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Abstract

Interval identification of parameters such as average treatment effects, average partial

effects and welfare is particularly common when using observational data and experimental

data with imperfect compliance due to the endogeneity of individuals’ treatment uptake.

In this setting, the researcher is typically interested in a treatment or policy that is either

selected from the estimated set of best-performers or arises from a data-dependent selection

rule. In this paper, we develop new inference tools for interval-identified parameters chosen

via these forms of selection. We develop three types of confidence intervals for data-dependent

and interval-identified parameters, discuss how they apply to several examples of interest

and prove their uniform asymptotic validity under weak assumptions.

Keywords: Partial Identification, Post-Selection Inference, Selective Inference, Conditional

Inference, Uniform Validity, Treatment Choice.

1 Introduction

There is now a large and growing literature on partial identification of optimal treatments and

policies under practically-relevant assumptions for observational data and experimental data with
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imperfect compliance (e.g., Stoye, 2012; Kallus and Zhou, 2021; Pu and Zhang, 2021; D’Adamo,

2021; Yata, 2021; Han, 2024 to name just a few). Interval identification of average treatment effects

(ATEs), average partial effects and welfare is particularly common in these settings due to the

endogeneity of individuals’ treatment uptake. In order to use the partial identification results for

treatment or policy choice in practice, a researcher must typically estimate a set of best-performing

treatments or policies from data. Consequently, the researcher is typically interested in a treat-

ment or policy that is either selected from the estimated set of best-performers or arises from a

data-dependent selection rule. It is now well-known that selecting an object of interest from data in-

validates standard inference tools (e.g., Andrews et al., 2024). The failure of standard inference tools

after data-dependent selection is only compounded by the presence of partially-identified parameters.

In this paper, we develop new inference tools for interval-identified parameters corresponding to

selection from either an estimated set or arising from a data-dependent selection rule. Estimating

identified sets for the best-performing treatments/policies or forming data-dependent selection

rules in these settings is important for choosing which treatments/policies to implement in practice.

Therefore, the ability to infer how well these treatments or policies should be expected to perform

when selected, for instance to gauge whether their implementation is worthwhile, is of primary

practical importance.

The current literature has not yet developed valid post-selection inference tools in partially-

identified contexts, an important deficiency that the methods proposed in this paper aim to correct.

The methods we propose here build upon the ideas of conditional and hybrid inference employed

in various point-identified contexts by, e.g., Lee et al. (2016), Fithian et al. (2017), Tibshirani

et al. (2018), Andrews et al. (2024) and McCloskey (2024) to produce confidence intervals (CIs)

for interval-identified parameters such as welfare or ATEs chosen from an estimated set or via a

data-dependent selection rule. Although Andrews et al. (2023) also propose conditional and hybrid

inference methods in the partial identification context of moment inequality models, they do not

allow for data-dependent selection of objects of interest, one of the main focuses of the present

paper. Finally, this paper directly relies upon results in the literature on interval identification

of welfare, treatment effects and partial outcomes such as Manski (1990), Balke and Pearl (1997,
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2011), Manski and Pepper (2000), Mogstad et al. (2018), Han and Yang (2024) and Han (2024).

We apply our inference methods to a general class of problems nesting these examples.

After sketching the ideas behind our inference methods in a simple example, we introduce

the general inference framework to which our methods can be applied. We show that our general

inference framework incorporates several problems of interest for data-dependent selection and

treatment rules for parameters belonging to an identified set such as Manski bounds for average

potential outcomes or ATEs, bounds on parameters derived from linear programming (e.g., Balke

and Pearl, 1997, 2011; Mogstad et al., 2018; Han, 2024; Han and Yang, 2024), bounds on welfare

for treatment allocation rules that are partially identified by observational data (e.g., Stoye, 2012;

Kallus and Zhou, 2021; Pu and Zhang, 2021; D’Adamo, 2021; Yata, 2021) and bounds for dynamic

treatment effects (e.g., Han, 2024). We also show how to incorporate inference on parameters

chosen via asymptotically optimal treatment choice rules (e.g., Christensen et al., 2023) into our

general inference framework. Our framework can also be applied to settings where welfare is

partially identified for reasons other than treatment endogeneity (e.g., Ishihara and Kitagawa,

2021; Adjaho and Christensen, 2022; Ben-Michael et al., 2021; Cui and Han, 2024).

Within the general inference framework, we develop three types of CIs for data-dependent

and interval-identified parameters. As the name suggests, the conditional CIs are asymptotically

valid conditional on the parameter of interest corresponding to a treatment or policy chosen from

an estimated set. The construction of this CI does not require a specific rule for choosing the

parameter of interest from the estimated set. In addition, the sampling framework underlying its

conditional validity is most appropriate in contexts for which a researcher will only be interested in

the parameter because it is chosen from the estimated set. Importantly, we show that these CIs are

asymptotically valid uniformly across a large class of data-generating processes (DGPs). Uniform

asymptotic validity is especially important for approximately correct finite-sample coverage in

post-selection contexts like those in this paper (see, e.g., Andrews and Guggenberger, 2009).

The second and third types of CIs we develop in this paper are designed for inference on parame-

ters chosen by data-dependent selection rules for which the object of interest is uniquely determined

by the selection rule. The projection CIs do not require knowledge of the selection rule to be asymp-
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totically valid, whereas the hybrid CI construction utilizes the particular form of a selection rule to

improve upon the length properties of the projection CI. The conditional CIs are short for selections

that occur with high probability but can become exceptionally long when this probability is small

(see, e.g., Kivaranovic and Leeb, 2021). Conversely, projection CIs are overly conservative when

selection probabilities are high. Although conditional CIs can be used in this setting, hybrid CIs

interpolate the length properties of the conditional and projection CIs in order to attain good length

properties regardless of the value selection probabilities take. In analogy with the conditional CIs,

we formally show that both projection and hybrid CIs are asymptotically valid in a uniform sense.

We analyze the coverage and length properties of our proposed CIs in finite samples. Since, to our

knowledge, these are the first uniformly valid CIs for data-dependent selections of partially-identified

parameters, there are no existing CIs to which we can directly compare. Nevertheless, since our CIs

can also be used for inference on a priori chosen interval-identified parameters, we conduct a power

comparison with one of the leading methods for inference on a partially-identified parameter. In

particular, we compare the power of the test implied by our hybrid CIs to the power of the hybrid

test of Andrews et al. (2023), a test that applies to a general class of moment-inequality models that

is also based upon a (different) hybrid between conditional and projection-based inference. Encour-

agingly, the power of the test implied by our hybrid CI is quite competitive even in this environment

for which it was not designed. We also find that the finite-sample coverage of all of our CIs is

approximately correct in a simple Manski bound example. Finally, we analyze the length tradeoffs

between the three different CIs across different DGPs, finding the hybrid CI to perform best overall.

The remainder of this paper is structured as follows. Section 2 sketches the ideas behind our

general CI constructions in the context of a simple Manski bound example. Section 3 lays down

the general high-level inference framework we are interested in, while Section 4 details how the

general framework applies in several different examples. Section 5 then details the various CI

constructions in the general setting. Sections 6 and 7 are devoted to finite-sample comparisons

of the properties of the different CIs in the context of a simple Manski bound example. The final

section, Section 8, contains an empirical application where we apply our procedures to dynamic

policies of schooling and post-school training. Appendix A contains additional examples that fit
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our general framework that are not covered in Section 4, while Appendix B contains additional

simulation results corresponding to the dynamic treatment regime example detailed in Section

8. Mathematical proofs are relegated to a Technical Appendix at the end of the paper.

2 Basic Ideas: Inference with Manski Bounds Example

We first provide a simple example to illustrate our proposed methods. Consider a binary outcome

of interest Y , a binary treatment indicator D and a binary treatment assignment Z. Furthermore,

let Y (1) and Y (0) denote potential outcomes under treatment (D=1) and no treatment (D=0).

Assuming E[Y (d)|Z]=E[Y (d)], Manski (1990) shows that we can bound the average potential

outcomes W(d)=E[Y (d)] in the absence and presence of treatment as follows:

L(d)≡max
{
p1d0,p1d1

}
≤W(d)≤min

{
1−p0d0,1−p0d1

}
≡U(d) (2.1)

for d= 0,1 and pydz ≡ Pr(Y = y,D = d|Z = z). Given (2.1) it is natural to define the set of

best-performing options D∗, as a subset of the two options of treatment and no treatment, to

be those that are undominated options. From an observed dataset of outcomes, treatments and

treatment assignments {(Yi,Di,Zi)}ni=1, such a set can be estimated as:

D̂=
{
d∈{0,1} :Û(d)≥L̂(d′) ∀d′∈{0,1} s.th. d′≠d

}
,

where L̂(d) ≡ max{p̂1d0,p̂1d1} and Û(d) ≡ min{1− p̂0d0,1− p̂0d1} with p̂ydz being an empirical

estimate of the fitted probability pydz≡P(Y =y,D=d|Z=z).

We are interested in inference on the identified interval [L(d),U(d)] for the average potential

outcome W(d) of option d∈{0,1} after the researcher selects this option from D̂. In other words,

we would like to provide statistically precise statements about the true average potential outcome

of an option selected from the data to give the researcher an idea of how well this selected option

should be expected to perform in the population. We first provide some intuition for why standard

inference techniques based upon asymptotic normality fail and then sketch our proposals for valid

inference in this context.
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2.1 Why Does Standard Inference Fail?

To fix ideas, let us focus for now on inference for the lower bound L(d) of a selected option rather

than the entire identified set [L(d),U(d)]. More specifically, since L(d) is a lower bound for the av-

erage potential outcome W(d), we would like to obtain a probabilistic lower bound for L(d). Under

standard conditions, a central limit theorem implies p̂=(p̂100,p̂010,p̂110,p̂101,p̂011,p̂111)′ is normally dis-

tributed in large samples. So why not form a CI using L̂(d) and quantiles from a normal distribution

as the basis for inference? There are two reasons such an approach is (asymptotically) invalid:

1. Even in the absence of selection, L̂(d)=max{p̂1d0,p̂1d1} is not normally distributed in large

samples.

2. Data-dependent selection of d further complicates the distribution of L̂(d).

Reason 1. is easy to see since L̂(d) is the maximum of two normally distributed random

variables in large samples when d is chosen a priori. To better understand reason 2., note that the

distribution of L̂(d) given d∈D̂ is the conditional distribution of the maximum of two normally

distributed random variables given that the minimum of two other normally distributed random

variables, Û(d)≡min{1−p̂0d0,1−p̂0d1}, exceeds the maximum of yet another set of two normally

distributed random variables, L̂(d′)=max{p̂1d′0,p̂1d′1} for d′ ≠d. Unconditionally, L̂(d̂) for any

data-dependent choice of d̂ is distributed as a mixture of the distributions of L̂(0) and L̂(1), neither

of which are themselves normally distributed.

2.2 Conditional Confidence Intervals

Suppose that a researcher’s interest in inference on L(d) only arises when d is estimated to be in

the set of best-performing options, viz., d∈D̂. In such a case, we are interested in a probabilistic

lower bound for L(d) that is approximately valid across repeated samples for which d∈D̂, i.e., we

would like to form a conditionally valid lower bound L̂(d)Cα such that1

P
(
L(d)≥L̂(d)Cα

∣∣∣d∈D̂
)
≥1−α (2.2)

1See Andrews et al. (2024) for an extensive discussion of when conditional vs unconditional validity is desirable
for inference after selection.
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for some α∈(0,1) in large samples. To do so we characterize the conditional distribution of L̂(d).

Specifically, let ĵL(d)≡argmax j∈{0,1}p̂
1dj be the value of Z at which the maximum between the

two estimated probabilities is achieved. Then L̂(d)= p̂1dĵL(d). Also, since the conditioning event

{d∈ D̂,ĵL(d) = j∗L} can be written as a polyhedron in p̂ and L̂(d) is equal to an element of p̂,

Lemma 5.1 of Lee et al. (2016) implies

L̂(d)
∣∣∣{d∈D̂,ĵL(d)=j∗L

}
∼ p̂1dj

∗
L

∣∣∣{L̂L(ZL)≤ p̂1dj
∗
L≤ÛL(ZL)

}
(2.3)

for some known functions L̂L(·) and ÛL(·), where p̂1dj
∗
L∼N (p1dj

∗
L,Var(p̂1dj

∗
L)) in large samples and

ZL is a sufficient statistic for the nuisance parameter p= (p100,p010,p110,p101,p011,p111)′ that is

asymptotically independent of p̂1dj
∗
L. Using results in Pfanzagl (1994), the characterization in (2.3)

permits the straightforward computation of a conditionally quantile-unbiased estimator for p1dĵL(d)=

p1dj
∗
L, since the latter is equal to the mean of the underlying normally distributed random variable

p̂1dj
∗
L that is subject to truncation. Denoting this quantile-unbiased estimator as L̂(d)Cα , we have

P
(
p1dĵL(d)≥L̂(d)Cα

∣∣∣d∈D̂
)
=1−α (2.4)

in large samples. However, noting that L(d)≥p1dĵL(d) with probability one, we can see that (2.2)

holds for this choice of L̂(d)Cα .

Although (2.2) does not hold with exact equality, we note that the left-hand side cannot be

much larger than the right-hand side. In other words, although L̂(d)Cα is a conservative probabilistic

lower bound for L(d), it is not very conservative. This can be seen heuristically by working through

the two possible values that L(d) can take:

1. If L(d)=p1dĵL(d), then (2.2) holds with equality in large samples by (2.4).

2. If L(d)≠p1dĵL(d), then L(d)≈p1dĵL(d) since L̂(d)= p̂1dĵL(d) so that the left-hand side of (2.2)

cannot be much larger than the right-hand side.

Finally, a construction analogous to that described above for producing a probabilistic lower

bound for L(d) produces a conditionally valid probabilistic upper bound Û(d)C1−α for U(d) that
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satisfies

P
(
U(d)≤Û(d)C1−α

∣∣∣d∈D̂
)
≥1−α (2.5)

for some α∈(0,1) in large samples. The probabilistic lower and upper bounds can then be combined

to form a CI, [L̂(d)Cα/2,Û(d)C1−α/2], that is conditionally valid for [L(d),U(d)] in large samples since

P
(
L(d)≥L̂(d)Cα/2,U(d)≤Û(d)C1−α/2

∣∣∣d∈D̂
)

(2.6)

≥1−P
(
L(d)<L̂(d)Cα/2

∣∣∣d∈D̂
)
−P
(
U(d)>Û(d)C1−α/2

∣∣∣d∈D̂
)
≥1−α.

