

Establishing Novel Ligands for Rett Syndrome Receptors from Medicinal Plants

Gowda Sampreeth Ravi¹, Anuradha M¹ and Preenon Bagchi^{1,2} ¹Padmashree Institute of Management and Sciences, Bengaluru, India ²Sarvasumana Association, Bengaluru, India

Abstract: The Rett Syndrome is a peculiar, sporadic, atrophic disorder, almost entirely confined to females. Severe dementia, loss of hand skills, apraxia, ataxia, autistic features and irregular breathing with hyperventilation are the major symptoms. There is no cure but medication is provided as speech therapy, occupational therapy, physical therapy, feeding assistance for Rett Syndrome. RS is caused by mutations in the gene MeCP2 and in less than 10% of RS cases, mutations in the genes CDKL5 or FOXG1 have also been found to resemble it. This study was carried out to establish the novel ligands for Rett Syndrome receptors from medicinal plants. Steps involved in the study are choosing the ligands, Homology modeling of the gene receptors, docking of the receptors with ligands and ADME. As per the virtual screening results and ADME studies we find the compound Asiatic acid can be successfully considered as novel drug lead for Rett syndrome.

Keywords: Rett syndrome, X-linked, MeCP2 gene, CDKL5 gene, FOXG1 gene, modeling, docking, ADME

I. INTRODUCTION

The Rett syndrome (RS) is a peculiar, sporadic, atrophic disorder, generally been considered an X-linked disorder in which affected females represent a new mutation, with male lethality with linkage studies suggesting a critical region at Xq28 [1, 2].

Genes involved:

MeCP2 gene (methyl CpG binding protein 2):

MeCP2 is a transcriptional repressor, since it codes for a protein that controls the expression of other genes. Its mutation seems to be more common in X chromosome of sperm cells, explaining why RETT is rare in boys. The gene is found near the end of long arm of X chromosome at Xq28. Mutations in

© IJPMN, Volume 5, Issue 3, December-2018

this gene alter the MeCP2 protein or result in the production of less protein which appears to disrupt the normal function of neurons and other brain cells and impair their ability to communicate with one another [3, 4].

CDKL5 gene (cyclin-dependent kinase-like 5):

CDKL5 gene, also known as serine/threonine kinase 9, is essential for normal brain development. It is involved in formation, growth and movement of nerve cells as well as cell division and plays a role in the transmission of chemical signals at the connections between neurons [4].

FOXG1 gene:

FOXG1 gene provides instructions for making a protein known as Fork Head Box G1. The protein of this gene plays an important role in brain development, particularly in a region of embryonic brain known as telencephalon and the telencephalon ultimately develops into severe critical structures, including the largest part of brain(cerebrum), which controls the most voluntary activity, language sensory perception, learning and memory [4].

SI. No.	Plant Name	Corresponding phytocompound
1	MedhyaRasayana (Nootropic herbs)	Medicoside, Asiaticoside, Asiatic acid, Microphyllic acid
2	Ashwagandha (Withaniasomnifera)	Isopelletierine, Anaferine, Sitoindoside
3	Chitrak (Plumbagozeylancia)	Asparticacid
4	Patol (Tricosanthediocia)	Sitoindoside
5	Nimba(Azadirachtaindica)	Nimbidin, Quercetin, Nimbolinin, Nimbin,

Table 1: Herbs with their phytocompound for treating Rett syndrome used in this work

		Nimbidiol, Sitosterol
6	Musta (Cyperusrotundus)	Anaferine
7	Yashtimadhuk	Glycyrrhizine,
	(Glycyrrhizaglabra)	Glycyrrhetenic acid
8	Onion (Allium cepa)	Quercetin
9	Saffron (Crocus sativus)	Safranal
10	Shankhpushpi(Convolvulus	Kaempferol-3-
	pluricaulis)	glucoside

II. METHODOLOGY

The proteins corresponding to the genes for the Rett syndrome were downloaded from Genbank database, their 3d structure was modeled using modeler and the models were using Ramachandran Plot. The 3d structure of the compounds in Table 1 were downloaded from pubchem database. These compounds were docked with the Rett syndrome receptors. ADME studies was done with the best docked compounds.

