̂1= ✓̃} and (Z1

˜✓
,Z2

˜✓
), optimal estimation and inference

is based upon the conditional distribution of Y ⇤(✓̃). Note that since Y 2(✓̃) is independent

of (Z1

˜✓
,Z2

˜✓
) and both ✓̂1 and Y 2(✓̃) are independent of Z2

˜✓
,

Y ⇤(✓̃)|{✓̂1= ✓̃,(Z1

˜✓
,Z2

˜✓
)=(z1,z2)}⇠Y 1(✓̃)|{✓̂1= ✓̃,Z1

˜✓
=z1}+cY 2(✓̃).

Thus, the feasible dominating split-sample procedures rely upon the computation of the

distribution function of Y 1(✓̃)|{✓̂1= ✓̃,Z1

˜✓
=z1}+cY 2(✓̃). We now describe a fast method

for computing this object.

In analogy with full sample inference, let

Y1(✓̃,z1)=
n

y1 :z1+
⇣

⌃XY

⇣

·,✓̃
⌘

/⌃Y

⇣

✓̃
⌘⌘

y12X 1(✓̃)
o

so that conditional on {✓̂1 = ✓̃} and Z1

˜✓
= z1, Y 1(✓̃) follows a one-dimensional trun-

cated normal distribution with truncation set Y1(✓̃,z1). Note that in both the level

and norm maximization contexts, Y1(✓̃,z1) can be expressed as a finite union of disjoint

intervals: Y1(✓̃,z1)=
SK

k=1

[`k(z1),uk(z1)], where the dependence of `k(z1) and uk(z1) for

k=1,...,K on ✓̃ is suppressed for notational simplicity. Note that Y 1(✓̃)|{✓̂1= ✓̃,Z1

˜✓
=z1}

is distributed as ⇠1|⇠1 2Y1(✓̃,z1), where ⇠1⇠N(µY (✓̃),⌃Y (✓̃)). The density function of

Y 1(✓̃)|{✓̂1= ✓̃,Z1

˜✓
=z1} is thus

f1(y1)=

PK
k=1

fN

✓

(y1�µY (✓̃))/
q

⌃Y (✓̃)

◆

1(`k(z1)y1uk(z1))

q

⌃Y (✓̃)
PK

k=1

✓

FN

✓

(uk(z1)�µY (✓̃))/
q

⌃Y (✓̃)

◆

�FN

✓

(`k(z1)�µY (✓̃))/
q

⌃Y (✓̃)

◆◆

and cY 2(✓̃) has density function f2(y2)=c�1/2⌃Y (✓̃)�1/2fN

✓

(y2�cµ)/
q

c⌃Y (✓̃)

◆

. There-

fore, since Y 1(✓̃)|{✓̂1 = ✓̃,Z1

˜✓
= z1} and cY 2(✓̃) are independent, the density function of
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Y ⇤(✓̃)|{✓̂1= ✓̃,Z1

˜✓
=z1} is equal to

PK
k=1

R uk(z1)

`k(z1)
fN

✓

(t�µY (✓̃))/
q

⌃Y (✓̃)

◆

fN

✓

(y⇤�t�cµY (✓̃))/
q

c⌃Y (✓̃)

◆

dt

p
c⌃Y (✓̃)

PK
k=1

✓

FN

✓

(uk(z1)�µY (✓̃))/
q

⌃Y (✓̃)

◆

�FN

✓

(`k(z1)�µY (✓̃))/
q

⌃Y (✓̃)

◆◆

with corresponding distribution function

FA
SS(y

⇤;µY (✓̃),✓̃,z
1)

=

PK
k=1

R uk(z1)

`k(z1)
fN

✓

(t�µY (✓̃))/
q

⌃Y (✓̃)

◆

FN

✓

(y⇤�t�cµY (✓̃))/
q

c⌃Y (✓̃)

◆

dt

q

⌃Y (✓̃)
PK

k=1

✓

FN

✓

(uk(z1)�µY (✓̃))/
q

⌃Y (✓̃)

◆

�FN

✓

(`k(z1)�µY (✓̃))/
q

⌃Y (✓̃)

◆◆

=

E



FN

✓

(y⇤�⇠1�cµY (✓̃))/
q

c⌃Y (✓̃)

◆

1
⇣

⇠12SK
k=1

[`k(z1),uk(z1)]
⌘

�

PK
k=1

✓

FN

✓

(uk(z1)�µY (✓̃))/
q

⌃Y (✓̃)

◆

�FN

✓

(`k(z1)�µY (✓̃))/
q

⌃Y (✓̃)

◆◆,

where the expectation is taken with respect to ⇠1⇠N(µY (✓̃),⌃Y (✓̃)). This latter expression

for FA
SS(y

⇤;µY (✓̃),✓̃,z1) is very easy to compute by generating normal random variables in

standard software packages. This makes the computation of optimal estimators, tests and

confidence intervals within the class discussed here computationally straightforward.

Similarly to the optimal case above, the same arguments used to prove Proposition 1

show that the optimal ↵ quantile-unbiased estimator µ̂A
SS,↵ in the sample splitting problem

that conditions on {✓̂1= ✓̃} and the realizations of Z1

˜✓
and Z2

˜✓
solves

FA
SS(Y

⇤(✓̂1);µ̂A
SS,↵,✓̃,Z

1

˜✓
)=1�↵.

Therefore, our (equal-tailed) alternative split-sample confidence interval isCA
SS=[µ̂A

SS,↵/2,µ̂
A
SS,1�↵/2].

Likewise, the same arguments used to prove Proposition 2 show that the optimal two-sided

unbiased test rejects H
0

:µY (✓̃)=µY,0 when

Y ⇤(✓̃) 62⇥cl
�

Z1

˜✓

�

,cu
�

Z1

˜✓

�⇤

,
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where cl(z), cu(z) solve

Pr{⇣2 [cl(z),cu(z)]}=1�↵, E[⇣1{⇣2 [cl(z),cu(z)]}]=(1�↵)E[⇣]

with ⇣ distributed according to FA
SS(·;µY,0,✓̃,z). These dominating procedures condition

on Z1

˜✓
rather than (X1,Y 1), and so unlike conventional sample splitting continue to treat

(X1,Y 1) as random for inference.

D Uniformity Results

In this section, we show that the results derived in the main text for the finite-sample

normal model translate to uniform asymptotic results over a large class of data generating

processes for level-maximization problems. To state and prove these results, it will be

important to distinguish between finite-sample and asymptotic objects. To keep this

distinction clear, we will subscript finite-sample objects by the sample size, writing Xn,

Yn, b⌃n, and so on. Moreover, the estimators and confidence intervals µ̂↵,n, µ̂
H
↵,n, CSET,n,

CSH
ET,n, CSU,n, CSH

U,n and CSP,n are equal to their asymptotic counterparts µ̂↵, µ̂
H
↵ , CSET ,

CSH
ET , CSU , CS

H
U and CSP after replacing X, Y , ⌃ with Xn, Yn, b⌃n.

With this notation, we aim to prove, for example, that for µ̂↵,n our ↵-quantile unbiased

estimator calculated using
⇣

Xn,Yn,b⌃n

⌘

, µY,n(✓;P) the analog of µY (✓) in the sample of

size n, and data generating process P,

lim
n!1

sup
P2Pn

�

�

�

PrP

n

µ̂↵,n�µY,n

⇣

✓̂n;P
⌘o

�↵
�

�

�

=0,

so µ̂↵,n is (unconditionally) asymptotically ↵-quantile unbiased uniformly over the (possibly

sample-size dependent) class of data generating processes Pn. Moreover, we will show that

for all ✓̃2⇥

lim
n!1

sup
P2Pn

�

�

�

PrP

n

µ̂↵,n�µY,n

⇣

✓̂n;P
⌘

|✓̂n= ✓̃
o

�↵
�

�

�

PrP

n

✓̂n= ✓̃
o

=0,

so asymptotic quantile unbiasedness also holds conditional on the event
n

✓̂n= ✓̃
o

provided

this event occurs with non-trivial asymptotic probability. One could use arguments along

the same lines as those below to derive results for additional conditioning variables �̂n, but

since such arguments would be case-specific, and we do not pursue such an extension here.

Asymptotic uniformity results for conditional inference procedures that, like our correc-
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tions, rely on truncated normal distributions were previously established by Tibshirani et al.

(2018). Their results cover a class of models that nests our level maximization problem

but impose an assumption that implies bounded asymptotic means. Since we do not

impose this assumption in our analysis of level-maximization, our results on conditional

confidence intervals are not nested by theirs. Moreover, these authors do not cover hybrid

inference procedures, which are new to the literature, and also do not provide results for

quantile-unbiased estimation. Our proofs are based on subsequencing arguments as in An-

drews et al. (2018), though due to the differences in our setting (our interest in conditional

inference, and the fact that our target is random from an unconditional perspective) we

cannot directly apply their results. In the subsequent analysis, FN and fN denote the cdf

and pdf of the standard normal distribution.