2.3 Unconditional Confidence Intervals

Suppose now that the researcher uses a data-dependent rule to select a unique option of infer-

ential interest. For example, suppose the researcher is interested in choosing the option with

the highest potential outcome in the worst case across its identified set so that she chooses

d̂=argmaxd∈{0,1}L̂(d). In such a case, it is natural to form a probabilistic lower bound L̂(d̂)Uα for

L(d̂) that is unconditionally valid across repeated samples such that

P
(
L(d̂)≥L̂(d̂)Uα

)
≥1−α (2.7)

for some α∈(0,1) in large samples. Given its conditional validity (2.2), the conditional lower bound

L̂(d)Cα also satisfies (2.7) upon changing the definition of D̂ to D̂={d̂} in its construction. However,

it is well known in the literature on selective inference that conditionally-valid probabilistic bounds

can be very uninformative (i.e., far below the true value) when the probability of the conditioning

event is small (see e.g., Kivaranovic and Leeb, 2021, Andrews et al., 2024 and McCloskey, 2024).

Here, we propose two additional forms of probabilistic bounds that are only unconditionally valid

but do not suffer from this drawback.

First, we can form a probabilistic lower bound for L(d̂) by projecting a one-sided rect-

angular simultaneous confidence lower bound for all possible values L(d̂) can take: L̂(d̂)Pα ≡

L̂(d̂)−ĉ1−α,L

√
Σ̂L,2d̂+1+ĵL(d̂)

, where ĉ1−α,L is the 1−α quantile of maxiζ̂i/

√
Σ̂L,i for ζ̂∼N (0,Σ̂L),
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Σ̂L is a consistent estimator of ΣL≡Var(p̂100,p̂101,p̂110,p̂111) and Υi denotes the i
th element of the

main diagonal of any square matrix Υ. Here, the maximum is taken to guarantee simultaneous

coverage of all possible values of L(d̂). Since p1d̂ĵL(d̂)∈{p̂100,p̂101,p̂110,p̂111} with probability one,

P
(
p1d̂ĵL(d̂)≥L̂(d̂)Pα

)
=P
(
p1d̂ĵL(d̂)≥ p̂1d̂ĵL(d̂)−ĉ1−α,L

√
Σ̂L,2d̂+1+ĵL(d̂)

)
≥P
(
(p100,p101,p110,p111)≥(p̂100,p̂101,p̂110,p̂111)−ĉ1−α,L

√
Diag(Σ̂L)

)
=1−α

in large samples and (2.7) holds for L̂(d̂)Uα =L̂(d̂)Pα because L(d̂)≥p1d̂ĵL(d̂). However, L̂(d̂)Pα suffers

from a converse drawback to that of L̂(d̂)Cα : it is unnecessarily conservative when d̂=d is chosen

with high probability (see e.g., Andrews et al., 2024 and McCloskey, 2024).

We propose a second probabilistic lower bound for L(d̂) that combines the complementary

strengths of L̂(d)Cα and L̂(d̂)Pα . Construction of this hybrid lower bound L̂(d̂)Hα proceeds analogously

to the construction of L̂(d)Cα after adding the additional condition {p1d̂ĵL(d̂)≥ L̂(d̂)Pβ } for β <α

to the conditioning event and instead computing a conditionally quantile-unbiased estimator for

p1d̂ĵL(d̂), denoted as L̂(d̂)Hα , satisfying

P
(
p1d̂ĵL(d̂)≥L̂(d̂)Hα

∣∣∣d̂=d∗,p1d̂ĵL(d̂)≥L̂(d̂)Pβ

)
=
1−α

1−β

in large samples, where d∗ is any realized value of the random variable d̂. Imposing this additional

condition in the formation of the hybrid bound ensures that L̂(d̂)Hα is always greater than L̂(d̂)Pβ ,

limiting its worst-case performance relative to L(d̂)Pβ when P(d̂=d∗) is small. On the other hand,

when P(d̂=d∗) is large, the additional condition {p1d̂ĵL(d̂)≥L̂(d̂)Pβ } is far from binding with high

probability so that L̂(d̂)Hα becomes very close to L̂(d)C(α−β)/(1−β). In this case, L̂(d)C(α−β)/(1−β) is

close to the naive lower bound based upon the normal distribution L̂(d̂)−z(1−α)/(1−β)

√
Var(p̂1dj

∗
L)

because the truncation bounds in (2.3) are very wide (Proposition 3 in Andrews et al., 2024).

To see how (2.7) holds for L̂(d̂)Uα =L̂(d̂)Hα , note first that

P
(
L(d̂)≥L̂(d̂)Hα

∣∣∣d̂=d∗,p1d̂ĵL(d̂)≥L̂(d̂)Pβ

)
≥P
(
p1d̂ĵL(d̂)≥L̂(d̂)Hα

∣∣∣d̂=d∗,p1d̂ĵL(d̂)≥L̂(d̂)Pβ

)
=
1−α

1−β
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for all d∗∈{0,1}. Then, note that

P
(
L(d̂)≥L̂(d̂)Hα

)
≥P
(
L(d̂)≥L̂(d̂)Hα

∣∣∣p1d̂ĵL(d̂)≥L̂(d̂)Pβ

)
·P
(
p1d̂ĵL(d̂)≥L̂(d̂)Pβ

)
≥ 1−α

1−β
(1−β)=1−α

by the law of total probability.

By similar reasoning to that used for the conditional CIs in Section 2.2 above, L̂(d̂)Hα is not

very conservative as a probabilistic lower bound for L(d̂). The researcher’s choice of β ∈ (0,α)

trades off the performance of L̂(d̂)Hα across scenarios for which P(d̂=d∗) is large and small with

a small β corresponding to better performance when P(d̂=d∗) is large. See McCloskey (2024) for

an in-depth discussion of these tradeoffs. We recommend β=α/10.

Finally, analogous constructions to those above produce unconditional projection and hybrid

probabilistic upper bounds Û(d̂)P1−α and Û(d̂)H1−α that can then be combined with the lower bounds

to form CIs [L̂(d)Pα/2,Û(d)
P
1−α/2] and [L̂(d)Hα/2,Û(d)

H
1−α/2] for [L(d),U(d)] that are unconditionally

valid in large samples by the same arguments as those used in (2.2) above.

3 General Inference Framework

We now introduce the general inference framework that we propose, nesting the Manski bound

example of the previous section as a special case. After introducing the general framework, we

describe several additional example applications that fall within this framework.

We are interested in performing inference on a parameter W(d) that is indexed by a finite

set d∈D≡{d0,...,dK} for some K>0. The index d may correspond to a particular treatment,

treatment allocation rule or policy, depending upon the application. We assume that W(d) belongs

to an identified set taking a particular interval form that is common to many applications of interest.

Assumption 3.1. For all d∈{d0,...,dK} and an unknown finite-dimensional parameter p,

1. L(d)≡maxj∈{1,...,JL}{ℓ̃d,j + ℓd,jp} ≤W(d) for some fixed and known JL, ℓ̃d,1,...,ℓ̃d,JL and

nonzero row vectors ℓd,1,...,ℓd,JL such that ℓd,j ≠ℓd,j′ for j ≠j′.
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2. U(d)≡minj∈{1,...,JU}{ũd,j+ud,jp}≥W(d) for some fixed and known JU, ũd,1,...,ũd,JU and

nonzero row vectors ud,1,...,ud,JU such that ud,j ≠ud,j′ for j ≠j′.

The lower and upper endpoints of identified sets for the welfare, average potential outcome or

ATE typically take the form of L(d) and U(d), especially when (sequences of) outcomes, treatments

and instruments are discrete.

In the setting of this paper, a researcher’s interest in W(d) arises when d belongs to a set

D̂⊂D that is estimated from a sample of n observations. It is often the case that D̂ is an estimate

of the identified set of best performers D∗. This set could correspond to an estimated set of

optimal treatments or policies or other data-dependent index sets of interest. The estimated set

is determined by an estimator p̂ of the finite-dimensional parameter p that determines the bounds

on W(d) according to Assumption 3.1. Let

ĵL(d)≡ argmax
j∈{1,...,JL}

{ℓ̃d,j+ℓd,jp̂}, ĵU(d)≡argminj∈{1,...,JU}{ũd,j+ud,jp̂}, (3.1)

which are the indices at which the estimated lower and upper bounds are realized. Then, the

estimated lower and upper bounds for W(d) are equal to ℓ̃d,̂jL(d)+ℓd,̂jL(d)p̂ and ũd,̂jU(d)+ud,̂jU(d)p̂.

We work under the high-level assumption that the following event can be written as a polyhedron

in p̂: (i) an option index d is in the set of interest D̂, (ii) the estimated bounds on W(d) are realized

at a given value and (iii) (optionally) an additional random vector is realized at any given value.

Assumption 3.2. 1. For some fixed and known matrix AL(d,j∗L,γ
∗
L), some fixed and known

vector cL(d,j∗L,γ
∗
L) and some finite-valued random vector γ̂L(d), the event {d∈D̂, ĵL(d)=j∗L

and γ̂L(d)=γ∗L} is equivalent to {AL(d,j∗L,γ
∗
L)p̂≤cL(d,j∗L,γ

∗
L)}, where j∗L∈{1,...,JL} and γ∗L

is in the support of γ̂L(d).

2. For some fixed and known matrix AU(d,j∗U ,γ
∗
U), some fixed and known vector cU(d,j∗U ,γ

∗
U) and

some finite-valued random vector γ̂U(d), the event {d∈D̂, ĵU(d)=j∗U and γ̂U(d)=γ∗U} is equiv-

alent to {AU(d,j∗U ,γ
∗
U)p̂≤cU(d,j∗U ,γ

∗
U)}, where j∗U ∈{1,...,JU} and γ∗U is in the support of γ̂U(d).

Depending upon the application, γ̂L(d) and γ̂U(d) (and thus γ∗L and γ∗U) in this assumption may
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not be necessary to condition on, in which case they can be vacuously set to constants. Although

not immediately obvious, this assumption holds in a variety of settings; see the examples below.

In many cases, this assumption can be simplified because, consistent with Assumption 3.1, d∈D̂

if and only if ADp̂≤cD for some fixed and known matrix AD and vector cD. For these cases, γ̂L(d)

and γ̂U(d) are not needed and can be vacuously set to fixed constants and

AL(d,j,γ)=



ℓd,1−ℓd,j
...

ℓd,JL−ℓd,j

AD


, AU(d,j,γ)=



ud,j−ud,1
...

ud,j−ud,JL

AD


(3.2)

and

cL(d,j,γ)=



ℓ̃d,j−ℓ̃d,1
...

ℓ̃d,j−ℓ̃d,JL

cD


, cU(d,j,γ)=



ũd,1−ũd,j
...

ũd,JL−ũd,j

cD


. (3.3)

A leading example of this special case is

D̂=

{
d∈{d0,...,dK} :Û(d)≥ max

d∈{d0,...,dK}
L̂(d)

}
,

where L̂(d)≡maxj∈{1,...,JL}{ℓ̃d,j+ℓd,jp̂} and Û(d)≡minj∈{1,...,JU}{ũd,j+ud,jp̂}, since d∈D̂ if and

only if

(ℓd′,j′−ud,j)p̂≤ ũd,j−ℓ̃d′,j′

for all d′∈{d0,...,dK}, j∈{1,...,JU} and j′∈{1,...,JL}.

We also note that Assumption 3.2 is compatible with the absence of data-dependent selection

for which the researcher is interested in forming a CI for an identified interval [L(d∗),U(d∗)] chosen

by the researcher a priori. In these cases, D̂={d∗}, γ̂M(d∗) can be vacuously set to a fixed constant,
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AM(d∗,j,γ)=AM(d∗,j) and cM(d∗,j,γ)=cM(d∗,j) for M=L,U. Indeed, we examine an example

of this special case when conducting a finite-sample power comparison in Section 6 below.

In general, less conditioning is more desirable in terms of the lengths of the CIs we propose.

Although conditioning on the events d∈D̂, ĵL(d)= j∗L and ĵU(d)= j∗U is necessary to construct

our CIs (see Section 5.1 below), the researcher should therefore minimize the number of elements

in γ̂L(d) and γ̂U(d) subject to satisfying Assumption 3.2 when constructing our CIs. In some cases

it is necessary to condition on these additional random vectors in order to satisfy Assumption 3.2.

But in many cases, such as the example given immediately above, additional conditioning random

vectors are unnecessary and can be vacuously set to fixed constants.

We impose the following assumption for our unconditional hybrid CIs in order for the object

of inferential interest to be well-defined unconditionally.

Assumption 3.3. D̂={d̂} almost surely for a random variable d̂ with support {d0,...,dK}.

In conjunction, Assumptions 3.2 and 3.3 hold naturally when the object of interest d̂ is selected

by uniquely maximizing a linear combination of the estimates of the bounds characterizing the

identified intervals and the additional conditioning vectors γ̂L(d) and γ̂U(d) are defined appro-

priately. Leading examples of this form of selection include when d̂ corresponds to the largest

estimated lower bound, upper bound or weighted average of lower and upper bounds.

Proposition 3.1. Suppose D̂={d̂}, where d̂=argmaxd∈{d0,...,dK}{wLL̂(d)+wUÛ(d)} is unique al-

most surely for some fixed known weights wL,wU≥0. Then Assumptions 3.2 and 3.3 are satisfied for

1. γ̂L(d) equal to any fixed constant and γ̂U(d)= ĵL(d) when wU=0,

2. γ̂L(d)= γ̂U(d)=(ĵU(0),...,ĵU(T))
′ when wL=0,

3. γ̂L(d)= γ̂U(d)=(ĵL(0),...,ĵL(T),ĵU(0),...,ĵU(T))
′ when wL,wU ≠0.

Expressions for AM(d,j∗M ,γ∗
M) and cM(d,j∗M ,γ∗

M) for M=L,U in the settings of Proposition 3.1

are available for reference in its proof in Appendix C. As this proposition makes clear, the additional

conditioning vectors needed for Assumption 3.3 to hold depend upon the particular form of selection
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rule used by the researcher. For example, when d̂ is chosen to maximize the estimated lower bound

of the identified set L̂(d), one must condition not only on the realized value of ĵU(d̂) when forming a

probabilistic upper bound for U(d̂) but also ĵL(d̂). On the other hand, the formation of either a prob-

abilistic lower bound for L(d̂) or upper bound for U(d̂) when d̂ is chosen to maximize the estimated

upper bound of the identified set Û(d) requires conditioning on the entire vector (ĵU(0),...,ĵU(T))
′.

