

# Silencing the Genes Responsible for Prostate Cancer

Shylesh Murthy I.A and Anuradha M Padmashree Institute of Management and Sciences, Bengaluru, India

*Abstract* - Prostate cancer is one the most common cancer globally. The prostate is a small gland seen in the pelvis of men and hence prostate cancer is common in men. It develops very slowly and hence it is very difficult to see its signs for many years. If treated with chemotherapy, undesired side effects are seen. Hence a novel therapy is followed in this work, the RNA interference (RNAi). Main aim of this work is to silence the double stranded (ds) RNA sequence in prostate cancer gene receptors like ACPT,BRCA1,BRCA2,HOXB13, FGFFR4 and RNASEL using Gene silencing software siDIRECT.

Keywords: Prostate cancer, chemotherapy, gene silencing, RNA interference, geneboy

#### I. INTRODUCTION

Cancer is the second leading cause of death worldwide [1]. Prostate cancer exhibits tremendous differences in incidence among populations worldwide [1]. The ratio of countries with high and low rates of prostate cancer ranges from 60-fold to 100-fold [1]. Prostate cancer affects the prostate gland, the gland that produces some of the fluid in semen and plays a role in urine control Several genes and chromosomal in men [1]. regions have been found to be associated with prostate cancer in various linkage analyses, casecontrol studies, genome-wide association studies (GWAS), and ad mixture mapping studies [2]. Pathogenic variants in genes of high and moderate penetrance, such as BRCA1, BRCA2, RNASEL, ACPT, FGFR4 and HOXB13 confer modest to high lifetime risk of prostate cancer [3]. GWAS have identified more than 100 SNPs associated with the development of prostate cancer, but the clinical utility of these findings remains uncertain [4]. Several advancements are made towards treatment and control of cancer progression including chemotherapy but it is seen that undesired side effects occur during chemotherapy [5]. In recent years a novel therapy has emerged, the gene silencing therapy or RNA interference (RNAi) which is derived from nucleic acid-based molecules that is evolving from in-silico, in-vitro to clinical therapy. This involves double stranded (ds) RNAs mediate sequence-specific gene silencing. This technique finds application basic cancer research, is facilitating the identification and validation of potential therapeutic targets (the dsRNA) for

cancer, and this could be further developed into cancer therapeutics by selectively silencing the involved oncogenes [6, 7].

#### **Genes involved in Prostate Cancer**

**ACPT** (Acid Phosphatase, Testicular gene Protein Coding): Acid phosphatases are enzymes capable of hydrolysing ortho-phosphoric acid esters in an acid medium [8, 9]. This gene is up-regulated by androgens and is down-regulated by estrogens in the prostate cancer cell line [8]. This gene exhibits lower level of expression in testicular cancer tissues than in normal tissues [9]. The protein encoded by this gene has structural similarity to prostatic and lysosomal acid phosphatases [8, 9].

**BRCA1** (Breast cancer type 1 susceptibility protein coding): This gene encodes a nuclear phosphoprotein that plays a role in maintaining genomic stability, and it also acts as a tumour suppressor. The encoded protein combines with other tumour suppressors, DNA damage sensors, and signal transducers to form a large multi-subunit protein complex known as the BRCA1-associated genome surveillance complex [10].

**BRCA2:** BRCA2 is considered a tumour suppressor gene, as tumours with BRCA2 mutations generally exhibit loss of heterozygosity (LOH) of the wild-type allele [10].

**FGFR4** (Fibroblast Growth Factor Receptor 4 gene protein Coding): The protein encoded by this gene is a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one

#### © IJPMN, Volume 6, Issue 2, August-2019



another in their Ligand affinities and tissue distribution [11].

**HOXB13** (Homeobox B13 (Gene Protein Coding): This gene encodes a transcription factor that belongs to the Homeobox gene family. Genes of this family are highly conserved among vertebrates and essential for vertebrate embryonic development [12].

**RNASEL** (Ribonuclease L gene protein coding): Mutations in this gene have been associated with predisposition to prostate cancer and this gene is a candidate for the hereditary prostate cancer 1 (HPC1) allele [13].

#### II. METHODOLOGY

In this work the following nucleotide sequences related to prostate cancer are used (Table 1).

Table 1: Genes with their NCBI Accession number.

| Gene name | NCBI      | Accession |
|-----------|-----------|-----------|
|           | number    |           |
| ACPT      | NM_033068 |           |
| BRCA1     | BC106745  |           |
| BRCA2     | KJ625203  |           |
| FGFR4     | EU826603  |           |
| HOXB13    | BC070233  |           |
| RNASEL    | BC090934  |           |

**siDirect 2.0:** The siDirect 2.0 is novel web server which is used for providing efficient and target-specific siRNA design for mammalian RNAi and this web server has been extensively updated to eliminate off-target silencing effects and its design algorithm is based on such mechanistic features which is combined with the reliable algorithms [14].

#### III. RESULTS AND DISCUSSION

The DNA sequence of the corresponding gene receptors in Table 1 was taken. Using GENEBOY software the DNA sequence was converted to its corresponding RNA sequence. Using software siDIRECT 2.2 the RNA sequence was silenced by microRNA [15].

Using siDIRECT the RNA sequence of the gene receptors in table 1 was silenced (Table 2).