D.1 Asymptotic Validity for Level Maximization

Section D.1.1 collects the assumptions we use to prove uniform asymptotic validity. Section

D.1.2 then states our uniformity results. Section D.1.3 collects a series of technical lemmas

which we use to prove our uniformity results. Finally, Sections D.1.4 and D.1.5 collect

proofs for the lemmas and the uniformity results, respectively.

D.1.1 Assumptions

To derive our asymptotic uniformity results, we use the fact that all our estimates and

confidence intervals are functions of
⇣

Xn,Yn,b⌃n

⌘

. Hence, to derive our results it suffices

to state assumptions in terms of the behavior of these objects.

Assumption 2

Our estimator b⌃n is uniformly consistent for some function ⌃(P),

lim
n!1

sup
P2Pn

PrP

n

�

�

�

b⌃n�⌃(P)
�

�

�

>"
o

=0

for all ">0.

This assumption requires that our variance estimator b⌃n be consistent for some ⌃(P),

which our later assumptions will take to be the asymptotic variance matrix of (X 0
n,Y

0
n)

0

under P , uniformly over Pn.

Assumption 3

There exists a finite �̄>0 such that for �
min

(A) and �
max

(A) the minimum and maximum
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eigenvalues of a matrix A,

1/�̄�
min

(⌃X(P))�
max

(⌃X(P)) �̄ for all P 2Pn

and

1/�̄⌃Y (✓;P) �̄ for all ✓2⇥ and all P 2Pn.

This assumption bounds the variance matrix ⌃X(P) above and away from singularity,

and likewise bounds the diagonal elements of ⌃Y (P) above and away from zero. This

ensures that the set of covariance matrices consistent with P 2Pn is a subset of a compact

set, and that Xn(✓) has a unique maximum with probability tending to one.

Assumption 4

For BL
1

the class of Lipschitz functions that are bounded in absolute value by one and

have Lipschitz constant bounded by one, and ⇠P ⇠N(0,⌃(P)),

lim
n!1

sup
P2Pn

sup
f2BL1

�

�

�

�

�

EP

"

f

 

Xn�µX,n(P)

Yn�µY,n(P)

!#

�E[f(⇠P )]

�

�

�

�

�

=0

for some sequence of functions µX,n(P) and µY,n(P).

Bounded Lipschitz distance metrizes convergence in distribution, so uniform conver-

gence in bounded Lipschitz, as we assume here, is one formalization for uniform convergence

in distribution. Hence, this assumption requires that

�

X 0
n�µX,n(P)

0,Y 0
n�µY,n(P)

0�0

be asymptotically N(0,⌃(P)) distributed, uniformly over P 2Pn.

D.1.2 Level Maximization Uniformity Results

For ✓̂n=argmax✓Xn(✓) we obtain the following results.

Proposition 8

Under Assumptions 2-4, for ✓̂n=argmax✓Xn(✓) and µ̂↵,n the ↵-quantile unbiased estimator,

lim
n!1

sup
P2Pn

�

�

�

PrP

n

µ̂↵,n�µY,n

⇣

✓̂n;P
⌘

|✓̂n= ✓̃
o

�↵
�

�

�

PrP

n

✓̂n= ✓̃
o

=0, (24)
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for all ✓̃2⇥, and

lim
n!1

sup
P2Pn

�

�

�

PrP

n

µ̂↵,n�µY,n

⇣

✓̂n;P
⌘o

�↵
�

�

�

=0. (25)

Corollary 1

Under Assumptions 2-4, for ✓̂n=argmax✓Xn(✓) and CSET,n the level 1�↵ equal-tailed

confidence interval,

lim
n!1

sup
P2Pn

�

�

�

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSET,n|✓̂n= ✓̃
o

�(1�↵)
�

�

�

PrP

n

✓̂n= ✓̃
o

=0,

for all ✓̃2⇥, and

lim
n!1

sup
P2Pn

�

�

�

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSET,n

o

�(1�↵)
�

�

�

=0.

Proposition 9

Under Assumptions 2-4, for ✓̂n = argmax✓Xn (✓) and CSU,n the level 1� ↵ unbiased

confidence interval,

lim
n!1

sup
P2Pn

�

�

�

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSU,n|✓̂n= ✓̃
o

�(1�↵)
�

�

�

PrP

n

✓̂n= ✓̃
o

=0, (26)

for all ✓̃2⇥, and

lim
n!1

sup
P2Pn

�

�

�

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSU,n

o

�(1�↵)
�

�

�

=0. (27)

Proposition 10

Under Assumptions 2-4, for ✓̂n = argmax✓Xn (✓) and CSP,n the level 1�↵ projection

confidence interval,

liminf
n!1

inf
P2Pn

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSP,n

o

�1�↵. (28)

Proposition 11

Under Assumptions 2-4, for ✓̂n = argmax✓Xn (✓), µ̂H
↵,n the ↵-quantile unbiased hybrid

estimator based on initial confidence interval CS�
P,n, and

CH
n

⇣

✓̃;P
⌘

=1
n

✓̂n= ✓̃,µY,n

⇣

✓̂n;P
⌘

2CS�
P,n

o

,
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we have

lim
n!1

sup
P2Pn

�

�

�

PrP

n

µ̂H↵,n�µY,n

⇣

✓̂n;P
⌘

|CH
n

⇣

✓̃;P
⌘

=1
o

�↵
�

�

�

EP

n

CH
n

⇣

✓̃;P
⌘o

=0, (29)

for all ✓̃2⇥. Moreover

limsup
n!1

sup
P2Pn

�

�

�

PrP

n

µ̂H
↵,n�µY,n

⇣

✓̂n;P
⌘o

�↵
�

�

�

max{↵,1�↵}�. (30)

Corollary 2
Under Assumptions 2-4, for ✓̂n=argmax✓Xn(✓) and CSH

ET,n the level 1�↵ equal-tailed

hybrid confidence set based on initial confidence interval CS�
P,n,

lim
n!1

sup
P2Pn

�

�

�

�

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSH
ET,n|CH

n

⇣

✓̃;P
⌘

=1
o

� 1�↵

1��

�

�

�

�

EP

n

CH
n

⇣

✓̃;P
⌘o

=0, (31)

for all ✓̃2⇥,

liminf
n!1

inf
P2Pn

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSH
ET,n

o

�1�↵, (32)

and

limsup
n!1

sup
P2Pn

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSH
ET,n

o

 1�↵

1��
1�↵+�. (33)

Proposition 12

Under Assumptions 2-4, for ✓̂n=argmax✓Xn(✓) and CSH
U,n the level 1�↵ unbiased hybrid

confidence interval based on initial confidence interval CS�
P,n,

lim
n!1

sup
P2Pn

�

�

�

�

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSH
U,n|CH

n

⇣

✓̃;P
⌘

=1
o

�1�↵

1��

�

�

�

�

EP

n

CH
n

⇣

✓̃;P
⌘o

=0,

for all ✓̃2⇥,

liminf
n!1

inf
P2Pn

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSH
U,n

o

�1�↵,

and

limsup
n!1

sup
P2Pn

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSH
U,n

o

 1�↵

1��
1�↵+�.

D.1.3 Auxiliary Lemmas

This section collects lemmas that we will use to prove our uniformity results.

Lemma 5

Under Assumption 3, for any sequence of confidence intervals CSn, any sequence of sets
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Cn(P) indexed by P , Cn(P)=1
n⇣

Xn,Yn,b⌃n

⌘

2Cn(P)
o

, and any constant ↵, to show that

limsup
n!1

sup
P2Pn

�

�

�

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn(P)=1
o

�↵
�

�

�

PrP{Cn(P)=1}=0

it suffices to show that for all subsequences {ns}✓{n}, {Pns}2P1=⇥1
n=1

Pn with:

1. ⌃(Pns)!⌃⇤2S for

S=
�

⌃ :1/�̄�
min

(⌃X)�
max

(⌃X) �̄,1/�̄⌃Y (✓) �̄
 

, (34)

2. PrPns
{Cns(Pns)=1}!p⇤2(0,1], and

3. µX,ns(Pns)�max✓µX,ns(✓;Pns)!µ⇤
X2M⇤

X for

M⇤
X=

n

µX2 [�1,0]|⇥| :max
✓

µX(✓)=0
o

,

we have

lim
s!1

PrPns

n

µY,ns

⇣

✓̂ns;Pns

⌘

2CSns|Cns(Pns)=1
o

=↵. (35)

Lemma 6

For a collection of sequences of sets Cn,1(P),...,Cn,J(P) and

Cn,j(P)=1
n⇣

Xn,Yn,b⌃n

⌘

2Cn,j(P)
o

,

if

lim
n!1

sup
P2Pn

PrP{Cn,j(P)=1,Cn,j0(P)=1}=0 for all j 6=j0

and

lim
n!1

sup
P2Pn

�

�

�

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn,j(P)=1
o

�(1�↵)
�

�

�

PrP{Cn,j(P)=1}=0

for all j, then

liminf
n!1

inf
P2Pn

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn

o

�(1�↵)·liminf
n!1

inf
P2Pn

X

j

PrP{Cn,j(P)=1}
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and

limsup
n!1

sup
P2Pn

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn

o

1�↵liminf
n!1

inf
P2Pn

X

j

PrP{Cn,j(P)=1}.