Although intuitively appealing, the treatment choice rules of the form described in Proposition

3.1 can be sub-optimal from a statistical decision-theoretic point of view (see, e.g., Manski, 2021, 2023

and Christensen et al., 2023). In Section 4.4, we show how proper definition of γ̂L(d) and γ̂U(d) satis-

fies Assumptions 3.2 and 3.3 in the context of the optimal selection rules of Christensen et al. (2023).

We suppose that the sample of data is drawn from some unknown distribution P∈Pn. As

an estimator for p, we assume that p̂ is uniformly asymptotically normal under P∈Pn.

Assumption 3.4. For the class of Lipschitz functions that are bounded in absolute value by one

and have Lipschitz constant bounded by one, BL1, there exist functions p(P) and Σ(P) such that

for ξP∼N (0,Σ(P)) with

lim
n→∞

sup
P∈Pn

sup
f∈BL1

∣∣EP
[
f
(√

n(p̂−p(P))
)]
−EP[f(ξP)]

∣∣=0.

The notation of this assumption makes explicit that the parameter p and the asymptotic

variance Σ depend upon the unknown distribution of the data P. It holds naturally for standard

estimators p̂ under random sampling or weak dependence in the presence of bounds on the moments

and dependence of the underlying data.

Next, we assume that the asymptotic variance of p̂ can be uniformly consistently estimated

by an estimator Σ̂.

Assumption 3.5. For all ε>0, the estimator Σ̂ satisfies

lim
n→∞

sup
P∈Pn

P
(∥∥∥Σ̂−Σ(P)

∥∥∥>ε
)
=0.

This assumption is again naturally satisfied when using a standard sample analog estimator of
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Σ under random sampling or weak dependence in the presence of moment and dependence bounds.

In addition, we restrict the asymptotic variance of p̂ to be positive definite.

Assumption 3.6. For some finite λ̄>0, 1/λ̄≤λmin(Σ(P))≤λmax(Σ(P))≤ λ̄ for all P∈Pn.

This assumption is naturally satisfied, for example, when p̂ is a standard sample analog

estimator of reduced-form probabilities composing p that are non-redundant and bounded away

from zero and one.

4 Examples

In this section, we show that the proposed inference method is applicable to various examples for

which parameters are interval-identified. In particular, we show that Assumptions 3.1, 3.2 and

3.4 are satisfied in these examples. See Appendix A for additional examples.

4.1 Bounds Derived from Linear Programming

In more complex settings, calculating analytical bounds on W(d) or W(d)−W(d̃) may be cum-

bersome. This is especially true when the researcher wants to incorporate additional identifying

assumptions. In this situation, the computational approach using linear programming can be

useful (Mogstad et al., 2018; Han and Yang, 2024).

To incorporate many complicated settings, suppose thatW(d)=Adq and p=Bq for some known

row vector Ad and matrix B, an unknown vector q in a simplex Q, and a vector p that is estimable

from data. Typically q is a vector of probabilities of a latent variable that governs the DGP; see Balke

and Pearl (1997, 2011), Han (2024) and Han and Yang (2024). The linearity in this assumption

is usually implied by the nature of a particular problem (e.g., discreteness). Then we have

L(d)=minq∈QAdq,

U(d)=maxq∈QAdq,
s.t. Bq=p (4.1)
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and ATE bounds for a change from treatment d to treatment d̃

L(d̃,d)=minq∈Q(Ad̃−Ad)q,

U(d̃,d)=maxq∈Q(Ad̃−Ad)q,
s.t. Bq=p. (4.2)

Note that L(d̃,d)≠L(d̃)−U(d) in general because the q that solves (4.1) for L(d̃) and U(d) may

be different (and similarly for U(d̃,d)). As before, the identified set of optimal treatments here

is characterized as D∗≡{d :L(d̃,d)≤0,∀d̃≠d}.

An example of this setting can be found in Han and Yang (2024). Let (Y,D,Z) be a vector

of a binary outcome, treatment and instrument and let p be a vector with entries p(y,d|z)≡P(Y =

y,D=d|Z=z) across (y,d,z)∈{0,1}3.2 Suppose W(d)=E[Y (d)] for d∈{0,1}. Then, we can define

the response type ε≡(Y (1),Y (0),D(1),D(0)) with a realized value e≡(y(1),y(0),d(1),d(0)), where

Y (d) denotes the potential outcome under treatment d and D(z) denotes the potential treatment

under instrument value z. Let q(e)≡P(ε=e) be the latent distribution. Then

W(d)=P[Y (d)=1]=
∑

e:y(d)=1

q(e)≡Adq,

where q is the vector of q(e)’s and Ad is an appropriate selector (a row vector).

Assume that (Y (d),D(z)) is independent of Z for d,z∈{0,1}. The data distribution p is related

to the latent distribution by

P[Y =1,D=d|Z=z]=P[Y (d)=1,D(z)=d]=
∑

e:y(d)=1,d(z)=d

q(e)≡Bd,zq,

where the first equality follows by the independence assumption, q is a vector of q(e)’s and Bd,z

2See Han and Yang (2024) for the use of linear programming with continuous Y .
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is an appropriate selector (a row vector). Now define

B≡



B1,1

B0,1

B1,0

...


, p≡



p(1,1|1)

p(1,0|1)

p(1,1|0)

p(1,0|0)
...


so that all of the constraints relating the data distribution to the latent distribution can be

expressed as Bq=p.

To verify Assumption 3.1, it is helpful to invoke strong duality for the primal problems (4.1)

(under regularity conditions) and write the following dual problems:

L(d)=max
λ

−p̃′λ, s.t. B̃′λ≥−A′
d,

U(d)=min
λ
p̃′λ, s.t. B̃′λ≥A′

d,

where B̃≡

 B

1′

 is a (dp+1)×dq matrix with 1 being a dq×1 vector of ones, and p̃≡

 p

1

 is a

(dp+1)×1 vector. By using a vertex enumeration algorithm (e.g., Avis and Fukuda (1991)), one can

find all (or a relevant subset) of vertices of the polyhedra {λ :B̃′λ≥−A′
d} and {λ :B̃′λ≥A′

d}. Let

ΛL,d≡{λ1,...,λJL,d
} and ΛU,d≡{λ1,...,λJU,d

} be the sets that collect such vertices, respectively. Then,

it is easy to see that L(d)=maxλ∈ΛL,d
−p̃′λ and U(d)=minλ∈ΛU,d

p̃′λ, and thus Assumption 3.1 holds.

To verify Assumption 3.2, we use the dual problems to (4.2):

L(d̃,d)=max
λ

−p̃′λ, s.t. B̃′λ≥−∆′
d̃,d
,

U(d̃,d)=min
λ
p̃′λ, s.t. B̃′λ≥∆′

d̃,d
,

where ∆d̃,d ≡ Ad̃ − Ad. Analogous to the vertex enumeration argument above, let ΛL,d̃,d ≡

{λ1, ..., λJL,d̃,d
} and ΛU,d̃,d ≡ {λ1, ..., λJU,d̃,d

} be the sets that collect all (or a relevant subset)
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of vertices of the polyhedra {λ : B̃′λ ≥ −∆′
d̃,d
} and {λ : B̃′λ ≥ ∆′

d̃,d
}, respectively. Then,

L(d̃, d) = maxλ∈ΛL,d̃,d
−p̃′λ and U(d̃, d) = minλ∈ΛU,d̃,d

p̃′λ. Let D̂ = {d : L̂(d̃, d) ≤ 0,∀d̃ ≠ d},

where L̂(d̃,d) is the sample counterpart of L(d̃,d) with ̂̃p≡
 p̂

1

 replacing p̃≡

 p

1

. Partition
λ as λ=(λ1′,λ0)′ where λ0 is the last element of λ. Note that d∈D̂ if and only if

max
λ∈Λ̃L,d

−(p̂′λ1+λ0)≤0,

where Λ̃L,d=
⋃

d̸̃=dΛL,d̃,d. Also let λ̂ be such that−̂̃p′λ̂=maxλ∈Λ̃L,d
−̂̃p′λ. Then, λ̂=λj∗L

if and only if

p̂′λ1
j∗L
+λ0

j∗L
−(p̂′λ1+λ0)≤0 ∀λ∈Λ̃L,d\{λj∗L

}

so that Assumption 3.2 holds.

Finally, p̂ is again equal to a vector of sample means so that Assumption 3.4 is satisfied if p̂

is calculated using the random sample {Yi,Di,Zi}ni=1.

4.2 Empirical Welfare Maximization with Observational Data

Consider allocating a binary treatment based on observed covariatesX∈X . A treatment allocation

rule can be defined as a function δ :X→{0,1} in a class of rules D. Consider the utilitarian welfare

of deploying δ relative to treating no one. The optimal allocation δ∗ satisfies

δ∗∈argmax
δ∈D

W(δ).

Note that E[Y (δ(X))−Y (0)]=E[δ(X)∆(X)], where ∆(X)≡E[Y (1)−Y (0)|X]. This problem is

considered in Kitagawa and Tetenov (2018) and Athey and Wager (2021), among others. When

only observational data for (Y,D,X) are available with D being endogenous, W(δ) is only partially

identified unless strong treatment effect homogeneity is assumed. This problem has been studied

in Kallus and Zhou (2021); Pu and Zhang (2021); D’Adamo (2021); Byambadalai (2022), among

others. Using instrumental variables, one can consider bounds on the conditional ATE based on
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conditional versions of the bounds considered in Sections A.1 and 4.1 (i.e., Manski’s bounds and

bounds produced by linear programming).

In particular, assume that (Y (d),D(z)) is independent of Z given X. Let L(X) and U(X) be

conditional Manski bounds on ∆(X). Then, bounds on W(δ) can be characterized as

L(δ)≡E[δ(X)L(X)], U(δ)≡E[δ(X)U(X)].

Similarly, bounds on W(δ̃)−W(δ)=E[(δ̃(X)−δ(X))∆(X)] can be characterized as

L(δ̃,δ)≡E[(δ̃(X)−δ(X))L(X)], U(δ̃,δ)≡E[(δ̃(X)−δ(X))U(X)]. (4.3)

Note that L(δ̃,δ)≠L(δ̃)−U(δ) in general (and similarly for U(δ̃,δ)).

Suppose X is finite and X = {x1,...,xK} where xk can be a vector and K can potentially

be large. For simplicity of exposition, suppose X ={0,1,2}. Then D={δ1,...,δ8} where each δj

corresponds to a mapping type from {0,1,2} to {0,1}. To verify Assumptions 3.1 and 3.2, we

proceed as follows. For given x∈X , by arguments analogous to those in Section 4.1 (and Section

A.1), bounds Lx and Ux on ∆(x) satisfy, for some scalars ℓ̃j and ũj and row vectors ℓj and uj,

Lx= max
j∈{1,...,JL}

{ℓ̃j+ℓjpx}, Ux= min
j∈{1,...,JU}

{ũj+ujpx},

where p(x) is the vector of p(y,d|z,x)’s across (y,d,z) fixing x. Then, by Jensen’s inequality, for

each δ∈D,

L(δ)≥L̃(δ)≡ max
j∈{1,...,JL}

{ℓ̃jE[δ(X)]+ℓjE[δ(X)p(X)]},

U(δ)≤Ũ(δ)≡ min
j∈{1,...,JU}

{ũjE[δ(X)]+ujE[δ(X)p(X)]}.

Note that L̃(δ) and Ũ(δ) are non-sharp bounds; for calculation of sharp bounds, see Section A.2.
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We can verify Assumption 3.1 with L̃(δ) and Ũ(δ) by defining

p=



E[δ1(X)]

E[δ1(X)p(X)]

...

E[δ8(X)]

E[δ8(X)p(X)]



and, for δ=δ1 as an example, by using ℓδ1,j =( ℓ̃j ℓj 0 ··· 0 ). Similarly, we can verify As-

sumptions 3.2 and 3.4 by estimating p(X) and E[δ(X)] with sample means and E[δ(X)p(X)] with

1
n

∑n
i δ(Xi)p̂(Xi). If the data {Yi,Di,Zi,Xi}ni=1 form a random sample, and D̂={δ∈D : L̂(δ̃,δ)≤

0∀δ̃≠δ} for L̂(δ̃,δ) defined the same as L(δ̃,δ) in (4.3) after substituting p̂ for p, Assumptions 3.2

and 3.4 hold.

This framework can be generalized to settings where W(δ) is partially identified, not necessarily

due to treatment endogeneity but because W(δ) is a non-utilitarian welfare defined as a functional

of the joint distribution of potential outcomes (e.g., Cui and Han, 2024): W(δ)=f(FY (1),Y (0)|X)

where f is some functional and FY (1),Y (0)|X is the joint distribution of (Y (1),Y (0)) conditional onX.

4.3 Bounds for Dynamic Treatment Effects

Consider binary Yt and Dt for t = 1, ...,T . Let Y ≡ (Y1, ...,YT ) and D ≡ (D1, ...,DT ). Sup-

pose that we are equipped with a sequence of binary instruments Z ≡ (Zt1,...,ZtK), which is

a subvector of (Z1,...,ZT ). For t = 1,...,T , let Yt(d1,...,dt) be the potential outcome at t and

Y (d) ≡ (Y1(d1), ...,YT (d1, ...,dT )). We assume that the instruments Z are independent of the

potential outcomes Y (d).

Let T =2. Then Y ≡(Y1,Y2) and D≡(D1,D2). For given welfare W(d) with d≡(d1,d2), we

are interested in the optimal policy d∗ that satisfies

d∗∈argmax
d∈D

W(d),
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where D≡{(1,1),(1,0),(0,1),(0,0)}. The sign of the welfare difference, W(d)−W(d̃) for d,d̃∈D, is

useful for establishing the ordering of W(d) with respect to d and thus to identifying d∗. However,

without additional identifying assumptions, we can only establish a partial ordering of W(d) based

on the bounds on the welfare difference (Han, 2024). This will produce the identified set D∗ for d∗.

An example of the welfare is W(d)≡E[Y2(d)], namely, the average potential terminal outcome.

The bounds on welfare W(d) are

L(d)≡max
z

L(d;z), U(d)≡min
z
U(d;z), (4.4)

where

L(d;z)≡P(Y2=1,D=d|Z=z),

U(d;z)≡P(Y2=1,D=d|Z=z)+
∑
d′≠d

P(D=d′|Z=z),

which have forms analogous to those in the static case. Define the dynamic ATE in the terminal

period for a change in treatment from d to d̃ as

W(d̃)−W(d)=E[Y2(d̃)−Y2(d)]=P(Y2(d̃)=1)−P(Y2(d)=1).

