

Synthetic Brain Functional Network Modeling using Reverse Engineering- a Survey

Somya Agarwal Robotics and Intelligent system design lab Atal Bihar Vajpayee Indian Institute of Technology & Management Gwalior, M.P. India agarwalsomya786@gmail.com

Abstract— Synthetic Brain refers to imitating a natural product i.e. human brain. Our goal is to reconstruct a digital system that will work like the brain. Although so much work has been done for making computer man like, still there are things which brain can do and computers cant. Brain understands pain, pleasure, intuition, perceived notion of success and failure but a machine cannot. We are on the way to study the operation of the brain, so that a system can be built which will overcome the shortcomings of a living being. Human brain can't work for so long as it get tired within a specific period of time but a system can work for days and months without getting affected. Also, sometimes the unfavorable situations in the personal life do not allow the brain to focus on the work in that case synthetic brain will help the smooth functioning. Other motivation for this project is the curiosity of consciousness and human mind. We can also give the proper treatment by understanding the exact causes of disfunctioning of the brain. For this, first we have to study its wiring and circuitry in the form of veins, cords and brain cells and build computer systems that work the same way, this can be done with the help of Reverse Engineering. Section I is the introduction of the project, Section II contains the literature review of the approaches that can be used for reverse engineering the brain, Section III briefs the tools, that has been applied by now, Section IV contains the proficiency achieved up to the work, Section V shows the research gaps and Section VI is the conclusion.

Index Terms— Cognitive Science · Reverse Engineering · Modeling and Simulation · Neurons · Visualization

INTRODUCTION

Synthetic Brain construction is a wide research area. Brain performs millions of operations according to different inputs. Sometimes, operations are self-processed i.e. without any input. Visual input comes across brain via sensory organ, eyes. Eyes capture the image and send it to the brain for further processing. The processing involves what is reflecting in the © IJPMN, Volume 3, Issue 3, December-2016

Ritu Tiwari Robotics and Intelligent system design lab Atal Bihari Vajpayee Indian Institute of Technology and Management Gwalior, M.P. India tiwariritu2@gmail.com

image, is it black and white or comprises of several colors. If colorful, how many colors are there and what are them, are they bright or dull, what is the percentage of hue, is it

static or changing with time, why this image has been shown to our eyes, is it intentional or accidental, what message we can infer from that image, after receiving the message what could be the responses, among the possible responses which one we need to choose and so on. All such operations need to be performed by brain for a single visual input received by one sensory organ. Visual Cortex of the brain is responsible for cognitive function where images or objects are interpreted on the basis of the previously stored images in the visual memory [1]. In February 2013, a neural implant has been developed by which rats can sense infrared light.

Traditionally, a human body comprises of five types of sense organs which collects data for perception. Along with vision four others are- Hearing, Smell, Touch and Taste. Hearing is performed by Ears. It is the perception of sound.

Nose of a living being contains two nostrils which senses the smell. It is a chemical sense, where hundreds of olfactory receptors, each binding to a particular molecular feature [2]. Smell in the brain is done by olfactory system. There are olfactory receptor neurons which are different from other neurons. Some special kinds of neurons also exist in the nose of a mammal to detect pheromones [2].

Taste, which is also known as gestation is detected by tongue. It is also a chemical sense like smell. Taste is usually misinterpreted with flavor. Flavor is the combination of taste and smell which involves odor, texture and temperature [2].

Touch sensation is generated by neurons receptors present in the skin of a living being. Different types of touch sense are firm, brushing, itching etc. Touch receptors takes input from the movement of hairs present on the skin and passes it to spinal cord via sensory nerves. Thalamus and sensory cortex

in the brain are responsible for further processing of touch sensation [3].

Reverse Engineering, as the name suggests is something that performs for engineering but in reverse direction. It is the process of analyzing a product, and segregation into its components. It is performed for extracting knowledge, design information, operational functions etc. and using the extracted information to re-producing something another. In this survey, we are reviewing the work done in the field of reconstructing the human brain. The flow diagram of Reverse Engineering has been shown in Fig 1.