To state the next lemma, define

L
⇣

✓̃,Z,⌃
⌘

= max
✓2⇥:⌃XY (˜✓)>⌃XY (˜✓,✓)

⌃Y

⇣

✓̃
⌘⇣

Z(✓)�Z
⇣

✓̃
⌘⌘

⌃XY

⇣

✓̃
⌘

�⌃XY

⇣

✓̃,✓
⌘ (36)

U
⇣

✓̃,Z,⌃
⌘

= min
✓2⇥:⌃XY (˜✓)<⌃XY (˜✓,✓)

⌃Y

⇣

✓̃
⌘⇣

Z(✓)�Z
⇣

✓̃
⌘⌘

⌃XY

⇣

✓̃
⌘

�⌃XY

⇣

✓̃,✓
⌘ , (37)

where we define a maximum over the empty set as �1 and a minimum over the empty

set as +1. For
 

X⇤
n

Y ⇤
n

!

=

 

Xn�max✓µX,n(✓;P)

Yn�µY,n(P)

!

,

we next show that using
⇣

X⇤
n,Y

⇤
n ,b⌃n

⌘

in our calculations yields the same bounds L and

U as using
⇣

Xn,Yn,b⌃n

⌘

, up to additive shifts

Lemma 7

For L
⇣

✓̃,Z,⌃
⌘

and U
⇣

✓̃,Z,⌃
⌘

as defined in (36) and (37), and

Z
˜✓,n=Xn(✓)�

b⌃XY,n

⇣

✓,✓̃
⌘

b⌃Y,n

⇣

✓̃
⌘ Yn

⇣

✓̃
⌘

, Z⇤
˜✓,n

=X⇤
n(✓)�

b⌃XY,n

⇣

✓,✓̃
⌘

b⌃Y,n

⇣

✓̃
⌘ Y ⇤

n

⇣

✓̃
⌘

,

we have

L
⇣

✓̃,Z⇤
˜✓,n
,b⌃n

⌘

=L
⇣

✓̃,Z
˜✓,n,

b⌃n

⌘

�µY,n

⇣

✓̃;P
⌘

U
⇣

✓̃,Z⇤
˜✓,n
,b⌃n

⌘

=U
⇣

✓̃,Z
˜✓,n,

b⌃n

⌘

�µY,n

⇣

✓̃;P
⌘

.

For brevity, going forward we use the shorthand notation

⇣

L
⇣

✓̃,Z
˜✓,n,

b⌃n

⌘

,U
⇣

✓̃,Z
˜✓,n,

b⌃n

⌘

,L
⇣

✓̃,Z⇤
˜✓,n
,b⌃n

⌘

,U
⇣

✓̃,Z⇤
˜✓,n
,b⌃n

⌘⌘

=(Ln,Un,L⇤
n,U⇤

n).
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Lemma 8

Under Assumptions 2 and 4, for any {ns} and {Pns} satisfying conditions (1)-(3) of

Lemma 5 and any ✓̃ with µ⇤
X

⇣

✓̃
⌘

>�1,

⇣

Y ⇤
ns
,L⇤

ns
,U⇤

ns
,b⌃ns,✓̂ns

⌘

!d

⇣

Y ⇤,L⇤,U⇤,⌃⇤,✓̂
⌘

,

where the objects on the right hand side are calculated based on (Y ⇤,X⇤,⌃⇤) for

 

X⇤

Y ⇤

!

⇠N(µ⇤,⌃⇤)

with µ⇤=(µ⇤0
X,0

0)0.

Lemma 9

For FN again the standard normal distribution function, the function

FTN(Y (✓);µ,⌃Y (✓),L,U)=
FN

✓

Y (✓)^U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆

FN

✓

U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆ 1(Y (✓)�L) (38)

is continuous in (Y (✓),µ,⌃Y (✓),L,U) on the set

�

(Y (✓),µ,⌃Y (✓))2R3,L2R[{�1},U2R[{1} :⌃Y (✓)>0,L<Y (✓)<U .

To state the next lemma, let (cl(µ,⌃Y (✓),L,U),cu(µ,⌃Y (✓),L,U)) solve

Pr{⇣2 [cl,cu]}=1�↵

E[⇣1{⇣2 [cl,cu]}]=(1�↵)E[⇣]

for

⇣⇠⇠|⇠2 [L,U],⇠⇠N(µ,⌃Y (✓)).

Lemma 10

The function (cl(µ,⌃Y (✓),L,U),cu(µ,⌃Y (✓),L,U)) satisfies

(cl(µ,⌃Y (✓),L,U),cu(µ,⌃Y (✓),L,U))
=(µ+cl(0,⌃Y (✓),L�µ,U�µ),µ+cu(0,⌃Y (✓),L�µ,U�µ))
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and is continuous in (µ,⌃Y (✓),L,U) on the set

�

(µ,⌃Y (✓))2R2,L2R[{�1},U2R[{1} :⌃Y (✓)>0,L<U .

D.1.4 Proofs for Auxiliary Lemmas

Proof of Lemma 5 To prove that

limsup
n!1

sup
P2Pn

�

�

�

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn(P)=1
o

�↵
�

�

�

PrP{Cn(P)=1}=0

it suffices to show that

liminf
n!1

inf
P2Pn

⇣

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn(P)=1
o

�↵
⌘

PrP{Cn(P)=1}�0 (39)

and

limsup
n!1

sup
P2Pn

⇣

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn(P)=1
o

�↵
⌘

PrP{Cn(P)=1}0. (40)

We prove that to show (39), it suffices to show that for all {ns}, {Pns} satisfying conditions

(1)-(3) of the lemma,

liminf
s!1

PrPns

n

µY,ns

⇣

✓̂ns;Pns

⌘

2CSns|Cns(Pns)=1
o

�↵. (41)

An argument along the same lines implies that to prove (40) it suffices to show that

limsup
s!1

PrPns

n

µY,ns

⇣

✓̂ns;Pns

⌘

2CSns|Cns(Pns)=1
o

↵. (42)

Note, however, that (41) and (42) together are equivalent to (35).

Towards contradiction, suppose that (39) fails, so

liminf
n!1

inf
P2Pn

⇣

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn(P)=1
o

�↵
⌘

PrP{Cn(P)=1}<�",

for some "> 0 but that (41) holds for all sequences satisfying conditions (1)-(3) of the

lemma. Then there exists an increasing sequence of sample sizes nq and some sequence
�

Pnq

 

with Pnq 2Pnq for all q such that

limsup
q!1

⇣

PrPnq

n

µY,nq

⇣

✓̂nq ;Pnq

⌘

2CSnq |Cnq

�

Pnq

�

=1
o

�↵
⌘

PrPnq

�

Cnq

�

Pnq

�

=1
 

<�". (43)
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We want to show that there exists a further subsequence {ns}✓{nq} satisfying (1)-(3) in

the statement of the lemma, and so establish a contradiction.

Note that since the set S defined in (34) is compact (e.g. in the Frobenius norm),

and Assumption 3 implies that ⌃
�

Pnq

�2S for all q, there exists a further subsequence

{nr}✓{nq} such that

lim
r!1

⌃(Pnr)!⌃⇤

for some ⌃⇤2S.
Note, next, that PrPnr

{Cnr(Pnr)=1}2 [0,1] for all r, and so converges along a sub-

sequence {nt}✓{nr}. However, (43) implies that PrPnr
{Cnr(Pnr)=1}� "

↵ for all r, and

thus that

PrPnt
{Cnt(Pnt)=1}!p⇤2

h "

↵
,1
i

.

Finally, let us define

µ⇤
X,n(P)=µX,n(P)�max

✓
µX,n(✓;P),

and note that µ⇤
X,n (P)  0 by construction. Since µ⇤

X,n(P) is finite-dimensional and

max✓µ⇤
X,n(P ;✓)=0, there exists some ✓2⇥ such that µ⇤

X,n(P ;✓) is equal to zero infinitely of-

ten. Let {nu}✓{nt} extract the corresponding sequence of sample sizes. The set [�1,0]|⇥|

is compact under the metric d(µX,µ̃X) = kFN(µX)�FN(µ̃X)k for FN(·) the standard

normal cdf applied elementwise, and k·k the Euclidean norm. Hence, there exists a further

subsequence {ns}✓{nu} along which µ⇤
X,ns

(Pns) converges to a limit in this metric. Note,

however, that this means that µ⇤
X,ns

(Pns) converges to a limit µ⇤2M⇤ in the usual metric.

Hence, we have shown that there exists a subsequence {ns}✓{nq} that satisfies (1)-(3).