Then the bounds on the dynamic ATE are as follows:

L(d̃,d)≡L(d̃)−U(d), U(d̃,d)≡U(d̃)−L(d). (4.5)

Another example of welfare is the joint distribution W(d)≡P(Y (d)= (1,1)) where Y (d)≡

(Y1(d1),Y2(d)). The bounds on W(d) in this case are L(d)≡maxzL(d;z) and U(d)≡minzU(d;z)

where

L(d;z)≡P(Y2=1,D=d|Z=z),

U(d;z)≡P(Y2=1,D=d|Z=z)+P(Y1=1,D1=d1,D2=d′2|Z=z)
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+P(D1=d′1,D2=d2|Z=z)+P(D1=d′1,D2=d′2|Z=z),

with d′1≠d1 and d′2≠d2. Consider the effect of treatment on the joint distribution, for example,

W(1,1)−W(1,0)=P(Y (1,1)=(1,1))−P(Y (1,0)=(1,1)).

Then, with d̃=(1,1) and d=(1,0), the bounds on this parameter are

L(d̃,d)≡max
z

P(Y2=1,D=(1,1)|Z=z)

−min
z
{P(Y2=1,D=(1,0)|Z=z)+P(Y1=1,D=(1,1)|Z=z)

+P(D=(0,1)|Z=z)+P(D=(0,0)|Z=z)},

U(d̃,d)≡min
z
{P(Y2=1,D=(1,1)|Z=z)+P(Y1=1,D=(1,0)|Z=z)

+P(D=(0,1)|Z=z)+P(D=(0,0)|Z=z)}

−max
z

P(Y2=1,D=(1,0)|Z=z).

In these examples, the identified set D∗ can be characterized as a set of maximal elements:

D∗={d :∄d̃≠d such that L(d̃,d)>0}={d :L(d̃,d)≤0,∀d̃≠d}.

These examples are special cases of the model in Han (2024).3

In both cases, it is easy to see that L(d) and U(d) satisfy Assumption 3.1 with p being the

vector of probabilities p(y,d|z)≡P(Y =y,D=d|Z=z). To verify Assumption 3.2, let L̂(d̃,d) be

the estimator of L(d̃,d) where the sample frequency replaces the population probability. Then

D̂={d :L̂(d̃,d)≤0,∀d̃≠d}.

Continuing with the first example, let Z=Z1∈{0,1}, that is, the researcher is only equipped

with a binary instrument in the first period and no instrument in the second period. We focus

3See also Han and Lee (2024) for other examples of dynamic causal parameters that can be used to define
optimal treatments.
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on inference for L(d) for d∈D̂. Let ẑ(d)∈argmaxz∈{0,1}L̂(d;z) so that L̂(d)=L̂(d;̂z(d)). Then we

can write the data-dependent event that d is an element of D̂, L̂(d)=L̂(d;z∗) as a polyhedron

{d∈D̂,̂z(d)=z∗}={L̂(d̃,d)≤0∀d̃≠d,̂z(d)=z∗}={ALp̂≤0}

for some matrix AL, where p̂ is the vector of probabilities p̂(y,d|z), so that Assumption 3.2 holds.

This is due to the forms of L(d;z) and U(d;z) above and L̂(d̃,d)≤0 ∀d̃≠d if and only if

L̂(d̃;z)≤Û(d;z′) ∀d̃≠d,∀z,z′

and, for example, ẑ(d)=1 if and only if L̂(d;0)−L̂(d;1)≤0. A similar formulation follows for the

second example. In fact, this approach applies to a general parameter W(d) with bounds that

are minimum and maximums of linear combinations of p(y,d|z)’s, such as parameters that have

the following form:

W(d)≡f(qd)

for some linear functional f , where qd(y)≡P(Y (d)=y).

Finally, Assumption 3.4 is satisfied in both examples when the data {Yi,Di,Zi}ni=1 form a

random sample since the entries of p̂ are sample means.

This framework can be further generalized to incorporate treatment choices adaptive to covari-

ates or past outcomes as in Han (2024), analogous to Section 4.2. This generalization is considered

in our empirical application in Section 8. Sometimes this generalization prevents the researcher

from deriving analytical bounds, in which case the linear programming approach can be used.

4.4 Optimal Treatment Assignment with Interval-Identified ATE

In recent work, Christensen et al. (2023) note that “plug-in” rules for determining treatment choice

can be sub-optimal when ATEs are not point-identified since the bounds on the ATE are not

smooth functions of the reduced-form parameter p. Using an optimality criterion that minimizes
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maximum regret over the identified set for the ATE, conditional on p, they advocate bootstrap

and quasi-Bayesian methods for optimal treatment choice. More specifically, they consider settings

for which the ATE of a treatment is identified via intersection bounds:

bL(p)≡ max
j∈{1,...,JL}

{ℓ̃j+ℓjp}≤ATE≤ min
j∈{1,...,JU}

{ũk+ukp}≡bU(p)

for some fixed and known JL, JU , ℓ̃1, ... , ℓ̃JL, ũ1, ... , ũJU , ℓ1, ... ,ℓJL and u1, ... ,uJU .
4 Therefore,

Assumption 3.1 trivially holds for the ATE.

Christensen et al. (2023) advocate a quasi-Bayesian implementation of their optimal treatment

choice rule taking the form

d̂=1

(
1

m

m∑
i=1

[max{bU(p̂+εi),0}+min{bL(p̂+εi),0}]≥0

)
, (4.6)

for some large m, where ε1,...,εm
i.i.d.∼ N (0,Σ̂) are independent of p̂. As the following proposition

shows, this form of d̂ satisfies Assumption 3.2 when γ̂L(d)= γ̂U(d) are specified properly.

Proposition 4.1. Suppose D̂={d̂}, where d̂ is defined by (4.6). Then Assumptions 3.2 and 3.3

are satisfied for

γ̂L(d)= γ̂U(d)=(ε′1,...,ε
′
m,k1,...,km,k̄1,...,k̄m,s

ℓ
1,...,s

ℓ
m,s

u
1,...,s

u
m)

′,

where ki ≡ argmink∈{1,...,JU}{ũk + uk(p̂ + εi)}, k̄i ≡ argmaxk∈{1,...,JL}{ℓ̃k + ℓk(p̂ + εi)}, sℓi ≡

sign(̃ℓk̄i+ℓk̄i(p̂+εi)) and sui ≡sign(ũki
+uki

(p̂+εi)) for i=1,...,m.

5 Confidence Interval Construction

We now generalize the CI construction described in Section 2 to apply in the general framework

of Section 3, covering all example applications discussed above and in Appendix A. We start with

conditional CIs and then move to unconditional CIs.
4Although Christensen et al. (2023) do not write the form of their bounds as they are written here, the

representation here is equivalent to the one in that paper upon proper definition of p since the elements in the
intersection bounds are smooth functions of a reduced-form parameter.
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5.1 Conditional Confidence Intervals

We first generalize the conditional CI construction described in Section 2.2. As in Section 2.2, we

are interested in forming probabilistic lower and upper bounds L̂(d̂)Cα and Û(d̂)C1−α that satisfy

(2.2) and (2.5) for all d∈{d0,...,dK} as endpoints in the formation of a conditionally valid CI. This

is because the researcher’s interest in inference on option d only arises when it is a member of

the estimated set D̂.

To begin, we characterize the conditional distributions of L̂(d) given the event {d∈D̂, ĵL(d)=j∗L

and γ̂L(d)=γ∗L} characterized by Assumption 3.2. These conditional distributions depend upon

the nuisance parameter p. As a first step, we form sufficient statistics for p that are asymptotically

independent of L̂(d) given ĵL(d)=j∗L and Û(d) given ĵU(d)=j∗U . Since L̂(d)= ℓ̃d,j∗L+ℓd,j∗Lp̂ given

ĵL(d)=j∗L by Assumption 3.1 and (3.1) (and similarly for Û(d)), such sufficient statistics can be

constructed as

ẐL(d,j
∗
L)≡

√
np̂−b̂L(d,j

∗
L)
√
n(̃ℓd,j∗L+ℓd,j∗Lp̂)

and

ẐU(d,j
∗
U)≡

√
np̂−b̂U(d,j

∗
U)
√
n(ũd,j∗U+ud,j∗U p̂)

with

b̂L(d,j
∗
L)≡Σ̂ℓ′d,j∗L

(
ℓd,j∗LΣ̂ℓ

′
d,j∗L

)−1

and b̂U(d,j
∗
U)≡Σ̂u′d,j∗U

(
ud,j∗U Σ̂u

′
d,j∗U

)−1

,

by the asymptotic normality of p̂ and asymptotic absence of correlation between
√
np̂ and ẐL(d,j

∗
L)

and ẐU(d,j
∗
U). Next, Assumption 3.2 characterizes the conditioning events {d ∈ D̂, ĵL(d) =

j∗L,γ̂L(d) = γ∗L} and {d ∈ D̂, ĵU(d) = j∗U ,γ̂U(d) = γ∗U} as polyhedra in p̂, which can in turn be

expressed as intervals for ℓ̃d,j∗L+ℓd,j∗Lp̂ and ũd,j∗U+ud,j∗U p̂; see, e.g., (3.2) and (3.3). Then, again since

L̂(d)= ℓ̃d,j∗L+ℓd,j∗Lp̂ given ĵL(d)=j∗L by Assumption 3.1, Lemma 1 of McCloskey (2024) implies

√
nL̂(d)

∣∣∣{d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

}
∼
√
n(̃ℓd,j∗L+ℓd,j∗Lp̂)

∣∣∣{V̂−
L

(
ẐL(d,j

∗
L),d,j

∗
L,γ

∗
L

)
≤
√
n(̃ℓd,j∗L+ℓd,j∗Lp̂)≤V̂+

L

(
ẐL(d,j

∗
L),d,j

∗
L,γ

∗
L

)
,

V̂0
L

(
ẐL(d,j

∗
L),d,j

∗
L,γ

∗
L

)
≥0
}

(5.1)
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and

√
nÛ(d)

∣∣∣{d∈D̂,ĵU(d)=j∗U ,γ̂U(d)=γ∗U

}
∼
√
n(ũd,j∗U+ud,j∗U p̂)

∣∣{V̂−
U

(
ẐU(d,j

∗
U),d,j

∗
U ,γ

∗
U

)
≤
√
n(ũd,j∗U+ud,j∗U p̂)≤V̂+

U

(
ẐU(d,j

∗
U),d,j

∗
U ,γ

∗
U

)
,

V̂0
U

(
ẐU(d,j

∗
U),d,j

∗
U ,γ

∗
U

)
≥0
}

with

V̂−
M(z,d,j,γ)≡ max

k:(AM(d,j,γ)̂bM(d,j))k<0

√
n(cM(d,j,γ))k−(AM(d,j,γ)z)k

(AM(d,j,γ)̂bM(d,j))k
,

V̂+
M(z,d,j,γ)≡ min

k:(AM(d,j,γ)̂bM(d,j))k>0

√
n(cM(d,j,γ))k−(AM(d,j,γ)z)k

(AM(d,j,γ)̂bM(d,j))k
,

V̂0
M(z,d,j,γ)≡ min

k:(AM(d,j,γ)̂bM(d,j))k=0

√
n(cM(d,j,γ))k−(AM(d,j,γ)z)k

for M=L,U.

Now, under Assumptions 3.4 and 3.5, the distribution of
√
n(̃ℓd,j∗L+ℓd,j∗Lp̂) can be approximated

by a N (
√
n(̃ℓd,j∗L+ℓd,j∗Lp),ℓd,j∗LΣ̂ℓ

′
d,j∗L

)-distributed random variable that is asymptotically indepen-

dent of ẐL(d,j
∗
L). Using the distributional characterization in (5.1), we can therefore use the corre-

sponding truncated normal cumulative distribution function to produce quantile-unbiased estimators

of the underlying mean
√
n(̃ℓd,j∗L+ℓd,j∗Lp). Let FTN(·;µ,σ2|V−,V+) denote the truncated normal

cumulative distribution function for an underlying normally-distributed random variable with mean

µ and variance σ2 that is truncated to lie between V− and V+. For α∈(0,1), define L̂(d)Cα to solve

FTN

(√
n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p̂);µ,ℓd,̂jL(d)Σ̂ℓ

′
d,̂jL(d)

∣∣∣V̂−
L

(
ẐL(d,ĵL(d)),d,ĵL(d),γ̂L(d)

)
,

V̂+
L

(
ẐL(d,ĵL(d)),d,ĵL(d),γ̂L(d)

))
=1−α

in µ. Similarly, define Û(d)Cα to solve

FTN

(√
n(ũd,̂jU(d)+ud,̂jU(d)p̂);µ,ud,̂jU(d)Σ̂u

′
d,̂jU(d)

∣∣∣V̂−
U

(
ẐU(d,ĵU(d)),d,ĵU(d),γ̂U(d)

)
,
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V̂+
U

(
ẐU(d,ĵU(d)),d,ĵU(d),γ̂U(d)

))
=1−α

in µ. Then, results in Pfanzagl (1994) imply that L̂(d)Cα and Û(d)Cα are optimal α quantile-unbiased

estimators of
√
n(̃ℓd,j∗L+ℓd,j∗Lp) and

√
n(ũd,j∗L+ud,j∗Lp) asymptotically.

Finally, combine these quantile-unbiased estimators to form a conditional CI for the identified

interval [L(d),U(d)]:

(n−1/2L̂(d)Cα1
,n−1/2Û(d)C1−α2

). (5.2)

We establish the conditional uniform asymptotic validity of this CI.

Theorem 5.1. Suppose Assumptions 3.1, 3.2 and 3.4–3.6 hold. Then, for any d∈{d0,...,dK} and

0<α1,α2<1/2,

liminf
n→∞

inf
P∈Pn

{[
P
(
[L(d),U(d)]⊆

(
n−1/2L̂(d)Cα1

,n−1/2Û(d)C1−α2

)∣∣∣d∈D̂
)
−(1−α1−α2)

]
·P(d∈D̂)

}
≥0

for all d∈{d0,...,dK}.

5.2 Unconditional Confidence Intervals

In parallel with the previous subsection, we now generalize the unconditional CI constructions

described in Section 2.3 to the general framework of Section 3. Note that conditional inference on

W(d) is well-defined for any given d∈D̂, when conditioning on d∈D̂. In contrast, unconditional

inference on a data-dependent W(d) requires it to be uniquely defined, as W(d̂) in our notation.

