Intoxicated Mathematics

WITH SYSTEMS OF DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA

Kyla Gorman Southwestern University Math Capstone Fall 2020

Modeling Alcohol Content

- Alcohol Content in stomach and blood
- System of Differential Equations
- Linear Algebra
- ► Various Scenarios

Alcohol Content in Stomach

exponential decay constant of alcohol in stomach Rate of change of alcoholinalcohol in the stomach stomach

Alcohol Content in Bloodstream

change of alcoholdt in the in the blood

exponential decay constant of alcohol in Amount of alcohol in

the blood

Alcohol Content in Bloodstream

change of alcoholat in the blood

 $=k_1A^{blood}k_2$

exponential decay constant of alcohol in blood

Amount of alcohol in the blood

Alcohol Content in Bloodstream

change of alcoholat in the blood

 $= k_1 A$

exponential decay constant of alcohol in blood

Amount of alcohol in the blood

System of Differential Equations

$$\left(1\right)\frac{dA}{dt} = -k_1 A$$

$$(2) \frac{dB}{dt} = k_1 A - k_2 B$$

$$(1) \frac{dA}{dt} = -k_1 A$$

$$\begin{bmatrix} A'(t) \\ B'(t) \end{bmatrix} = \begin{bmatrix} -k1 & 0 \\ k1 & -k2 \end{bmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix}$$

$$(2) \frac{dB}{dt} = k_1 A - k_2 B$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix}' = \begin{bmatrix} -k1 & 0 \\ k1 & -k2 \end{bmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix}$$

$$\bar{x}' = M\bar{x}$$
 (3)

$$\bar{x}' = \begin{bmatrix} A(t) \\ B(t) \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix}' = \begin{bmatrix} -k1 & 0 \\ k1 & -k2 \end{bmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix}$$

$$\bar{x}' = M\bar{x} (3)$$

$$\bar{x}' = \begin{bmatrix} A(t) \\ B(t) \end{bmatrix} \bar{x} = \begin{bmatrix} A(t) \\ B(t) \end{bmatrix} \begin{pmatrix} 1 \\ B(t) \end{bmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix} = \begin{bmatrix} -k1 & 0 \\ k1 & -k2 \end{bmatrix} \begin{bmatrix} A(t) \\ B(t) \end{bmatrix}$$

$$\bar{x}' = M\bar{x} (3)$$

$$\bar{x}' = M\bar{x}$$
 (3)
 $y' = my$ where m is a scalar, and y is a function

$$raket{x'} = Mar{x}$$
 (3)
 $raket{y'} = my$ where m is a scalar, and y is a function
 $raket{y} = h e^{\lambda t}$ solution form

$$raket{x'} = Mar{x}$$
 (3)
 $raket{y'} = my$ where m is a scalar, and y is a function
 $raket{y} = h e^{\lambda t}$ where h and λ are unknowns

$$\bar{x}' = M\bar{x} (3)$$

$$\bar{y} = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} e^{\lambda t}$$

$$\bar{x}' = M\bar{x} (3)$$

$$\bar{x} = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} e^{\lambda t}$$

$$\bar{x}' = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \lambda e^{\lambda t}$$

$$\bar{x}' = M\bar{x}$$
 (3)

$$\bar{x} = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} e^{\lambda t}$$

$$\bar{x}' = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \lambda e^{\lambda t}$$

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \lambda e^{\lambda t} = M \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} e^{\lambda t}$$

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \lambda e^{\lambda t} = M \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} e^{\lambda t}$$

Find the Eigensystem Equation for *M* by finding the determinant.

$$\bar{x} = c_1 \left[-\frac{(k_1 - k_2)}{k_1} \right] e^{-k_1 t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-k_2 t}$$

$$\bar{x} = c_1 \begin{bmatrix} -\frac{(k_1 - k_2)}{k_1} \\ 1 \end{bmatrix} e^{-k_1 t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-k_2 t}$$

$$\begin{bmatrix} A(t) \\ B(t) \end{bmatrix} = c_1 \begin{bmatrix} -\frac{(k_1 - k_2)}{k_1} \\ \end{bmatrix} e^{-k_1 t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-k_2 t}$$

$$\bar{x} = c_1 \begin{bmatrix} -\frac{(k_1 - k_2)}{k_1} \\ 1 \end{bmatrix} e^{-k_1 t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-k_2 t}$$

$$\bar{x} = c_1 \left[-\frac{(k_1 - k_2)}{k_1} \right] e^{-k_1 t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-k_2 t}$$

$$\begin{bmatrix} A(t) \\ B(t) \end{bmatrix} = c_1 \begin{bmatrix} -\frac{(k_1 - k_2)}{k_1} \\ k_1 \end{bmatrix} e^{-\mathbf{k_1}t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-\mathbf{k_2}t}$$

Corresponding Solution Set

1.
$$A(t) = -c_1(\frac{k_1 - k_2}{k_1})e^{-k_1 t}$$

2. $B(t) = c_1(e^{-k_1 t}) + c_2(e^{-k_2 t})$

Corresponding Solution Set

1.
$$A(t) = -c_1 \left(\frac{k_1 - k_2}{k_1}\right) e^{-k_1 t}$$

2. $B(t) = c_1 \left(e^{-k_1 t}\right) + c_2 \left(e^{-k_2 t}\right)$

Corresponding Solution Set for One Drink Consumed

1.
$$A(t) = -c_1 \left(\frac{k_1 - k_2}{k_1}\right) e^{-k_1 t}$$

2.
$$B(t) = c_1(e^{-k_1t}) + c_2(e^{-k_2t})$$

Initial Conditions for One Drink Consumed:

- $A(0) = A_d$
- B(0) = 0

Corresponding Solution Set for One Drink Consumed

1.
$$A(t) = A_d e^{-k_1 t}$$

2.
$$B(t) = A_d \left(\frac{k_1}{k_2 - k_1} \right) \left(e^{-k_1 t} - e^{-k_2 t} \right)$$

Corresponding Solution Set for Two Drinks Consumed

1.
$$A(t) = -c_1(\frac{k_1 - k_2}{k_1})e^{-k_1t}$$

2.
$$B(t) = c_1(e^{-k_1t}) + c_2(e^{-k_2t})$$

Initial Conditions:

$$A(0) = A_S + A_d$$

$$\bullet B(0) = B_{S}$$

Corresponding Solution Set for Two Drinks Consumed

1.
$$A(t) = (A_s + A_d)e^{-k_1t}$$

2.
$$B(t) = (A_s + A_d) \left(\frac{k_1}{k_2 - k_1}\right) e^{-k_1 t} +$$

$$(B_S - (A_S + A_d) \left(\frac{k_1}{k_2 - k_1}\right)) e^{-k_{21}t}$$

Assumptions

- 1. Subject is 75kg
- 2. One std. drink = 245 mg/L alcohol
- 3. All alcohol is consumed at once
- 4. Alcohol enters the stomach immediately after is consumed
- 5. Subject is not drinking water or eating food

Alcohol Content vs Time for One Std. Drink

Alcohol Content vs. Time for One Std. Drink

Alcohol Content vs Time for Two Std. Drinks

Alcohol Content vs Time for Two Std. Drinks

BAC vs Time for 4 Concentrations of Alcohol: 200 mg/L, 300 mg/L, 400 mg/L, & 500 mg/L

BAC vs Time for 4 Concentrations of Alcohol: 200 mg/L, 300 mg/L, 400 mg/L, & 500 mg/L

Max BAC for 5 Different k_1 Values

$\%$ Change in k_1	k ₁	Max B(t) (mg/L)	Time (minutes)	% Change In Max
-10%	0.0985	167.861	21.2305	2.60%
-5%	0.1040	170.248	20.5103	1.21%
0%	0.1095	172.337	19.8458	0%
5%	0.1149	174.162	19.2303	-1.06%
10%	0.1204	175.752	18.6584	-1.98%

Max BAC for 5 Different k_1 Values

$\%$ Change in k_1	k ₁	Max B(t) (mg/L)	Time (minutes)	% Change In Max
-10%	0.0985	167.861	21.2305	2.60%
-5%	0.1040	170.248	20.5103	1.21%
0%	0.1095	172.337	19.8458	0%
5%	0.1149	174.162	19.2303	-1.06%
10%	0.1204	175.752	18.6584	-1.98%

Conclusions

- Strengths
 - simple
 - accurate
- ▶ Weaknesses
 - ► Is this modeling realistic situations?

Further Work

- ► Calculate BAC
 - ► For various weights
 - ▶ With consumption of food
 - ▶ Without assuming ingestion is immediate
 - ► And comparing to other methods, such as fractional calculus
- Explore how these equations and this method of solving can be generalized

Mind-Blowing Fact of the Day

A sheet of paper is about 0.1mm thick. If you folded such a sheet of paper in half fifty times, the resulting stack would reach ¾ of the way to the sun! It would take light 6.3 minutes to travel this distance.

- Garfinkel, Alan, et al.

Mind-Blowing Fact of the Day

A sheet of paper is about 0.1mm thick. If you folded such a sheet of paper in half fifty times, the resulting stack would reach ¾ of the way to the sun! It would take light 6.3 minutes to travel this distance.

- Garfinkel, Alan, et al.

$$P(t) = P_0 e^{k_1 t}$$

Mind-Blowing Fact of the Day

A sheet of paper is about 0.1mm thick. If you folded such a sheet of paper in half fifty times, the resulting stack would reach ¾ of the way to the sun! It would take light 6.3 minutes to travel this distance.

- Garfinkel, Alan, et al.

$$A(t) = A_0 e^{-k_1 t}$$

Resources

- Ludwin, Chris. Blood Alcohol Content. Undergraduate Journal of Mathematical Modeling: One + Two, 2011, scholarcommons.usf.edu/cgi/viewcontent.cgi?article=4819&context=ujmm.
- ► Garfinkel, Alan, et al. "Modeling, Change, and Simulation." Modeling Life: The Mathematics of Biological Systems, Springer International Publishing, 2017.
- Dawkins, Paul. "Paul's Online Notes." Differential Equations Solutions to Systems, 2018, tutorial.math.lamar.edu/Classes/DE/SolutionsToSystems.aspx.

Acknowledgements

- ▶ I express my utmost thanks to Dr. Shelton for her patient guidance, unceasing encouragement, and the numerous extra hours she has dedicated to helping me complete this project.
- I also extend my deepest gratitude to Southwestern University for providing me with this opportunity, and to my friends and family for their unwavering support.

Thank you!