By supposition, (41) must hold along this subsequence. Thus,

liminf
n!1

⇣

PrPns

n

µY,ns

⇣

✓̂ns;Pns

⌘

2CSns|Cns(Pns)=1
o

�↵
⌘

PrP{Cns(Pns)=1}�0,

which contradicts (43). Hence, we have established a contradiction and so proved that (41)

for all subsequences satisfying conditions (1)-(3) of the lemma implies (39). An argument

along the same lines shows that (42) along all subsequences satisfying conditions (1)-(3)

of lemma implies (40). ⇤

Proof of Lemma 6 Let us define

Cn,J+1

(P)=1{Cn,j(P)=0 for all j2{1,...,J}}.
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Note that

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn

o

=
PJ+1

j=1

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn,j(P)=1
o

PrP{Cn,j(P)=1}+o(1)

where the o(1) term is negligible uniformly over P 2Pn as n!1. Hence,

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn

o

�(1�↵)

=
PJ+1

j=1

⇣

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn,j(P)=1
o

�(1�↵)
⌘

PrP{Cn,j(P)=1}+o(1)

and

liminf
n!1

inf
P2P

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn

o

�(1�↵)

=liminf
n!1

inf
P2Pn

J+1

X

j=1

⇣

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn,j(P)=1
o

�(1�↵)
⌘

PrP{Cn,j(P)=1}

=liminf
n!1

inf
P2Pn

⇣

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn,J+1

(P)=1
o

�(1�↵)
⌘

PrP{Cn,J+1

(P)=1}

��(1�↵)limsup
n!1

sup
P2Pn

PrP{Cn,J+1

(P)=1}

=�(1�↵)

 

1�liminf
n!1

inf
P2Pn

J
X

j=1

PrP{Cn,j(P)=1}
!

which immediately implies that

liminf
n!1

inf
P2Pn

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn

o

�(1�↵)liminf
n!1

inf
P2Pn

J
X

j=1

PrP{Cn,j(P)=1}.

Likewise,

limsup
n!1

sup
P2Pn

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn

o

�(1�↵)

=limsup
n!1

sup
P2Pn

J+1

X

j=1

⇣

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn,j(P)=1
o

�(1�↵)
⌘

PrP{Cn,j(P)=1}

=limsup
n!1

sup
P2Pn

⇣

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn|Cn,J+1

(P)=1
o

�(1�↵)
⌘

PrP{Cn,J+1

(P)=1}
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↵·limsup
n!1

sup
P2Pn

PrP{Cn,J+1

(P)=1}=↵

 

1�liminf
n!1

inf
P2Pn

J
X

j=1

PrP{Cn,j(P)=1}
!

.

This immediately implies that

limsup
n!1

sup
P2Pn

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSn

o

1�↵·liminf
n!1

inf
P2Pn

J
X

j=1

PrP{Cn,j(P)=1},

as we wanted to show. ⇤

Proof of Lemma 7 Note that

Z⇤
˜✓,n

=Z
˜✓,n�max

✓
µX,n(✓;P)+b⌃XY,n

⇣

·,✓̃
⌘µY,n

⇣

✓̃;P
⌘

b⌃Y,n

⇣

✓̃
⌘ ,

so

Z⇤
˜✓,n
(✓)�Z⇤

˜✓,n

⇣

✓̃
⌘

=Z
˜✓,n(✓)�Z

˜✓,n

⇣

✓̃
⌘

+
⇣

b⌃XY,n

⇣

✓,✓̃
⌘

�b⌃XY,n

⇣

✓̃
⌘⌘µY,n

⇣

✓̃;P
⌘

b⌃Y,n

⇣

✓̃
⌘ .

The result follows immediately. ⇤

Proof of Lemma 8 By Assumption 4

 

Xns�µX,ns(Pns)

Yns�µY,ns(Pns)

!

!dN(0,⌃⇤).

Hence, by Slutsky’s lemma

 

X⇤
ns

Y ⇤
ns

!

=

 

Xns�max✓µX,ns(✓;Pns)

Yns�µY,ns(Pns)

!

!d

 

X⇤

Y ⇤

!

⇠N(µ⇤,⌃⇤).

We begin by considering one ✓2⇥\
n

✓̃
o

at a time. Since b⌃ns!p⌃⇤ by Assumption

2, if ⌃⇤
XY

⇣

✓̃
⌘

�⌃⇤
XY

⇣

✓̃,✓
⌘

6=0 then

b⌃Y,ns

⇣

✓̃
⌘⇣

Z⇤
˜✓,ns

(✓)�Z⇤
˜✓,ns

⇣

✓̃
⌘⌘

b⌃XY,ns

⇣

✓̃
⌘

�b⌃XY,ns

⇣

✓̃,✓
⌘ !d

⌃⇤
Y

⇣

✓̃
⌘⇣

Z⇤
˜✓
(✓)�Z⇤

˜✓

⇣

✓̃
⌘⌘

⌃⇤
XY

⇣

✓̃
⌘

�⌃⇤
XY

⇣

✓̃,✓
⌘ ,
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where the terms on the right hand side are based on (X⇤,Y ⇤,⌃⇤). The limit is finite if

µ⇤
X(✓)>�1, while otherwise µ⇤

X(✓)=�1 and

⌃⇤
Y

⇣

✓̃
⌘⇣

Z⇤
˜✓
(✓)�Z⇤

˜✓

⇣

✓̃
⌘⌘

⌃⇤
XY

⇣

✓̃
⌘

�⌃⇤
XY

⇣

✓̃,✓
⌘ =

8

<

:

�1 if ⌃⇤
XY

⇣

✓̃
⌘

�⌃⇤
XY

⇣

✓̃,✓
⌘

>0

+1 if ⌃⇤
XY

⇣

✓̃
⌘

�⌃⇤
XY

⇣

✓̃,✓
⌘

<0
.

If instead ⌃⇤
XY

⇣

✓̃
⌘

�⌃⇤
XY

⇣

✓̃,✓
⌘

=0, then since ⌃⇤
X has full rank,

Z⇤
˜✓
(✓)�Z⇤

˜✓

⇣

✓̃
⌘

=X⇤(✓)�X⇤
⇣

✓̃
⌘

is normally distributed with non-zero variance. Hence, in this case

�

�

�

�

�

�

b⌃Y,ns

⇣

✓̃
⌘⇣

Z⇤
ns,˜✓

(✓)�Z⇤
ns,˜✓

⇣

✓̃
⌘⌘

b⌃XY,ns

⇣

✓̃
⌘

�b⌃XY,ns

⇣

✓̃,✓
⌘

�

�

�

�

�

�

!1. (44)

Let us define

⇥⇤
⇣

✓̃
⌘

=
n

✓2⇥\✓̃ :⌃⇤
XY

⇣

✓̃
⌘

�⌃⇤
XY

⇣

✓̃,✓
⌘

6=0
o

.

The argument above implies that

max
✓2⇥⇤(˜✓):b⌃XY,ns(˜✓)>b

⌃XY,ns(˜✓,✓)

b⌃Y,ns

⇣

✓̃
⌘⇣

Z⇤
˜✓,ns

(✓)�Z⇤
˜✓,ns

⇣

✓̃
⌘⌘

b⌃XY,ns

⇣

✓̃
⌘

�b⌃XY,ns

⇣

✓̃,✓
⌘

!dL⇤= max
✓2⇥:⌃

⇤
XY (˜✓)>⌃

⇤
XY (˜✓,✓)

⌃⇤
Y

⇣

✓̃
⌘⇣

Z⇤
˜✓
(✓)�Z⇤

˜✓

⇣

✓̃
⌘⌘

⌃⇤
XY

⇣

✓̃
⌘

�⌃⇤
XY

⇣

✓̃,✓
⌘ ,

and

min
✓2⇥⇤(˜✓):b⌃XY,ns(˜✓)<b

⌃XY,ns(˜✓,✓)

b⌃Y,ns

⇣

✓̃
⌘⇣

Z⇤
˜✓,ns

(✓)�Z⇤
˜✓,ns

⇣

✓̃
⌘⌘

b⌃XY,ns

⇣

✓̃
⌘

�b⌃XY,ns

⇣

✓̃,✓
⌘

!dU⇤= min
✓2⇥:⌃

⇤
XY (˜✓)<⌃

⇤
XY (˜✓,✓)

⌃⇤
Y

⇣

✓̃
⌘⇣

Z⇤
˜✓
(✓)�Z⇤

˜✓

⇣

✓̃
⌘⌘

⌃⇤
XY

⇣

✓̃
⌘

�⌃⇤
XY

⇣

✓̃,✓
⌘ .

By (44), the same convergence holds when we minimize and maximize over ⇥ rather than
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⇥⇤(✓̃). Hence,
�L⇤

ns
,U⇤

ns

�!d (L⇤,U⇤).

