

LORA - LONG RANGE RADIO

- TECHNOLOGY OVERVIEW - POTENTIAL APPLICATIONS FOR THE HAM

FEBRUARY 2023

COLIN BUCKUP – N5GG

roba ššš

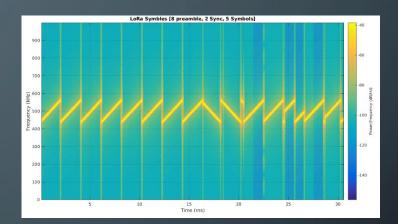
LorRa is one of the many technologies used for IoT – Internet of Things

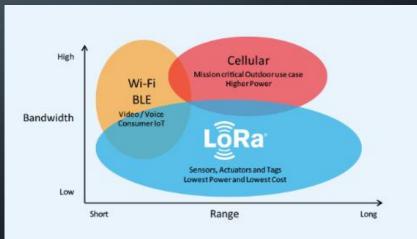
WHAT IS LORA?

LoRa is a technology that implements the Physical Layer (PHY) for IoT devices using the RF spectrum.

It allows the connection of IoT devices point-to-point or to a LoRaWan network.

It is possible to achieve long range links (1-15mi) using low power (< 23 dBm / 200 mW).


Typically occupies a 125 kHz bandwidth.


Offers a variable throughput range from 0.3 kbps to 50 kbps.

Operates on license-free frequency bands on 430 MHz, 858 MHz or 915 MHz depending on the country or geographic area.

Uses a frequency sweeping modulation technique, known as Chirp modulation.

WHAT IS LORAWAN?

Application									
LoRaWAN MAC									
MAC options									
Class A		Class B	Class C						
LoRa Modulation									
Regional ISM band									
EU 868	EU 433	US 915	AS 430	—					

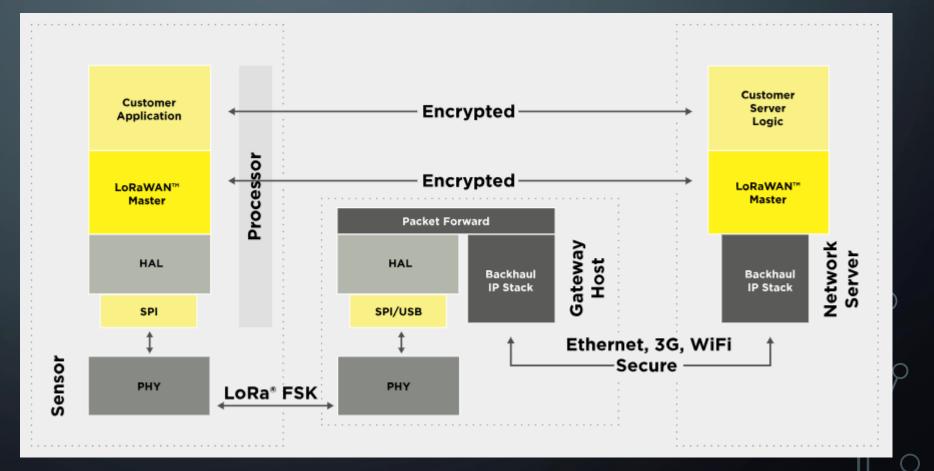
LoRaWAN

Specifies an open protocol for Wide Area Networks using as the physical layer a low power RF link operating on free-access frequency bands.

LoRaWAN

- The protocol aims to interconnect via RF battery powered IoT devices.
- The star-of-stars topology allows the interconnection of these
 LoRaWAN networks to regional and global internets
- The protocol addresses the IoT requirements for:
 - Bi-directional
 - Security end-to-end
 - Mobility

Link to the complete LoRaWAN specification :


https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf

LORAWAN - TOPOLOGY

The topology of a LoRaWAN network is based on 3 types of nodes:

- Sensor
- Gateway Host
- Network Server

WHO IS BEHIND IT...

The LoRa Alliance[®] is an open, non-profit association with the mission to support and promote the global adoption of the LoRaWAN standard.

Members collaborate in a vibrant ecosystem of device makers, solution providers, system integrators and network operators, delivering interoperability needed to scale IoT across the globe, using public, private, and hybrid networks.

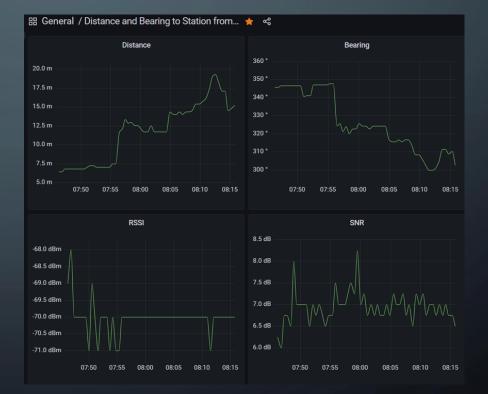
WHO PRODUCES THE LORA CHIP...

The physical layer used in the LoRa implementation is proprietary and belongs to SEMTECH, who authorized other vendors (i.e. HOPE RF) to manufacture the chips that are used in all devices that use the technology.

Since the physical layer is proprietary, we can't change it, but we can use it as is without any problems in our projects.

One of the most common and inexpensive chips is the SX1276 and its variants.

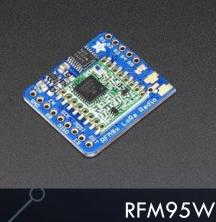
Semtech SX1276 137MHz to 1020MHz Long Range Low Power Transceiver



APPLICATIONS IN HAM PROJECTS

Opportunities for hams:

- Learn a new technology
- Use the new technology on 2 ham bands
 - 430 MHz
 - 902 MHz
- Implement remote sensing (telemetry)
- Implement trackers for geo-location
- Implement LoRa to APRS gateways
- Implement LoRa to internet gateways


- etc. etc. etc...