#### © IJPMN, Volume 6, Issue 2, August-2019

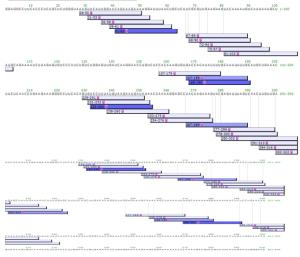
 Table 2: Effective siRNA candidates of ACPT

 a
 ACPT

|               | a. ACP                              | 1                                                                   |                                        |   |                               |           |  |  |
|---------------|-------------------------------------|---------------------------------------------------------------------|----------------------------------------|---|-------------------------------|-----------|--|--|
| target        | target sequence                     | RNA oligo<br>sequences<br>21nt guide                                | function<br>al<br>siRNA                |   | seed-duplex<br>stabilty (Tm); |           |  |  |
| positi<br>on  | 21nt target +<br>2nt overhang       | $(5' \rightarrow 3')$<br>21nt<br>passenger<br>$(5' \rightarrow 3')$ | selectio<br>n:<br><mark>U</mark> i-Tei |   | guide                         | passenger |  |  |
| 836-<br>858   | CCCTCAA<br>GATGGTC<br>ATGTACTC<br>A | AGUACAU<br>GACCAUC<br>UUGAGGG<br>CUCAAGA<br>UGGUCAU<br>GUACUCA      | U                                      | 0 | 20.4 °C                       | 20.4 °C   |  |  |
| 1001-<br>1023 | CCCTCTTC<br>TACCGCA<br>ATGACTCC     | AGUCAUU<br>GCGGUAG<br>AAGAGGG<br>CUCUUCU<br>ACCGCAA<br>UGACUCC      | U                                      |   | 20.5 °C                       | 20.2 °C   |  |  |

| ATGGCCGGCCTGGGG         | 20                | CACCCTGCTG          | GACCTCTCCT        | астастаста          | 50<br>ICTGCTGGTGG  |                   | SOGCCETOCC           | 90<br>AGAAGGACCC   | CTOGTOT             | 1-100   |
|-------------------------|-------------------|---------------------|-------------------|---------------------|--------------------|-------------------|----------------------|--------------------|---------------------|---------|
| TCOTGOCTCTOGTAT         | 120               | 130                 | CCCGCTGGCC        | TCCTACCCCA          | TOGACCCACA         | 170<br>CAAGGAGGT  | 180                  | 190                | DAGOCCT             | 101-200 |
| 210<br>BEGCCAGCTGACCAC  | 220<br>GGAGGGGGT  | CCGCCAGCAG          | 240<br>CTGGAGCTGG | CCCCCTTCCT          | GAGGAGCCG          | 270<br>TACGAGGCC  | 280                  | 290                | 300<br>GC G G G A G | 201-300 |
| 310<br>BAGGTGTACATCCGC  | 320<br>AGCACOGAC  | 330                 | 340<br>COCTOGAGAG | 350<br>T GCCCA GGCC | AACCTTOCCO         | 370               | 380<br>CGAGGCTGC     | 390<br>CCAGGGAGC   | 400<br>CCCGAGG      | 301-400 |
| 410<br>CCCGCTGGAGGCCGA  |                   | 430                 |                   |                     |                    |                   | 460                  | 490                | SOO TGCTGCG         | 401-500 |
| S10<br>SAGGCCACCGAGGC   | 520<br>CGCCGAGTA  | S20<br>CCAGGAGGCC   | 540<br>CTOGAGOGCT | GGACGGGCTT          | CCTGAGTCGO         | 570<br>CTGGAGAAC  | 550                  | 390                | 500<br>TOGADAD      | 501-600 |
| 610<br>CCACTOCOCAGOGCA  | 620               | CTEGACACCO          | TCATOTOCCA        | GCAAGCCCAC          | BOTETTCCAC         | 670               | SBC                  | 690                | COGACTC             | 601-700 |
| 710                     | 720<br>CTTTGDATA  | 730<br>TTGGAGCCCA   | 740<br>COTGOGCCCA | CCCCGGGCAG          | 750<br>ICAGAGAAGOO | 770<br>CCAGCTGAC  | 780                  | 790                | CTATCCT             | 701-800 |
| IGCAAACTTCTCCCG         | SGGTCCAGCG        | \$30<br>ECCTEGEGETE | CCCCTCAAGA        | TGGTCATGTA          | CTCAGCTCAT         | 870<br>FGACAGCACC | ET GCT GGCCC         | 890<br>FCCAGGGGGC  | 100<br>CCTGGGC      | 801-900 |
| 910<br>TCTATGATGGACAC   | 920<br>ACCCCGCCA  |                     | 940<br>GCCTCGGCTT | 950<br>TGAGTTCCGG   | MO                 | 970<br>BEGAATCCCO | 950<br>CAAAGATGG     | 990                | ACCOTOT             |         |
| 1010<br>CCTCTTCTACCGCA  |                   | 1030<br>ICCCACCTGCC | CCTGCCTCTC        |                     |                    |                   |                      | 1090<br>TTCTACCAGC |                     |         |
| 1110                    | 1120<br>CGCCCATGG |                     |                   |                     | 1160<br>CATCCCCCC  |                   | 1180<br>ST GCCCCT GC |                    |                     |         |
| 1210<br>STGCTGGTGGCACTC | 1220<br>AGCTTGGGG |                     |                   |                     | 1240<br>CTGCGGGCCT |                   | 1280<br>COTOTOAGCI   |                    | 1300<br>GGCTTCC     |         |
| CTACCCCCAGCTGAC         |                   |                     |                   | TGC 1301-134        | 7                  |                   |                      |                    |                     |         |
|                         |                   |                     |                   |                     |                    |                   |                      |                    |                     |         |

b. BRCA1.


