

Establishing a Remedy for Phenylketonuria Disease from Medicinal Herbs

Gireesh Hegde¹, Anuradha M¹ and Preenon Bagchi^{1,2} ¹Padmashree Institute of Management and Sciences, Bengaluru, India ²Sarvasumana Association, Bengaluru, India

Abstract: The phenylketonuria disease is an inherited disorder that increases the levels of a substance called phenylalanine in the blood and seizures, tremors or trembling and shaking, stunted growth, hyperactivity, skin conditions such as eczema, a musty order of their breath, skin or urine. Phenylketonuria is caused by mutations in the gene PAH, IGF1, etc. This study was carried out to establish the remedy for the phenylketonuria disease from medicinal herbs. As per virtual screening & ADME studies compounds tyrosine and curcumin can be successfully considered as novel drug leads for phenylketonuria disorder.

Keywords: Phenylketonuria, PAH gene, IGF1 gene, modeling, docking, ADME

I. INTRODUCTION

Phenylketonuria which is commonly known as PKU, is an inherited disorder that increases the levels of a substance called phenylalanine in the blood. Phenylalanine is a building block of proteins (an amino acid) that is obtained through the diet and it is found in all proteins and in some artificial sweeteners. If PKU is not timely treated, phenylalanine can build up to harmful levels (toxins) in the body, causing intellectual disability and other serious health problems.

The signs and symptoms of PKU may vary from mild to severe. Without treatment, children develop permanent intellectual disability. Seizures, delayed development, behavioral problems, including psychiatric disorders are also common. Untreated individuals have a musty or mouse-like odor as a side effect of excess phenylalanine in the body [1-4].

Genes involved and their function:

PAH gene (phenylalanine hydroxylase):

The PAH gene provides instructions for making an enzyme called phenylalanine hydroxylase which is © IJPMN, Volume 5, Issue 3, December-2018

responsible for the first step in processing phenylalanine, which is a building block of proteins (an amino acid) obtained through the diet. Phenylalanine is found in all proteins and in some artificial sweeteners [5, 6].

IGF1 gene (insulin like growth factor 1)

The protein encoded by this gene is similar to insulin in function and structure and is a member of a family of proteins involved in mediating growth and development & its encoded protein is processed from a precursor, bound by a specific receptor, and secreted. Defects in this gene are a cause of insulinlike growth factor I deficiency and alternative splicing results in multiple transcript variants encoding different isoforms that may undergo similar processing to generate mature protein. This is isolated from plasma, are structurally and functionally related to insulin but have a much higher growth-promoting activity [7, 8, 9].

Herbs and their active components:

- 1. Wood betony: The chemical components present in this plant are Tannins, Betulinic acid, oleonilic acid, rosamarinic acid, rutin, urosolic acid, stachydrine, glycosides etc.
- 2. Nettle: The chemical components present in this plant are histamine, formic acid, acetylcholine, serotonin, vitamins etc.
- 3. Plantago ovate: The chemical components present in this plant are xylose, arabinose, alanine, valine, glutamic acid, glycine, cysteine, lysine, leucine, tyrosine, xylose etc.
- 4. Turmeric: The chemical components present in this plant are curcumin, camphene etc.
- 5. Dandelion: The chemical components present in this plant are taraxacin,laevulin,resin,inulin etc.

II. METHODOLOGY

The proteins corresponding to the genes for the PKU (phenylketonuria) were downloaded from Genbank database, their 3d structure was modeled using modeler [10] and the models were using Ramachandran Plot [11]. The 3d structure of the compounds above were downloaded from pubchem database. These compounds were docked with the PKU (phenylketonuria) receptors using PATCHDOCK server [12]. ADME studies was done with the best docked compounds [13, 14].

III. RESULTS & DISCUSSION

Homology modeling:

PKU (phenylketonuria) gene receptors were retrieved from GENBANK database (Table 1).

T 11 1 DIZI		· · · ·	1 1	•	1
Table 1: PKU	genes	with	genbank	accession	number.