HARDWARE OPTIONS

To begin experimenting with LoRa we could use one of these 3 platforms:

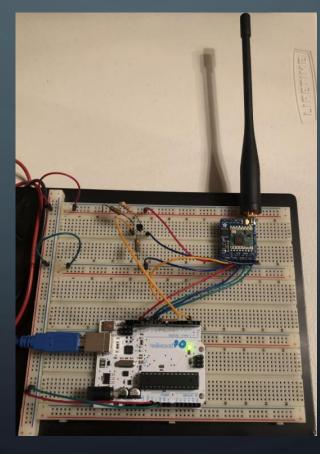
- Arduino and its variants
- Raspberry Pi family
- Own project

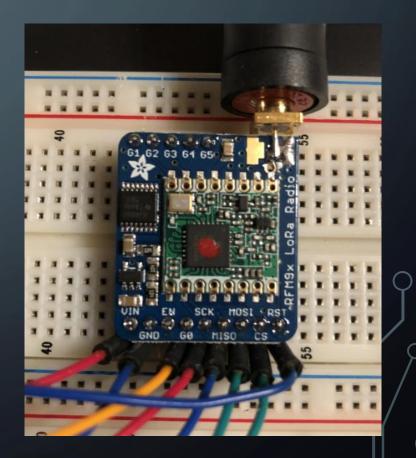
The most common and readily available LoRa sub-module is based on the SX1276 chip and is offered by several manufacturers of project modules: Adafruit, Dragino, Seeed, SparkFun, etc

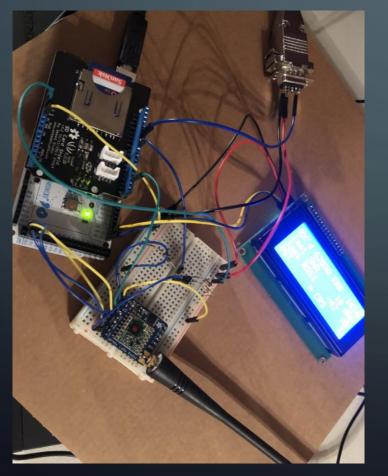
LoRa Feather MO

Dragino LoRa GPS HAT

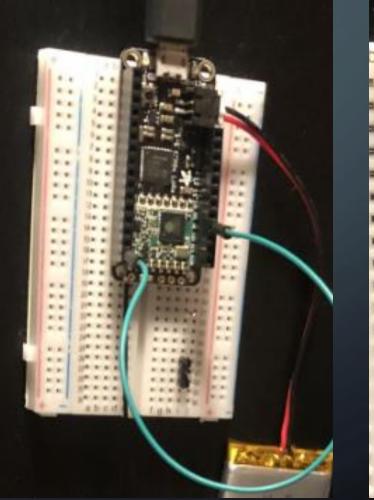
See lora mod	ules	Sponsored 🚯
	and the second	
STMicroelectron - Development \$13.00 Mouser Electron	Adafruit Industries Llc \$9.95 Digi-Key	SparkFun Electronics - R \$11.95 Mouser Electron
· · · · · · · · · · · · · · · · · · ·		*
Digi International \$120.00 Mouser Electron	Banggood Smart \$5.29 USA.Banggood Free shipping	Adafruit RFM95W LoRa \$19.95 Adafruit Industri
	Re la	
RAK811 Breakout Boar \$15.73	Seeed Technology Co \$20.40	Laird - RF Modules \$17.65

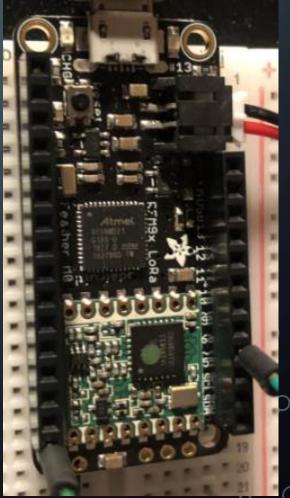

Digi-Key


Amazon.com


TRANSMITTER / BEACON - LoRa 430 MHz

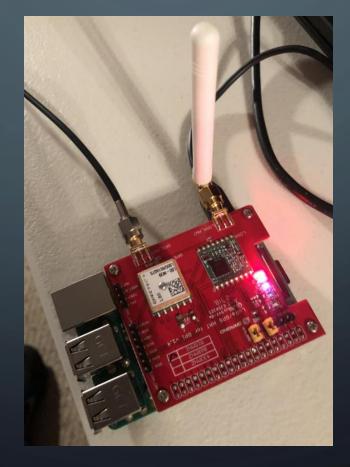
- LoRa RFM96W
- Arduino UNO
- 5V <-> 3.3V power converter


RECEIVER / LOGGER - LoRa 430 MHz



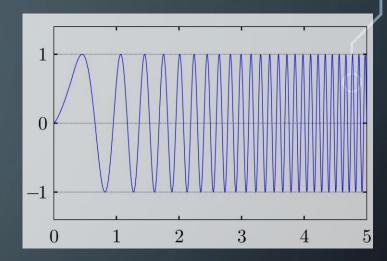
LoRa RX / GPS-SD-LCD v 1.5 - 1/25/19 BW125k CR4/5 SF128 Colin Buckup - N5GG

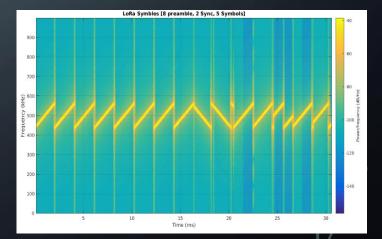
TRANSMITTER / BEACON - LoRa 915 MHz


- LoRa RFM95 embedded
- Arduino M0 Adafruit Feather
- 915 MHz Antenna

RECEIVER / GATEWAY LoRa to Internet / APRS

- Dragino LoRa GPS HAT
- Raspberry Pi 3B
- GPS antenna
- 915 MHz antenna





LoRa uses a proprietary spread spectrum modulation that is similar to and a derivative of chirp spread spectrum (CSS) modulation.

Each symbol is represented by a cyclic shifted chirp over the frequency interval f0-B/2, f0+B/2 where: f0 is the center frequency B the bandwidth of the signal (in Hertz).

The spreading factor (SF) is a selectable radio parameter from 6 to 12 and represents the number of bits sent per symbol and in addition determines how much the information is spread over time.

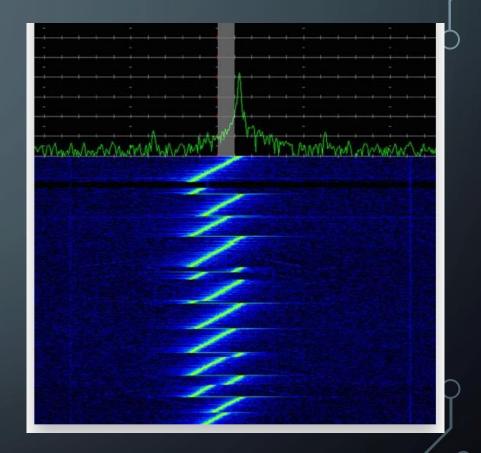
ď

There are $M = 2^SF$ different initial frequencies of the cyclic shifted chirp.

The instantaneous frequency is linearly increased and wrapped to f0-B/2 when it reaches the maximum frequency f0+B/2.