This is implied by Assumption 3.3. Here, we would like to construct CIs that unconditionally cover

the identified interval corresponding to a unique data-dependent object of inferential interest. As

mentioned in Section 2.3, if only unconditional coverage of [L(d̂),U(d̂)] is desired the conditional

CI (5.2) with d= d̂ can be unnecessarily wide. We describe two different methods—projection and

hybrid methods—to form the unconditional probabilistic bounds that constitute the endpoints

of these unconditional CIs in this general framework.

The general formation of the probabilistic bounds based upon projecting simultaneous confidence

bounds for all possible values of
√
nL(d̂) and

√
nU(d̂) proceeds by computing ĉ1−α,M , the 1−α
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quantile of maxi∈{1,...,(T+1)JM}ζ̂M,i/

√
Σ̂M,i, where ζ̂M∼N (0,Σ̂M) forM=L,U with Σ̂L=ℓmatΣ̂ℓmat′,

Σ̂U = umatΣ̂umat′, ℓmat = (ℓ′0,1,...,ℓ
′
0,JL

,...,ℓ′T,1,...,ℓ
′
T,JL

)′ and umat = (u′0,1,...,u
′
0,JU

,...,u′T,1,...,u
′
T,JU

)′,

recalling that Υi denotes the i
th element of the main diagonal of any square matrix Υ. Here, the

maximum is taken to guarantee simultaneous coverage. The lower level 1−α projection confidence

bound for
√
nL(d̂) is L̂(d̂)Pα =

√
nL̂(d̂)−ĉ1−α,L

√
Σ̂L,d̂JL+ĵL(d̂)

and the upper level 1−α projection

confidence bound for
√
nU(d̂) is ÛP

1−α(d̂)=
√
nÛ(d̂)+ĉ1−α,U

√
Σ̂U,d̂JU+ĵU(d̂), because e.g.,

√
nL(d̂)

can take value equal to any entry of the vector
√
n(̃ℓ0,1, ... , ℓ̃0,JL, ... , ℓ̃T,1, ... , ℓ̃T,JL)

′ +
√
nℓmatp,

√
n(ℓmatp̂−ℓmatp) is asymptotically distributed N (0,ΣL) for ΣL=ℓmatΣℓmat′ by Assumption 3.4

and Σ̂L is consistent for ΣL by Assumption 3.5.

Combining these two confidence bounds at appropriate levels yields an unconditional CI for

the identified interval [L(d̂),U(d̂)] of the selected d̂,

(n−1/2L̂(d̂)Pα1
,n−1/2Û(d̂)P1−α2

), (5.3)

with uniformly correct asymptotic coverage, regardless of how d̂ is selected from the data.

Theorem 5.2. Suppose Assumptions 3.1 and 3.4–3.6 hold. Then, for any (random) d̂∈{d0,...,dK}

and 0<α1,α2<1/2,

liminf
n→∞

inf
P∈Pn

P
(
[L(d̂),U(d̂)]⊆

(
n−1/2L̂(d̂)Pα1

,n−1/2Û(d̂)P1−α2

))
≥1−α1−α2.

Note that the projection CI (5.3) has the benefit of correct coverage regardless of how d̂ is

chosen from the data. In this sense, it is more robust than the other CIs we propose in this paper.

On the other hand, by using the common selection structure of Assumption 3.2, we are able to

produce a hybrid CI that combines the strengths of the conditional CI (5.2) and the projection

CI (5.3) which, as described in Section 2.3, are shorter under complementary scenarios.

In analogy with the construction of the conditional CIs, to construct the hybrid CIs we begin

by characterizing the conditional distributions of L̂(d̂) and Û(d̂) but now adding an additional

component to the conditioning events. More specifically, under Assumptions 3.2 and 3.3, by
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intersecting the events

{
d̂=d∗,ĵL(d̂)=j∗L,γ̂L(d̂)=γ∗L

}
=
{
d∗∈D̂,ĵL(d

∗)=j∗L,γ̂L(d
∗)=γ∗L

}
=
{
V̂−
L

(
ẐL(d

∗,j∗L),d
∗,j∗L,γ

∗
L

)
≤
√
n(̃ℓd∗,j∗L+ℓd∗,j∗Lp̂)≤V̂+

L

(
ẐL(d

∗,j∗L),d
∗,j∗L,γ

∗
L

)
,

V̂0
L

(
ẐL(d

∗,j∗L),d
∗,j∗L,γ

∗
L

)
≥0
}

and

{√
n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≥L̂P

β (d̂)
}

=

{√
n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p̂)≤

√
n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)+ĉ1−β,L

√
Σ̂L,d̂JL+ĵL(d̂)

}

for some 0<β<α<1, we have

√
nL̂(d̂)

∣∣∣{d̂=d∗,ĵL(d̂)=j∗L,γ̂L(d̂)=γ∗L,
√
n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≥L̂P

β (d̂)
}

∼
√
n(̃ℓd∗,j∗L+ℓd∗,j∗Lp̂)

∣∣∣{V̂−
L

(
ẐL(d

∗,j∗L),d
∗,j∗L,γ

∗
L

)
≤
√
n(̃ℓd∗,j∗L+ℓd∗,j∗Lp̂)

≤V̂+,H
L

(
ẐL(d

∗,j∗L),d
∗,j∗L,γ

∗
L,
√
n(̃ℓd∗,j∗L+ℓd∗,j∗Lp)

)
,V̂0

L

(
ẐL(d

∗,j∗L),d
∗,j∗L,γ

∗
L

)
≥0
}
,

where

V̂+,H
L (z,d,j,γ,µ)≡min

{
V̂+
L (z,d,j,γ),µ+ĉ1−β,L

√
Σ̂L,dJL+j

}
.

Similarly,

√
nÛ(d̂)

∣∣∣{d̂=d∗,ĵU(d̂)=j∗U ,γ̂U(d̂)=γ∗U ,
√
n(ũd̂,̂jU(d̂)+ud̂,̂jU(d̂)p)≤ÛP

1−β(d̂)
}

∼
√
n(ũd∗,j∗U+ud∗,j∗U p̂)

∣∣{V̂−,H
U

(
ẐU(d

∗,j∗U),d
∗,j∗U ,γ

∗
U ,
√
n(ũd∗,j∗U+ud∗,j∗Up)

)
≤
√
n(ũd∗,j∗U+ud∗,j∗U p̂)≤V̂+

U

(
ẐU(d

∗,j∗U),d
∗,j∗U ,γ

∗
U

)
,V̂0

U

(
ẐU(d

∗,j∗U),d
∗,j∗U ,γ

∗
U

)
≥0
}
,

where

V̂−,H
U (z,d,j,γ,µ)≡max

{
V̂−
U (z,d,j,γ),µ−ĉ1−β,U

√
Σ̂U,dJU+j

}
.
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Since the distribution of
√
n(̃ℓd∗,j∗L+ℓd∗,j∗Lp̂) can be approximated byN (

√
n(̃ℓd∗,j∗L+ℓd∗,j∗Lp),ℓd∗,j∗LΣℓ

′
d∗,j∗L

)

asymptotically and ẐL(d
∗,j∗L) is asymptotically independent, we again work with the truncated

normal distribution to compute a hybrid probabilistic lower bound for
√
nL(d̂): for 0<β<α<1,

define L̂(d)Hα to solve

FTN

(√
n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p̂);µ,ℓd,̂jL(d)Σ̂ℓ

′
d,̂jL(d)

∣∣∣V̂−
L

(
ẐL(d,ĵL(d)),d,ĵL(d),γ̂L(d)

)
,

V̂+,H
L

(
ẐL(d,ĵL(d)),d,ĵL(d),γ̂L(d),µ

))
=
1−α

1−β

in µ. Similarly, define Û(d)Hα to solve

FTN

(√
n(ũd,̂jU(d)+ud,̂jU(d)p̂);µ,ud,̂jU(d)Σ̂u

′
d,̂jU(d)

∣∣∣V̂−,H
U

(
ẐU(d,ĵU(d)),d,ĵU(d),γ̂U(d),µ

)
,

V̂+
U

(
ẐU(d,ĵU(d)),d,ĵU(d),γ̂U(d)

))
=
1−α

1−β

in µ.

Here, L̂(d̂)Hα is an unconditionally valid probabilistic lower bound for L(d̂) and Û(d̂)H1−αis an

unconditionally valid probabilistic upper bound forU(d̂). Combining these two confidence bounds at

appropriate levels yields an unconditional CI for the identified interval [L(d̂),U(d̂)] of the selected d̂,

(n−1/2L̂(d̂)Hα1
,n−1/2Û(d̂)H1−α2

), (5.4)

with uniformly correct asymptotic coverage when d̂ is selected from the data according to Assump-

tions 3.2 and 3.3.

Theorem 5.3. Suppose Assumptions 3.1–3.6 hold. Then, for any 0<α1,α2<1/2,

liminf
n→∞

inf
P∈Pn

P
(
[L(d̂),U(d̂)]⊆

(
n−1/2L̂(d̂)Hα1

,n−1/2Û(d̂)H1−α2

))
≥1−α1−α2.
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6 Reality Check Power Comparison

To our knowledge, the CIs proposed in this paper are the first with proven asymptotic validity

for interval-identified parameters selected from the data. Therefore, we have no existing inference

method to compare the performance of our CIs to when the interval-identified parameter is

data-dependent. However, as discussed in Section 3 above, our inference framework covers cases

for which the interval-identified parameter is chosen a priori. For these special cases, there is a

large literature on inference on partially-identified parameters or their identified sets that can

be applied to form CIs. Although these special cases are not of primary interest for this paper,

in this section we compare the performance of our proposed inference methods to one of the

leading inference methods in the partial identification literature as a “reality check” on whether

our proposed methods are reasonably informative.

In particular, we compare the power of the test implied by our hybrid CI (i.e., a test that rejects

when the value of the parameter under the null hypothesis lies outside of the hybrid CI) to the power

of the hybrid test of Andrews et al. (2023), which applies to a general class of moment-inequality

models. When d is chosen a priori and the parameter p is equal to a vector of moments of underlying

data, Assumption 3.1 implies that L(d)≤W(d)≤U(d) can be written as a set of (unconditional)

moment inequalities, a special case of the general framework of that paper. Of the many papers on

inference for moment inequalities, we choose the test of Andrews et al. (2023) for comparison for two

reasons: (i) it has been shown to be quite competitive in terms of power and (ii) it is also based upon

a (different) inference method that is a hybrid between conditional and projection-based inference.

We compare the power of tests on the ATE in the same setting of the Manski bounds

example of Section 2, strengthening the mean independence assumption E[Y (d)|Z] = E[Y (d)]

to full statistical independence (Y (1), Y (0)) ⊥ Z and using the sharp bounds on the ATE
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W(1)−W(0)=E[Y (1)]−E[Y (0)] derived by Balke and Pearl (1997, 2011):

L=max



p111+p000−1

p110+p001−1

p110−p111−p101−p010−p100

p111−p110−p100−p011−p101

−p011−p101

−p010−p100

p001−p011−p101−p010−p000

p000−p010−p100−p011−p001


and

U=min



1−p011−p100

1−p010−p101

−p010+p011+p001+p110+p000

−p011+p111+p001+p010+p000

p111+p001

p110+p000

−p101+p111+p001+p110+p100

−p100+p110+p000+p111+p101



.

For a sample size of n = 100, we generated p̂ from a N (p,Σ) distribution.5 Figure 1 plots

the power curves of the hybrid Andrews et al. (2023) test and the test implied by our hybrid

CI for three different DGPs within the framework of this example, as well as the true iden-

tified interval for the ATE. The DGP corresponding to p = (.08, .001, .001, .073, .139, .473)′ is

calibrated to the probabilities estimated by Balke and Pearl (2011) in the context of a treat-

ment for high-cholesterol (specifically, by the drug cholestyramine).6 The DGP corresponding to

p=(.25,.25,.25,.25,.25,.25)′ generates completely uninformative bounds for the ATE. And the DGP

5Note that in this problem, the value of Σ is implied by the value of p.
6Balke and Pearl (2011) estimate p to equal (.081,0,0,.073,.139,.473)′. If the true DGP is set exactly equal

to this, Assumption 3.6 would be violated. We therefore slightly alter the calibrated probabilities.

32



-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
Hypothesiszed ATE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ow

er

Hybrid CI-Based
ARP

-1 -0.5 0 0.5 1
Hypothesiszed ATE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ow

er

Hybrid CI-Based
ARP

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
Hypothesiszed ATE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ow

er

Hybrid CI-Based
ARP

Figure 1: Power curves for hybrid Andrews et al. (2023) test (red) and test implied by hybrid CI
(blue) of ATE using bounds from Balke and Pearl (1997, 2011) for p=(.08,.001,.001,.073,.139,.473)′ (left),
p=(.25,.25,.25,.25,.25,.25)′ (middle) and p=(.01,.44,.01,.01,.01,.54)′ (right) and n=100. The vertical
lines illustrate the true identified interval in each of these settings.

corresponding to p=(.01,.44,.01,.01,.01,.54)′ generates quite informative bounds.

We can see that overall, the power of the test implied by our hybrid CI is quite competitive with

that of Andrews et al. (2023). Interestingly, it appears that our test tends to be more powerful than

that of Andrews et al. (2023) when the true ATE is larger than the hypothesized one, which can be

seen from the hypothesized ATE lying to the left of the lower bound of the identified interval, and

vice versa. Although the main innovation of our inference procedures is really their validity in the

presence of data-dependent selection, the exercise of this section is reassuring for the informativeness

of the procedures we propose as they are quite competitive in the absence of selection.

7 Finite Sample Performance of Confidence Intervals

Moving now to a context in which the object of interest is selected from the data, we compare the

finite sample performance of our conditional, projection and hybrid CIs again in the setting of the

Manski bounds example of Section 2. In this case, we are interested in inference on the average

potential outcomeW(d̂) forW(d)=E[Y (d)], where interest arises either in the average potential out-

come for treatment (d̂=1) or control (d̂=0) depending upon which has the largest estimated lower

bound: d̂=argmaxd∈{0,1}L̂(d). This form of d̂ corresponds to case 1. of Proposition 3.1 and we use

the corresponding result of the proposition to specify γ̂L(d̂) and γ̂U(d̂) in the construction of the con-

ditional and hybrid CIs. We report analogous simulation results for the dynamic treatment regime

example in Appendix B with p̂ generated from a multinomial, rather than normal, distribution.