| target   | target<br>sequence                  | RNA oligo<br>sequences<br>21nt guide                           | fun<br>cti<br>ona<br>1<br>siR<br>NA | seed-duplex<br>stabilty (Tm); |               |  |  |
|----------|-------------------------------------|----------------------------------------------------------------|-------------------------------------|-------------------------------|---------------|--|--|
| position | 21nt target +<br>2nt overhang       | (5'→3')<br>21nt passenger<br>(5'→3')                           | sel<br>ecti<br>on:<br>Ui-<br>Tei    | guide                         | passeng<br>er |  |  |
| 28-50    | AAGUUCA<br>UUGGAAC<br>AGAAAGA<br>AA | UCUUUCUGU<br>UCCAAUGAA<br>CUU<br>GUUCAUUGG<br>AACAGAAAG<br>AAA | U                                   | 16.6 °C                       | 13.8 °C       |  |  |
| 31-53    | UUCAUUG<br>GAACAGA<br>AAGAAAU<br>GG | AUUUCUUUC<br>UGUUCCAAU<br>GAA<br>CAUUGGAAC<br>AGAAAGAAA<br>UGG | U                                   | 5.5 °C                        | 20.1 °C       |  |  |
| 36-58    | UGGAACA<br>GAAAGAA<br>AUGGAUU<br>UA | AAUCCAUUU<br>CUUUCUGUU<br>CCA<br>GAACAGAAA<br>GAAAUGGAU<br>UUA | U                                   | 20.1 °C                       | 19.2 °C       |  |  |



### International Journal Of Public Mental Health And Neurosciences ISSN No: 2394-4668 (An Official publication of Sarvasumana Association)

| 39-61   | AACAGAA<br>AGAAAUG<br>GAUUUAU<br>CU | AUAAAUCCA<br>UUUCUUUCU<br>GUU<br>CAGAAAGAA<br>AUGGAUUUA<br>UCU | U | 15.5 °C | 19.1 °C |
|---------|-------------------------------------|----------------------------------------------------------------|---|---------|---------|
| 41-63   | CAGAAAG<br>AAAUGGA<br>UUUAUCU<br>GC | AGAUAAAUC<br>CAUUUCUUU<br>CUG<br>GAAAGAAAU<br>GGAUUUAUC<br>UGC | U | 1.8 °C  | 5.5 °C  |
| 67-89   | UCGCGUUG<br>AAGAAGU<br>ACAAAAU<br>G | UUUUGUACU<br>UCUUCAACG<br>CGA<br>GCGUUGAAG<br>AAGUACAAA<br>AUG | U | 14.7 °C | 21.1 °C |
| 68-90   | CGCGUUGA<br>AGAAGUA<br>CAAAAUG<br>U | AUUUUGUAC<br>UUCUUCAAC<br>GCG<br>CGUUGAAGA<br>AGUACAAAA<br>UGU | U | 7.2 °C  | 19.2 °C |
| 72-94   | UUGAAGA<br>AGUACAA<br>AAUGUCA<br>UU | UGACAUUUU<br>GUACUUCUU<br>CAA<br>GAAGAAGUA<br>CAAAAUGUC<br>AUU | U | 14.8 °C | 17.7 °C |
| 75-97   | AAGAAGU<br>ACAAAAU<br>GUCAUUA<br>AU | UAAUGACAU<br>UUUGUACUU<br>CUU<br>GAAGUACAA<br>AAUGUCAUU<br>AAU | U | 20.5 °C | 19.0 °C |
| 81-103  | UACAAAA<br>UGUCAUU<br>AAUGCUA<br>UG | UAGCAUUAA<br>UGACAUUUU<br>GUA<br>CAAAAUGUC<br>AUUAAUGCU<br>AUG | U | 19.7 °C | 5.3 °C  |
| 157-179 | CACAAAGU<br>GUGACCAC<br>AUAUUUU     | AAUAUGUGG<br>UCACACUUU<br>GUG<br>CAAAGUGUG<br>ACCACAUAU<br>UUU | U | 13.3 °C | 17.8 °C |
| 167-189 | GACCACAU<br>AUUUUGC<br>AAAUUUU<br>G | AAAUUUGCA<br>AAAUAUGUG<br>GUC<br>CCACAUAUU<br>UUGCAAAUU<br>UUG | U | 14.0 °C | 13.3 °C |
| 168-190 | ACCACAUA<br>UUUUGCA<br>AAUUUUG<br>C | AAAAUUUGC<br>AAAAUAUGU<br>GGU<br>CACAUAUUU<br>UGCAAAUUU<br>UGC | U | -3.3 °C | 6.7 °C  |
| 229-251 | GUGUCCUU<br>UAUGUAA<br>GAAUGAU<br>A | UCAUUCUUA<br>CAUAAAGGA<br>CAC<br>GUCCUUUAU<br>GUAAGAAUG<br>AUA | U | 12.0 °C | 19.9 °C |