Sl.no.	Gene name	Code	Accession number
1.	Phenylalanine hydroxylase	РАН	P00439.1
2.	Insulin-like growth factor 1	IGF1	P05019.1

Using BLAST the homologous templates pertaining to the gene receptors were selected and downloaded from RCSB-PDB database (Table 2).

Table 2 (a): Homologous templates of PAH C
--

Accession	Accession Query cover	
5DEN A	100%	92%
5FGJ A	100%	92%
5EGQ A	100%	92%

Table 2 (b): Homologous templates of IGF1

Accession	Query cover	Identity
1IMX A	35%	100%
3LRI A	40%	87%
1B9G A	35%	81%

By using the homologous templates, using the software modeler [10], 5 models of each receptor were generated. The above models were verified by

© IJPMN, Volume 5, Issue 3, December-2018

(This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License citing the original author and source)

Ramachandran Plot server [11] and the best models were selected (Table 3, Fig. 1).

Table 3(a): Homology modeling:

IGF1:

	Number of residues in favoured region (~98.0% expected)	Number of residues in allowed region (~2.0% expected)	Number of residues in outlier region	
Model 1	160 (82.9%)	22 (11.4%)	11 (5.7%)	
Model 2	155 (80.3%)	28 (14.5%)	10 (5.2%)	
Model 3	154 (79.8%)	23 (11.9%)	16 (8.3%)	
Model 4	158 (81.9%)	22 (11.4%)	13 (6.7%)	
Model 5	165 (85.5%)	19 (9.8%)	9 (4.7%)	Selected

PAH:

I AII.				
	Number of residues in favoured region (~98.0% expected	Number of residues in allowed region (~2.0% expected)	Number of residues in outlier region	
Model 1	439 (97.6%)	9 (2.0%)	2 (0.4%)	
Model 2	439 (97.6%)	9 (2.0%)	2 (0.4%)	
Model 3	439 (97.6%)	10 (2.2%)	1 (0.2%)	Selected
Model 4	435 (96.7%)	14 (3.1%)	1 (0.2%)	
Model 5	438 (97.3%)	11 (2.4%)	1 (0.2%)	

International Journal Of Public Mental Health And Neurosciences ISSN No: 2394-4668 (An Official publication of Sarvasumana Association)

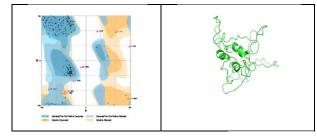


Fig.1(a). Ramachandran plot analysis of the best model (5) of IGF1 receptor

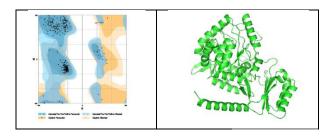


Fig.1(b). Ramachandran plot analysis of the best model (3) of PAH receptor

Docking:

The selected models in Fig. 1 were docked with the phytocompounds from the plants using PATCHDOCK server [12].

The docking scores were noted in table 4.

Table 4(a): Docking results of IGF1 receptor with compounds from WOOD BETONY

Sl.n	Recept	Ligand	Dockin	No.	Interacting
о.	or		g score	Of	amino acids
				inter	
				actio	
				ns	
1	IGF1	Betulinic	5392	3	LEU-37
		acid			CYS-38
					LEU-39
2	IGF1	Delphinic	2522	1	LYS-75
		acid			
3	IGF1	Oleonilic	5360	4	TYR-135
		acid			GLN-136
					GLN-161
					GLN-133
4	IGF1	Rosamarin	4624	2	LEU-37
		ic acid			ALA-46
5	IGF1	Rutin	5660	6	GLN-161
					GLU-166
					SER-168
					ALA-167

© IJPMN, Volume 5, Issue 3, December-2018

					GLN-133 GLN-136
6	IGF1	Urosolic	5278	4	TYR-79
		acid			GLY-78
					GLY-133
					GLN-161
7	IGF1	Stachydrin	2528	2	ARG-179
		e			GLN-178