III. RESULTS

Target selection

The gene receptors for Rett syndrome are downloaded from Genbank (Table 2).

Table 2: Rett syndrome receptors with their acc	cession number
---	----------------

Receptor name	Accession number
MeCP2	UniProtKB/Swiss-Prot:P51608.1
CDKL5	UniProtKB/Swiss-Prot:076039.1
FOXG1	UniProtKB/Swiss-Prot:P55316.2

The homologous template information for the genes were taken from BLAST and downloaded from RCSB PDB (Table 3)

Table 3(a) template information for MeCP2

Query cover	Ident	Accession
25%	97%	1UB1 A
19%	96%	5BT2 A
19%	95%	3C2I A

Table 3(b) template information for CDKL5

Query cover	Ident	Accession
29%	99%	4BGQ A
28%	48%	4AAA A
28%	46%	4AGU A

Table 3(c) template information for FOXG1		
Query cover	Ident	Accession

© IJPMN, Volume 5, Issue 3, December-2018

18%	71%	1D5V A
19%	66%	2HDC A
18%	69%	2HFH A

Homology modeling

Based on the template information, the 3d models of the gene receptors were modeled using MODELLER software [5]. Modeller generates 5 templates for each gene. The models were verified using RAMPAGE Ramachandran plot server [6] (Table 4, Fig. 1).

Table 4(a) Homology modeling results for MeCP2 receptor

	Number of	Number of	Number	
	residues in	residues in	of	
	favoured	allowed	residues	
	region	region	in outlier	
	(~98.0%	(~2.0%	region	
	expected)	expected)		
Model 1	453	21 (4.3%)	10	selected
	(93.6%)		(2.1%)	
Model 2	446	30 (6.2%)	8	
	(92.1%)		(1.7%)	
Model 3	439	33 (6.8%)	12	
	(90.7%)		(2.5%)	
Model 4	444	33 (6.8%)	7 (1.4%)	
	(91.7%)			
Model 5	448	31 (6.4%)	5 (1.0%)	
	(92.6%)			

Table 4(b) Homology modeling results for CDKL5 rec	eptor
--	-------

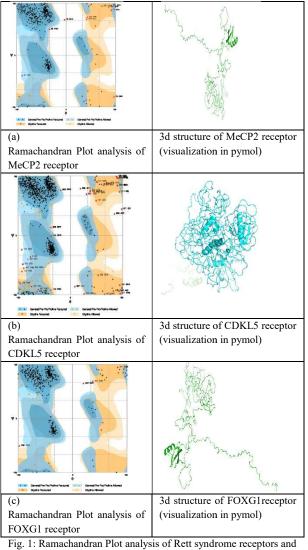

,		Ĵ.		-
	Number of	Number of	Number	
	residues in	residues in	of	
	favoured	allowed	residues	
	region	region	in outlier	
	(~98.0%	(~2.0%	region	
	expected)	expected)		
Model 1	878	91 (8.9%)	59	
	(85.4%)		(5.7%)	
Model 2	895	89 (8.7%)	44 (4.3%)	selected
	(87.1%)			
Model 3	876	90 (8.8%)	62 (6.0%)	
	(85.2%)			
Model 4	879	74 (7.2%)	75 (7.3%)	
	(85.5%)			
Model 5	864	106	58	
	(84.0%)	(10.3%)	(5.6%)	

Table 4(c) Homology modeling results for	r FOXG1 receptor:
--	-------------------

Number of	Number of	Number	
residues in	residues in	of	

	favoured	allowed	residues	
	region	region	in outlier	
	(~98.0%	(~2.0%	region	
	expected)	expected)		
Model 1	449	32 (6.6%)	6 (1.2%)	
	(92.2%)			
Model 2	460	23 (4.7%)	4 (0.8%)	selected
	(94.5%)			
Model 3	459	21 (4.3%)	7 (1.4%)	
	(94.3%)			
Model 4	443	38 (7.8%)	6 (1.2%)	
	(91.0%)			
Model 5	456	24 (4.9%)	7 (1.4%)	
	(93.6%)			

their visualization in pymol

© IJPMN, Volume 5, Issue 3, December-2018

The selected models were docked with the phytocompounds from Table 1 using PATCHDOCK server [7] (Table 5, Fig. 2).