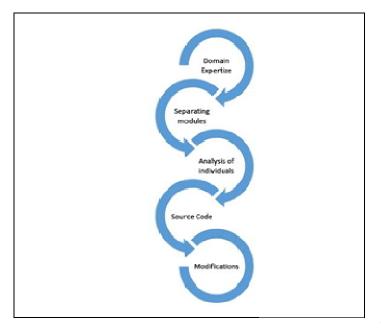


Fig 1: Steps involved in performing Reverse Engineering

LITERATURE REVIEW

In this section, the brief introduction of related literature is given. This includes the work that has been done by researchers in order to reconstruct the brain. Different researchers used different approaches to form the model of the brain.

A. Modeling Abstraction And Simulation

Brain has been model by researchers with the help of Very Large Scale Integrated (VLSI) circuits [4]. A recent

© IJPMN, Volume 3, Issue 3, December-2016

hypothesis [5] suggests that vision processing can be modeled by a wave of spike propagation through a hierarchy of layers that can be viewed in Fig 2. Brain can be viewed on microscopic as well as macroscopic level. At macroscopic level, the brain appears as a highly clustered circuits which can communicate with other similar circuits. These circuits represent different regions of a brain. At microscopic level, cortical circuit organization is formed which offered a model for general purpose processing. Modeling abstraction is the level by level abstraction model. As we move upward in abstraction hierarchy, complex biological processes are being simplified into mathematical expressions.

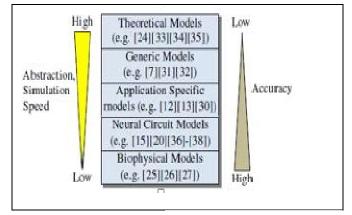


Fig 2: Levels of Modelling Abstraction [4]

B. Blue Brain Technology

In the recent research, an experiment has been performed with the visual brain. A supercomputer having very high processing speed and large storage capacity is treated as visual brain. [7] It has been performed in three steps: Data Acquisition, Simulation and Visualization of results [6]. In the first phase i.e. Data Acquisition, analysis of brain slices has been done by keeping it under microscope and capture the shape and electrical activities of individual neurons. Second phase simulation consists of input, interpretation, processing, memory and output. This has been shown in Fig 3. Sensory cells conveys the input by producing electrical impulses which is received by neurons and passes to brain. Brain interprets the impulses and stored in registers. Different values of registers correspond to different states of brain. On the basis of stored states, arithmetic and logical calculations has been performed in neural circuitry. Results are given to sensory cells again in

the form of electrical impulses [8]. Memory is required to store certain information received during experiment as well as the previously gathered. Third phase is visualization of results. Simulation has been performed iteratively thousands of time, with an individual neuron. To represent the relations between different iterations and the relation of one neuron to another, 3D graphs were used. Results of this experiment are very interesting. It gives a positive aspect for further researches. Some of them are:

a. Intelligent brain can work even after the death of a person,b. Madness of a person can be removed by downloading the contents of the brain.

 TABLE 1: Comparison of Natural Brain and Artificial Brain
 [9]

Phase	Natural Brain	Artificial Brain
Input	Sensory cells	Process in artificial
	receive input,	brain is same as
	produce	natural except there
	electrical	are artificial neurons
	impulses and	created by scientists
	pass it to brain	using silicon chips.
	with the help of	
	neurons.	
Interpretation	Received input	Here the values of
	in the form of	registers are used to
	electrical	interpret the electrical
	impulses is	impulses. Different
	interpreted by	values are already
	the states of	stored in registers for
	neurons.	different states.
Output	After the	Depending on the
	processing of	value of the register,
	input, sensory	the output is given to
	cells present at	artificial neuron.
	different parts	
	of body receive	
	the output	
	accordingly, to	
	respond.	0. 11 1 1
Processing	According to	Similarly, decision
	our past	making is done by
	experiences and	stored states and
	current situation,	received inputs.
	decisions can be	
Mamami	manipulated. For the	In synthetic brain also
Memory	ror the	In synthetic brain also,

© IJPMN, Volume 3, Issue 3, December-2016

(This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License citing the original author and source)

remembrance of events, activities held, neurons stores certain states permanently, which can be retrieved anytime.	permanently in secondary memory

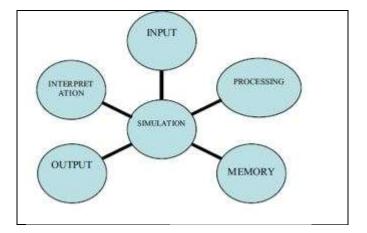


Fig 3: Phases of Simulation [6]