For the same DGPs as in Section 6, we compute the unconditional coverage frequencies of
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the conditional, projection and hybrid CIs as well as that of the conventional CI based upon the

normal distribution. These coverage frequencies are reported in Table 1. Consistent with the

asymptotic results of Theorems 5.1, 5.2 and 5.3, the conditional, projection and hybrid CIs all

have correct coverage for all DGPs and the modest sample size of n=100. Also consistent with

Theorem 5.2, we note that the projection CI tends to be conservative with true coverage above

the nominal level of 95%. Finally, we note that the conventional CI can substantially under-cover,

consistent with the discussion in Section 2.1.

Table 1: Unconditional Coverage Frequencies

Confidence Interval
Data-Generating Process Conv Cond Proj Hyb
p=(.08,.001,.001,.073,.139,.473)′ 0.95 0.95 0.99 0.95
p=(.25,.25,.25,.25,.25,.25)′ 0.85 0.95 0.96 0.95
p=(.01,.44,.01,.01,.01,.54)′ 0.95 0.95 0.99 0.95

This table reports unconditional coverage frequencies for the potential outcome selected by maximizing the
estimated lower bound on the potential outcomes of either treatment or control, all evaluated at the nominal
coverage level of 95%. Coverage frequencies are reported for conventional (“Conv”), conditional (“Cond”),
projection (“Proj”) and hybrid (“Hyb”) CIs for a sample size of n=100.

Next, we compare the length quantiles of the CIs with correct coverage for these same DGPs.

Figure 2 plots the ratios of the 5th, 25th, 50th, 75th and 95th quantiles of the length of the conditional,

projection and hybrid CIs relative to those same length quantiles of the projection CI. As can

be seen from the figure, the conditional CI has the tendency to become very long, especially at

high quantile levels for certain DGPs, whereas the hybrid CI tends to perform the best overall

by limiting the worst-case length performance of the conditional CI relative to the projection CI.

Relative to projection, the hybrid CI enjoys length reductions of 20-30% for favorable DGPs while

only showing length increases of 5-10% for unfavorable DGPs.

8 Application to Dynamic Treatment Choice

We revisit Han’s (2024) application. Han (2024) considers schooling and post-school training as a

sequence of treatments and estimates the partial ordering of treatment regimes and the identified

set of the optimal regime. Han (2024) considers the Job Training Partnership Act (JTPA) program
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Figure 2: Ratios of CI length quantiles relative to those of the projection CI for the conditional CI (red),
projection CI (black) and hybrid CI (blue) of the average potential outcome selected by maximizing the
estimated lower bound when p=(.08,.001,.001,.073,.139,.473)′ (left), p=(.25,.25,.25,.25,.25,.25)′ (middle)
and p=(.01,.44,.01,.01,.01,.54)′ (right) and n=100.

for post-school training and a high school diploma (HS) (or its equivalents) for schooling. He

considers high school diplomas rather than college degrees because the former is more relevant for

the disadvantaged population of Title II of the JTPA program. In this paper, we are interested in

conducting inference on welfare—earnings—evaluated at the regime chosen in a data-driven manner.

The dataset is constructed by combining the JTPA data with the US Census and the National

Center for Education Statistics (NCES). The following is the set of variables: Y2 is an indicator for

whether the individual is above or below the median of 30-month earnings, D2 is an indicator for

whether the individual participated in the job training program, Z2 is an indicator for whether the

individual was (randomly) assigned to the program, Y1 is an indicator for whether the individual

is above or below the 80th percentile of pre-program earnings, D1 is an indicator for whether the

individual received a HS diploma or GED, and Z1 is an indicator for the density of high schools

(Neal, 1997).7 The number of individuals in the sample is 9,223. We assume Z⊥(Y (d),D(z)).

Following Han (2024), consider the dynamic treatment regime δ(·)≡(δ1,δ2(·))∈D∗, where δ1

indicates receipt of a HS diploma and δ2(y1) indicates receipt of the job training program given

pre-program earning type y1. By having δ2 as a function of y1, the allocation decision adaptively

incorporates information about unobserved characteristics of the individuals reflected in the response

Y1 to allocation δ1. The counterfactual earning type in the terminal stage given δ(·) is defined as

Y2(δ(·))≡Y2(δ1,δ2(Y1(δ1))), where Y1(δ1) is the counterfactual earning type in the first stage given

7Specifically, Z1=1 if the number of high schools per square mile in each training site (e.g. a city) is above 35.
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Regime # δ1 δ2(1,δ1) δ2(0,δ1)

1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

Table 2: Dynamic Regimes δ(·) When T=2 and δ1(x)=δ1

δ1. All possible regimes inD∗ are listed in Table 2. Suppose δ∗ is the optimal regime that maximizes

the average terminal earning W(δ)≡E[Y2(δ(·))] as welfare. We are interested in constructing CIs

for W(δ) evaluated at δ= δ̂, where δ̂ is calculated from the estimated identified set of δ∗.

We first derive analytical bounds on the welfare under no additional assumptions. The

distribution of data is expressed as the vector p of the form

p≡{P[D1=d1,Y1=y1,D2=d2,Y2=y2|Z1=z1,Z2=z2]}(d1,y1,d2,y2,z1,z2).

The welfare W(δ)≡E[Y2(δ(·))] can be expressed as

P[Y2(δ(·))=1]=
∑

y1∈{0,1}

P[Y2(δ1,δ2(Y1(δ1),δ1))=1|Y1(δ1)=y1]P[Y1(δ1)=y1]

=
∑

y1∈{0,1}

P[Y1(δ1)=y1,Y2(δ1,δ2(y1,δ1))=1]

by the law of iterated expectation. To derive bounds on W(δ), first consider bounds on

Wy(d)≡P[Y (d)=y] for d≡(d1,d2), which are Ly(d)≡maxzLy(d;z) and Uy(d)≡minzUy(d;z) where

Ly(d;z)≡P[Y =y,D=d|Z=z], (8.1)

Uy(d;z)≡P[Y =y,D=d|Z=z]+P[Y1=y1,D1=d1,D2=1−d2|Z=z]

+P[D1=1−d1,D2=d2|Z=z]+P[D1=1−d1,D2=1−d2|Z=z]

=P[Y =y,D=d|Z=z]+P[Y1=y1,D1=d1,D2=1−d2|Z=z]
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+P[D1=1−d1|Z=z]. (8.2)

Using these bounds, we can calculate bounds on

W(δ)≡P[Y2(δ(·))=1]=
∑

y1∈{0,1}

P[Y1(δ1)=y1,Y2(δ1,δ2(y1,δ1))=1]

=P[Y1(δ1)=1,Y2(δ1,δ2(1,δ1))=1]+P[Y1(δ1)=0,Y2(δ1,δ2(0,δ1))=1],

which are

L(δ)≡max
z

L(1,1)(δ1,δ2(1,δ1);z)+max
z

L(0,1)(δ1,δ2(0,δ1);z), (8.3)

U(δ)≡min
z
U(1,1)(δ1,δ2(1,δ1);z)+min

z
U(0,1)(δ1,δ2(0,δ1);z). (8.4)

For example, for the fourth regime in Table 2,

P[Y2(δ(4)(·))=1]=
∑

y1∈{0,1}

P[Y1(δ1)=y1,Y2(δ1,δ2(y1,δ1))=1]

=P[Y1(1)=1,Y2(1,δ2(1,1))=1]+P[Y1(1)=0,Y2(1,δ2(0,1))=1]

=P[Y1(1)=1,Y2(1,1)=1]+P[Y1(1)=0,Y2(1,0)=1]

is bounded by

L(δ(4))≡max
z

L(1,1)(1,1;z)+max
z

L(0,1)(1,0;z),

U(δ(4))≡min
z
U(1,1)(1,1;z)+min

z
U(0,1)(1,0;z).

Since maxzL(z)+maxzL̃(z)=maxz,z̃

{
L(z)+L̃(z̃)

}
for any functions L and L̃, we can express

(8.3) as

L(δ)=max
z,z̃

{
L(1,1)(δ1,δ2(1,δ1);z)+L(0,1)(δ1,δ2(0,δ1);z̃)

}
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≡max
z,z̃

L(δ;z,z̃),

and, analogously, (8.4) as U(δ)≡maxz,z̃U(δ;z,z̃). Therefore the bounds satisfy Assumption 3.1.

Now, consider choosing a single optimal regime that maximizes L(δ). Then, for example, we can

show that the following event can be characterized as a polyhedron in the space of p

{δ(4)=argmax
δ

L(δ) and L(δ(4);z
∗,z̃∗)≥L(δ(4);z,z̃) for all z,z̃},

where (z∗, z̃∗) = argmaxz,z̃L(δ(4);z,z̃). Note that this event is equivalent to {L(δ(4);z∗, z̃∗) ≥

L(δ;z,z̃) for all δ and z,z̃} or equivalently,

{L(δ;z,z̃)−L(δ(4);z
∗,z̃∗)≤0 for all δ and z,z̃}. (8.5)

Note that each L(δ;z,z̃) is a linear combination of the elements in p as shown in (8.1) and (8.2).

More formally, we can show that (8.5) is equivalent to ALp≤0 for some AL. Note that

L(δ;z,z̃)=L(1,1)(δ1,δ2(1,δ1);z)+L(0,1)(δ1,δ2(0,δ1);z̃)

=A1(δ;z)p+A0(δ;z̃)p

for some row vectors A1 and A0 because, for δ=δ(4),

L(1,1)(δ1,δ2(1,δ1);z)=L(1,1)(1,1;z)=P[Y =(1,1),D=(1,1)|Z=z]

=P[D1=1,Y1=1,D2=1,Y2=1|Z=z],

L(0,1)(δ1,δ2(0,δ1);z̃)=L(0,1)(1,0;z̃)=P[Y =(0,1),D=(1,0)|Z= z̃]

=P[D1=1,Y1=0,D2=0,Y2=1|Z=z].

An analogous argument can be applied to U(δ;z,z̃). This characterization implies that Assumption

3.2 holds in this setting. Also, this characterization facilitates the CI calculations in Sections 5.1–5.2.

38



Table 3 reports 95% CIs for the welfare selected by maximizing the estimated lower bound

on the welfare. Recall that the welfare is the probability that the 30-month earnings is above the

median. It is notable that the hybrid CI is shorter than the conventional CI even though the

latter does not have (uniformly) correct coverage. We can also see that although the hybrid CI

is not quite contained in the projection CI, it is somewhat shorter. Finally, the conditional CI

has infinite length in this example, demonstrating an extreme example of how the conditional CIs

can be uninformatively long (see Kivaranovic and Leeb, 2021).

Table 3: Confidence Intervals

Conv Cond Proj Hyb
(0.32, 0.78) (0.28, ∞) (0.29, 0.79) (0.28, 0.73)

This table reports 95% CIs for the welfare selected by maximizing the estimated lower bound on the welfare:
conventional (“Conv”), conditional (“Cond”), projection (“Proj”) and hybrid (“Hyb”) CIs.

Appendix B contains Monte Carlo simulated coverage frequencies of the CIs with various DGPs

in the setting of this application. Overall, the findings are consistent with the ones in Section 7.
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A Additional Examples

This appendix contains examples in addition to Section 4, showing how they fall under the general

framework of this paper.

A.1 Revisiting Manski Bounds with a Continuous Outcome

We revisit the example with Manski bounds in Section 2, now allowing for a continuous outcome

with bounded support. Let Y ∈ [yl,yu] be continuously distributed and assume E[Y (d)|Z]=E[Y (d)]

for d∈{0,1}. Note that the sharp bounds on W(d)≡E[Y (d)] are

L(d)≡ max
z∈{0,1}

{
E[Y |D=d,Z=z]P(D=d|Z=z)+(1−P(D=d|Z=z))yl

}
,

U(d)≡ min
z∈{0,1}

{E[Y |D=d,Z=z]P(D=d|Z=z)+(1−P(D=d|Z=z))yu},

and the sharp bounds on the ATE are L(1, 0) and U(1, 0) for L(d̃, d) ≡ L(d̃) − U(d) and

U(d̃,d)≡U(d̃)−L(d). We can define the identified set D∗⊆D of optimal treatments as

D∗≡
{
d∈{0,1} :L(d̃,d)≤0,∀d̃∈{0,1}

}
=

{
d∈{0,1} : max

d̃∈{0,1}
L(d̃)≤U(d)

}
.

Then, Assumption 3.1 holds with

p=



E[Y |D=0,Z=1]P(D=0|Z=1)

E[Y |D=0,Z=0]P(D=0|Z=0)

E[Y |D=1,Z=1]P(D=1|Z=1)

E[Y |D=1,Z=0]P(D=1|Z=0)

P(D=0|Z=1)

P(D=0|Z=0)


and ℓ̃0,j=yl and ℓ̃1,j=0 for j∈{0,1} and

ℓ0,0=( 0 1 0 0 0 −yl ), ℓ0,1=( 1 0 0 0 −yl 0 ),
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ℓ1,0=( 0 0 0 1 0 yl ), ℓ1,1=( 0 0 1 0 yl 0 )

and symmetrically for ũd,j and ud,j. For L̂(d) and Û(d) being the sample counterparts of L(d)

and U(d) upon replacing p with p̂, Assumption 3.2 holds by the argument in the paragraph after

Assumption 3.2 since

D̂=

{
d∈{0,1} : max

d̃∈{0,1}
L̂(d̃)≤Û(d)

}
.

For Assumption 3.4, let [yl,yu]=[0,1] for simplicity. Note that

E[Y |D=d,Z=z]P(D=d|Z=z)=P(D=d|Z=z)−
∫ 1

0

P(Y ≤y,D=d|Z=z)dy

=P(D=d|Z=z)−E

[∫ 1

0

1(Y ≤y,D=d)dy

∣∣∣∣Z=z

]
,

where the first equality uses integration by parts. Therefore, we can estimate the elements of p

by sample means, forming p̂.