Table	5(a):	Docking	score	of	MeCP2	with
phytoco	ompour	nds				

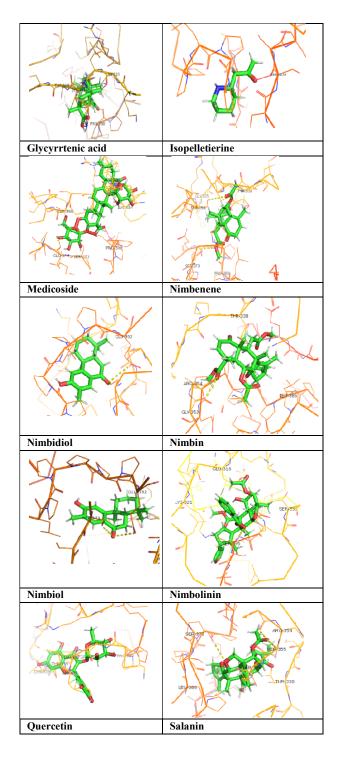
	locompou				
S	Protein	LIGAND	Dockin	Numb	Interactin
R.			g	er of	g amino
N			Score	intera	acids
0			(kcal/m	ctions	
			ol)		
1	MECP2	6-	5906	4	LEU- 336
1	MILCE 2	-	3900	4	
		DESACETY			PRO 390
		LNIMBIDE			PRO 389
		NE			LEU 386
2		17-	5644	3	SER-373
		HYDROXY			PRO-390
		AZADIRAD			ALA-447
		IONE			71L/1 /
-			2052		GED 465
3		ASCORBIC	2852	4	SER-465
		ACID			SER-410
					SER-409
					GLY-428
4		ANAFERIN	4114	1	SER-410
		Е			
5		ASIATICOS	7658	7	LYS-307
5			7050	· ·	SER-396
		IDE			
					SER-292
					LYS-321
					SER-274
					SER-332
					LYS-286
6		GEDUNINE	5722	4	ARG-354
					LEU-386
					SER-356
					PRO-390
7		MEDICOSI	6292	6	SER-373
		DE			GLU-374
					SER-356
					THR-338
					PRO-390
					LYS-337
8		NIMBIDIOL	4326	1	GLU-392
				5	
9		NIMBENE	5952	2	SER-356
					THR-338
					PRO-389
					SER-473
					GLY-335
10		SCOPOLA	4464	4	SER-373
		MINE			PRO-391
		14111 (12)			GLU-392
1					
					GLY-352

LIC ACID

11	SITOINDOS IDE	9004		
12	QUERCETI	5388	6	PRO-390
	N			CYS-339
				THR-338
				GLY-335
				LEU-336
				LYS-337
13	NIMBIN	6172	4	LEU-386
				THR-338
				ARG-354
14	SITOSTERO	5022	2	GLY-353
14	SITOSTERO L	5932	2	GLY-428 SER-410
15	SALANIN	6764	6	SER-373
				LEU-386
				THR-338
				ARG-354
				SER-355
				SER-356
16	KAEMPFER	7924	0	
	OL GLUCOSID			
	E			
17	ASIATIC	6202	5	LYS-337
1/	ASIATIC	0202	5	THR-338
	ACID			GLY-353
				PRO-390
				LEU-336
18	ISOPELLET	3050	1	SER-409
	IERINE			
19	AZADIRAC	7936		
	HTIN			
20	NIMBOLINI	6566	4	GLU-318
	N			LYS-321
				SER-395
21	CLVCVDD	7452	6	SER-332
21	GLYCYRR HIZINE	1432	6	SER-332 VAL-276
				VAL-276 VAL-319
				LYS-307
				LYS-331
				LYS-317
22	GLYCYRR	5954	4	PRO-390
	HETINIC			GLY-335
	ACID			LYS-337
				THR-338
23	NIMBIOL	4326	2	GLU-392
				SER-473
24	CUSEOHY	3988	2	PRO-389
	GRINE	22.12	-	PRO-387
25	CINNAMIC	3348	3	SER-410
	ACID			SER-465
26	MICDOBIN	2500	0	GLY-428
26	MICROPHY	3580	0	