| 231-253 |         | UAUCAUUCU<br>UACAUAAAG<br>GAC<br>CCUUUAUGU<br>AAGAAUGAU<br>AUA | U | 16.2 °C | 3.5 °C |
|---------|---------|----------------------------------------------------------------|---|---------|--------|
| 232-254 | GUAAGAA | AUAUCAUUC<br>UUACAUAAA<br>GGA<br>CUUUAUGUA<br>AGAAUGAUA<br>UAA | U | 8.7 °C  | 6.9 °C |



c. BRCA2

| starget  | target sequence                 | RNA oligo sequences                                                      | func<br>tion<br>al<br>siR<br>NA  | seed-duplex<br>stabilty (Tm); |          |           |  |
|----------|---------------------------------|--------------------------------------------------------------------------|----------------------------------|-------------------------------|----------|-----------|--|
| position | 21nt target + 2<br>overhang     | 21nt guide $(5' \rightarrow 3')$<br>21nt passenger $(5' \rightarrow 3')$ | sele<br>ctio<br>n:<br>Ui-<br>Tei |                               | guide    | passenger |  |
| 10-32    | UAGUGAAGA<br>UUCUAGUAG<br>UUAAU | UAACUACUAG<br>AAUCUUCAC<br>UA<br>GUGAAGAUU<br>CUAGUAGUU<br>AAU           | U                                |                               | 17.6 °C  | 20.4 °C   |  |
| 12-34    | GUGAAGAUU<br>CUAGUAGUU<br>AAUGA | AUUAACUACUAGA<br>AUCUUCAC<br>GAAGAUUCUAGUA<br>GUUAAUGA                   | U                                |                               | 6.6 °C   | 14.8 °C   |  |
| 15-37    | AAGAUUCUA<br>GUAGUUAAU<br>GAAAA | UUCAUUAACUACU<br>AGAAUCUU<br>GAUUCUAGUAGUU<br>AAUGAAAA                   | U                                |                               | 8.9 °C   | 11.6 °C   |  |
| 19-41    | UUCUAGUAG<br>UUAAUGAAA<br>AUUUU | AAUUUUCAUUAAC<br>UACUAGAA<br>CUAGUAGUUAAUG<br>AAAAUUUU                   | U                                |                               | 7.4 °C   | 18.8 °C   |  |
| 22-44    | UAGUAGUUA<br>AUGAAAAUU          | AAAAAUUUUUCAUU<br>AACUACUA                                               | U                                |                               | -12.0 °C | 6.6 °C    |  |

# © IJPMN, Volume 6, Issue 2, August-2019



#### International Journal Of Public Mental Health And Neurosciences ISSN No: 2394-4668 (An Official publication of Sarvasumana Association)

21nt guide

 $(5' \rightarrow 3')$ 21nt passenger

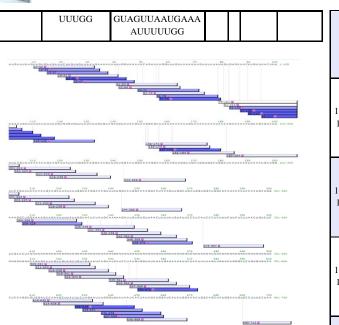
 $(5' \rightarrow 3')$ AAAUAUG

AGGCUAA

selection

Ui-Tei

guide


passenger

n

21nt target +

2nt overhang

AUGAUCG



d. FGFR4

| target position | target sequence<br>21nt target + 2nt<br>overhang | RNA oligo<br>sequences<br>21nt guide<br>$(5' \rightarrow 3')$<br>21nt | functional<br>siRNA<br>selection: | s | seed-dup<br>stabilty (T |                   |
|-----------------|--------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|---|-------------------------|-------------------|
|                 |                                                  | passenger $(5' \rightarrow 3')$                                       | <mark>U</mark> i-Tei              |   | guide                   | pass<br>enge<br>r |
| 329-351         | UGCAGAAUC<br>UCACCUUGA<br>UUACA                  | UAAUCAA<br>GGUGAGA<br>UUCUGCA<br>CAGAAUC<br>UCACCUU<br>GAUUACA        | U                                 |   | 12.0 °C                 | 19.1<br>°C        |
| 331-353         | CAGAAUCUC<br>ACCUUGAUU<br>ACAGG                  | UGUAAUC<br>AAGGUGA<br>GAUUCUG<br>GAAUCUC<br>ACCUUGA<br>UUACAGG        | U                                 |   | 16.1 °C                 | 20.4<br>°C        |