C. Cognitive Modelling

A research says, to understand cognition, reverse engineering of biological system is a best approach [10]. Computational neuroscience is the key activity for cognitive modeling [11]. Here, each neuron is represented in the form of equation:

$$sdV/dt = -V + F,$$
 (1)

where V is a membrane potential variable, and F is a forcing term. For neuron 2, F2 = w12 y1, where y is the output of neuron 1, and for neuron 1,

$$F1 = w21 y2 + I$$
 (2)

where I is an injected current. The outputs are given by a piecewise linear function, h

where
$$y = h(V) [13]$$
 (3)

After computation, algorithm, mechanism and biological substrate, relation has been shown between computational neuroscience and other modeling disciplines. Cognitive study includes all aspects of psychology, mental organization, linguistics, thoughts and computations [14]

Table 2: A Review	of Research over the Ye	ars
1 4010 2. 11 100 10 0	of Research over the re	uib

Year	Paper	Results	Limitations	
	Name			
1999	Name Neuroinfo rmatics as a Megascie nce Issue	Neuroscience data identify the unique cell types, their elements, and anatomical connections. Other data fill in the chemical substrates of function which include tens of thousands of biochemical, molecular, and genetic mechanisms which regulate and control brain structure and	Lots of activities need to be done for development of brain a. training of scientists b. development of test beds for beta- testing c. motivate scientists so that they contribute published data d. establishing international cross disciplinary working groups to address highly focused problems and issues.	
		function		
2000	Reverse Psycholog ism, Cognition and Content	Reverse Psychologism is helpful in studying cognitive science.	Theoretically, it can be achieved in two ways: strong and weak but practically strong reverse psychologism did not work.	
2007	A Robotic Neural Net Based Visual- sensory Motor Control	Each subsystem obeys the law of physics and are amenable to reverse	Relationships between visual and kinematic sensors, the modalities of tactile and visual sensors are still needs to be researched.	

	-		
	System that	engineering.	
	Reverse Engineers the Motor	With the help of visual neuronal	
	Control Functions	correlate of modality	
	of the Human Brain.	circuit, they shed the light into neurophysiol ogy of human brain.	
2008	Reverse Engineeri ng The Brain	A google mapped brain could lead to a map of human consciousness	Solving a fruit – fly brain will solve one fifth of the understanding of human brain
2009	Reverse Engineer the brain	To engineer a mind like intelligence into machines, quickest and cheapest way is reverse engineering the structure, function and dynamics of the brain	Simulating the effect of strokes, tumors or other types of neurological disorders such as Alzheimer's or Parkinson's etc.
2009	Mathemat ical and Computati onal Modeling of Neurons and Neuronal Ensemble s	Expressed the Neurons and Neuronal Ensembles into mathematical expressions.	Due to modeling relations, particular behavior cannot be determined from computations.
2009	Complex brain networks: graph theoretical analysis of	Geometrical parameters are determined like short path length,	Suggestedtheapproachtounderstandthephysicsofhumanbrain, didn't achieve.

© IJPMN, Volume 3, Issue 3, December-2016

International Journal Of Public Mental Health And Neurosciences ISSN No: 2394-4668 (An Official publication of Sarvasumana Association)