Fig. 2(a) Docking phytocompounds	result of MeCP2 with
6-desacetylnimbidene	17-hydroxyazadiradione
JAK K	
Anaferine	Ascorbic acid
Asiatic acid	Asiaticoside
F	
Cinnamic acid	Cuseohygrine
0 ~~	
Sitoindoside	Kaempferolglucoside

Glycyrrhizine


© IJPMN, Volume 5, Issue 3, December-2018

(This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License citing the original author and source)

Gedunine

International Journal Of Public Mental Health And Neurosciences ISSN No: 2394-4668 (An Official publication of Sarvasumana Association)

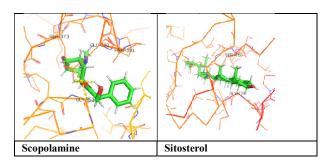
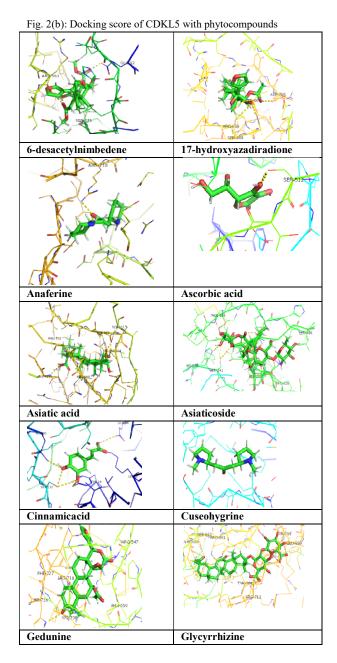


Table 5(b) Docking score of CDKL5 with phytocompounds

~-			.		
SR.	Prot	LIGAND	Dockin	NO.	INTERCA
NO	ein		g score	OF	TING
			(kcal/m	INTE	AMINO
			ol)	RAC	ACIDS
				TION	
				S	
1	CD	ASCORBIC	2978	1	SER-512
	KL	ACID			
	5				
2		17-	6358	4	ASP-706
		HYDROXY			GLU-666
		AZADIRA			SER-668
		DIONE			ARG-669
3		CUSEOHY	4594	0	
		GRINE			
4		ISOPELLE	3406	1	TYR-24
		TIERINE			
5		GLYCYRR	6220	7	ASN-368
		HETINIC			SER-436
		ACID			LEU-642
					ARG-483
					LYS-487
					HIS-338
					ARG-340
6		GEDUNIN	6162	7	ARG-547
Ŭ		E	0102		VAL-708
		L			ARG-710
					ARG-547
					HIS-728
					PHE-727
					ARG-550
7		NIMBIDIO	4620	0	7110-330
'		L	4020		
8		L NIMBENE	6270	5	SER-536
0		NE	0270	5	ASN-549
		INE			
					HIS-728
					THR-533
		CI VOVDE	0000	7	PRO-532
9		GLYCYRR	8928	7	ARG-661
1		HIZINE			TYR-716
1					GLU-699
					TYR-704


© IJPMN, Volume 5, Issue 3, December-2018

International Journal Of Public Mental Health And Neurosciences ISSN No: 2394-4668 (An Official publication of Sarvasumana Association)