| uacaocuacuacu         | aacccuquue         | aasauccuad         | 40 UOA 0U 0U 0C   | SUGGOCCUCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -aucuusucci        | 70<br>0000400CCUC   |                    | MANDENUQAQ         | CCCUOCC 1-1        | 00    |
|-----------------------|--------------------|--------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------|--------------------|--------------------|-------|
| 110<br>DEGCUCCCAGCCUG | GAGCAGCAAS         | AGCAGGAGCU         | GACAGUAGC         | 150<br>COUNSECAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cueueceuci         | 170<br>Jougeugugaga | 160<br>SCGGGCUGAGO | sussussee          | ACUGGUA 101        | -300  |
| ZAAGGAGGGCAGUC        | accusscace         | uacuaaccau         | 240<br>QUACODOOC  | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SCCUAGAGAU         | 270                 | UACCUGAGOA         | uacusacca          | CUACCUC 201        | 1-300 |
| 310<br>VOCCUOBCACGAGG | CUCCAUGAUC         | 329-351            |                   | and the second se | J60<br>UBACUCCUUBA | 370<br>ACCUCCABCAA  | 360<br>360         | 250<br>IGACCCCAAGI | 400<br>JCCCAUA 301 | 1-400 |
| 410<br>GGACCCCUCGAAU  | AGGCACAGUU         | ACCCCCAGCA         | AGCACCOUA         | CUQGACACACI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CCCCAGCGCAI        | 470<br>JGGAGAAGAAA  | CUSCAUGCAG         | WACCUSCOOI         | 500                | 1-500 |
| SUCAAGUUCCGCU         | SUCCASCUSC         |                    | ACOCCCACC         | SSO SSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SEO                | 570<br>CAGGCCUUUC   | 100<br>AUGGGGAGAA  | CCGCAUUGG          | 400CAUU 301        | -400  |
| COCUDCOCCAUCA         | CACUERA DU         | 630<br>CUCQUGAUGO  | 640               | UGCCCUCOGAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COCOCACAI          | 670                 | 680                |                    | ADCAUCE SOL        | 1.700 |
| TIO TIO               | CUAGAUGUGO         | 130 UEGA GC GEUC   | CCCBCACCO         | SCCCAUCCUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 750                | 270                 | ACCACAGCCO         | 750                | 800 701            |       |
| SAGCUSCUGUSCA         | AGGUGUACAG         | CGAUGCCCAG         | CCCCACAUC         | CAGUGGCUGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | AUCAACOGCA          | GCAGCUUCGO         | AGCCGACGG          |                    | -908  |
| BLO BLO               | S20                | DACAUCAAUA         | SHD<br>OCUCADADD  | SSO SSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BUACCUGCOG         | 970                 | 980<br>CGAGGACOCA  | 990<br>GGCGAGUACI  | 1000 HOL           | L+100 |
| 1010<br>COCAGOCAAUUCC | 1030<br>AUCOSCUCU  | 1030<br>CCUACCAGUO | 1040              | 1050<br>CACGGUGCUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1060<br>CAQQUGAQCA | 1070<br>ACCUGA46600 | 1060<br>CAOGAQAUGO | 1090               | 1100 100           | 01-11 |
| ISSCCAGCAGUGGG        | 1120<br>66CUBUGGCC | 1130               | 1140<br>UCAGUCUCU | 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1160               | 1170<br>UGGGGGGGCAG | IL60               | 1190               | 1200 110           | 51-13 |
| UGACAGCCCUCU          | SUGCCUCUCC         | ACACOUGOCO         | SUCCAUGUS         | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1260               |                     | 1200               |                    |                    | 01-13 |
|                       |                    |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                     |                    |                    |                    |       |

1310 CCCACAUAUGUUGGGAGCUGGGAGGGGACUGAGUUAG 1301-

#### e. HOXB13

| target<br>positio | target sequence | RNA oligo<br>sequences | functional<br>siRNA | seed-duplex stabilty (Tm); |
|-------------------|-----------------|------------------------|---------------------|----------------------------|
|-------------------|-----------------|------------------------|---------------------|----------------------------|

# © IJPMN, Volume 6, Issue 2, August-2019

1241-UUAGCCU CGAUCAU U 8.7 °C 16.5 °C CAUAUUU GAUCGUU 1263 AGCCUCA UC UAUUUUC UCUAGAU GCCUCAU AGAAAAU 1251-AUUUUCU AUGAGGC 13.0 8.7 °C U 1273 AUCUAGA CUCAUAU °C GC UUUCUAU CUAGAGC AUAAUUA UUCAUGA GCUCAAU 1299-AUUGAGC UCAUGAA -2.3 U 7.2 °C °C UAAUUAU CAUGAAU 1321 GA UGAGCUA AUUAUGA AUCAUAA AUGAAUU UUAGCUC 1302-GAGCUAA AAUUCAU 8.7 °C 12.0 °C U UUAUGAU 1324 GAAUUGA AA GCUAAUU AUGAUAA AAUUUAU UUGAGCU CAUAAUU 1307-AAUUAUG AGCUCAA U 1.8 °C 18.3 °C 1329 AUAAAUU GAGCUAA UG UUAUGAU AAAUUUG UUUUUUU CAGGGAA UUUUUUU 1346-AAAAAAA UUCCCUG -11.3 14.3 °C U 1368 AAAAAAA GGGAAAA °C AA AAAAAAA AAAAAAA UUUUUUU AGGGAAA UUUUUUU 1347-AAAAAAA UUUCCCU -11.3 0.7 °C U AAAAAAA GGAAAAA 1369 °C AAAAAAA AA AAAAAAA UUUUUUU GGGAAAA UUUUUUU 1348-AAAAAAA UUUUCCC -11.3 U -11.3 °C 1370 AAAAAAA GAAAAAA °C AA AAAAAAA ААААААА UUUUUUU AACCAAA UUUUUUU 1406-AAAAAAA UUUGGUU -11.3 -2.9 °C U 1428 AAAAAAA CCAAAAA °C АААААА AA AAAAAAA UUUUUUU UUUUUUU ACCAAAA 1407-AAAAAAA UUUUGGU -11.3 U -11.3 °C 1429 ААААААА CAAAAAA °C AA AAAAAAA AAAAAAA