The symbol rate is determined by $Rs = B / (2^SF)$.

LoRa can trade off data rate for sensitivity (assuming a fixed channel bandwidth B) by selecting the SF, that is the amount of spread used.


A lower SF corresponds to a higher data rate but a worse sensitivity.

A higher SF implies a better sensitivity but a lower data rate.

Compared to lower SF, sending the same amount of data with higher SF needs more transmission time, known as time-on-air.

More time-on-air means that the modem is transmitting for a longer time and consuming more energy.

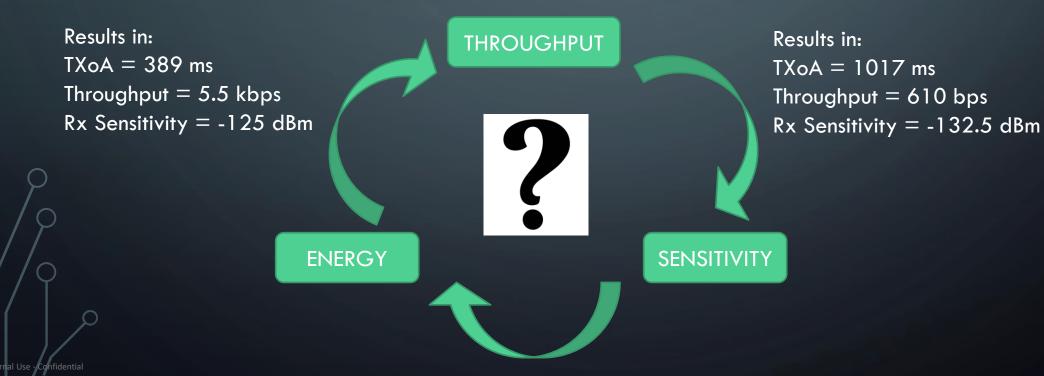
Typical LoRa modems support transmit powers up to +22 dBm.

CONFIGURATION PARAMETERS

What we USUALLY configure in ham radio links:

- Frequency
- Power

LoRa has SEVERAL MORE parameters to select from:


- Frequency 2 bands (430, 902 MHz)
- Bandwidth 5 bandwidths (31250, 62500, 125000, 250000, 500000 Hz)
- Spreading Factor 7 SFs (64, 128, 256, 512, 1024, 2048, 4096 chips/s)
- Coding Rate 4 CRs (4/5, 3/6, 4/7, 4/8)
- Power several from -4 dBm to +23 dBm in 1 dBm steps
- Packet Length variable from 1 to 255 bytes

DECISIONS... DECISIONS...

Bandwidth = 125 kHzSpreading Factor = 128 chips/symbol (SF7) Coding Rate = 4/5Power = 5 dBm / 3.2 mWPacket Length = 250 bytes Bandwidth = 125 kHz Spreading Factor = 1024chips/symbol (SF10) Coding Rate = 4/8 Power = 20 dBm / 100 mW Packet Length = 61 bytes

-	\																		
	Free Space Loss (dB)							Receiver Sensitivity (dBm)											
	FSPL = (4*pi*dist*freq/c)^2							Sens = -174 + 10log BW + NF + SNRlimit											
	FSPL = 20log d + 20log f -147.55											SX1	L276 NF is	5.5 dB					
										SNR limit (dB)	SF		7	8	9	10	11	12
								Spreading Factor	chips/symbol	[2]	´	SN	R limit	-7.5	-10	-12.5	-15	-17.5	-20
		Freq (Hz)						7	128	-7.5		BW	/ (Hz)		Receiver S	ensitivity	(dBm) at S	NR_limit	
	Distance (m)	100kHz	1MHz	10MHz	100MHz 1	GHz	10GHz	8	256	-10			31250	-131.1	-133.6	-136.1	-138.6	-141.1	-143.6
		1.00E+05	1.00E+06	1.00E+07	1.00E+08	1.00E+09	1.00E+10						62500	-128.0	-130.5	-133.0	-135.5	-138.0	-140.5
1m	1	-47.6	-27.6	-7.6	12.5	32.5	52.5	9	512	-12.5			125000	-125.0	-127.5	-130.0	-132.5	-135.0	-137.5
10m	10	-27.6	-7.6	12.5	32.5	52.5	72.5	10	1024	-15			250000	-122.0	-124.5	-127.0	-129.5	-132.0	-134.5
100m	100	-7.6	12.5	32.5	52.5	72.5	92.5	11	2048	-17.5			500000	-119.0	-121.5	-124.0	-126.5	-129.0	-131.5
1km	1000	12.5	32.5	52.5	72.5	92.5	112.5	12	4096	-20									
10km	10000	32.5	52.5	72.5	92.5	112.5	132.5	12	4090	-20									
100km	100000	52.5	72.5	92.5	112.5	132.5	152.5												
1000km	1000000	72.5	92.5	112.5	132.5	152.5	172.5	Note: If the SF increas	es by I, the SNF	Rimit changes b	y -2.5 dB								
10000km	1000000	92.5	112.5	132.5	152.5	172.5	192.5				/								
											HOPERF		CHIP	S					
												LOIVA	CI III .	5					
-	Frequency (Hz)	9.15E+08						Bandwidth (Hz)	125000		Values taken from	m correspond	ding data sh	eets (Oct	0, 2018), see	: http://www	w.hoperf.com/	rf transceive	r/lora/
	Distance (m)	1.00E+06						Noise Figure (dB)	5.5 for	r SX1276							~	_	Available in
	FSPL	151.68						SNR (dB)	-15		Chip			Budge					Freq.
								Sensitivity	-132.531		Criip			dBm					MHz
											RFM95(W)	868-915	20	168	-14	48	SX1276	RF96	868,915
	TX PWR: (dBm)	20									. ,			100					
	FSPL: (dB)	151.68									RFM96(W)	433-470	20	168	- -	48	SX1276	RF96	433
	RX sensitivity: (dBm)	-132.531									RFM98(W)	433-470	20	168	-14	48	SX1278	RF98	433
	Headroom: (dB)	0.85	Can go Fu	rther if pos	itive														
	Example:																		
	LoRa operating on 915MHz @ 12																		
	LoRa operating on 915MHz @ 12	25KHz BW /	SF10 and 3	23dBm pow	ver can GO U	IP TO 100	0km in free space	!											
/																			