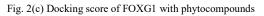
				ARG-711
				SER-662
				VAL-664
10	SCOPOLA	4734	4	ARG-661
	MINE			ALA-660
				GLU-670
				VAL-659
11	ASIATICO	8050	5	LEU-406
	SIDE			PRO-425
				SER-341
				HIS-339
				ASN-399
12	MEDICOSI	7036	8	ARG-661
12	DE	/050	0	GLU-699
	DE			TYR-704
				ARG-669
				TYR-716
				VAL-659
				PRO-697
				SER-714
13	KAEMPFE	8402	0	
	RGLUCOSI			
	DE			
14	SALANIN	6898	4	SER-426
				LYS-344
				LYS-424
				ASN-420
15	SITOSTER	6524	2	GLU-569
10	OL	0321	-	PHE-727
16	MICROPH	10950	0	
	YLIC ACID			
17	NIMBIOL	4620	1	TYR-239
18	6-	6304	3	GLU-359
	DESACET			SER-375
	YLNIMBID			ARG-563
	ENE			
19	QUERCETI	5580	5	ARG-710
	N	0000		ASN-549
				LYS-572
				ARG-669
20		7040	4	GLU-569
20	NIMBIN	7040	4	SER-438
				SER-375
				ASN-370
				ARG-563
21	NIMBOLIN	7036	2	GLU-416
	IN			LYS-432
22	AZADIRA	8094	0	
	CHTIN			
23	SITOINDO	9522	0	
	SIDE			
24	ANAFERIN	4530	1	ARG-710
	Е			
25	CINNAMIC	3388	5	GLU-60
	ACID			ASN-95
	1			SER-232
I	1	1	1	-

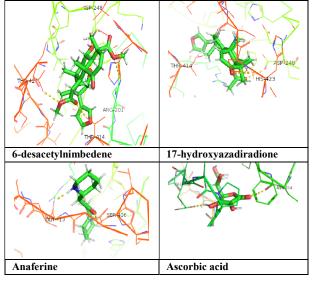
				TYR-24 LYS-42
26	ASIATIC ACID	6112	6	GLY-713 ARG-701 ARG-669 SER-557 SER-662 VAL-664

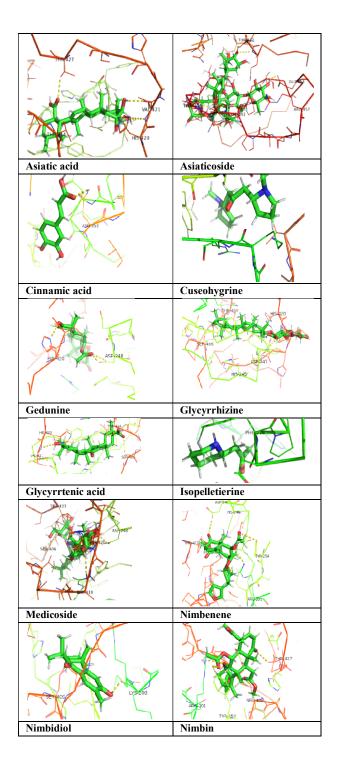
© IJPMN, Volume 5, Issue 3, December-2018

	TV-24
Glycyrrtenic acid	Isopelletierine
Medicoside	Nimbenene
Nimbin	Nimbiol
Nimbolinin	Quercetin
Salanin	Scopolamine
	Sitosterol

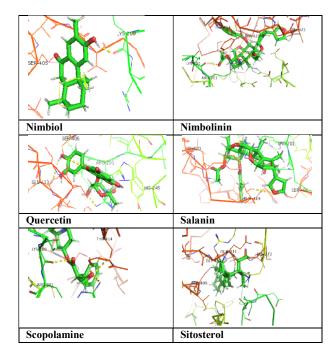
Table 5(c) Docking score of FC	XG1 with phytocompounds
Tuble 5(c) Docking score of 10	and a man phytocompounds


SR.	Prot	LIGAND	Dockin	NO.	INTERA
NO	ein		g score	of	CTING
			(kcal/m	interac	AMINO