	structural	high			ks		
	and	clustering and		2010	Once	Found the	Neurological trauma
	functional	a degree			more with	issues that	is possibly the most
	systems	distribution			feeling :	will come	difficult affliction to
		compatible			Reverse	across in	cope with as there is
		with the			Engineer	reverse	currently little that
		existence of hubs, and a			the Brain	engineer the brain.	can be done to help.
		modular		2011	Reverse	Complex	Brain like
		community			Engineeri	systems can	intelligence
		structure			ng for	be understood	algorithms are sill he
2010	Cognitive	It is now	There is no single		Biological ly Inspired	with the help of line of	question of research.
2010	Neuroscie	possible to	area of cognition		Cognitive	decompositio	
	nce: The	combine the	which has standard		Architectu	nal analysis.	
	Troubled	functional	theoretical account.		res: A	in analysis	
	Marriage	magnetic	For example- a single		Critical		
	of	resonance	working memory		Analysis		
	Cognitive	imaging	consist of differed				
	Science	(fMRI),	theoretical	2014	Study of	Compared	Modifications need to
	and	electroenceph	conceptions.		the Brain	four	be done in algorithms
	Neuroscie	alography			Functional	techniques	
	nce	(EEG) and near infrared			Network	among which, two are more	
		spectroscopy			Using Synthetic	prone to	
		(NIRS).			Data	errors.	
		(1110).			Data	citors.	
		Techniques		2015	Discrimin	Proposed an	Even after
		used are			ative	algorithm	developing macro
		diffusion			Structured	DSFE for	scale, multivariate
		weighted			Feature	structuring	exploratory analysis
		imaging (2006) and			Engineeri ng	human brain connectome	of large databases are still need to be
		dynamic			(DSFE)		researched
		causal			for		
		modeling			Macroscal		
		(2003) to establish the			e Brain		
		connectivity.			Connecto		
2010	Towards	Exploration	In deep learning		mes		
	Reverse	of brain	SNN, learning is still	2015	The	Comprehensi	Removing nodes with
	Engineeri	circuit	unsupervised.		intrinsic	ve treatment	the lowest 21.5 % of
	ng The	models and	-		geometry	of topology	nodal clustering
	Brain:	frameworks			of the	of human	coefficient minimally
	Modeling	for simulation			human	brain which	impacts structural
	Abstractio	of large scale			brain	can adapt	connectome's
	ns and	Supervised			connecto	multimodal	intrinsic geometry.
	Simulatio	Neural		0016	me	data.	T. • • •
	n Framewor	Network (SNN).		2016	BRAINtri	Developed a	It is hard to
	rramewor	(SININ).			nsic: A	tool for	comprehend these

© IJPMN, Volume 3, Issue 3, December-2016

ĺ	Virtual	analyzing	strict numerical
	Reality-	intrinsic high	quantities without a
	Compatibl	level	map to help guide
	e	structural and	relative locations.
	Tool for	functional	
	Exploring	properties of	
	Intrinsic	a complex	
	Topologie	architecture.	
	s of the		
	Human		
	Brain		
	Connecto		
	me		

TOOLS

After reviewing the research papers consist of experiments, certain tools have been come across.

D. iBrain

It is a simulation and visualization tool for activation of brain areas on a realistic 3D brain image [17]. It is constructed by modifying the software A-Cell. It captures the 3D brain image and enlarges an anatomical region which is initially in millimeters to a considerable extent. Hence makes easy for researchers to calculate the activation pattern. iBrain can reproduce the activation pattern after getting the information and match with the previous one. By this tool, with the help of a single cell, whole brain can be transformed.

E. Eureqa

Eureqa is a software tool which performs evolutionary symbolic regression on brain imaging data [10]. Symbolic regression is a type of regression analysis that searches the space of mathematical expressions to find the model that best fits a given dataset, both in terms of accuracy and simplicity [12]. Schmedit et Al, developed a genetic programming package named eureqa, which is used to express relationship between different selected regions of the brain. An experiment has already been performed by using eureqa. They analyze the behavior for two different input datasets. First, when brain receives the single subject performing two different but related tasks while the second is, when it receives a single subject performing no task. Later state of brain is known as resting state. EEG signals are recorded and converted into FMRI. Blood oxygen level dependence (BOLD) signals are used to represent the activation in response to a stimulus signal. Whenever a regression is performed, a BOLD signal has been generated for that region. For getting the relationship, a graph is drawn where x axis indicates independent signals whereas y axis shows dependent variables. The regions which contains relationship, their intersection point has been highlighted. There may be very strong, strong, weak, very weak or no correlation.

PROFICIENCY

The research work that has already been done in the field of developing synthetic brain is commendable and has achieved a great proficiency. The interactions discovered between brain regions have not been claimed yet. Even they are proved to be true by other researchers. Mathematical computations are validated as we can see their proofs. iBrain software helped understanding the functioning of brain at very small i.e. macroscopic level.

RESEARCH GAPS

In this survey, we observed that there are some problems which remain to be solved. Some of them are

- a. Most of the experiments performed up till now for the virtual brain considered the brain having around 10,000 neurons but in reality, it may be more than that. As neurons are continuously dying and reproducing their population so we can predict a fix number of neuron for a particular duration of time.
- b. All the regions of a brain are not considered for finding the relationship. Only on some selected regions, experiments have been performed.
- c. Accuracy can be improved by changing or improving the structure of soft computing techniques.