				NOF													
LoRa Calculations																	
1/19/2023		2^SF	128	256	512	1024	2048	4096									
N5GG		SF	7	8	9	10	11	12									
		BW (Hz)		Symbol T	ime (ms) =	(2^SF)/BV	N = 1/Rs										
Rs = Symbol Rate = BW / 2^SF		31250	4.1	8.2	16.4	32.8	65.5	131.1									
		62500	2.0	4.1	8.2	16.4	32.8	65.5									
Ts = Symbol Time = 1 / Rs		125000		2.0	4.1	8.2	16.4	32.8									
		250000		1.0	2.0	4.1	8.2	16.4									
SF = Spreading Factor (bits per Symbol)		500000	0.3	0.5	1.0	2.0	4.1	8.2	\rightarrow								
		0405	400	255	540	4004	0040	1005		<u></u>	2405	100	25.5	540	1001	2042	1005
CR = Coding Rate = 4 / (4+cr) cr= 1 to 4	CR = 4/5	2^SF SF	128	256	512	1024	2048	4096		CR = 4/8 0.5	2^SF	128	256	512	1024	2048	4096
Rb = Bit Rate = SF * Rs * CR = SF * [BW / 2^SF] * CR	0.0	BW (Hz)	7 -125 dBn	8 n	9 Bit Rate	10	11 -132.5 dBm	12 -137.5	dPm	0.5	BW (Hz)	7	8	9 Bit Rate	10 (bit/c)	11	12
$RD = BIL Rate = Sr^2 RS^2 CR = Sr^2 [BWV / 2^3 Sr]^2 CR$		31250		/ 781	439	244	134	73			31250	854	488	275	153	84	46
		62500		1,563	879	488	269	146	\times		62500		977	549	305	168	92
		125000	· · · ·	3,125	1,758	977	537	293			125000		1,953	1,099	610	336	183
		250000		6,250	3,516	1,953	1,074	586			250000		3,906	2,197	1,221	671	366
		500000		12,500	7,031	3,906	2,148	1,172			500000		7,813	4,395	2,441	1,343	732
				Example o	of TXoA for	125kHz B	W in USA										
		SF	7	8	9	10	11	12									
ToA = Tpacket = Tpreamble + Tpayload		Ts (s)	0.001024	0.002048	0.004096	0.008192	0.016384	0.032768									
		Payload		Т	oA (s) [Tp	re + Tpay]											
Tpreamble = (Npreamble + 4.25) * Ts		1	0.025856	0.051712	0.103424	0.206848	0.413696	0.827392									
		2		0.051712			0.413696										
Npreamble is typically 8		5		0.061952			0.413696										
		10					0.495616										
		19		0.102912	_		0.659456			Npreamble		default					
		61		0.205312			1.314816			CRC	-	on					
		133					2.379776 4.100096			Header		explicit on > 16ms					
			0.389376		Area not al			7.544832		LowRate		on > 16ms 4/5					
		(bytes)		Red /	Area not al	lowed in t	USA			\sim	1	4/5					
										note: make	autocale f	or LowBate	for 11 and	12			
			(<u>-</u>	0.01 400	1 20 1 100	D.C. 2011	0.1			note, make	autocalt	or cownate		12			
	 n	= 8 +	max ceil	$\delta PL - 4SF$	+28 + 16C	KC = 20H	$\frac{H}{2}$ $(CR+4)$	0.0]									

$I \cap PA = TECHNICAL ASPECTS$

 \mathbf{O}

rpayload 4(SF - 2DE)____

PRACTICAL NOTE:

Common configuration used for close proximity networks (less than 1000 ft):

BW = 125 kHzSF = 128chips/symbol (SF7) PWR = 5 dBm / 3.2 mW

Mode	Equivalent bit rate (kb/s)	Sensitivity (dBm)	Δ (dB)						
FSK	1.2	-122	-						
LoRa SF = 12	0.293	-137	+15						
LoRa SF = 11	0.537	-134.5	+12.5						
LoRa SF = 10	0.976	-132	+10						
LoRa SF = 9	1757	-129	+7						
LoRa SF = 8	3125	-126	+4						
LoRa SF = 7	5468	-123	+1						
LoRa SF = 6	9375	-118	-3						
	Table 1: Link Budget Comparison for Narrowband FSK								

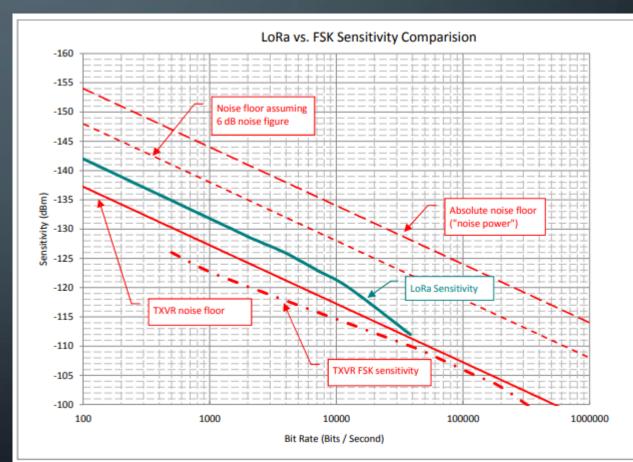
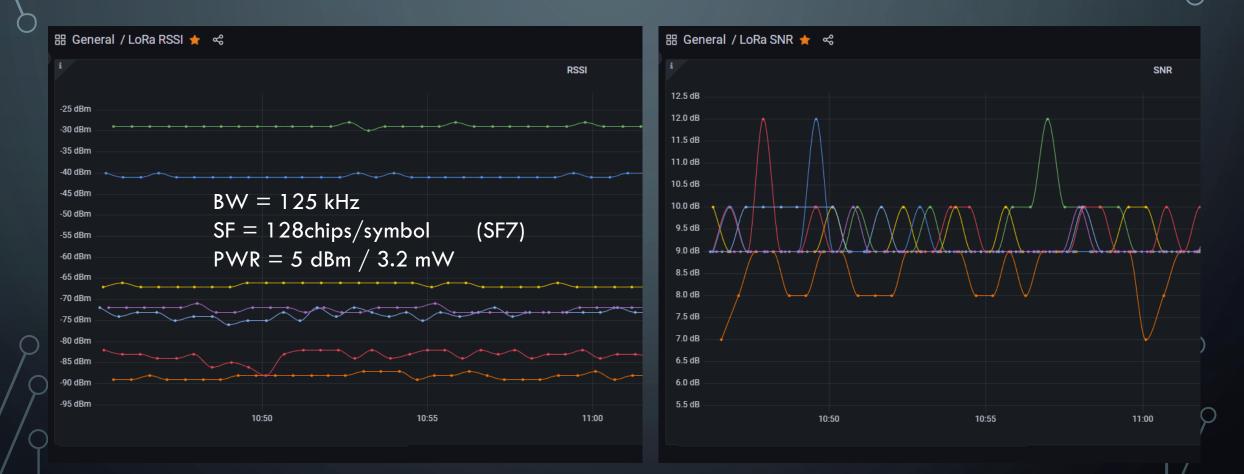
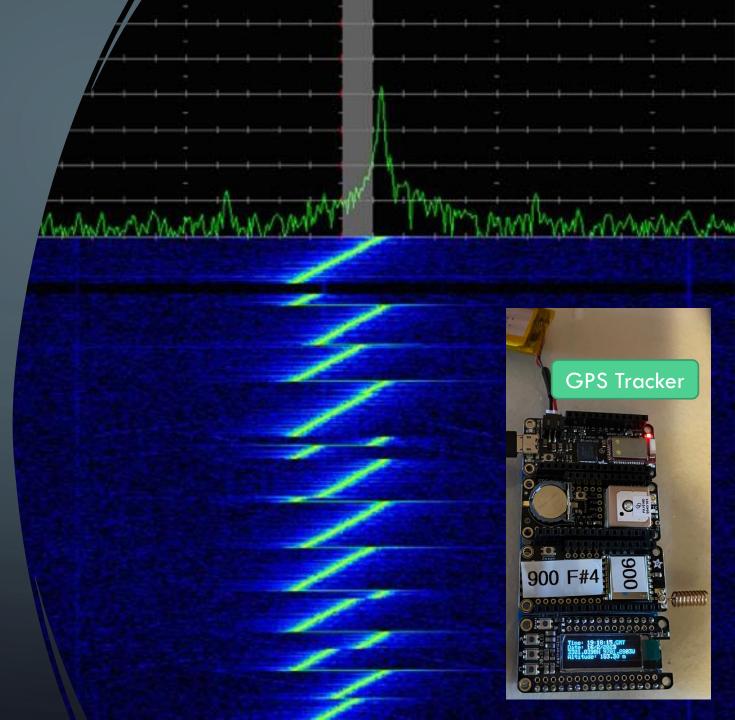