© IJPMN, Volume 5, Issue 3, December-2018


			ol)	tions	ACIDS
1	FO	CINNAMI	2950	1	ASN-353
	XG	C ACID			
	1				
2		17-	6064	3	THR-414
		HYDROX			HIS-423
		YAZADIR			ASP-248
		ADIONE			
3		ANAFERI	4070	2	GLN-413
		NE			SER-406
4		6-	6178	4	THR-414
		DESACET			ARG-201
		YLNIMBI			THR-427
		DENE			ASP-248
5		GLYCYRR	6194	4	THR-414
		HETINIC			SER-406
		ACID			HIS-420
					VAL-421
6		NIMBIDIO	4308	2	SER-406
		L			LYS-200
7		NIMBIN	6512	4	ARG-201
					TYR-254
					SER-406
					THR-427
8		NIMBIOL	4308	2	SER-406
					LYS-204
9		NIMBENE	6132	5	HIS-245
		NE			ASP-247
					TYR-254
					THR-427
					ARG-201
10		MEDICOS	6794	5	PHE-418
		IDE			ASP-248
					SER-406
					HIS-420
					THR-427
11		GEDUNIN	6102	2	ASP-248
4-		E			HIS-420
12		QUERCET	5262	4	SER-406
		IN			GLN-413
					ARG-201
1.0		CT LICE T	005.5	-	HIS-245
13		GLYCYRR	8276	5	ASP-247
		HIZINE			SER-406
					THR-414
					PRO-422
1.4			7000		HIS-420
14		AZADIRA CHTIN	7908	0	
15		SALANIN	6779	4	THR-414
13		SALAININ	6778	4	ARG-201
					HIS-420
					SER-406
16		MICROPH	9996	0	SER-400
10		YLIC	2220	0	
L	L	I LIC		L	l

	ACID			
17	SITOSTER	6158	4	SER-406
	OL			LYS-272
				GLY-412
				GLN-413
18	ASCORBI	2700	2	GLU-180
	C ACID			ASN-214
19	NIMBOLI	6964	5	THR-414
	NIN			LYS-206
				THR-427
				ARG-201
				VAL-421
20	SITOINDO	3885	0	
	SIDE			
21	CUSEOHY	4060	0	
	GRINE			
22	ISOPELLE	2896	1	PHE-215
	TIERINE			
23	KAEMPFE	7776	0	
	ROL			
24	SCOPOLA	4582	3	LYS-200
	MINE			ARG-201
				THR-414
25	ASIATIC	5992	4	THR-414
	ACID			HIS-420
				THR-427
				VAL-421
26	ASIATICO	7882	6	GLU-454
	SIDE			ARG-457
				THR-427
				THR-465
				SER-462
	 			PHE-463



© IJPMN, Volume 5, Issue 3, December-2018

International Journal Of Public Mental Health And Neurosciences ISSN No: 2394-4668 (An Official publication of Sarvasumana Association)

ADME: ADME studies for the phytocompounds listed in table 4and the results were noted in Table 6 [8, 9].

Table 6: ADME studies	of phytocompounds
-----------------------	-------------------

LIG AN D	mi Lo gP	TP SA	nat om s	MW	nO N	n O H N H	nr otb	Vol ume	nvio latio ns
6- desa cetyl nim bide ne	2.8 5	11 2.2 8	36	498. 57	8	1	6	452. 45	0
17- hydr oxya zadir adio ne	3.6 5	93. 81	34	466. 57	6	1	3	433. 80	0
Anaf erine	1.3 8	41. 12	16	224. 35	3	2	4	236. 41	0
Asc orbi caci d	- 1.4 0	10 7.2 2	12	176. 12	6	4	2	139. 71	0
Asia ticac id	4.7 0	97. 98	35	488. 71	5	4	2	487. 79	0