### International Journal Of Public Mental Health And Neurosciences ISSN No: 2394-4668 (An Official publication of Sarvasumana Association)

| 10<br>GCUUUGGAUUCCCC                                 | 20 31<br>CGGCCUGGGUGGGGA       | 40 50<br>AGCGAGCUGGGUGCCCCCUAGAU                                      | 60<br>UCCCCGCCCCGCAC                          | 70 80<br>CUCAUGAGCCGACCCU    | 90 100<br>CGGCUCCAUGGAGCCC    | 1-100  |
|------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|------------------------------|-------------------------------|--------|
| 110<br>GGCAAUUAUGCCAC                                | 120 13<br>CUUGGAUGGAGCCAAC     | 140 150<br>GAUAUCGAAGGCUUGCUGGGAGC                                    | 160<br>GGGA GGGGGGGCGGA A                     | 170 180<br>UCUGGUCGCCCACUCC  | 190 200<br>CCUCUGACCAGCCACC   | 101-20 |
| 210<br>CAGCGGCGCCUACG                                | 220 231<br>CUGAUGCCUGCUGUCA    | 240 250<br>ACUAUGCCCCCUUGGAUCUGCCA                                    |                                               | 270 280<br>SCCAAAGCAAUGCCACC | 290 300<br>CAUGCCCUGGGGUGCC   | 201-30 |
| 310<br>CCAGGGGACGUCCC                                | 320 330<br>CAGCUCCCGUGCCUUA    | 340 350<br>UGGUUACUUUGGAGGCGGGUACU                                    | 360<br>ACUCCUGCCGAGUGU                        | 370 380<br>ICCCGGAGCUCGCUGAA | 390 400<br>ACCCUGUGCCCAGGCA   | 301-40 |
| 410<br>GCCACCCUGGCCGC                                | 420 430<br>SUACCCCGCGGGAGACU   | 440 450<br>CCCACGGCCGGGGAAGAGUACCC                                    |                                               | 470 480<br>GUUUGCCUUCUAUCCG  | 490 500<br>GGAUAUCCGGGAACCU   | 401-50 |
| 510<br>ACCAGCCUAUGGCC                                | 520 531<br>A GUUA CCUGGA CGUGU | 540 550<br>CUGUGGUGCAGACUCUGGGUGCU                                    | 560<br>CCUGGAGAACCGCGA                        | 570 580<br>CAUGACUCCCUGUUGC  | 590 600<br>CUGUGGACAGUUACCA   | 501-60 |
| 610<br>GUCUUGGGCUCUCG                                | 620 631<br>CUGGUGGCUGGAACAC    | 640 650<br>CCAGAUGUGUUGCCAGGGAGAAC                                    |                                               | 670 680<br>CCUUUUGGAAGGCAGC  | 690 700<br>AUUUGCAGACUCCAGC   | 601-70 |
| 500CAGCACCCUCC                                       | 720 73                         | 740 750<br>CGUCGCGGCCGCAAGAAACGCAU                                    |                                               | 770 780<br>SGCAGUUGCGGGAGCUG | 790 800<br>GAGCGGGAGUAUGCGG   | 701-80 |
| 810<br>CUAACAAGUUCAUC                                | 820 83                         | 840<br>GCAAGAUCUCGGCAGCCACCAGC                                        |                                               | 870 880<br>AUUACCAUCUGGUUUC  | 890 900<br>AGAACCGCCGGGUCAA   | 801-90 |
| 910<br>AGAGAAGAAGGUUC                                | 920 93<br>UCGCCAAGGUGAAGAA     | 540 950<br>CAGCGCUACCCCUUAAGAGAUCU                                    |                                               | 970 980<br>BAGGAGCGAAAGUGGGG | 990 1000<br>SUGUCCUGGGGAGACC  | 901-10 |
| 1010<br>AGGAACCUGCCAAG                               | 1020 103<br>CCCAGGCUGGGGGCCAA  | 1040 1050<br>GGACUCUGCUGAGAGGCCCCUAG                                  |                                               | 070 1080<br>CAGGCCACUGGCUGCU | 1090 1100<br>GGACUGUUCCUCAGGA | 1001-1 |
| 1110<br>GCGGCCUGGGUACC                               | 1120 113<br>CAGUAUGUGCAGGGAG   | 1140 1150<br>ACGGAACCCCAUGUGACAGCCCA                                  |                                               | 170 1180<br>CAAAGAACCUGGCCCA | 1190 1200<br>GUCAUAAUCAUUCAUC | 1101-1 |
|                                                      |                                | ACUAGCUGCCAUGAUCGUUAGCC<br>1241-1263 U<br>1231                        | -1273 U                                       |                              |                               | 9-1321 |
| 1310<br>CAUGAAUUGAGCUA<br>2302-1324 U<br>2307-1329 U | 1320 133<br>2004064044400060   | 1340<br>AAGGCGAUCCCUUUGCAGGGAAA<br>1344-1346-1346-1<br>1344-1346-1347 | 1260 1<br>11111111111111111111111111111111111 |                              | 1390 1400                     | 1301-1 |
| 1410<br>AAAAAAACCAAAAAA<br><b>2405-1425 U</b>        | 1420 1430                      | AAAAAAA 1401-1437                                                     |                                               |                              |                               |        |
| f.                                                   | RNAS                           | SEL                                                                   |                                               |                              |                               |        |
|                                                      |                                | RNA oligo                                                             | functi<br>onal<br>ciPN                        | seed                         | -duplex                       |        |