Moreover, ✓̂ns is almost everywhere continuous in X⇤
ns
, so

⇣

Y ⇤
ns
,b⌃ns,✓̂ns

⌘

!d

⇣

Y ⇤,⌃⇤,✓̂
⌘

by the continuous mapping theorem, and this convergence holds jointly with that for
�L⇤

ns
,U⇤

ns

�

. Hence, we have established the desired convergence. ⇤

Proof of Lemma 9 Continuity for ⌃Y (✓)> 0,L<Y (✓)<U with all elements finite

is immediate from the functional form. Moreover, for fixed (Y (✓),µ,⌃Y (✓)) 2 R3 with

⌃Y (✓)>0 and L<Y (✓)<U,

lim
U!1

FN

✓

Y (✓)^U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆

FN

✓

U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆ 1(Y (✓)�L)=
FN

✓

Y (✓)�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆

FN

✓

1p
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆

lim
L!�1

FN

✓

Y (✓)^U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆

FN

✓

U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆ 1(Y (✓)�L)=
FN

✓

Y (✓)�µp
⌃Y (✓)

◆

�FN

✓

�1p
⌃Y (✓)

◆

FN

✓

U�µp
⌃Y (✓)

◆

�FN

✓

�1p
⌃Y (✓)

◆

and

lim
(L,U)!(�1,1)

FN

✓

Y (✓)^U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆

FN

✓

U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆ 1(Y (✓)�L)=
FN

✓

Y (✓)�µp
⌃Y (✓)

◆

�FN

✓

�1p
⌃Y (✓)

◆

FN

✓

1p
⌃Y (✓)

◆

�FN

✓

�1p
⌃Y (✓)

◆.

Hence, we obtain the desired result. ⇤

Proof of Lemma 10 Note that for fN again the standard normal density,

Pr{⇣2 [cl,cu]}=
FN

✓

U^cu�µp
⌃Y (✓)

◆

�FN

✓

L_cl�µp
⌃Y (✓)

◆

FN

✓

U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆1(U�cl,cu�L),
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E[⇣1{⇣2 [cl,cu]}]=Pr{⇣2 [cl,cu]}

2

6

6

4

µ+

p

⌃Y (✓)

✓

fN

✓

L_cl�µp
⌃Y (✓)

◆

�fN

✓

U^cu�µp
⌃Y (✓)

◆◆

FN

✓

U^cu�µp
⌃Y (✓)

◆

�F

✓

L_cl�µp
⌃Y (✓)

◆

3

7

7

5

=

µ

✓

FN

✓

U^cu�µp
⌃Y (✓)

◆

�FN

✓

L_cl�µp
⌃Y (✓)

◆◆

+
p

⌃Y (✓)

✓

fN

✓

L_cl�µp
⌃Y (✓)

◆

�fN

✓

U^cu�µp
⌃Y (✓)

◆◆

FN

✓

U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆

and

E[⇣]=µ+

p

⌃Y (✓)

✓

fN

✓

L�µp
⌃Y (✓)

◆

�fN

✓

U�µp
⌃Y (✓)

◆◆

FN

✓

U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆ .

Thus, we can write (cl(µ,⌃Y (✓),L,U),cu(µ,⌃Y (✓),L,U)) as the solution to the following

system of equations:

FN

 

U^cu�µ
p

⌃Y (✓)

!

�FN

 

L_cl�µ
p

⌃Y (✓)

!

�(1�↵)

 

FN

 

U�µ
p

⌃Y (✓)

!

�FN

 

L�µ
p

⌃Y (✓)

!!

=0 (45)

and

µ

 

FN

 

U^cu�µ
p

⌃Y (✓)

!

�FN

 

L_cl�µ
p

⌃Y (✓)

!!

+
p

⌃Y (✓)

 

fN

 

L_cl�µ
p

⌃Y (✓)

!

�fN

 

U^cu�µ
p

⌃Y (✓)

!!

�(1�↵)µ

 

FN

 

U�µ
p

⌃Y (✓)

!

�FN

 

L�µ
p

⌃Y (✓)

!!

�(1�↵)
p

⌃Y (✓)

 

fN

 

L�µ
p

⌃Y (✓)

!

�fN

 

U�µ
p

⌃Y (✓)

!!

=0

such that cl U and cu �L. Note, however, that since any c=(cl,cu) that solves this

system must satisfy (45), we can also write

(cl(µ,⌃Y (✓),L,U),cu(µ,⌃Y (✓),L,U))

as the solution to

g
⇣

c;µ,
p

⌃Y (✓),L,U
⌘

=0
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such that clU and cu�L, for

g
⇣

c;µ,
p

⌃Y (✓),L,U
⌘

=

0

B

B

@

FN

✓

U^cu�µp
⌃Y (✓)

◆

�FN

✓

L_cl�µp
⌃Y (✓)

◆

�(1�↵)

✓

FN

✓

U�µp
⌃Y (✓)

◆

�FN

✓

L�µp
⌃Y (✓)

◆◆

fN

✓

L_cl�µp
⌃Y (✓)

◆

�fN

✓

U^cu�µp
⌃Y (✓)

◆

�(1�↵)

✓

fN

✓

L�µp
⌃Y (✓)

◆

�fN

✓

U�µp
⌃Y (✓)

◆◆

1

C

C

A

.

This implies that

g
⇣

c;µ,
p

⌃Y (✓),L,U
⌘

=g
⇣

c�(µ,µ)0;0,
p

⌃Y (✓),L�µ,U�µ
⌘

,

from which the first result of the lemma follows immediately.

To prove the second part of the lemma, note that by the first part of the lemma it

suffices to prove continuity of

(cl(0,⌃Y (✓),L,U),cu(0,⌃Y (✓),L,U)). (46)

Recall that (46) solves

Pr{⇣2 [cl,cu]}=(1�↵) (47)

and

E[⇣1{⇣2 [cl,cu]}]=(1�↵)E[⇣] (48)

for ⇣ ⇠ ⇠|⇠ 2 [L,U] where ⇠ ⇠N(0,⌃Y (✓)). Note, however, that since L< U, (47) im-

plies that any solution has cl < cu, and that we cannot have both cl  L and cu � U.
Note, next, that if cl = L, then since cu < U, E[⇣|⇣ 2 [cl, cu]] < E[⇣], and thus that

E[⇣1{⇣2 [cl,cu]}]<(1�↵)E[⇣]. Since the same argument applies when cu=U, we see that
for any solution (46), L<cl<cu<U.

Note, next, that g
⇣

c;0,
p

⌃Y (✓),L,U
⌘

is almost everywhere differentiable with respect

to c with derivative
@

@c0
g
⇣

c;0,
p

⌃Y (✓),L,U
⌘

=

0

@

�1(cl>L)fN
⇣

cl/
p

⌃Y (✓)
⌘

/
p

⌃Y (✓) 1(cu<U)fN
⇣

cu/
p

⌃Y (✓)
⌘

/
p

⌃Y (✓)

�1(cl>L)clfN
⇣

cl/
p

⌃Y (✓)
⌘

/⌃Y (✓) 1(cu<U)cufN
⇣

cu/
p

⌃Y (✓)
⌘

/⌃Y (✓)

1

A.

The first row is zero if and only if cl<L and cu>U, which as argued above cannot

be a solution to g
⇣

c;0,
p

⌃Y (✓),L,U
⌘

=0 for L<U finite. The second row is zero if and
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only if either (i) cl<L and cu>U or (ii) cl= cu=0, which again cannot be a solution.

Finally, apart from the cases just mentioned, the rows are proportional if and only if either

(i) cl<L, (ii) cu>U or (iii) cl=cu, none of which can be a solution. Hence, the implicit

function theorem implies continuity on

{⌃Y (✓)2R,L2R,U2R :⌃Y (✓)>0,L<U}.

To complete the proof, we need to establish continuity at infinity. Note, however, that we

can write

g
⇣

c;0,
p

⌃Y (✓),L,U
⌘

= g̃(c;0,⌃Y (✓),FN(L),FN(U))

where g̃ is continuous in all arguments and FN(·) is continuous at infinity. Hence, another
application of implicit function theorem implies that

(cl(0,⌃Y (✓),L,U),cu(0,⌃Y (✓),L,U))

are continuous on

�

⌃Y (✓)>0,L<U :(⌃Y (✓),Y (✓))2R2,L2R[{�1},U2R[{1} ,

as we wanted to show. ⇤

D.1.5 Proofs for Uniformity Results

Proof of Proposition 8 Note that

µ̂↵,n�µY,n

⇣

✓̂n;P
⌘

() µY,n

⇣

✓̂n;P
⌘

2CSU,�,n

for CSU,�,n = (�1,µ̂↵,n]. Hence, by Lemma 5, to prove that (24) holds it suffices to

show that for all {ns} and {Pns} such that conditions (1)-(3) of the lemma hold with

Cn(P)=1
n

✓̂n= ✓̃
o

, we have

lim
s!1

PrPns

n

µ̂Y,ns

⇣

✓̂ns;Pns

⌘

2CSU,�,ns|✓̂ns= ✓̃
o

=↵. (49)

To this end, recall that for FTN(Y (✓);µ,⌃Y (✓),L,U) as defined in (38), the estimator

µ̂↵,n solves

FTN

⇣

Yn

⇣

✓̂n

⌘

;µ,b⌃Y,n

⇣

✓̂n

⌘

,Ln,Un

⌘

=1�↵,
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where (Ln,Un) are defined following Lemma 7. This cdf is strictly decreasing in µ as argued

in the proof of Proposition 7, and is increasing in Yn

⇣

✓̂
⌘

. Hence, µ̂↵,n�µY,n

⇣

✓̂n;P
⌘

if and

only if

FTN

⇣

Yn

⇣

✓̂n

⌘

;µY,n

⇣

✓̂n;P
⌘

,b⌃Y,n

⇣

✓̂n

⌘

,Ln,Un

⌘

�1�↵.

