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Abstract 
The present in vivo study was designed to investigate the neurotoxic 
impact of zinc on mitochondrial function mediated by reactive 
oxygen species (ROS) generation in the brain of 
Though the neurotoxic impact has been studied in several animal 
models, the impact was completely unknown in the piscine model in 
relation to mitochondrial dysfunction. The fishes were exposed to 
10% and 20% of the derived 96 h LC50 value, 9.45 and 18.90 mg L
respectively, and sampled on 20, 40 and 60 days. Exposure of fish 
brain to zinc demonstrated partial inactivation of complex II, III and 
IV activities, reduction in mitochondrial membrane potential, energy 
depletion accompanied by enhanced ROS generation. Concluding the 
results of our current investigation, we suggest that brain 
mitochondrial dysfunction can be an important contributor for fish 
death in addition to the other established mechanisms.
 
Index Term: Mitochondrial electron transport chain, zinc, 
neurotoxicity, mitochondrial dysfunction 

 

I INTRODUCTION 

Zinc (Zn) is an essential trace element but also a potential 
toxicant in excess amount to living organisms. 
areas, zinc is found in water at nanomolar levels, reaching 
micromolar and higher values in metal
environments [1,2,3].Excessive Zn can inhibit physiological 
activities of aquatic organisms including fishes and even be 
fetal [4,5,6]. Several lines of evidence exist that suggest 
mitochondria and energy metabolism as subcellular target
the toxic actions of Zn [7,8]. Zinc can inhibit glycolysis 
the tricarboxylic acid cycle [10], and complexes in the 
electron transport chain [11,12,13,14]. It has also been shown 
that Zn dissipates mitochondrial membrane potential, 
decreases oxygen consumption and enhances reactive oxygen 
species (ROS) accumulation [7]. However, it remains unclear 
whether similar impact occurs in fish brain mitochondria as 

                                        International Journal Of Public Mental Health And Neurosciences 

(An Official publication of Sarvasumana Association)

-2017 
access article distributed under the terms and conditions of the Creative 

Commons Attribution License citing the original author and source

Zinc Neurotoxicity Inflicts Mitochondrial 
Dysfunction in the Brain of Clarias batrachus 

Implication in fish death
 

Zinc Toxicity induces Piscine Brain Mitochondrial Dysfunction 

 
Goutam Paul 

Department of Physiology 
University of Kalyani 

West Bengal, India 741235 
gpaul.kalyani@rediffmail.com 

 
 
 

study was designed to investigate the neurotoxic 
impact of zinc on mitochondrial function mediated by reactive 
oxygen species (ROS) generation in the brain of Clarias batrachus. 
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relation to mitochondrial dysfunction. The fishes were exposed to 
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brain to zinc demonstrated partial inactivation of complex II, III and 
IV activities, reduction in mitochondrial membrane potential, energy 
depletion accompanied by enhanced ROS generation. Concluding the 

we suggest that brain 
mitochondrial dysfunction can be an important contributor for fish 
death in addition to the other established mechanisms. 

Mitochondrial electron transport chain, zinc, 

Zinc (Zn) is an essential trace element but also a potential 
toxicant in excess amount to living organisms. In unpolluted 
areas, zinc is found in water at nanomolar levels, reaching 

metal-contaminated 
Excessive Zn can inhibit physiological 

activities of aquatic organisms including fishes and even be 
. Several lines of evidence exist that suggest 

mitochondria and energy metabolism as subcellular targets for 
. Zinc can inhibit glycolysis [9], 

, and complexes in the 
. It has also been shown 

that Zn dissipates mitochondrial membrane potential, 
en consumption and enhances reactive oxygen 

. However, it remains unclear 
whether similar impact occurs in fish brain mitochondria as 

there exists no report that highlight the impact of Zn 
neurotoxicity on mitochondrial functi
individual mitochondrial electron transport chain complexes in 
piscine brain. 
In the present study the piscine model of 
was chosen as Clarias batrachus
India in the marshy lands and aquatic bodi
industrial settlements where the concentration of Zn in 
polluted water bodies often varies in higher concentrations and 
acts like a toxicant in water. Clarias batrachus
dwellers become exposed to metals (like zinc, lead, nickel, 
chromium, mercury) that are present in sediments of fresh 
water bodies as a result of industrial discharge. So it was 
considered worthwhile to study the impact of Zn neurotoxicity 
in piscine model as such metal exposure often contributes in 
mass killing of fishes in polluted water bodies.