VI. CONCLUSION

Related Research shows that developing the artificial brain first requires geometry of brain to be clearly specified. After understanding complete functional network of the brain, the process steps up to actions and reactions of different components of brain on the basis of inputs received through neurons. On the basis of learning, responses of brain can be manipulated.

© IJPMN, Volume 3, Issue 3, December-2016

ACKNOWLEDGMENT

This research was supported by ABV IIITM. We thank Prof. S.G. Deshmukh, Director for assistance and comments that greatly improved the manuscript.

References

[1]. "Sense Disambiguation." 2008.

[2] Pfaffmann, Carl. "Taste and smell." Annual review of psychology 7.1 (1956): 391-408.

[3] Gibson, Robert H."Electrical stimulation of pain and touch." The skin senses (1968): 223-261.

[4]. Nageswaran, J. M., Richert, M., Dutt, N., and Krichmar, J. L. (2010, September). Towards reverse engineering the brain: Modeling abstractions and simulation frameworks. In 2010 18th IEEE/IFIP International Conference on VLSI and System-on-Chip (pp. 1-6). IEEE.

[5]. VanRullen, Rufin, and Simon J. Thorpe. "Surfing a spike wave down the ventral stream." Vision research 42.23 (2002): 2593-2615.

[6]. Sharma, Swati, et al."Blue Brain Technology: A Subway to Artificial Intelligence." Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on. IEEE, 2014.

[7]. Suzuki, Tohru, Norio Fujimaki, and Kazuhisa Ichikawa. "IBrain: a simulation and visualization tool for activation of brain areas on a realistic 3D brain image." BMC Neuroscience 8.2 (2007): 1.

[8]. Gurney, Kevin N."Reverse engineering the vertebrate brain: methodological principles for a biologically grounded programme of cognitive modelling." Cognitive Computation 1.1 (2009): 29-41.

[9]. Markram, Henry. "The blue brain project." Nature Reviews Neuroscience 7.2 (2006): 153-160.

[10]. Allgaier, Nicholas, and Ryan McDevitt. "Reverse Engineering the Brain with Eureqa." (2011).

[11]. Blackiston, Douglas J., Tal Shomrat, and Michael Levin. "The stability of memories during brain remodeling: a perspective." Communicative integrative biology 8.5 (2015): e1073424.

[12]. Prof. Henry Markram, Dr. Felix Schrmann The blue Brain Project, IBM

[13]. en.wikipedia.org/wiki/Symbolicregression

[14]. Allen, Q. Ye, et al."The intrinsic geometry of the human Brain connectome." Brain informatics 2.4 (2015): 197-210.

[15]. Kline, Alex. "REVERSE ENGINEERING THE BRAIN: IMPROVING ARTIFICIAL INTELLIGENCE."

[16]. Sojoudi, Somayeh, and John Doyle. "Study of the brain functional network using synthetic data." Communication,

Control, and Computing (Allerton), 2014 52nd Annual Allerton Conference on. IEEE, 2014.

[17]. Schierwagen, Andreas. "On reverse engineering in the cognitive and brain sciences." Natural Computing 11.1 (2012): 141-150.

[18]. Edelman, Shimon. "The minority report: some common assumptions to reconsider in the modelling of the brain and behavior." Journal of Experimental Theoretical Artificial Intelligence (2015): 1-26.

[19]. COMPUTATIONAL NEUROSCIENCE - ECE Undergraduate Elective Track, Reverse-engineer the brain

[20]. Cauwenberghs, Gert. "Reverse engineering the cognitive brain." Proceedings of the National Academy of Sciences 110.39 (2013): 15512-15513.

[21]. Harman, Mark, William B. Langdon, and Westley Weimer. "Genetic programming for Reverse Engineering." WCRE. Vol. 13. 2013.

[22]. Fahmi, Syed Ahsan, and Ho-Jin Choi. "Software reverse engineering to requirements." Convergence Information Technology, 2007. International Conference on. IEEE, 2007.

[23]. Allgaier, Nicholas, et al."Nonlinear functional mapping of the human brain." arXiv preprint arXiv:1510.03765 (2015).[24]. Sojoudi, Somayeh, and John C. Doyle. "On the Efficacy of Mathematical Techniques for Modeling Brain Functional Connectivity."