Note, next, that by Lemma 7 and the form of the function FTN ,

FTN

⇣

Yn

⇣

✓̂n

⌘

;µY,n

⇣

✓̂n;P
⌘

,b⌃Y,n

⇣

✓̂n

⌘

,Ln,Un

⌘

=FTN

⇣

Y ⇤
n

⇣

✓̂n

⌘

;0,b⌃Y,n

⇣

✓̂n

⌘

,L⇤
n,U⇤

n

⌘

,

so µ̂↵,n�µY,n

⇣

✓̂n;P
⌘

if and only if

FTN

⇣

Y ⇤
n

⇣

✓̂n

⌘

;0,b⌃Y,n

⇣

✓̂n

⌘

,L⇤
n,U⇤

n

⌘

�1�↵.

Lemma 8 shows that
⇣

Y ⇤
n

⇣

✓̂ns

⌘

,b⌃Y,ns

⇣

✓̂ns

⌘

,L⇤
ns
,U⇤

ns
,✓̂ns

⌘

converges in distribution as s!1,

so since FTN is continuous by Lemma 9 while argmax✓X⇤(✓) is almost surely unique and

continuous for X⇤ as in Lemma 8, the continuous mapping theorem implies that

⇣

FTN

⇣

Y ⇤
ns

⇣

✓̂ns

⌘

;0,b⌃Y,ns

⇣

✓̂ns

⌘

,L⇤
ns
,U⇤

ns

⌘

,1
n

✓̂ns= ✓̃
o⌘

!d

⇣

FTN

⇣

Y ⇤
⇣

✓̂
⌘

;0,⌃⇤
Y

⇣

✓̂
⌘

,L⇤,U⇤
⌘

,1
n

✓̂= ✓̃
o⌘

.

Since we can write

PrPns

n

FTN

⇣

Y ⇤
ns

⇣

✓̂ns

⌘

;0,b⌃Y,ns

⇣

✓̂ns

⌘

,L⇤
ns
,U⇤

ns

⌘

�1�↵|✓̂ns= ✓̃
o

=
EPns

h

1
n

FTN

⇣

Y ⇤
ns

⇣

✓̂ns

⌘

;0,b⌃Y,ns

⇣

✓̂ns

⌘

,L⇤
ns
,U⇤

ns

⌘

�1�↵
o

1
n

✓̂ns= ✓̃
oi

EPns

h

1
n

✓̂ns= ✓̃
oi ,

and by construction (see also Proposition 1 in the main text),

FTN

⇣

Y ⇤
⇣

✓̂
⌘

;0,⌃⇤
Y

⇣

✓̂
⌘

,L⇤,U⇤,✓̂
⌘

|✓̂= ✓̃⇠U[0,1],

and Pr
n

✓̂= ✓̃
o

=p⇤>0, we thus have that

PrPns

n

FTN

⇣

Y ⇤
ns

⇣

✓̂ns

⌘

;0,b⌃Y,ns

⇣

✓̂ns

⌘

,L⇤
ns
,U⇤

ns

⌘

�1�↵|✓̂ns= ✓̃
o

79



!Pr
n

FTN

⇣

Y ⇤
⇣

✓̂
⌘

;0,⌃⇤
Y

⇣

✓̂
⌘

,L⇤,U⇤
⌘

�1�↵|✓̂= ✓̃
o

=↵,

which verifies (49).

Since this argument holds for all ✓̃2⇥, and Assumptions 3 and 4 imply that for all

✓,✓̃2⇥ with ✓ 6= ✓̃,

lim
n!1

sup
P2Pn

PrP

n

Xn(✓)=Xn

⇣

✓̃
⌘o

=0,

Lemma 6 implies (25). ⇤

Proof of Corollary 1 By construction, CSET,n=
⇥

µ̂↵/2,n,µ̂1�↵/2,n

⇤

, and µ̂
1�↵/2,n>µ̂↵/2,n

for all ↵<1. Hence,

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSET,n|✓̂n= ✓̃
o

=PrP

n

µY,n

⇣

✓̂n;P
⌘

µ̂
1�↵/2,n|✓̂n= ✓̃

o

�PrP

n

µY,n

⇣

✓̂n;P
⌘

µ̂↵/2,n|✓̂n= ✓̃
o

,

so the result is immediate from Proposition 8 and Lemma 6. ⇤

Proof of Proposition 9 Note that by the definition of CSU,n

µY,n

⇣

✓̂n;P
⌘

2CSU,n

() Yn

⇣

✓̂n

⌘

2
h

cl

⇣

µY,n

⇣

✓̂n;P
⌘

,b⌃Y,n

⇣

✓̂n

⌘

,Ln,Un

⌘

,cu

⇣

µY,n

⇣

✓̂n;P
⌘

,b⌃Y,n

⇣

✓̂n

⌘

,Ln,Un

⌘i

where

(cl(µ,⌃Y (✓),L,U),cu(µ,⌃Y (✓),L,U))

are defined immediately before Lemma 10. Hence, by Lemmas 7 and 10,

µY,n

⇣

✓̂n;P
⌘

2CSU,n

() Y ⇤
n

⇣

✓̂n

⌘

2
h

cl

⇣

0,b⌃Y,n

⇣

✓̂n

⌘

,L⇤
n,U⇤

n

⌘

,cu

⇣

0,b⌃Y,n

⇣

✓̂n

⌘

,L⇤
n,U⇤

n

⌘i

.

By Lemma 5, to prove that (26) holds it suffices to show that for all {ns} and {Pns}
satisfying conditions (1)-(3) of Lemma 5,

lim
s!1

PrPns

n

µY,ns

⇣

✓̂ns

⌘

2CSU,ns|✓̂ns= ✓̃
o

=1�↵.
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Thus, it suffices to show that

lim
s!1

PrPns

8

<

:

Y ⇤
ns

⇣

✓̂ns

⌘

2
h

cl

⇣

0,b⌃Y,ns

⇣

✓̂ns

⌘

,L⇤
ns
,U⇤

ns

⌘

,

cu

⇣

0,b⌃Y,ns

⇣

✓̂ns

⌘

,L⇤
ns
,U⇤

ns

⌘i

�

�

�

�

�

�

✓̂ns= ✓̃

9

=

;

=1�↵.

To this end, note that by Lemma 8,

⇣

Y ⇤
ns
,L⇤

ns
,U⇤

ns
,b⌃ns,1

n

✓̂ns= ✓̃
o⌘

!d

⇣

Y ⇤,L⇤,U⇤,⌃⇤,1
n

✓̂= ✓̃
o⌘

,

and thus, by Lemma 10 and the continuous mapping theorem, that

⇣

Y ⇤
ns

⇣

✓̃
⌘

,cl

⇣

0,b⌃Y,ns

⇣

✓̃
⌘

,L⇤
ns
,U⇤

ns

⌘

,cu

⇣

0,b⌃Y,ns

⇣

✓̃
⌘

,L⇤
ns
,U⇤

ns

⌘

,1
n

✓̂ns= ✓̃
o⌘

!d

⇣

Y ⇤
⇣

✓̃
⌘

,cl

⇣

0,⌃⇤
Y

⇣

✓̃
⌘

,L⇤,U⇤
⌘

,cu

⇣

0,⌃⇤
Y

⇣

✓̃
⌘

,L⇤,U⇤
⌘

,1
n

✓̂= ✓̃
o⌘

.

By construction (see also Proposition 2 in the main text),

Pr
n

Y ⇤
⇣

✓̃
⌘

2
h

cl

⇣

0,L⇤,U⇤,⌃⇤
Y

⇣

✓̃
⌘⌘

,cu

⇣

0,L⇤,U⇤,⌃⇤
Y

⇣

✓̃
⌘⌘i

|✓̂= ✓̃
o

=1�↵,

and Y ⇤
⇣

✓̃
⌘

|✓̂= ✓̃,L⇤,U⇤ follows a truncated normal distribution, so

Pr
n

Y ⇤
⇣

✓̃
⌘

=cl

⇣

0,⌃⇤
Y

⇣

✓̃
⌘

,L⇤,U⇤
⌘o

=Pr
n

Y ⇤
⇣

✓̃
⌘

=cu

⇣

0,⌃⇤
Y

⇣

✓̃
⌘

,L⇤,U⇤
⌘o

=0.