Docking results of IGF1 receptor with compounds from

NETTLE

Sl.n	Recept	Ligand	Docki	No. Of	Interacting
0.	or		ng	interact	amino
			score	ions	acids
1	IGF1	Histamine	2678	0	
2	IGF1	Formic	1232	0	
		acid			
3	IGF1	Acetylcholi	3168	1	LYS-176
		ne			
4	IGF1	Serotonin	3038	2	LEU-40
1					LYS-176

Docking results of IGF1 receptor with compounds from

PLANTAGO OVATO

Sl.no	Recept	Ligand	Dockin	No. Of	Interacting
	or		g score	interact	amino acids
				ions	
1	IGF1	Arabinos	2340	2	TYR-108
		e			ARG-84
2	IGF1	Xylose	2698	2	TYR-108
					ARG-84
3	IGF1	Valine	2462	1	ARG-84
4	IGF1	Alanine	2120	0	
5	IGF1	Glutamic	2696	2	ARG-84
		acid			SER-83
6	IGF1	Glycine	1710	1	TYR-108
7	IGF1	Cysteine	2250	2	LYS-75
					ARG-84
8	IGF1	Lysine	2952	3	ARG-179
					ALA-46
					ALA-48
9	IGF1	Leucine	2426	1	GLN-178
10	IGF1	Tyrosine	2992	2	ARG-179
					CYS-38
11	IGF1	Rhamnos	2538	1	GLN-178
		e			

Docking results of IGF1 receptor with compounds from

TURMERIC

Sl.no	Recept	Ligand	Dockin	No. Of	Interacting
	or		g score	interact	amino acids

International Journal Of Public Mental Health And Neurosciences ISSN No: 2394-4668 (An Official publication of Sarvasumana Association)

				ions	
1	IGF1	Curcumi	5342	6	ALA-167
		n			SER-168
					GLN-170
					LYS-134
					LEU-169
					ILE-171
2	IGF1	Camphe	2512	1	CYS-38
		ne			

Docking results of IGF1 receptor with compounds from

DANDELION

Sl.no.	Recept	Ligand	Dockin	No.of	Interacting
	or	-	g score	intera	amino acids
				ction	
				s	
1	IGF1	Taraxaci	3840	1	GLN-178
		n			
2	IGF1	Laevulin	2422	2	ARG-84
		ic acid			TYR-108
3	IGF1	Choline	2216	0	
4	IGF1	Lecithin	7396	7	PHE-19
					CYS-17
					CYS-15
					LYS-13
					LEU-20
					VAL-22
					LYS-23

Table 4(b): Docking results of PAH receptor with compounds from

WOOD BETONY

Sl.n	Recept	Ligand	Dockin	No. Of	Interacting	
о.	or		g score	interac	amino acids	
				tions		
1	PAH	Betulinic	5758	3	GLY-346	
		acid			THR-278	
					SER-349	
2	PAH	Delphinic	2692	1	ALA-246	
		acid				
3	PAH	Oleonilic	5854	2	ARG-270	
		acid			THR-278	
4	PAH	Rosamarin	4916	7	ASP-145	
		ic acid			ASP-143	
					LEU-142	
					ARG-155	
					GLU-280	
					LEU-136	
					LYS-159	
5	PAH	Rutin	5728	8	ARG-270	
					VAL-379	
					GLU-381	
					TYR-277	
					THR-278	
					MET-276	

	T			,
				GLU-353

					GLU-353 THR-380
6	РАН	Urosolic acid	5830	1	SER-23
7	РАН	Stachydrin e	3012	1	TYR-138

Docking results of PAH receptor with compounds from

NETTLE

Sl.n	Recept	Ligand	Docki	No.	Interacting
о.	or		ng	Of	amino acids
			score	intera	
				ctions	
1	PAH	Histamine	2604	2	ALA-246
					GLU-141
2	PAH	Formic		1	ASN-28
		acid			
3	PAH	Acetylcholi	3250	1	TYR-325
		ne			
4	PAH	Serotonin	3552	2	LEU-142
					GLU-280