Figure 3: Comparison of LoRa and FSK Sensitivity


റ

 \bigcirc

N5GG 433/900 MHZ LORA + WIFI MESH NETWORK

AN IMPLEMENTATION EXAMPLE

COLIN - N5GG

THE FINAL RESULT

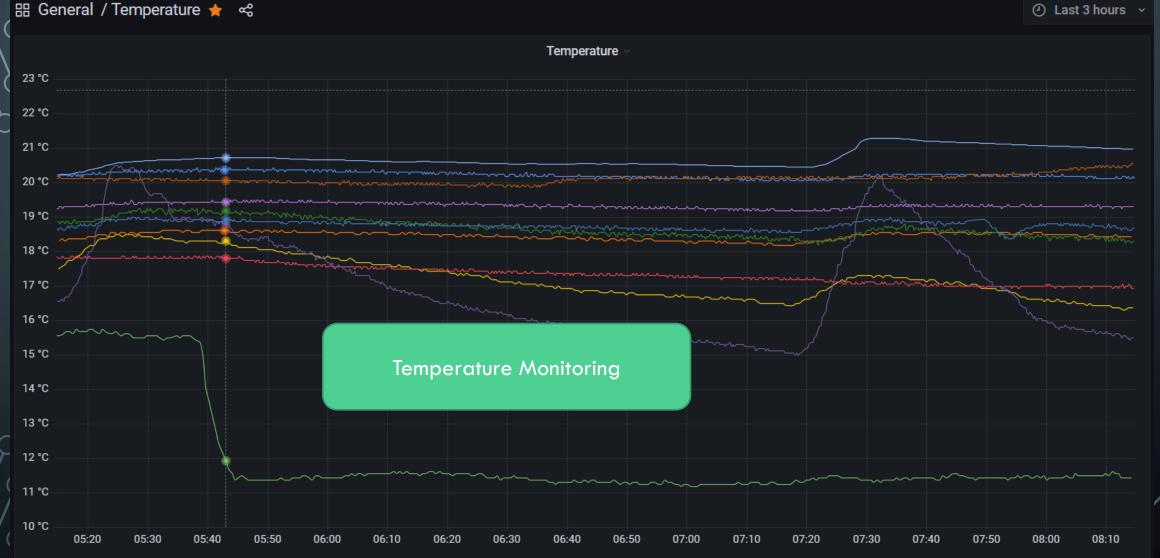
Confidential

Internal Use - Confidential

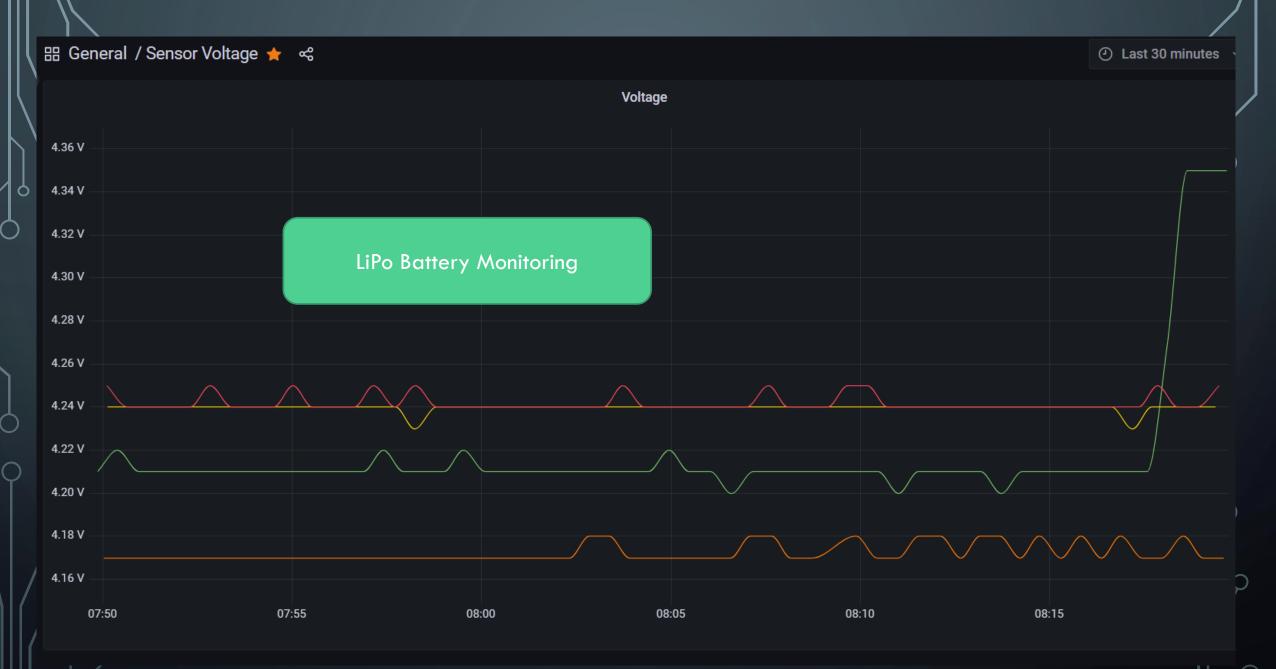
(

聞 General / Distance and Bearing to Station from... 🔶 🧠

aternal Use - Confidential


Q

- Confidential

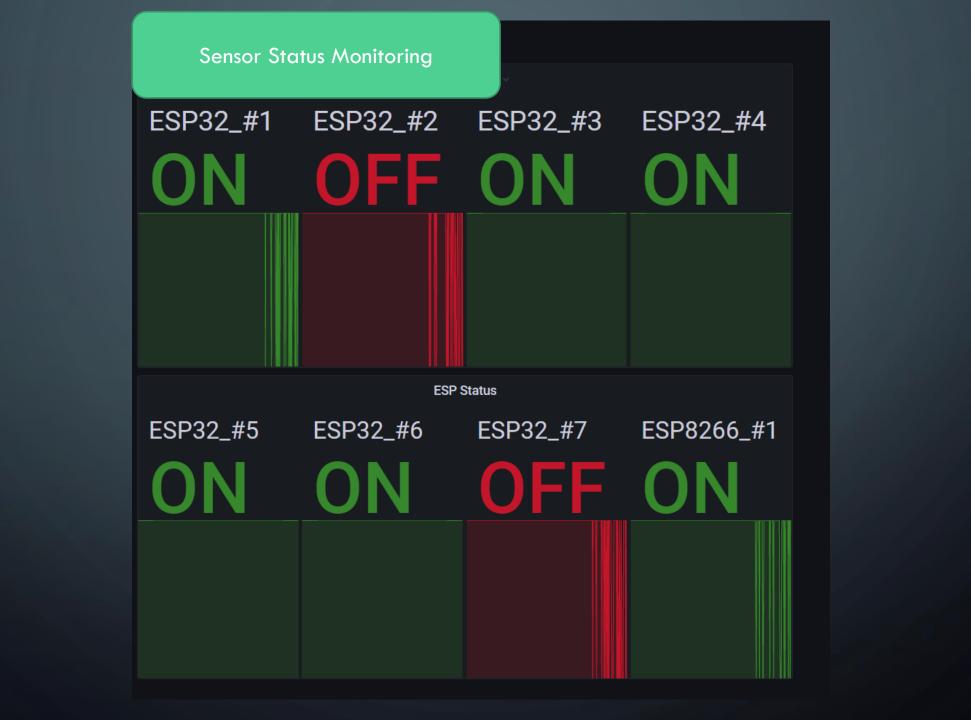


Internal Use -Confidential

문 General / Temperature ★ 👒

Confidential

nternal Use - Confidential


_ (_

۲

 \bigcirc

al Use - Confidential

FIRST THINGS FIRST:

 \bigcirc

ENCODE THE INFORMATION TO BE SENT OVER LORA...

LoRa Payload Structure

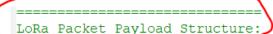
Challenge: 1- Make Payload as compact as possible

2- Make Payload as flexible as possible

3- Allow for Payload to carry multiple measurements

4- Allow for several (hundreds) of different stations using same CALLSIGN but preserve unique identification

5- Detect error in Payload data


\$	START of PAYLOAD
W5LVC	CALLSIGN
23	STATION ID
MEASUREMEN	NTS
*	END of PAYLOAD
CHECKSUM	[XOR from \$ to *]

Types of Measurements

/ç		/