Hence,

PrPns

n

Y ⇤
ns

⇣

✓̂ns

⌘

2
h

cl

⇣

0,b⌃Y,ns

⇣

✓̂ns

⌘

,L⇤
ns
,U⇤

ns

⌘

,cu

⇣

0,b⌃Y,ns

⇣

✓̂ns

⌘

,L⇤
ns
,U⇤

ns

⌘i

|✓̂ns= ✓̃
o

=
EPns [1{Y ⇤

ns(ˆ✓ns)2[cl(0,b⌃Y,ns(ˆ✓ns),L⇤
ns ,U

⇤
ns),cu(0,b⌃Y,ns(ˆ✓ns),L⇤

ns ,U
⇤
ns)]}1{ˆ✓ns=˜✓}]

EPns [1{ˆ✓ns=˜✓}]
! E[1{Y ⇤(ˆ✓)2[cl(0,⌃⇤

Y (ˆ✓),L⇤,U⇤),cu(0,⌃⇤
Y (ˆ✓),L⇤,U⇤)]}1{ˆ✓=˜✓}]

E[1{ˆ✓=˜✓}] =1�↵,

as we wanted to show, so (26) follows by Lemma 5.

Since this result again holds for all ✓̃ 2 ⇥, (27) follows immediately by the same

argument as in the proof of Proposition 8. ⇤

Proof of Proposition 10 By the same argument as in the proof of Lemma 5, to show

that (28) holds it suffices to show that for all {ns}, {Pns} satisfying conditions (1)-(3) of
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Lemma 5,

liminf
n!1

PrPns

n

µY,ns

⇣

✓̂ns;Pns

⌘

2CSP,ns

o

�1�↵.

To this end, note that

µY,ns

⇣

✓̂ns;Pns

⌘

2CSP,ns ifandonlyif Y ⇤
ns

⇣

✓̂ns

⌘

2


�c↵

⇣

b⌃Y,ns

⌘

r

b⌃Y

⇣

✓̂ns

⌘

,c↵

⇣

b⌃Y,ns

⌘

r

b⌃Y

⇣

✓̂ns

⌘

�

for c↵(⌃Y ) the 1�↵ quantile of max✓|⇠(✓)|/
p

⌃Y (✓) where ⇠⇠N(0,⌃Y ). Next, note that

c↵(⌃Y ) is continuous in ⌃ on S as defined in (34). Hence, for all ✓, c↵(⌃Y )
p

⌃Y (✓) is

continuous as well. Assumptions 2 and 4 imply that

⇣

Y ⇤
ns
,b⌃ns,✓̂ns

⌘

!d

⇣

Y ⇤,⌃⇤,✓̂
⌘

,

which by the continuous mapping theorem implies

 

Y ⇤
ns

⇣

✓̂ns

⌘

,c↵

⇣

b⌃Y,ns

⌘

r

b⌃Y

⇣

✓̂ns

⌘

!

!d

 

Y ⇤
⇣

✓̂
⌘

,c↵(⌃
⇤
Y )

r

⌃⇤
Y

⇣

✓̂
⌘

!

.

Hence, since Pr

⇢

�

�

�

Y ⇤
⇣

✓̂
⌘

�

�

�

�c↵(⌃⇤
Y )

r

⌃⇤
Y

⇣

✓̂
⌘

=0

�

=0,

PrPns

n

µY,ns

⇣

✓̂ns;Pns

⌘

2CSP,ns

o

!Pr

(

Y ⇤

⇣

✓̂
⌘

2
"

�c↵(⌃
⇤

Y )

r

⌃⇤

Y

⇣

✓̂
⌘

,c↵(⌃
⇤

Y )

r

⌃⇤

Y

⇣

✓̂
⌘

#)

(50)

where the right hand side is at least 1�↵ by construction. ⇤

Proof of Proposition 11 Note that

µ̂H
↵,n�µY,n

⇣

✓̂n;P
⌘

if and only if

µY,n

⇣

✓̂n;P
⌘

2CSH
U,�,n

for CSH
U,�,n = (�1,µ̂H

↵,n]. Hence, by Lemma 5, to prove that (29) holds it suffices to

show that for all {ns} and {Pns} such that conditions (1)-(3) of the lemma hold with

Cn(P)=1
n

✓̂n= ✓̃,µY,n

⇣

✓̂n;Pn

⌘

2CS�
P,n

o

, we have

lim
s!1

PrPns

n

µ̂Y,ns

⇣

✓̂ns;Pns

⌘

2CSH
U,�,n|✓̂ns= ✓̃,µY,ns

⇣

✓̂ns;Pns

⌘

2CS�
P,ns

o

=↵.
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Recall that for FTN(Y (✓);µ,⌃Y (✓),L,U) defined as in (38), µ̂H
↵,n solves

FTN

⇣

Yn

⇣

✓̂n

⌘

;µ,b⌃Y,n

⇣

✓̂n

⌘

,LH
n (µ),UH

n (µ)
⌘

=1�↵,

for

LH
n (µ)=max

(

Ln,µ�c↵

⇣

b⌃Y,n

⌘

r

b⌃Y

⇣

✓̂n

⌘

)

UH
n (µ)=min

(

Un,µ+c↵

⇣

b⌃Y,n

⌘

r

b⌃Y

⇣

✓̂n

⌘

)

.

The proof of Proposition 7 shows that FTN

⇣

Yn

⇣

✓̂n

⌘

;µ,b⌃Y,n

⇣

✓̂n

⌘

,LH
n (µ),UH

n (µ)
⌘

is strictly

decreasing in µ, so for a given value µY,0,

µ̂H
↵,n�µY,0 () FTN

⇣

Yn

⇣

✓̂n

⌘

;µY,0,b⌃Y,n

⇣

✓̂n

⌘

,LH
n (µY,0),UH

n (µY,0)
⌘

�1�↵.

As in the proof of Proposition 8

FTN

⇣

Yn

⇣

✓̂n

⌘

;µY,n
⇣

✓̂n;Pn

⌘

,b⌃Y,n

⇣

✓̂n

⌘

,LH
n

⇣

µY,n

⇣

✓̂n;Pn

⌘⌘

,UH
n

⇣

µY,n

⇣

✓̂n;Pn

⌘⌘⌘

=FTN

⇣

Y ⇤
n

⇣

✓̂n

⌘

;0,b⌃Y,n
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where LH⇤ and UH⇤ are equal to LH⇤
n and UH⇤

n after replacing (Xn,Yn,b⌃n) with (X,Y,⌃⇤).

Then by the continuous mapping theorem and (50),
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Hence, by the same argument as in the proof of Proposition 8,
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as we aimed to show.

To prove (30), note that for fCS
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and Proposition 10 shows that
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Lemma 6 together with (29) implies that
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from which the second result of the proposition follows immediately. ⇤

Proof of Corollary 2 Note that by construction
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where µ̂H
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so Proposition 11 immediately implies (31).

Equation (51) in the proof of Proposition 11 together with Lemma 6 implies that
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so (32) holds. We could likewise get an upper bound on coverage using Lemma 6, but

obtain a sharper bound by proving the result directly. Specifically, note that

µY,n

⇣

✓̂n;Pn

⌘

2CSH
ET,n)µY,n

⇣

✓̂n;Pn

⌘

2CS�
P,n.

Hence,

PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSH
ET,n

o

=PrP

n

µY,n

⇣

✓̂n;P
⌘

2CSH
ET,n|µ̂Y,n

⇣

✓̂n;Pn

⌘

2CS�
P,n

o

Pr
n

µY,n

⇣

✓̂n;Pn

⌘

2CS�
P,n

o

.

By the first part of the proposition, this implies that
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so (33) holds as well. ⇤

Proof of Proposition 12 The first part of the result follows by the same argument as in

the proof of Proposition 9, where as in the proof of Proposition 11 we use the conditioning

event
n

✓̂n= ✓̃,µY,n

⇣

✓̂n;Pn

⌘

2CS�
P,n

o

and replace (Ln,Un) by
�LH

n ,UH
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�

. The second part

of the result follows by the same argument as in the proof of Corollary 2. ⇤
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E Additional Simulation Results for Stylized Example

In the stylized example discussed in Section 2 of the main text, we focus on the median length

of confidence intervals and the median absolute error of estimators. In this section, we report

results for other quantiles, in particular that ⌧-th quantiles for ⌧2{0.05,0.25,0.5,0.75,0.95}.
Figures 6 and 7 show the unconditional quantiles of the length of the 95% confidence

intervals CSU and CSET , for cases with |⇥|=2, 10, and 50 policies. In each case and

for each ⌧ 2 {0.05,0.25,0.5,0.75,0.95}, the ⌧-th quantile is monotonically decreasing in

µ(✓
1

)�µ(✓�1

). Noting the different scales of the y-axes, we see that the upper quantiles

grow as the number of policies increase, particularly for small µ(✓
1

)�µ(✓�1

).

Figures 8 and 9 show the unconditional quantiles of the length of 95% hybrid confidence

intervals CSH
U and CSH

ET with � =0.005. Compared with Figures 6 and 7, the upper

quantiles are much smaller, especially for small µ(✓
1

)�µ(✓�1

). This substantial reduction

in length directly comes from the construction of the hybrid confidence intervals, which

ensures that CSH
U and CSH

ET are contained in CS�
P . For the case of |⇥|=50, even the 95%

quantiles of the length of CSH
U and CSH

ET are shorter than the length of CSP uniformly

over the range of µ(✓
1

)�µ(✓�1

) values we consider.