[25]. Beyeler, Michael, et al."Efficient spiking neural network model of pattern motion selectivity in visual cortex." Neuroinformatics 12.3 (2014): 435-454.

[26]. Piekniewski, Filip, et al."Unsupervised learning from continuous video in a scalable predictive recurrent network." arXiv preprint arXiv:1607.06854 (2016).

[27]. Zhang, A., et al."Brain connectome modularity in weight restored anorexia nervosa and body dysmorphic disorder." Psychological Medicine 46.13 (2016): 2785.

[28]. Carlson, Kristofer D., et al."GPGPU accelerated simulation and parameter tuning for neuromorphic applications." 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2014.

[29]. Krichmar, Jeffrey L., et al."Neuromorphic modeling abstractions and simulation of large-scale cortical networks."

Proceedings of the International Conference on Computer Aided Design. IEEE Press, 2011.

[30]. Blackiston, Douglas J., Elena Silva Casey, and Martha R. Weiss. "Retention of memory through metamorphosis: can a moth remember what it learned as a caterpillar?" PLoS One 3.3 (2008): e1736.

[31]. Schierwagen, Andreas. "Brain complexity: analysis, models and limits of understanding." International Work Conference on the Interplay between Natural and Artificial Computation. Springer Berlin Heidelberg, 2009.

© IJPMN, Volume 3, Issue 3, December-2016

[32]. Schierwagen, Andreas. "Mathematical and computational modeling of neurons and neuronal ensembles." International Conference on Computer Aided Systems Theory. Springer Berlin Heidelberg, 2009.

[33]. Schierwagen, Andreas, et al."A model for the propagation of action potentials in nonuniform axons." AIP Conference Proceedings. Vol. 1028. No. 1. 2008.

[34]. Schierwagen, Andreas. "Reverse engineering for biologically inspired cognitive architectures: A critical analysis." From Brains to Systems. Springer New York, 2011. 111-121.

[35]. Schierwagen, Andreas, et al."Cluster analysis of cortical pyramidal neurons using SOM." IAPR Workshop on Artificial Neural Networks in Pattern Recognition. Springer Berlin Heidelberg, 2010.

[36]. Schierwagen, Andreas. "Complex neuro-cognitive systems." International Work-Conference on the Interplay between Natural and Artificial Computation. Springer Berlin Heidelberg, 2011.

[37]. Conte, Giorgio, et al."BRAINtrinsic: A virtual reality compatible tool for exploring intrinsic topologies of the human brain connectome." International Conference on Brain Informatics and Health. Springer International Publishing, 2015.

[38]. Cooper, Richard P., and Tim Shallice. "Cognitive neuroscience: The troubled marriage of cognitive science and neuroscience." Topics in cognitive science 2.3 (2010): 398-406.

[39]. Yan, Chao-Gan, et al."DPABI: Data Processing Analysis for (Resting-State) Brain Imaging." Neuroinformatics (2016):1-13.

[40]. Beltrame, Francesco, and Stephen H. Koslow. "Neuroinformatics as a megascience issue." IEEE transactions on information technology in biomedicine 3.3 (1999): 239-240.

[41]. O'Connor, Daniel H., Daniel Huber, and Karel Svoboda. "Reverse engineering the mouse brain." Nature 461.7266 (2009): 923-929.

[42]. Article, IARPA Project, reverse Engineer the brain, Carnegie Mellon University

[43]. Helmchen, Fritjof, and Winfried Denk. "Deep tissue two-photon microscopy." Nature methods 2.12 (2005): 932-940.

[44]. Gidwani, Meet, Anand Bhagwani, and Nikhil Rohra. "Blue Brain-The Magic of Man." Computational Intelligence and Communication Networks (CICN), 2015 International Conference on. IEEE, 2015.

[45]. Ye, Allen Q., et al."Measuring embeddedness: Hierarchical scale dependent information exchange efficiency

© IJPMN, Volume 3, Issue 3, December-2016

(This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License citing the original author and source)

of the human brain connectome." Human brain mapping 36.9 (2015): 3653- 3665.

[46]. Van Den Heuvel, Martijn P., and Olaf Sporns. "Richclub organization of the human connectome." The Journal of neuroscience 31.44 (2011): 15775-15786.