 

II MATERIALS AND METHODS

Animal use protocols have been approved by the University of 
Kalyani Animal Care Committee in accordance with national 
guidelines. Healthy adult specimens of 
(60 ± 3.20 g body weight, 16.3 ± 1.751 cm  total length) were 
collected from a local hatchery and were acclimatized to 
laboratory experimental condition for 2 weeks in 
dechlorinated tap water in lar
laboratory. They were fed ad libitum
water with requisite Zn salt was renewed after every 48 h, 
leaving no faecal matter, unconsumed food or dead fish, if 
any. Prior to the commencement of the experiment, 9
median lethal concentration (96 h LC
Merck, India) was estimated by probit analysis 
 

International Journal Of Public Mental Health And Neurosciences  
ISSN No: 2394-4668 

(An Official publication of Sarvasumana Association) 
 

access article distributed under the terms and conditions of the Creative 
Commons Attribution License citing the original author and source) 

16 

Zinc Neurotoxicity Inflicts Mitochondrial 
Clarias batrachus L.: 

Implication in fish death 
Mitochondrial Dysfunction  

Nimai Chandra Saha 
Education Directorate 
Govt. of West Bengal 

Bikash Bhavan, Salt Lake 
Kolkata 700091, India.                                                                                                                             

dpi.gov.wb@gmail.com 
 

there exists no report that highlight the impact of Zn 
neurotoxicity on mitochondrial function especially on 
individual mitochondrial electron transport chain complexes in 

In the present study the piscine model of Clarias batrachus 
Clarias batrachus is naturally cultivated in 

India in the marshy lands and aquatic bodies adjacent to the 
industrial settlements where the concentration of Zn in 
polluted water bodies often varies in higher concentrations and 

Clarias batrachus being bottom 
dwellers become exposed to metals (like zinc, lead, nickel, 
chromium, mercury) that are present in sediments of fresh 
water bodies as a result of industrial discharge. So it was 
considered worthwhile to study the impact of Zn neurotoxicity 

piscine model as such metal exposure often contributes in 
mass killing of fishes in polluted water bodies. 

MATERIALS AND METHODS 

Animal use protocols have been approved by the University of 
Kalyani Animal Care Committee in accordance with national 

delines. Healthy adult specimens of Clarias  batrachus L. 
(60 ± 3.20 g body weight, 16.3 ± 1.751 cm  total length) were 
collected from a local hatchery and were acclimatized to 
laboratory experimental condition for 2 weeks in 
dechlorinated tap water in large glass aquaria in the 

ad libitum on alternate days and the 
water with requisite Zn salt was renewed after every 48 h, 
leaving no faecal matter, unconsumed food or dead fish, if 
any. Prior to the commencement of the experiment, 96 h 
median lethal concentration (96 h LC50) of zinc sulphate (E. 
Merck, India) was estimated by probit analysis [15]. 
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 Adult Clarias batrachus were exposed to ZnSo
water at 10% (9.45 mg L-1 Zn) and 20% (18.90 mg L
the 96 h LC50 value (94.5 mg L-1 Zn).  Eight fishes were 
randomly assigned for each aquarium containing 30 l of 
ZnSo4.7H2O treated water, prepared in tap water (having 
dissolved O2 6.5 mg L-1, pH 7.12, water hardness 23.5 mg L
and water temperature 25 ± 2°C). Identical groups of eight 
fishes each were kept in separate aquaria containing 30 L of 
plain dechlorinated tap water (without zinc salt) as controls. 
After each of the exposure periods of 20, 40 and 60 days, 
fishes from the respective experimental, as well as con
aquaria were sacrificed and the brain tissues were 
various biochemical experiments. Atomic absorption 
spectrometry was used to measure the actual concentration of 
Zn in experimental water during the exposure periods of 20, 
40 and 60 days and was found very near to the desired 
concentration levels. The brain mitochondrial fractions were 
prepared and were utilized for mitochondrial biochemical 
assays. 
 