Figures 10, 11, and 12 examine the performance of point estimators for µ(✓̂). They plot

the unconditional quantiles of the absolute error of the conventional estimator, the median

unbiased estimator, and the hybrid estimator, respectively. In spite of the severe median

bias shown in Figure 1 in the main text, the distribution of the conventional estimator is

relatively concentrated compared to that of the median unbiased estimator. In particular,

the upper quantiles of the absolute errors of µ̂
1/2 are very large for small µ(✓

1

)�µ(✓�1

)

(similar to the quantile plots of the length of CSU and CSET shown in Figures 6 and 7).

At the cost of a small median bias, the hybrid estimator substantially reduces the

absolute errors (Figure 12). The 95% quantile of the absolute errors of the hybrid estimator

is overall similar to the 95% quantile of the absolute errors of the conventional estimator

with a notable exception of the case of 2 policies. In contrast, for |⇥| = 10 and 50, and

for quantiles other than 95%, the hybrid estimator outperforms the conventional estimator

over a wide range of values for µ(✓
1

)�µ(✓�1

). These numerical results show that the hybrid

estimator successfully reduces bias without greatly inflating the variability of the estimator.

F Additional Results for EWM Simulations

Tables 4 and 5 provide the ratios of the 5th, 25th, 50th, 75th and 95th quantiles of the lengths of

CSET , CSU , CSH
ET and CSH

U relative to the corresponding length quantiles of CSP for the
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Figure 6: Quantiles of the length of 95% conditionally UMAU confidences sets CSU .
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Figure 7: Quantiles of the length of 95% conditionally equal-tailed confidences sets CSET .
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Figure 8: Quantiles of the length of 95% hybrid confidence intervals CSH
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Figure 10: Quantiles of the absolute error of the conventional estimator (i.e. of |X(✓̂)�µ(✓̂)|).
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Figure 11: Quantiles of the absolute error of the conditionally optimal median unbiased
estimator (i.e. of |µ̂

1/2�µ(✓̂)|).
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Figure 12: Quantiles of the absolute error of the hybrid estimator (i.e. of |µ̂H
1/2�µ(✓̂)|) with

�=0.005.
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EWM data-calibrated designs described in Section 6 of the main text. Looking at the upper

quantiles in Table 4, we can see that the conditional confidence intervals CSET and CSU can

become very wide when the maximal element of µX is not well-separated from the others.

On the other hand, Table 5 shows that the hybrid approach is very successful at mitigating

this problem. Indeed, CSH
ET and CSH

U dominate CSP across nearly all quantiles and simula-

tion designs considered. Table 6 reports the same quantiles of the studentized absolute errors

of µ̂1
2
, µ̂H

1
2
and Y (✓̂). Here we can see that, although the hybrid estimator µ̂H

1
2
does not dom-

inate the conventional estimator Y (✓̂) according to this performance measure, it does domi-

nate µ̂1
2
across all quantiles and DGPs considered. This dominance is especially pronounced

at higher quantiles. The underlying message here is a bit more nuanced than that which ap-

plies to the confidence intervals: when minimal bias is desired, µ̂H
1
2
is the preferred estimator.

Table 4: Ratios of Length Quantiles Relative to CSP

CSET Quantile CSU Quantile
DGP 5th 25th 50th 75th 95th 5th 25th 50th 75th 95th

Class of Threshold Policies
(i) 0.75 1.32 1.17 1.97 8.88 0.75 1.48 1.27 1.94 7.17
(ii) 0.74 0.75 0.75 0.75 0.76 0.74 0.75 0.75 0.75 0.75
(iii) 0.74 0.74 0.82 1.22 3.30 0.74 0.76 0.93 1.45 3.65

Class of Interval Policies
(i) 1.11 1.41 1.54 2.31 10.78 1.27 1.54 1.65 1.91 8.72
(ii) 0.63 0.63 0.63 0.64 0.64 0.63 0.63 0.64 0.64 0.64
(iii) 0.66 0.71 0.78 1.14 4.39 0.70 0.76 0.88 1.36 3.61

Table 5: Ratios of Length Quantiles Relative to CSP

CSH
ET Quantile CSH

U Quantile
DGP 5th 25th 50th 75th 95th 5th 25th 50th 75th 95th

Class of Threshold Policies
(i) 0.76 0.85 0.63 0.93 0.99 0.76 0.77 0.64 0.95 1.01
(ii) 0.76 0.76 0.76 0.77 0.77 0.76 0.76 0.76 0.76 0.77
(iii) 0.77 0.78 0.84 0.92 0.98 0.79 0.81 0.89 0.96 1.00

Class of Interval Policies
(i) 0.75 0.76 0.77 0.85 0.88 0.63 0.74 0.76 0.86 0.89
(ii) 0.64 0.65 0.65 0.65 0.65 0.64 0.65 0.65 0.65 0.65
(iii) 0.67 0.72 0.76 0.85 0.89 0.69 0.76 0.81 0.88 0.92
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Table 6: Quantiles of
�

�

�

µ̂�µY (✓̂)
�

�

�

/

q

⌃Y (✓̂)

µ̂1
2
Quantile µ̂H

1
2
Quantile Y (✓̂) Quantile

DGP 5th 25th 50th 75th 95th 5th 25th 50th 75th 95th 5th 25th 50th 75th 95th

Class of Threshold Policies
(i) 0.11 0.54 1.11 2.01 10.65 0.11 0.53 1.10 1.91 3.04 0.11 0.47 0.88 1.36 2.14
(ii) 0.06 0.31 0.67 1.15 1.97 0.06 0.31 0.67 1.15 1.97 0.06 0.31 0.67 1.16 1.97
(iii) 0.08 0.36 0.80 1.43 3.60 0.08 0.36 0.79 1.43 2.90 0.06 0.31 0.67 1.15 1.93

Class of Interval Policies
(i) 0.14 0.68 1.42 2.61 17.51 0.14 0.67 1.39 2.21 3.07 0.52 0.94 1.30 1.75 2.49
(ii) 0.06 0.31 0.65 1.13 1.92 0.06 0.31 0.65 1.13 1.92 0.06 0.31 0.65 1.14 1.92
(iii) 0.08 0.40 0.86 1.57 5.15 0.08 0.40 0.86 1.57 3.46 0.07 0.32 0.69 1.16 1.96
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Table 7: Unconditional Coverage Probability with Estimated Variance Matrix

DGP CSET CSU CSH
ET CSH

U CSP CSN

Class of Threshold Policies
(i) 0.944 0.945 0.948 0.948 0.984 0.916
(ii) 0.95 0.95 0.954 0.953 0.990 0.95
(iii) 0.946 0.946 0.950 0.951 0.991 0.948

Class of Interval Policies
(i) 0.948 0.950 0.952 0.954 0.989 0.821
(ii) 0.953 0.953 0.956 0.957 0.997 0.952
(iii) 0.947 0.947 0.953 0.953 0.997 0.948

Table 8: Length of Confidence Sets Relative to CSP in EWM Simulations with Estimated
Variance Matrix

DGP Median Length Relative to CSP Probability Longer than CSP

CSET CSU CSH
ET CSH

U CSET CSU CSH
ET CSH

U

Class of Threshold Policies
(i) 1.16 1.27 0.65 0.66 0.70 0.79 0.05 0.3
(ii) 0.74 0.74 0.76 0.76 0 0 0 0
(iii) 0.83 0.92 0.83 0.90 0.32 0.42 0.03 0.24

Class of Interval Policies
(i) 1.51 1.60 0.74 0.73 0.78 0.88 0 0
(ii) 0.63 0.63 0.65 0.65 0 0 0 0
(iii) 0.78 0.89 0.77 0.82 0.33 0.42 0 0
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Table 9: Bias and Median Absolute Error of Point Estimators with Estimated Variance Matrix

DGP Prµ

n

µ̂>µX(✓̂)
o

� 1

2

Medµ

✓

µ̂�µX(ˆ✓)p
⌃X(

ˆ✓)

◆

Medµ

✓|µ̂�µX(

ˆ✓)|p
⌃X(

ˆ✓)

◆

µ̂1
2

µ̂H
1
2

X(✓̂) µ̂1
2

µ̂H
1
2

X(✓̂) µ̂1
2

µ̂H
1
2

X
⇣

✓̂
⌘

Class of Threshold Policies
(i) -0.005 -0.004 0.397 -0.02 -0.02 0.82 1.12 1.11 0.86
(ii) 0.009 0.009 0.009 0.02 0.02 0.02 0.67 0.67 0.67
(iii) 0.006 0.006 0.104 0.02 0.02 0.26 0.80 0.79 0.67

Class of Interval Policies
(i) 0.006 0.006 0.500 0.04 0.04 1.30 1.42 1.39 1.30
(ii) 0.009 0.009 0.009 0.02 0.02 0.02 0.65 0.65 0.65
(iii) 0.003 0.003 0.150 0.01 0.01 0.36 0.85 0.85 0.67
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