	of defined MEASUREMENTS: 7 - NO MEASUEMENTS (HEARTBEAT PACKET) payload has no measurement blocks (TLdddd)	
0	- COUNTER	ļ
1	- TEMPERATURE	
2	- PRESSURE	
3	- HUMIDITY	
4	- GPS_LAT	ł
5	- GPS_LONG	ł
3 4 5 6 7 8 9	- GPS_ALT	ł
7	- GPS_GMT_TIME	
8	- GPS_GMT_DATE	
	- GPS_SATS	
10	- GPS_HDOP	ł
11	- GPS_SPEED	
12	- GPS_COURSE	
13	- SNR	
14 15	- RSSI - POWER	
16	- CURRENT	
17	- VOLTAGE	
18	- LOGIC	l
19	- tbd	l
		l
44	- NO MEASUEMENTS (HEARTBEAT PACKET) payload has no measurement blocks (TLdddd) - note: this is the ASCII for '*' which is the END of data delimite	er
253	- tbd	ł
254	- tbd	ł
255	- tbd	ľ
/		

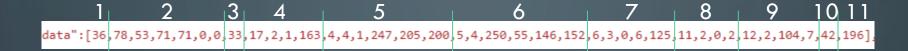
Internal Use - Confidential

LoRa Payload Structure

where:

Confidential

Ş - start of LoRa payload CCCCCC - call sign - up to 6 ASCII characters I - station ID 0-255 - 1 byte


<meas-1> measurement 1 composed of: 00000000001111111 01234567890123456 TLdddd... where: T - type of measurement (see table)

L - length of datastream - 1 byte dddd - data set - up to 15 bytes

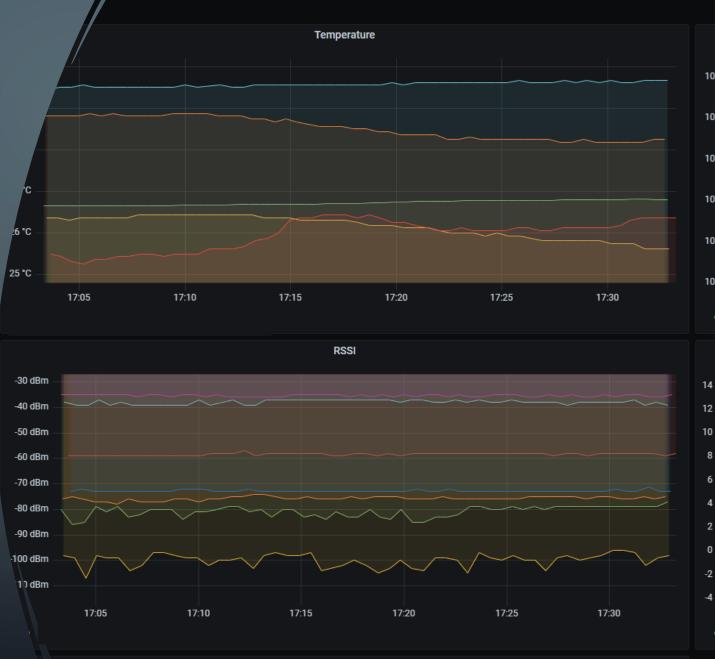
<meas-2> measurement 2 composed of: 0000000001111111 01234567890123456 TLdddd... where: T - type of measurement (see table) L - length of datastream - 1 byte dddd - data set - up to 15 bytes