A.2 Empirical Welfare Maximization via Linear Programming

Continuing from Section 4.2, we show how sharp bounds on W(δ) can be computed using linear

programming. This can be done by extending the example in Section 4.1 with binary Y . Again,

let X ={x1,...,xK}. Let q(e|x)≡P(ε=e|X=x). In analogy,

E[Y (d)|X=x]=P[Y (d)=1|X=x]=
∑

e:y(d)=1

q(e|x)≡Adq(x),

where q(x) is a vector with entries q(e|x) across e, and

P[Y =1,D=d|Z=z,X=x]=P[Y (d)=1,D(z)=d|X=x]

=
∑

e:y(d)=1,d(z)=d

P[ε=e|X=x]≡Bd,zq(x),
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where the first equality holds by the independence assumption in the previous section. Then the

constraint for each x∈X becomes

Bq(x)=p(x),

where p(x) is the vector of p(y,d|z,x)’s across (y,d,z) fixing x. Now we can construct a linear

program for welfare:

W(δ)=E[δ(X)∆(X)]=
∑
xk∈X

p(xk)δ(xk)∆(xk)

=
∑
xk∈X

p(xk)δ(xk)(A1−A0)q(xk).

Therefore W(δ) satisfies the structure of Section 4.1 and by analogous arguments, Assumptions

3.1, 3.2 and 3.4 hold.

B Additional Monte Carlo Simulations

In analogy with Section 7, we compute the unconditional coverage frequencies of the conditional,

projection and hybrid CIs for DGPs in the dynamic treatment regime setting of the empirical

application (Section 8). In particular, we consider two DGPs: DGP 1 generates p̂ from a multi-

nomial distribution based on pd1,y1,d2,y2|z1,z2 =0.25 for (d1,y1,d2,y2)∈{(1,0,0,1),(1,1,1,1)} and all

(z1,z2) and pd1,y1,d2,y2|z1,z2 = 0.0357 for all other (d1,y1,d2,y2) and all (z1,z2); DGP 2 generates

p̂ based on pd1,y1,d2,y2|z1,z2 = 0.375 for (d1,y1,d2,y2) ∈ {(1,0,0,1),(1,1,1,1)} and all (z1,z2) and

pd1,y1,d2,y2|z1,z2 =0.0179 for all other (d1,y1,d2,y2) and all (z1,z2). The coverage frequencies of the

CIs are reported in Table 4. Again, consistent with the asymptotic results of Theorems 5.1–5.3,

the conditional, projection and hybrid CIs all have correct coverage for all DGPs and the sample

size of n=1000. Also, the projection CI tends to be conservative with true coverage above the

nominal level of 95%, and the conventional CI can substantially under-cover.

Figure 3 plots the ratios of the 5th, 25th, 50th, 75th and 95th quantiles of the length of the

conditional, projection and hybrid CIs relative to those same length quantiles of the projection
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Table 4: Unconditional Coverage Frequencies

Confidence Interval
Data-Generating Process Conv Cond Proj Hyb
DGP 1 0.66 0.94 0.99 0.94
DGP 2 0.88 0.94 0.99 0.95

This table reports unconditional coverage frequencies for the potential outcome selected by maximizing the
estimated lower bound on the potential outcomes of either treatment or control, all evaluated at the nominal
coverage level of 95%. Coverage frequencies are reported for conventional (“Conv”), conditional (“Cond”),
projection (“Proj”) and hybrid (“Hyb”) CIs for a sample size of n=1000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Quantile

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Le
ng

th
 R

at
io

Hybrid CI
Conditional CI
Projection CI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Quantile

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Le
ng

th
 R

at
io

Hybrid CI
Conditional CI
Projection CI

Figure 3: Ratios of CI length quantiles relative to those of the projection CI for the conditional CI
(red), projection CI (black) and hybrid CI (blue) of the average potential outcome selected by maximizing
the estimated lower bound for DGP 1 (left) and DGP 2 (right) and n=100.

CI. The figure shows that the conditional CI has the tendency to become very long, especially

at high quantile levels for certain DGPs, whereas the hybrid CI tends to perform the best overall

by limiting the worst-case length performance of the conditional CI relative to the projection CI.

Relative to projection, the hybrid CI enjoys length reductions of 10-20% for favorable DGPs while

showing length increases of 5-10% for unfavorable DGPs.

C Technical Appendix

Proof of Proposition 3.1: Assumption 3.3 is trivially satisfied by supposition. For Assumption

3.2, note that d∈D̂ is equivalent to

wLL̂(d)+wUÛ(d)≥wLL̂(d
′)+wUÛ(d

′)
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for all d′∈{d0,...,dK} or

wL· max
j∈{1,...,JL}

{ℓ̃d,j+ℓd,jp̂}+wu· min
j∈{1,...,JU}

{ũd,j+ud,jp̂}

≥wL· max
j∈{1,...,JL}

{ℓ̃d′,j+ℓd′,jp̂}+wu· min
j∈{1,...,JU}

{ũd′,j+ud′,jp̂}

for all d′∈{d0,...,dK}. Therefore, we have the following.

1. When wU = 0, d ∈ D̂ and ĵL(d) = j∗L if and only if ℓ̃d,j∗L + ℓd,j∗Lp̂ ≥ ℓ̃d′,j + ℓd′,jp̂ for all

d′∈{d0,...,dK} and j∈{1,...,JL}. Similarly, when wU =0, d∈D̂, ĵU(d)=j∗U and ĵL(d)=j∗L

if and only if ℓ̃d,j∗L + ℓd,j∗Lp̂ ≥ ℓ̃d′,j + ℓd′,jp̂ for all d′ ∈ {d0, ... ,dK} and j ∈ {1, ... ,JL} and

AU(d,j
∗
U)p̂≤cU(d,j

∗
U). Thus,

AL(d,j∗L,γ
∗
L)=



ℓ0,1−ℓd,j∗L
...

ℓ0,JL−ℓd,j∗L
...

ℓT,1−ℓd,j∗L
...

ℓT,JL−ℓd,j∗L



, cL(d,j∗L,γ
∗
L)=



ℓ̃d,j∗L−ℓ̃0,1
...

ℓ̃d,j∗L−ℓ̃0,JL
...

ℓ̃d,j∗L−ℓ̃T,1
...

ℓ̃d,j∗L−ℓ̃T,JL



,

AU(d,j∗U ,γ
∗
U)=

 AL(d,j∗L,γ
∗
L)

AU(d,j
∗
U)

, cU(d,j∗U ,γ
∗
U)=

 cL(d,j∗L,γ
∗
L)

cU(d,j
∗
U)

,

where AU(d,j)=(ud,j−ud,1,...,ud,j−ud,JL)
′ and cU(d,j)=(ũd,1−ũd,j,...,ũd,JL−ũd,j)

′.

2. When wL = 0, d ∈ D̂, (ĵU(0),...,ĵU(T))
′ = (j∗U(0),...,j

∗
U(T))

′ and ĵL(d) = j∗L if and only if

ũd,j∗U(d)+ud,j∗U(d)p̂≥ ũd′,j∗U(d′)+ud′,j∗U(d′)p̂ for all d′∈{d0,...,dK}, AU(d
′,j∗U(d

′))p̂≤cU(d
′,j∗U(d

′))

for all d′ ∈ {d0, ... ,dK} and AL(d,j
∗
L)p̂ ≤ cL(d,j

∗
L). Similarly, when wL = 0, d ∈ D̂ and

(ĵU(0),...,ĵU(T))
′=(j∗U(0),...,j

∗
U(T))

′ if and only if ũd,j∗U(d)+ud,j∗U(d)p̂≥ ũd′,j∗U(d′)+ud′,j∗U(d′)p̂ and
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AU(d
′,j∗U(d

′))p̂≤cU(d
′,j∗U(d

′)) for all d′∈{d0,...,dK}. Thus,

AU(d,j∗U ,γ
∗
U)=



u0,j∗U(0)−ud,j∗U(d)

...

uT,j∗U(T)−ud,j∗U(d)

AU(0,j
∗
U(0))

...

AU(T,j
∗
U(T))


, cU(d,j∗U ,γ

∗
U)=



ũd,j∗U(d)−ũ0,j∗U(0)

...

ũd,j∗U(d)−ũT,j∗U(T)

cU(0,j
∗
U(0))

...

cU(T,j
∗
U(T))


,

AL(d,j∗L,γ
∗
L)=

 AU(d,j∗U ,γ
∗
U)

AL(d,j
∗
L)

, cL(d,j∗L,γ
∗
L)=

 cU(d,j∗U ,γ
∗
U)

cL(d,j
∗
L)

,

where AL(d,j)=(ℓd,1−ℓd,j,...,ℓd,JL−ℓd,j)
′ and cL(d,j)=(̃ℓd,j−ℓ̃d,1,...,̃ℓd,j−ℓ̃d,JL)

′.

3. When wL,wU ≠0, d∈D̂ and

(ĵL(0),...,ĵL(T),ĵU(0),...,ĵU(T))
′=(j∗L(0),...,j

∗
L(T),j

∗
U(0),...,j

∗
U(T))

′

if and only if

wL(̃ℓd,j∗L(d)+ℓd,j∗L(d)p̂)+wU(ũd,j∗U(d)+ud,j∗U(d)p̂)

≥wL(̃ℓd′,j∗L(d′)+ℓd′,j∗L(d′)p̂)+wU(ũd′,j∗U(d′)+ud′,j∗U(d′)p̂),
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AU(d
′,j∗U(d

′))p̂≤cU(d
′,j∗U(d

′)) and AL(d
′,j∗L(d

′))p̂≤cL(d
′,j∗L(d

′)) for all d′∈{d0,...,dK}. Thus,

AL(d,j∗L,γ
∗
L)=AU(d,j∗U ,γ

∗
U)=



wL(ℓ0,j∗L(0)−ℓd,j∗L(d))+wU(u0,j∗L(0)−ud,j∗L(d))

...

wL(ℓT,j∗L(T)−ℓd,j∗L(d))+wU(uT,j∗L(T)−ud,j∗L(d))

AL(0,j
∗
L(0))

...

AL(T,j
∗
L(T))

AU(0,j
∗
U(0))

...

AU(T,j
∗
U(T))



cL(d,j∗L,γ
∗
L)=cU(d,j∗U ,γ

∗
U)=



wL(̃ℓd,j∗L(d)−ℓ̃0,j∗L(0))+wU(ũd,j∗L(d)−ũ0,j∗L(0))

...

wL(̃ℓd,j∗L(d)−ℓ̃T,j∗L(T))+wU(ũd,j∗L(d)−ũT,j∗L(T))

cL(0,j
∗
L(0))

...

cL(T,j
∗
L(T))

cU(0,j
∗
U(0))

...

cU(T,j
∗
U(T))



. ■

Proof of Proposition 4.1: Assumption 3.3 is trivially satisfied by supposition. For Assumption

3.2, note that

1. ki=k∗i and k̄i= k̄∗i if and only if (uk∗i
−uk)p̂≤ ũk−ũk∗i

+(uk−uk∗i
)εi for all k=1,...,Ju and

(ℓk−ℓk̄∗i )p̂≤ ℓ̃k̄∗i −ℓ̃k+(ℓk̄∗i −ℓk)εi for all k=1,...,JL;

2. sℓi=− and sui =− if and only if ℓk̄ip̂≤−ℓ̃k̄i−ℓk̄iεi and uki
p̂≤−ũki

−uki
εi;

3. d̂=1 if and only if
∑

i∈m(−uki
p̂)+

∑
i∈m̄(−ℓk̄ip̂)≤

∑
i∈m(ũki

+uki
εi)+

∑
i∈m̄(̃ℓk̄i+ℓk̄iεi),
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where m={i∈{1,...,m} :sui =+} and m̄={i∈{1,...,m} :sℓi=+}. ■

Lemma C.1. Suppose Assumptions 3.1, 3.2 and 3.4–3.6 hold. Then, for any 0<α<1,

lim
n→∞

sup
P∈Pn

∣∣∣P(√n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα

∣∣∣d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)
−α
∣∣∣

·P
(
d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)
=0, (C.1)

lim
n→∞

sup
P∈Pn

∣∣∣P(√n(ũd,̂jU(d)+ud,̂jU(d)p)≤Û(d)Cα

∣∣∣d∈D̂,ĵU(d)=j∗U ,γ̂U(d)=γ∗U

)
−α
∣∣∣

·P
(
d∈D̂,ĵU(d)=j∗U ,γ̂U(d)=γ∗U

)
=0, (C.2)

for all d∈{d0,...,dK}, j∗L ∈{1,...,JL}, j∗U ∈{1,...,JU}, γ∗L in the support of γ̂L(d) and γ∗U in the

support of γ̂U(d).

Proof: The proof of (C.2) is nearly identical to the proof of (C.1) so that we only show the

latter. Lemma A.1 of Lee et al. (2016) implies that FTN(t;µ,σ
2,v−,v+) is strictly decreasing in

µ so that
√
n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα is equivalent to

FTN

(√
n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p̂);

√
n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p),ℓd,̂jL(d)Σ̂ℓ

′
d,̂jL(d)

∣∣∣V̂−
L

(
ẐL(d,ĵL(d))

)
,

V̂+
L

(
ẐL(d,ĵL(d))

))
≥1−α,

where we use V̂−
L

(
ẐL(d,ĵL(d))

)
and V̂+

L

(
ẐL(d,ĵL(d))

)
as shorthand for

V̂−
L

(
ẐL(d,ĵL(d)),d,ĵL(d),γ̂L(d)

)

and

V̂+
L

(
ẐL(d,ĵL(d)),d,ĵL(d),γ̂L(d)

)
.