The brain mitochondrial fraction was isolated following the 
method of Berman and Hastings 1999, with minor 
modifications [16]. The activity of complex I (NADH 
dehydrogenase) was assayed by using ferricyanide as the 
electron acceptor as adapted from Hatefi ,1978
complex II activity (succinate-coenzyme Q10

and complex III (coenzyme Q10 – 
oxidoreductase) were measured by following the methods of 
Fisher et al. 1985 [18] and Rustin et al. 1994 
The activity of complex IV (cytochrome c oxidase) was 
assayed by noticing the oxidation rate of reduc
c (ferrocytochrome c) at 550 nm as mentioned in Wharton and 
Tzagoloff, 1967 [20]. The mitochondrial membrane potential 
was measured with 5 µM JC-1 (5,5',6,6'-tetrachloro
tetraethyl benzimidazolylcarbocyanine iodide, CS0760, 
Sigma-Aldrich) as mentioned in Proost et al. 2008
Mitochondrial ATP production was carried out using 
luciferin-luciferase bioluminescent assay following the 
method of Hays et al. 2003 [22]. DCFH-DA dye was used for 
measurement of reactive oxygen species (ROS) production as 
mentioned in the method of Dreiem et al. 2005
parameters mean ± SE were calculated. All data were 
subjected to analysis of variance and Duncan’s Multiple 
Range Test (DMRT) was used to determine the significant 
differences among means at 5% level of significance (Duncan 
1955)[24]. The control values of the biochemical variables of 
20, 40 and 60 days duration are nearly the same, within 5% 
variation. 
 

III RESULTS AND DISCUSSION 

The extent of mitochondrial dysfunction in the p
Clarias batrachus was evidenced by the inhibition of complex 
II, complex III and complex IV activities of the mitochondrial 
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The extent of mitochondrial dysfunction in the piscine brain of 
was evidenced by the inhibition of complex 

II, complex III and complex IV activities of the mitochondrial 

electron transport chain. In mitochondrial complex II 
measurement, with respect to duration and concentrations of 
treatment, the combination of 60 days treatment with Zn 20% 
(of 96 h LC50) exposure recorded the highest loss of complex 
II activity (-37% vs. control, p<0.05, Fig.1
by 60 days treatment with Zn 10% (of 96 h LC
35% vs. control, p<0.05, Fig.1
duration, both the low and high concentrations of Zn treatment 
inflicted extensive inhibition of complex II activity with 
inhibition of -24% and -32% with respect to control values (no 
variation among controls of 20, 40 and 60 days duration) 
(p<0.05, Fig.1B). For complex III measurement, a different 
pattern of inhibition was observed with only the high 
concentration of Zn (20% of 96 h LC
III activity at both 40 days and 60 days of Zn trea
vs. 40 day control and -33% vs. day control respectively, 
p<0.05, Fig.1C). This observation of inhibition of complex II 
and complex III activities is in accordance to earlier studies, 
however, not in piscine models. The study by Lemire et al. 
2008 [25] reports the inhibition of complex II activity in the 
hepatocytes while Dineley et al. 2003
dysfunction of complex III in rat brain mitochondria. The 
inhibition of complex III also receives support from several 
other studies in bovine heart mitochondria 
complex IV activity, only 60 days treatment period at both 
low and high doses of  Zn exposure inflicted severe inhibition 
of complex IV (-30% vs. control and 
respectively, p<0.05, Fig.1D) t
days treatment period. This observation of inhibition of 
complex IV is not in accordance with the report by Dineley et 
al. 2003 [7], however, this finding receives support from 
several other reports that prove the inhibition 
different working models [25,14]
 