<other measurements> (follows same sequence)

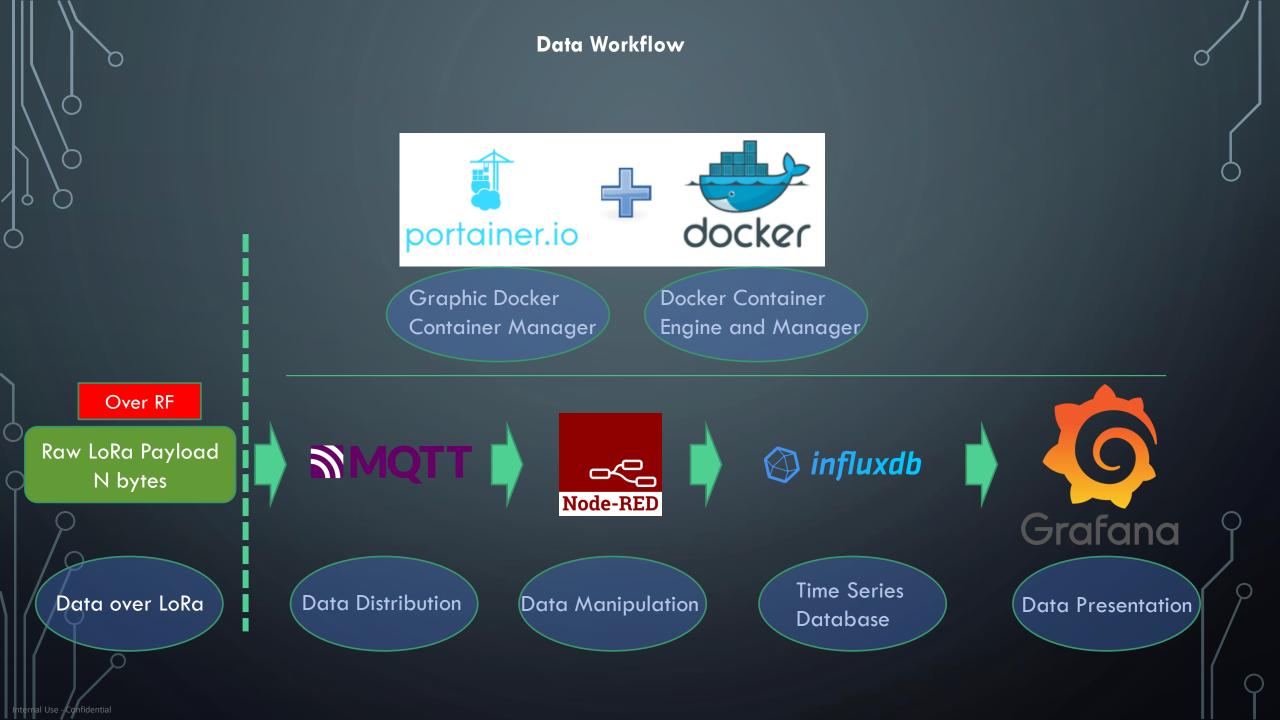
* - end of LoRa payload
S - simple xor checksum of all bytes from start to end, including start and end markers

Block 1	36	\$	START of PAYLOAD
Block 2	78,53,71,71,0,0	N5GG	CALLSIGN
Block 3	33	33	STATION ID
Block 4	17,2,1,163	VOLTAGE	2 data bytes
Block 5	4,4,1,247,205,200	GPS LATITUDE	4 data bytes
Block 6	5,4,250,55,146,152	GPS LONGITUDE	4 data bytes
Block 7	6,3,0,6,125	GPS ALTITUDE	3 data bytes
Block 8	11,2,0,2	GPS SPEED	2 data bytes
Block 9	12,2,104,7	GPS COURSE	2 data bytes
Block 10	42	*	END of PAYLOAD
Block 11	196	CHECKSUM	[XOR from \$ to *]