Docking results of PAH receptor with compounds from

PLANTAGO OVATO

1 12/11	11100	0,1110			
Sl.no	Recept	Ligand	Dockin	No. Of	Interacting
	or		g score interact		amino acids
				ions	
1	PAH	Arabinos	2484	1	LYS-159
		e			
2	PAH	Xylose	2734	3	LYS-159
					TYR-138
					LEU-142
3	PAH	Valine	2764	2	GLU-141
					TYR-138
4	PAH	Alanine	2096	2	LYS-159
					GLU-141
5	PAH	Glutamic	2744	2	LYS-159
		acid			ALA-246
6	PAH	Glycine	1694	2	GLY-247
					GLU-286
7	PAH	Cysteine	2254	1	ILE-38
8	PAH	Lysine	3130	2	LEU-136
					LYS-159
9	PAH	Leucine	2958	1	GLU-141
10	PAH	Tyrosine	3370	3	GLU-280
					GLY-247
					LYS-159
11	PAH	Rhamnos	2900	2	LEU-136
		e			ARG-158

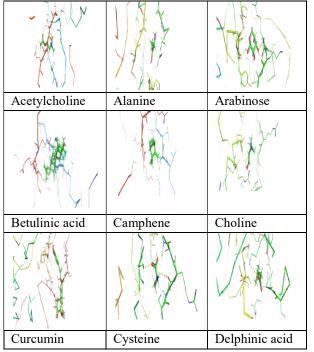
Docking results of PAH receptor with compounds from

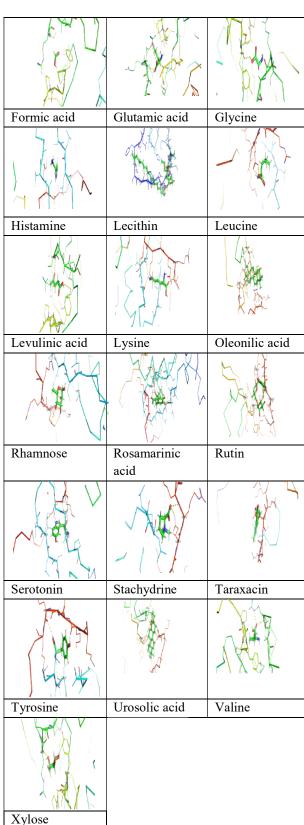
© IJPMN, Volume 5, Issue 3, December-2018

International Journal Of Public Mental Health And Neurosciences ISSN No: 2394-4668

(An Official publication of Sarvasumana Association)

TURMERIC

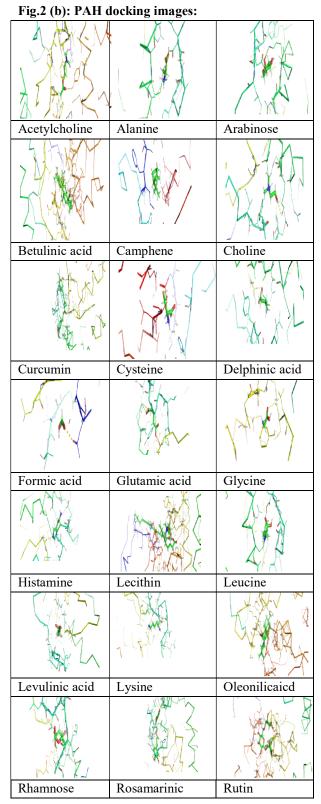

TORVIERC							
Sl.no	Recept	Ligand	Dockin	No. Of	Interacting		
	or		g score	interact	amino acids		
				ions			
1	PAH Curcumi		5370	5	ALA-246		
		n			ARG-158		
					LYS-159		
					GLU-280		
					GLU-141		
2	PAH Camphe		3198	0			
		ne					