In mitochondrial membrane potential, high dose of Zn 
treatment  (20% of 96 h LC50) reduced the membrane potential 
at both 40 and 60 days of treatment with a loss of 
day control) and -37% (vs. 
p<0.05 (Fig.2A). Zn treatment at low concentration (10% of 
96 h LC50) failed to alter mitochondrial membrane potential at 
20 and 40 days treatment period though reducing the 
membrane potential at 60 days exposure period (
day control, p<0.05, Fig.2A). The inhibition of mitochondrial 
electron transport at different levels as earlier mentioned 
might have resulted in dissipation of mitochondrial membrane 
potential along with lowering of mitochondrial energy 
production as observed in our study. Maximum loss of 
mitochondrial ATP production was observed at 60 days 
treatment period at Zn 20% (of 96 h LC
36% lowering of energy level compared to control (Fig.2
while in 40 days treatment period the lowering 
production was by 17% (compared to 40 day control, p<0.05, 
Fig.2B).However, in 40 days treatment period only Zn 20% 
(of 96 h LC50) exposure was able to inflict loss of ATP 
production. This loss of mitochondrial energy receives support 
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while in 40 days treatment period the lowering of energy 
production was by 17% (compared to 40 day control, p<0.05, 

).However, in 40 days treatment period only Zn 20% 
) exposure was able to inflict loss of ATP 

production. This loss of mitochondrial energy receives support 



                                        

© IJPMN, Volume 4, Issue 1, April-2017 
(This is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution License citing the original author and source

from an earlier observation by Lemire et al. 2008
was suggested that the loss of energy may lead to pathological 
conditions. The debilitating impact of Zn toxicity in piscine 
mitochondrial function may well be contributed by the 
significant enhancement of ROS generation under our 
experimental conditions. There was enhanced increase in ROS 
generation at both low and high doses of Zn exposure at 40 
and 60 days treatment duration, though statistically significant 
increase in ROS was only noticed at high dos
at 40 and 60 days of treatment period (+32% vs. 40 day 
control and +58% vs. 60 day control respectively, p<0.05, 
Fig.2C). This finding of increased generation of ROS is in 
continuity to an earlier study by Bishop et al. 2007
 
IV CONCLUSION 

Considering the information obtained from this study and 
from previous reports, it can be concluded that the Zn 
exposure induces toxicity in piscine brain mediated by ROS 
generation leading to mitochondrial dysfunction involving loss 
of complex II, III and IV activities, reducing mitochondrial 
membrane potential and affecting ATP generation. Though Zn 
is known to accumulate in different organs of the piscine body 
upon exposure including intestine and gills [28
effects of Zn on fish brain can also be an important contributor 
of fish death. It has been evidenced in several studies that Zn 
toxicity can induce cell death of neurons either through 
apoptosis or necrosis [30, 31, 32, 33
dysfunction as observed in the present study may contribute 
heavily for the cause of such neuronal cell death in piscine 
brain. In this connection, our piscine study 
highlights for the first time the involvement of 
piscine neurotoxicity mediated by mitochondrial dysfu
that can lead to neuronal cell death. 
 

Figure 1 
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Fig. 1 Variation of (A) complex I (
(D) complex IV of fish brain mitochondrial fraction exposed to 0% 
(0.00 mg L-1), 10% (9.45 mg L-1) and 20% (18.90 mg L
LC50 of Zn at different duration (20, 40, 60 days) of exposure Data 
are mean ± SEM of eight observations. Results of DMR Test have 
been represented by small letters. Common letter between any two 
bars indicate their similarity while two different l
significant difference at 5% level. 
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Figure 2 

 

Fig. 2 Variation of (A) mitochondrial membrane potential (B) 
mitochondrial adenosine triphosphate (ATP) production and (C) 
mitochondrial reactive oxygen species (ROS) generation of fish brain 
mitochondrial fraction exposed to 0% (0.00 mg L
L-1) and 20% (18.90 mg L-1) of 96 h LC50 of Zn at different duration 
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mitochondrial reactive oxygen species (ROS) generation of fish brain 
mitochondrial fraction exposed to 0% (0.00 mg L-1), 10% (9.45 mg 

of Zn at different duration 

(20, 40, 60 days) of exposure Data are mean ± SEM of eight 
observations. Results of DMR Test have been represented by small 
letters. Common letter between any two bars indicate their similarit
while two different letters indicate significant difference at 5% level.
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