total of 39 bytes


Confidential

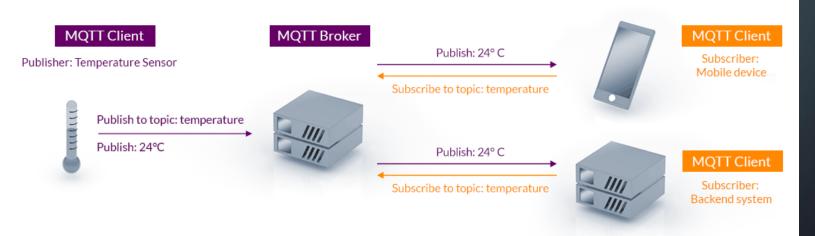
17 LoRa Sensors via ESP32_4 🏾 🛧 😪

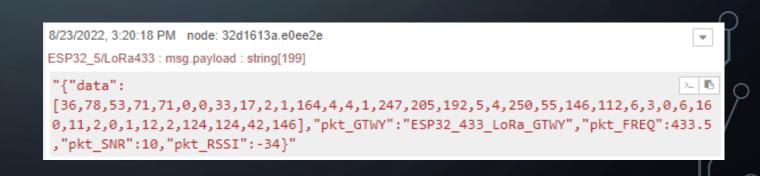

DATA PROCESSING AND PRESENTATION

MQTT / NODERED / INFLUXDB / GRAFANA

Confidential

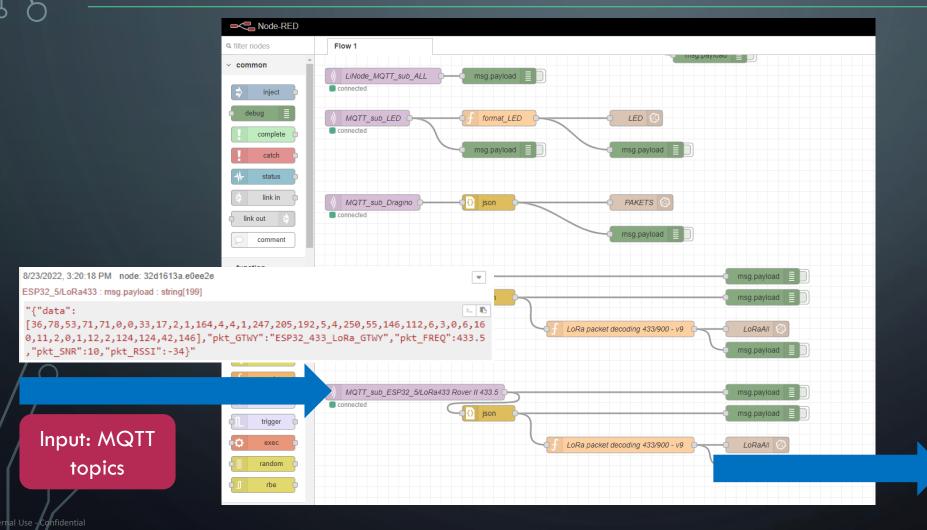
Voltage





MQTT stands for Message Queuing Telemetry Transport

MQTT Publish / Subscribe Architecture


Confidential

Node-RED is a programming tool for wiring together hardware devices, APIs and online service

8/23/2022, 3:20:18 PM node: b9994fba.9d2ed ESP32_5/LoRa433 : msg.payload : Object ▼object SNR: 10 RSSI: -34 GTWY: "ESP32_433_LoRa_GTWY" CALL: "N5GG-33" ID: 33 STATION: "rover433" VOLTAGE: 4.2 LAT LON Output: ALT to database SPE

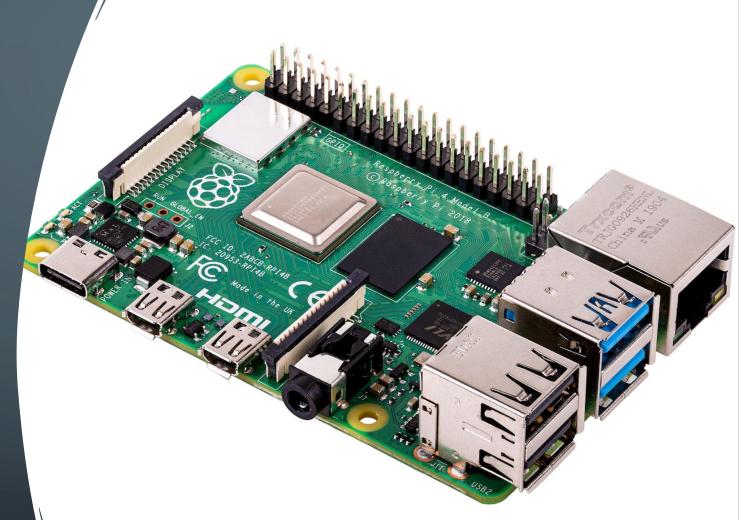
COURSE: 510.00

InfluxDB is an open-source time series database (TSDB)

InfluxDB is the time series platform for developers.

Made for developers to build time-series-based applications quickly and at scale.

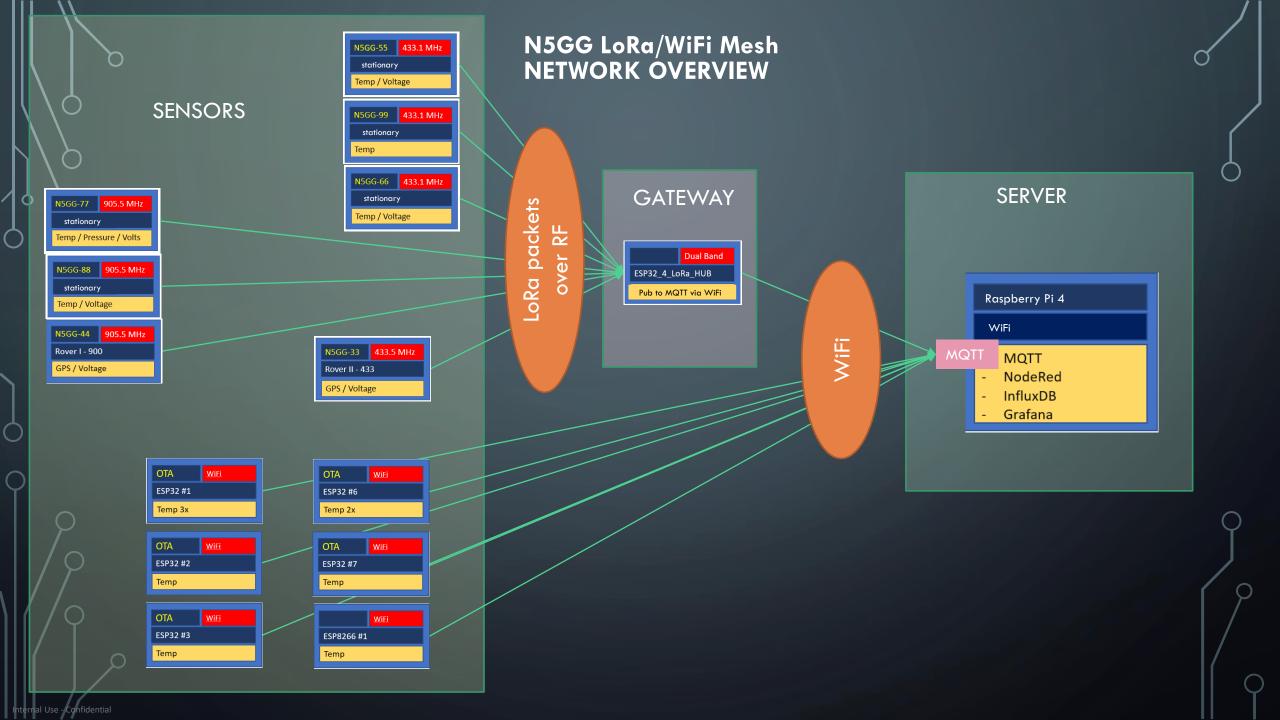
Grafana used to query, visualize, alert on, and understand metrics no matter where they are stored



) 🔁

Confidential

ON RASPBERRY PI HARDWARE


THE PI IS THE SERVER

NETWORK OVERVIEW

SENSORS / GATEWAY / SERVER

dah dah dit dit dit dit dit dit dah dah!

 \frown