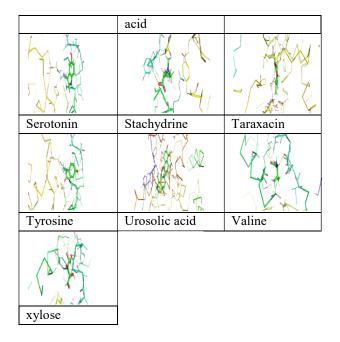

Docking results of PAH receptor with compounds

from

DANDELION Sl.no. Recept Ligand Dockin No.of Interacting or g score interac amino acids tions 1 PAH Taraxaci 4232 2 HIS-264 GLU-286 n 2 PAH Laevulin 2622 1 ARG-158 ic acid 3 PAH Choline 2640 1 LYS-159 4 PAH Lecithin 6906 SER-349 6 VAL-379 THR-278 GLU-21 PHE-18 ARG-270

Fig.2 (a):IGF1 docking images




© IJPMN, Volume 5, Issue 3, December-2018

International Journal Of Public Mental Health And Neurosciences **ISSN No: 2394-4668**

(An Official publication of Sarvasumana Association)

ADME: The phytocompounds used in this work are subjected to ADME screening using molinspiration server [13, 14]. The results are noted in Table 4. Table 4: ADME screening

Ligands	miLo	TPS	Nato	MW	volu	nviolati
	gP	Α	ms		me	ons
Acetylcholi	-3.56	26.3	10	146.	156.	0
ne		0		21	67	
Alanine	-2.69	63.3	6	89.0	84.3	0
		2		9	1	
Arabinose	-2.22	90.1	10	150.	126.	0
(Oxane-		5		13	96	
2,3,4,5-						
tetrol)						
Betulinic	7.04	57.5	33	456.	472.	1
acid		3		71	04	
(Lup-						
20(29)-en-						
28-oic acid,						
3beta-						
hydroxy-)						
Camphene	3.33	0.00	10	136.	152.	0
				24	37	
Choline	-4.24	20.2	7	104.	120.	0
		3		17	16	
Curcumin	2.30	93.0	27	368.	332.	0
		7		38	18	
Cysteine	-2.71	63.3	7	121.	102.	0
		2		16	22	

© IJPMN, Volume 5, Issue 3, December-2018

International Journal Of Public Mental Health	And Neurosciences
	ISSN No: 2394-4668
(An Official publication of Sarvasum	ana Association)

	1		1			
Delphinic	1.21	37.3	7	102.	106.	0
acid(Isoval		0		13	39	
eric acid)						
Г	0.51	27.2	2	46.0	20.6	0
Formic	-0.51	37.3	3	46.0	39.6	0
acid		0		2	4	
Glutamic	-3.25	100.	10	147.	128.	0
acid		62		13	36	
Glycine	-2.55	63.3	5	75.0	67.7	0
		2		7	3	
Histamine	-0.85	54.7	8	111.	109.	0
		1		15	77	
Lecithin	2.69	101.	44	643.		1
		97		89	668.	
					30	
Leucine		63.3	9	131.	134.	0
Leuenie	1.38	2		131.	50	0
I constituite			0		50	0
Levulinic	-0.35	54.3	8	116.	100	0
acid		7		12	108.	
					78	
Lysine	-3.18	89.3	10	146.	146.	0
		4		19	25	
Oleanoic	6.72	57.5	33	456.		1
acid		3		71	471.	
					14	
Rhamnose	-		11	164.	143.	0
(6-	1.64	90.1		16	55	
Methyloxa		5				
ne-2,3,4,5-						
tetro)l						
Rosmarinic	1.63	144.	26	360.	303.	0
acid	1.05	52	20	32	54	
(Rosmarins		52		52	54	
aure)	1.00		12		40.6	
Rutin	-1.06		43		496.	3
(Vitamin		269.		610.	07	
P)		43		52		
Serotonin	0.57		13	176.	165.	0
		62.0		22	93	
		4				
Stachydrin	-	40.1	10	143.	142.	0
e	5.31	3		19	62	
Taraxacin	2.56	43.3	18	242.	220.	0
		8		27	04	
Tyrosine	-1.71	83.5	13	181.	163.	0
		5		19	98	
Urosolic		57.5	33	456.	471.	1
acid(Cariss	6.79	37.5		71	49	¹
ic acid)	0.79	5		/1	72	
· · · · · · · · · · · · · · · · · · ·		(2.2	0	117	117	-
Valine	-	63.3	8	117.	117.	0
	1.91	2		15	70	
Xylose	-2.22	97.9	10	150.		0
(Ribose, D-		8		13	130.	
)					97	