| target position | target sequence<br>21nt target +<br>2nt overhang | RNA oligo<br>sequences<br>21nt guide<br>$(5' \rightarrow 3')$<br>21nt passenger | functi<br>onal<br>siRN<br>A<br>select<br>ion: | seed-duplex<br>stabilty (Tm); |         |           |
|-----------------|--------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------|---------|-----------|
|                 |                                                  | (5′→3′)                                                                         | <mark>U</mark> i-<br>Tei                      |                               | guide   | passenger |
| 96-118          | GAGAACAU<br>UGUUCCUUC<br>UUCAUA                  | UGAAGAAGG<br>AACAAUGUU<br>CUC<br>GAACAUUGU<br>UCCUUCUUC<br>AUA                  | D                                             |                               | 19.1 °C | 12.1 °C   |
| 132-154         | GCCAGAGA<br>AUCCCAAUU<br>UACACU                  | UGUAAAUUG<br>GGAUUCUCU<br>GGC<br>CAGAGAAUC<br>CCAAUUUAC<br>ACU                  | D                                             |                               | -0.3 °C | 19.1 °C   |
| 149-171         | UACACUCAA<br>AGCUUCUU<br>UGAUUA                  | AUCAAAGAA<br>GCUUUGAGU<br>GUA<br>CACUCAAAG<br>CUUCUUUGA<br>UUA                  | U                                             |                               | 20.4 °C | 19.2 °C   |
| 177-199         | UAGGAGAU<br>AAAUUUGC<br>AUUUUCU                  | AAAAUGCAA<br>AUUUAUCUC<br>CUA<br>GGAGAUAAA<br>UUUGCAUUU<br>UCU                  | U                                             |                               | 20.0 °C | 16.0 °C   |
| 198-220         | CUCAAGGA<br>AAAGGCUA<br>AAAGUGG                  | ACUUUUAGC<br>CUUUUCCUU<br>GAG<br>CAAGGAAAA<br>GGCUAAAAG<br>UGG                  | U                                             |                               | 1.3 °C  | 18.7 °C   |
| 314-336         | GACAAUCAC<br>UUGCUGAU<br>UAAAGC                  | UUUAAUCAG<br>CAAGUGAUU<br>GUC<br>CAAUCACUU<br>GCUGAUUAA<br>AGC                  | U                                             |                               | 8.9 °C  | 19.2 °C   |

| 324-346       | UGCUGAUU<br>AAAGCUGU<br>UCAAAAC | UUUGAACAG<br>CUUUAAUCA<br>GCA<br>CUGAUUAAA<br>GCUGUUCAA<br>AAC | U | 20.5 °C | 8.9 °C  |
|---------------|---------------------------------|----------------------------------------------------------------|---|---------|---------|
| 334-356       | AGCUGUUC<br>AAAACGAA<br>GAUGUUG | ACAUCUUCG<br>UUUUGAACA<br>GCU<br>CUGUUCAAA<br>ACGAAGAUG<br>UUG | U | 20.4 °C | 20.5 °C |
| 426-448       | CUCUGCAUA<br>ACGCAGUAC<br>AAAUG | UUUGUACUG<br>CGUUAUGCA<br>GAG<br>CUGCAUAAC<br>GCAGUACAA<br>AUG | U | 19.0 °C | 21.1 °C |
| 563-585       | CUGAAACU<br>UUUCCUUUC<br>UAAAGG | UUUAGAAAG<br>GAAAAGUUU<br>CAG<br>GAAACUUUU<br>CCUUUCUAA<br>AGG | U | 7.1 °C  | 3.2 °C  |
| 593-615       | GUCAAUGA<br>GUGUGAUU<br>UUUAUGG | AUAAAAAUC<br>ACACUCAUU<br>GAC<br>CAAUGAGUG<br>UGAUUUUUA<br>UGG | U | -9.7 °C | 19.2 °C |
| 658-680       | AGCCCUAAA<br>AUUCCUUU<br>AUAAGA | UUAUAAAGG<br>AAUUUUAGG<br>GCU<br>CCCUAAAAU<br>UCCUUUAUA<br>AGA | U | -2.3 °C | 11.0 °C |
| 660-682       | CCCUAAAAU<br>UCCUUUAU<br>AAGAGA | UCUUAUAAA<br>GGAAUUUUA<br>GGG<br>CUAAAAUUC<br>CUUUAUAAG<br>AGA | U | -2.3 °C | -9.7 °C |
| 692-714       | GUGAAUUU<br>GAGGCGAA<br>AGACAAA | UGUCUUUCG<br>CCUCAAAUU<br>CAC<br>GAAUUUGAG<br>GCGAAAGAC<br>AAA | U | 21.5 °C | 7.4 °C  |
| 935-957       | GUCAAUGU<br>GAGGGGAG<br>AAAGAGG | UCUUUCUCC<br>CCUCACAUU<br>GAC<br>CAAUGUGAG<br>GGGAGAAAG<br>AGG | U | 19.1 °C | 20.5 °C |
| 1026-<br>1048 | AGCACAUA<br>GAGAUUAA<br>UGACACA | UGUCAUUAA<br>UCUCUAUGU<br>GCU<br>CACAUAGAG<br>AUUAAUGAC<br>ACA | U | 16.1 °C | 20.3 °C |
| 1078-<br>1100 | UGCUGUUG<br>AACUCAAAC<br>UGAAGA | UUCAGUUUG<br>AGUUCAACA<br>GCA<br>CUGUUGAAC<br>UCAAACUGA<br>AGA | U | 19.2 °C | 20.5 °C |