In addition, Lemma 2 of McCloskey (2024) implies

FTN

(√
n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p̂);

√
n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p),ℓd,̂jL(d)Σ̂ℓ

′
d,̂jL(d)

∣∣∣V̂−
L

(
ẐL(d,ĵL(d))

)
,

V̂+
L

(
ẐL(d,ĵL(d))

))
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=FTN

(
ℓd,̂jL(d)

√
n(p̂−p);0,ℓd,̂jL(d)Σ̂ℓ

′
d,̂jL(d)

∣∣∣V̂−
L

(
Ẑ∗

L(d,ĵL(d))
)
,V̂+

L

(
Ẑ∗

L(d,ĵL(d))
))

,

where Ẑ∗
L(d,j)=

√
np̂−b̂L(d,j)ℓd,j

√
n(p̂−p). Therefore,

√
n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα is equivalent

to

FTN

(
ℓd,̂jL(d)

√
n(p̂−p);0,ℓd,̂jL(d)Σ̂ℓ

′
d,̂jL(d)

∣∣∣V̂−
L

(
Ẑ∗

L(d,ĵL(d))
)
,V̂+

L

(
Ẑ∗

L(d,ĵL(d))
))

≥1−α. (C.3)

Under Assumptions 3.1, 3.4 and 3.6, a slight modification of Lemma 5 of Andrews et al. (2024)

implies that to prove (C.1), it suffices to show that for all subsequences {ns}⊂{n}, {Pns}∈×∞
n=1Pn

with

1. Σ(Pns)→Σ∗∈S={Σ:1/λ̄≤λmin(Σ)≤λmax(Σ)≤ λ̄},

2. Pns

(
d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)
→q∗∈(0,1], and

3.
√
nspns(Pns)→p∗∈ [0,∞]dim(ξ)

for some finite λ̄, we have

lim
n→∞

Pns

(√
ns(̃ℓd,̂jL(d)+ℓd,̂jL(d)p(Pns))≤L̂(d)Cα

∣∣∣d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)
=α

for all d∈{d0,...,dK}, j∗L ∈{1,...,JL} and γ∗L in the support of γ̂L(d). Let {Pns} be a sequence

satisfying conditions 1.–3. Under {Pns}, (
√
ns(p̂−p(Pns)),Σ̂)

d−→(ξ∗,Σ∗) by Assumptions 3.4 and

3.5, where ξ∗ ∼ N (0,Σ∗). Note that condition 2. implies
√
ns(c

L(d, j∗L, γ
∗
L)− AL(d, j∗L, γ

∗
L)p̂)

is asymptotically greater than zero with positive probability for all d ∈ {d0, ... , dK}, j∗L ∈

{1,...,JL} and γ∗L in the support of γ̂L(d) under {Pns} since {d ∈ D̂,ĵL(d) = j∗L,γ̂L(d) = γ∗L}=

{cL(d, j∗L, γ∗L)− AL(d, j∗L, γ
∗
L)p̂ ≥ 0} by Assumptions 3.1 and 3.2. Consequently, Assumption

3.4 and condition 3. imply
√
ns(c

L(d,j∗L,γ
∗
L)−AL(d,j∗L,γ

∗
L)p(Pns))→ ω(d,j∗L,γ

∗
L) > −∞ for all

d ∈ {d0, ... ,dK}, j∗L ∈ {1, ... ,JL} and γ∗L in the support of γ̂L(d). Thus, under Assumptions

3.1, 3.2 and 3.4–3.6, similar arguments to those used in the proof of Lemma 8 in Andrews

et al. (2024) show that for any d∈ {d0,...,dK}, j∗L ∈ {1,...,JL} and γ∗L in the support of γ̂L(d),
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(V̂−
L (Ẑ∗

L(d,j
∗
L)),V̂+

L (Ẑ∗
L(d,j

∗
L)))

d−→(V−,∗
L (d,j∗L,γ

∗
L),V

+,∗
L (d,j∗L,γ

∗
L)) under {Pns}, where

V−,∗
L (d,j∗L,γ

∗
L)= max

k:(AL(d,j∗L,γ
∗
L)bL(d,j

∗
L))k<0

(ω(d,j∗L,γ
∗
L))k−(AL(d,j∗L,γ

∗
L)(I−bL(d,j

∗
L)ℓd,j∗L)ξ

∗)k

(AL(d,j∗L,γ
∗
L)bL(d,j

∗
L))k

,

V+,∗
L (d,j∗L,γ

∗
L)= min

k:(AL(d,j∗L,γ
∗
L)bL(d,j

∗
L))k>0

(ω(d,j∗L,γ
∗
L))k−(AL(d,j∗L,γ

∗
L)(I−bL(d,j

∗
L)ℓd,j∗L)ξ

∗)k

(AL(d,j∗L,γ
∗
L)bL(d,j

∗
L))k

,

with bL(d,j)=Σ∗ℓ′d,j
(
ℓd,jΣ

∗ℓ′d,j
)−1

. This convergence is joint with that of (
√
ns(p̂−p(Pns)),Σ̂) so

that under {Pns},

(√
nsℓd,j∗L(p̂−p(Pns)),Σ̂,V̂−

L

(
Ẑ∗

L(d,j
∗
L)
)
,V̂+

L

(
Ẑ∗

L(d,j
∗
L)
))

d−→
(
ℓd,j∗Lξ

∗,Σ∗,V−,∗
L (d,j∗L,γ

∗
L),V

+,∗
L (d,j∗L,γ

∗
L)
)

(C.4)

for all d∈{d0,...,dK}, j∗L∈{1,...,JL} and γ∗L in the support of γ̂L(d).

Using (C.4) and the equivalence in (C.3), the remaining arguments to prove (C.1) are nearly

identical to those used in the proof of Proposition 1 of McCloskey (2024) and therefore omitted

for brevity. ■

Lemma C.2. Suppose Assumptions 3.1, 3.2 and 3.4–3.6 hold. Then, for any 0<α<1,

lim
n→∞

sup
P∈Pn

∣∣∣P(√n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα

∣∣∣d∈D̂
)
−α
∣∣∣·P(d∈D̂

)
=0,

lim
n→∞

sup
P∈Pn

∣∣∣P(√n(ũd,̂jU(d)+ud,̂jU(d)p)≤Û(d)Cα

∣∣∣d∈D̂
)
−α
∣∣∣·P(d∈D̂

)
=0,

for all d∈{d0,...,dK}.

Proof: The results of this lemma follow from Lemma C.1 since, e.g.,

lim
n→∞

sup
P∈Pn

∣∣∣P(√n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα

∣∣∣d∈D̂
)
−α
∣∣∣·P(d∈D̂

)
= lim

n→∞
sup
P∈Pn

∣∣∣P(√n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα ,d∈D̂
)
−α·P

(
d∈D̂

)∣∣∣
= lim

n→∞
sup
P∈Pn

∣∣∣∣∣∣
JL∑

j∗L=1

∑
γ∗L

[
P
(√

n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα ,d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)
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−α·P
(
d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)]∣∣∣
= lim

n→∞
sup
P∈Pn

∣∣∣∣∣∣
JL∑

j∗L=1

∑
γ∗L

[
P
(√

n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα

∣∣∣d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)
−α
]

·P
(
d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)∣∣∣
≤ lim

n→∞
sup
P∈Pn

JL∑
j∗L=1

∑
γ∗L

∣∣∣P(√n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα

∣∣∣d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)
−α
∣∣∣

·P
(
d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)
≤

JL∑
j∗L=1

∑
γ∗L

lim
n→∞

sup
P∈Pn

∣∣∣P(√n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα

∣∣∣d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)
−α
∣∣∣

·P
(
d∈D̂,ĵL(d)=j∗L,γ̂L(d)=γ∗L

)
=0,

where the inner sums
∑

γ∗L
are over the elements of the support of γ̂L(d). ■

Proof of Theorem 5.1: The result of this theorem follows from Lemma C.2 since

liminf
n→∞

inf
P∈Pn

[
P
(√

n[L(d),U(d)]⊆
(
L̂(d)Cα1

,Û(d)C1−α2

)∣∣∣d∈D̂
)
−(1−α1−α2)

]
·P
(
d∈D̂

)
≥ liminf

n→∞
inf
P∈Pn

[
1−P

(√
nL(d)≤L̂(d)Cα1

∣∣∣d∈D̂
)
−P
(√

nU(d)≥Û(d)C1−α2

∣∣∣d∈D̂
)

− (1−α1−α2)]·P
(
d∈D̂

)
≥ liminf

n→∞
inf
P∈Pn

[
1−P

(√
n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα1

∣∣∣d∈D̂
)

−P
(√

n(ũd,̂jU(d)+ud,̂jU(d)p)≥Û(d)C1−α2

∣∣∣d∈D̂
)
−(1−α1−α2)

]
·P
(
d∈D̂

)
=liminf

n→∞
inf
P∈Pn

[
α1−P

(√
n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα1

∣∣∣d∈D̂
)

+P
(√

n(ũd,̂jU(d)+ud,̂jU(d)p)≤Û(d)C1−α2

∣∣∣d∈D̂
)
−(1−α2)

]
·P
(
d∈D̂

)
≥ liminf

n→∞
inf
P∈Pn

[
α1−P

(√
n(̃ℓd,̂jL(d)+ℓd,̂jL(d)p)≤L̂(d)Cα1

∣∣∣d∈D̂
)]

·P
(
d∈D̂

)
+liminf

n→∞
inf
P∈Pn

[
P
(√

n(ũd,̂jU(d)+ud,̂jU(d)p)≤Û(d)C1−α2

∣∣∣d∈D̂
)
−(1−α2)

]
·P
(
d∈D̂

)
=0,

where the second inequality follows from the facts that L(d) ≥ ℓ̃d,̂jL(d) + ℓd,̂jL(d)p and U(d) ≤

ũd,̂jU(d)+ud,̂jU(d)p almost surely and the final equality follows from Lemma C.2. ■
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Proof of Theorem 5.2: We start by showing

liminf
n→∞

inf
P∈Pn

P
(√

n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≥L̂(d̂)Pα

)
≥1−α. (C.5)

By the same argument as in the proof of Lemma C.1, to prove (C.5), it suffices to show

lim
n→∞

Pns

(√
ns(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p(Pns))≥L̂(d̂)Pα

)
≥1−α (C.6)

under conditions 1. and 3. Since
√
ns(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≥L̂(d̂)Pα is equivalent to ℓd̂,̂jL(d̂)

√
ns(p̂−p)≤

ĉ1−α,L

√
Σ̂L,d̂JL+ĵL(d̂)

, the left-hand side of (C.6) is equal to

lim
n→∞

Pns

(
ℓd̂,̂jL(d̂)

√
ns(p̂−p(Pns))≤ ĉ1−α,L

√
Σ̂L,d̂JL+ĵL(d̂)

)
≥ lim

n→∞
Pns

(
ℓmat√ns(p̂−p(Pns))≤ ĉ1−α,L

√
Diag

(
Σ̂L

))

=P
(
ξL≤c1−α,L

√
Diag(ΣL)

)
=P

(
max

i∈{1,...,(T+1)JL}

ξL,i√
ΣL,i

≤c1−α,L

)
=1−α

under conditions 1. and 3. for ξL∼N (0,ΣL), cα,L denoting the α-quantile of

max
i∈{1,...,(T+1)JL}

ξL,i√
ΣL,i

and ΣL=ℓmatΣℓmat′, where all inequalities are taken element-wise across vectors, the inequality

follows from the fact that ℓd̂,̂jL(d̂)
√
ns(p̂−p(Pns)) is a (random) element of ℓmat√ns(p̂−p(Pns)) and

the first equality follows by identical arguments to those used in the proof of Proposition 11 of

Andrews et al. (2024). We have thus proved (C.5). In addition,

liminf
n→∞

inf
P∈Pn

P
(√

n(ũd̂,̂jU(d̂)+ud̂,̂jU(d̂)p)≤Û(d̂)P1−α

)
≥1−α.

follows by nearly identical arguments. The statement of the theorem then follows by nearly

identical arguments to those used in the proof of Theorem 5.1. ■
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Lemma C.3. Suppose Assumptions 3.1–3.6 hold. Then, for any 0<β<α<1,

lim
n→∞

sup
P∈Pn

∣∣∣∣P(√n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≤L̂(d̂)Hα

∣∣∣d̂=d∗,
√
n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≥L̂(d̂)Pβ

)
−α−β

1−β

∣∣∣∣
·P
(
d̂=d∗,

√
n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≥L̂(d̂)Pβ

)
=0, (C.7)

lim
n→∞

sup
P∈Pn

∣∣∣∣P(√n(ũd̂,̂jU(d̂)+ud̂,̂jU(d̂)p)≤Û(d̂)Hα

∣∣∣d̂=d∗,
√
n(ũd̂,̂jU(d̂)+ud̂,̂jU(d̂)p)≤Û(d̂)P1−β

)
−α−β

1−β

∣∣∣∣
·P(d̂=d∗,

√
n(ũd̂,̂jU(d̂)+ud̂,̂jU(d̂)p)≤Û(d̂)P1−β)=0, (C.8)

for all d∗∈{d0,...,dK}.

Proof: The proof of (C.8) is nearly identical to the proof of (C.7) so that we only show the

latter. Upon noting that FTN(t;µ,σ
2,V̂−

L (z,d,j,γ),V̂
+,H
L (z,d,j,γ,µ)) is decreasing in µ by the same

argument used in the proof of Proposition 5 of Andrews et al. (2024) and replacing condition 2. in

the proof of Lemma C.1 with

2’. Pns

(
d̂=d∗,ĵL(d̂)=j∗L,γ̂L(d̂)=γ∗L,

√
n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≥L̂(d̂)Pβ

)
→q∗∈(0,1],

completely analogous arguments to those used to prove (C.1) in Lemma C.1 imply

lim
n→∞

sup
P∈Pn

∣∣∣P(√n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≤L̂(d̂)Hα

∣∣∣d̂=d∗,ĵL(d̂)=j∗L,γ̂L(d̂)=γ∗L,
√
n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≥L̂(d̂)Pβ

)
−α−β

1−β

∣∣∣∣·P(d̂=d∗,ĵL(d̂)=j∗L,γ̂L(d̂)=γ∗L,
√
n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≥L̂(d̂)Pβ

)
=0

for all d∗∈{d0,...,dK}, j∗L∈{1,...,JL} and γ∗L in the support of γ̂L(d
∗). Then, the same argument

as in the proof of Lemma C.2 implies (C.7). ■

Lemma C.4. Suppose Assumptions 3.1–3.6 hold. Then, for any 0<α<1,

liminf
n→∞

inf
P∈Pn

P
(√

n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)>L̂(d̂)Hα

)
≥1−α, (C.9)

liminf
n→∞

inf
P∈Pn

P
(√

n(ũd̂,̂jU(d̂)+ud̂,̂jU(d̂)p)<Û(d̂)H1−α

)
≥1−α. (C.10)

Proof: The proof of (C.10) is nearly identical to the proof of (C.9) so that we only show the

52



latter. Lemma 6 of Andrews et al. (2024) and Lemma C.3 imply

liminf
n→∞

inf
P∈Pn

P
(√

n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)>L̂(d̂)Hα

)
≥ 1−α

1−β
liminf
n→∞

inf
P∈Pn

T∑
d∗=0

P
(
d̂=d∗,

√
n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≥L̂(d̂)Pβ

)
=
1−α

1−β
liminf
n→∞

inf
P∈Pn

P
(√

n(̃ℓd̂,̂jL(d̂)+ℓd̂,̂jL(d̂)p)≥L̂(d̂)Pβ

)
≥1−α,

where the final inequality follows from (C.5) in the proof of Theorem 5.2. ■

Proof of Theorem 5.3: Using Lemma C.4 in the place of Lemma C.2, the proof is nearly

identical to the proof of Theorem 5.1. ■
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