IV. CONCLUSION

As per the virtual screening studies we find the phytocompounds rutin, tyrosine, curcumin and lecithin docks with all the receptor genes of phenylketonuria disease. As per ADME studies compounds rutin and lecithin cannot be considered as drug lead as they have they have 3 and 1 violations in ADME studies respectively. Compounds tyrosine and curcumin successfully clears ADME studies. Hence the compounds tyrosine and curcumin can be successfully considered as novel drug leads for phenylketonuria disease.

References

[1] Bilder DA, Burton BK, Coon H, Leviton L, Ashworth J, Lundy BD, Vespa H, Bakian AV, Longo N, 2013, "Psychiatric symptoms in adults with phenylketonuria" Mol Genet Metab;108:155–60.

[2] Brumm VL, Bilder D, Waisbren SE, 2010, "Psychiatric symptoms and disorders in phenylketonuria" Mol Genet Metab; 99Suppl 1:S59–63.

[3] Brumm VL, Grant ML., 2010, "The role of intelligence in phenylketonuria: a review of research and management" Mol Genet Metab;99Suppl 1:S18–21.

[4] Channon S, Goodman G, Zlotowitz S, Mockler C, Lee PJ. 2007, "Effects of dietary management of phenylketonuria on long-term cognitive outcome". Arch Dis Child; 92:213–8.

[5] Debra S Regier., and Carol L Greene, 2000, "Phenylalanine Hydroxylase Deficiency".

[6] Fonnesbeck CJ, McPheeters ML, Krishnaswami S, Lindegren ML, Reimschisel T.,2013, "Estimating the probability of IQ impairment from blood phenylalanine for phenylketonuria patients: a hierarchical meta-analysis" J Inherit Metab Dis;36:757–66.

[7] Kure S, Hou DC, Ohura T, Iwamoto H, Suzuki S, Sugiyama N, Sakamoto O, Fujii K, Matsubara Y, Narisawa KJ Pediatr,1999, "Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency", 135(3):375-8.

[8] Patrícia Fernanda Schuck., Fernanda Malgarin., José Henrique Cararo., Fabiola Cardoso., Emilio LuizStreck., and Gustavo Costa Ferreira.,2015, "Phenylketonuria Pathophysiology: on the Role of Metabolic Alterations" Aging Dis., 6(5): 390–399.

[9] Waisbren SE, Noel K, Fahrbach K, Cella C, Frame D, Dorenbaum A, Levy H.,2007."Phenylalanine blood levels and clinical outcomes in phenylketonuria: a systematic literature review and meta-analysis". Mol Genet Metab; 92:63–70.

[10] Sali A and Blundell TL, 1993, "Comparative protein modelling by satisfaction of spatial restraints" J. Mol. Biol., 234:779-815.

[11] Laskoswki RA, MacArthur MW, Moss DS & Thorton JM, 1993, "Procheck: a program to check the stereochemical quality of protein structures", J. Appl. Cryst. 26:283-291.

© IJPMN, Volume 5, Issue 3, December-2018

[12] Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ, 2005, "PatchDock and SymmDock: servers for rigid and symmetric docking", Nucl. Acids. Res. 33: W363-367.

[13] Ertl P, Rohde B, Selzer P, 2000, "Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties", J.Med.Chem. 43, 3714-3717.

[14] Lipinski CA, Lombardo F, Dominy BW, Feeney PJ, 1997, "Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings", Adv. Drug. Delivery Rev. 23, 4-25.

© IJPMN, Volume 5, Issue 3, December-2018