# © IJPMN, Volume 6, Issue 2, August-2019





Graphical view of effective siRNA candidates

| start-<br>end | Functional, off-target reduced siRNA (seed duplex Tm $< 10$ °C) |
|---------------|-----------------------------------------------------------------|
| start-<br>end | Functional, off-target reduced siRNA (seed duplex Tm $< 15$ °C) |
| start-<br>end | Functional, off-target reduced siRNA (seed duplex Tm < 21.5 °C) |
| start-<br>end | Functional siRNA                                                |

#### IV. CONCLUSION

The ds RNA sequence of the prostate cancer gene receptors viz. BRCA1, BRCA2, RNASEL, ACPT, FGFR4 and HOXB13 are silenced using siRNA technique.

# REFERENCES

1. Taitt HE, 2018, "Global Trends and Prostate Cancer: A Review of Incidence, Detection, and Mortality as Influenced by Race, Ethnicity, and Geographic Location", Am J Mens Health, 12(6):1807–1823.

2. Sebastiani P, Timofeev N, Dworkis DA, Perls DT, and Steinberg MH, 2009, "Genome-wide association studies and the genetic dissection of complex traits", Am J Hematol., 84(8): 504–515.

3. Han MR, Zheng W, Cai Q, Gao YT, Zheng Y, Bolla MK, Michailidou K, Dennis J, Wang Q, Dunning AM, Brennan P, Chen ST, Choi JY, Hartman M, Ito H, Lophatananon A, Matsuo K, Miao H, Muir K, Sangrajrang S, Shen CY, Teo SH, Tseng CC, Wu AH, Yip CH, Kang D, Xiang YB, Easton DF, Shu XO, Long J, 2017, "Evaluating genetic variants associated with breast cancer risk in high and moderate-penetrance genes in Asians", Carcinogenesis, 38(5):511-518.

4. Turner AR, Kader AK, and Xu J, 2012, "Utility of Genome-Wide Association Study findings: prostate cancer as a translational research paradigm", J Intern Med., 271(4): 344–352.

5. Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, Bedi YS, Taneja SC, Bhat HK, 2008, "Medicinal plants and cancer chemoprevention", Curr Drug Metab., 9(7):581-91.

6. Song CZ. (2007) Gene Silencing Therapy Against Cancer. In: Hunt K.K., Vorburger S.A., Swisher S.G. (eds) Gene Therapy for Cancer. Cancer Drug Discovery and Development. Humana Press.

7. Mansoori B, Shotorbani SS, and Baradaran B, 2014, "RNA Interference and its Role in Cancer Therapy", Adv Pharm Bull., 4(4): 313–321.

8. Igawa M, Kishi H, Ishibe T, 1995, "Acid phosphatase (ACP)", Nihon Rinsho., 53(5):1203-8.

9. Yousef GM, Diamandis M, Jung K, Diamandis EP, 2001, "Molecular cloning of a novel human acid phosphatase gene (ACPT) that is highly expressed in the testis", Genomics., 15; 74(3):385-95.

10. Castro E and Eeles R, 2012, "The role of BRCA1 and BRCA2 in prostate cancer", Asian J Androl., 14(3): 409–414.

11. FitzGerald LM, Karlins E, Karyadi DM, Kwon EM, Koopmeiners JS Stanford JL and Ostrander EA, 2009, "Association of FGFR4 Genetic Polymorphisms with Prostate Cancer Risk and Prognosis", Prostate Cancer Prostatic Dis., 12(2): 192–197.

12. Chandrasekaran G, Hwang EC, Kang TW, Kwon DD, Park K, Lee JJ, Lakshmanan VK, 2017, "Computational Modeling of complete HOXB13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer", Sci Rep., 7: 43830. Xiang Y, Wang Z, Murakami J, Plummer S, Klein EA, Carpten JD, Trent JM,

13. Isaacs WB, Casey G, and Silverman RH, 2003, "Effects of RNase L Mutations Associated with Prostate Cancer on Apoptosis Induced by 2,5-Oligoadenylates", Cancer Research, 63, 6795–6801.

14. Naito Y, Yamada T, Ui-Tei K, Morishita S and Saigo K, 2004, siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference", Nucleic Acids Res., 32(Web Server issue): W124–W129.

15. http://www.dnai.org/geneboy/

# © IJPMN, Volume 6, Issue 2, August-2019