Asia	0.3	31	67	959.	19	1	10	875.	3
ticos	7	5.2		13		2		90	
ide		1							
Aza	1.6	21	51	722.	16	3	11	617.	2
dirac	0	5.3		74				90	
htin		7							
Cinn	0.9	77.	13	180.	4	3	2	154.	0
amic	4	75		16				50	
acid									
Cuse	0.8	23.	16	224.	3	0	4	236.	0
ohyg	6	55		35				69	
rine									
Ged	4.3	95.	35	482.	7	0	3	439.	0
unin	4	35		57			-	15	
e								-	
Glyc	1.9	26	58	822.	16	8	7	741.	3
yrrhi	7	7.0		94				93	
zine		4							
Glyc	5.6	74.	34	470.	4	2	1	473.	1
yrrte	2	60		69		-	.	32	.
nica	-	00		0,				52	
cid									
Isop	0.8	29.	10	141.	2	1	2	150.	0
elleti	1	10	10	21	2	1	-	58	
erine	1	10		21				50	
Kae	-	32	53	756.	20	1	9	620.	3
mpf	2.3	8.3	55	66	20	2	,	17	5
erol	6	5		00		-		1/	
gluc	0	5							
osid									
e									
Leci	2.6	10	44	643.	8	0	32	668.	1
thin	9	1.9		89	0		52	30	1
unn		7		07				50	
Med	-	35	74	1061	22	1	12	958.	3
icosi	0.4	3.9	/4	.22	22	3	12	19	5
de	2	1		.22		5		17	
Micr	0.2	37	70	1019	24	1	25	927.	3
ophy	8	2.3	/0	.14	24	3	25	04	5
licac	0	8		+					
id		0							
Nim	3.8	92.	35	482.	7	0	6	444.	0
bene	5.8 9	92. 06	55	482. 57	,			73	
ne	ĺ .	00		57				,5	
Nim	4.9	37.	20	272.	2	1	0	272.	0
bidi	4.9	37. 30	20	39	-			65	
ol	4	30		37				05	
	3.5	11	39	540.	9	0	8	488.	1
Nim	3.5 5	8.3	39	540. 61	9		°		
bin	5			01				96	
NL	4.0	6	20	272	2	1	0	272	
Nim	4.9	37.	20	272.	2	1	0	272.	0
biol	2	30	4.5	39	0	1	7	65	
Nim	5.6	11	45	620.	9	1	7	568.	2
	6	3.6		74	1			67	
boli		0							
nin Quer	0.6	8 19	32	448.	11	7	3	363.	2

© IJPMN, Volume 5, Issue 3, December-2018

cetin	4	0.2		38				95	
		8							
Sala	5.4	11	43	596.	9	0	9	551.	0
nin	0	0.5		72				94	
		2							
Scop	1.0	62.	22	303.	5	1	5	277.	0
olam	5	30		36				20	
ine									
Sitoi	10.	10	58	815.	7	3	25	860.	2
ndos	06	5.4		27				38	
ide		6							
Sitos	8.6	20.	30	414.	1	1	6	456.	1
terol	2	23		72				52	

IV. CONCLUSION

As per the virtual screening results we find the phytocompounds Asiaticoside, Glycyrrhizine, Medicoside and Asiatic acid docks with all the 3 receptor genes of Rett syndrome. As per ADME studies compoundAsiaticoside, Glycyrrhizine and Medicoside cannot be considered as drug leads as they all have >0 violations in ADME studies respectively. Compound Asiatic acid successfully clears ADME studies. Hence the compound Asiatic acid is successfully considered as novel drug lead for Rett syndrome.

Reference

- [1] Aicardi J, "Rett syndrome", 1988, 3:165-169
- [2] Akesson HO, Hagberg B, Wahlstrom J, "Rett syndrome, classical and atypical: genealogical support for common origin", Journal of Medical Genetics, 1996, 33:764–6
- [3] Luikenhuis S, Giacometti E, Jaenisch R, "Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice, 2004, 101:6033-6038
- [4] Zoghbi HY, "Genetic aspects of Rett syndrome", 1988, J Child Neurology, 3:76-78
- [5] Sali A and Blundell TL, 1993, "Comparative protein modelling by satisfaction of spatial restraints" J. Mol. Biol., 234:779-815.
- [6] Laskoswki RA, MacArthur MW, Moss DS & Thorton JM, 1993, "Procheck: a program to check the stereochemical quality of protein structures", J. Appl. Cryst. 26:283-291.
- [7] Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ, 2005, "PatchDock and SymmDock: servers for rigid and symmetric docking", Nucl. Acids. Res. 33: W363-367.
- [8] Ertl P, Rohde B, Selzer P, 2000, "Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties", J.Med.Chem. 43, 3714-3717.

© IJPMN, Volume 5, Issue 3, December-2018

(This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License citing the original author and source)

[9] Lipinski CA, Lombardo F, Dominy BW, Feeney PJ, 1997, "Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings", Adv. Drug. Delivery Rev. 23, 4-25.