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Introduction 
Welcome to the VelocitySignals tool, where I combine tradi8onal technical analysis with advanced 
machine learning to predict stock movements. The tool provides two primary methods for genera8ng 
predic8ons: condi8on matching and machine learning models. 

The condi8on-matching method relies on well-known technical indicators like RSI (Rela8ve Strength 
Index), MACD (Moving Average Convergence Divergence), and Volume to generate buy, sell, or hold 
signals. The machine learning models, on the other hand, u8lize Random Forest (RF) and Long Short-Term 
Memory (LSTM) networks to analyze historical stock data and make predic8ons based on paMerns in past 
movements. 

The choice of Random Forest comes from its robustness in handling complex, non-linear rela8onships and 
its resistance to overfiOng (Breiman, 2001). It’s a highly effec8ve tool for analyzing market data with 
various noisy features. LSTM, on the other hand, excels in processing sequen8al data, making it ideal for 
analyzing 8me series data like stock prices (Abu-Khalaf et al., 2018). Together, these two approaches give 
me a comprehensive toolset for predic8ng future market behavior. 

 

Predictive Models 

 Let’s dive into how each one works. 

 

Condition-Matching Method 
The condi-on-matching method relies on well-established technical indicators to generate trading signals. 
It looks at key metrics like RSI, MACD, and Volume and compares them to predefined thresholds. Here’s 
how I apply these indicators. 

RSI 
RSI is a momentum indicator that measures the speed and change of price movements. It helps iden8fy 
whether a stock is overbought or oversold, which can indicate poten8al trading opportuni8es. The formula 
for RSI is:  

 

where RS is the ra8o of average gains to average losses over a specific period (Wilder, 1978). 



 

 

Typically, when RSI is above 70, it signals that the stock might be overbought, and when RSI is below 30, it 
suggests that the stock could be oversold. 

 

 

MACD 
MACD helps iden8fy changes in the momentum of a stock’s price. It’s calculated by subtrac8ng the 26-
period Exponen-al Moving Average (EMA) from the 12-period EMA: 

 

 

 

The resul8ng MACD line is then compared to a Signal Line, which is a 9-period EMA of the MACD itself. If 
the MACD crosses above the signal line, it generates a buy signal. If it crosses below, it generates a sell 
signal (Achelis, 2001). 

 



Volume 
Volume is used to validate the strength of the price movements. If a high volume accompanies a price 
movement, it suggests that the trend is strong. On the other hand, if the price moves with low volume, 
the trend might not be reliable. 

While volume isn’t directly used in mathema8cal formulas, I use it as a filter in the decision-making 
process: 

• High volume confirms price trends. 

• Low volume might indicate weakness in the movement, leading to a hold or cau8ous signal. 

 

Signal Generation 
I classify the stock movement into one of three categories, factoring in Volume to confirm the strength of 
the signal: 

• Buy: RSI < 30, MACD > Signal Line, and Volume above the median or a custom threshold (indica8ng 
strong buying interest). 

• Sell: RSI > 70, MACD < Signal Line, and Volume above the median or a custom threshold (indica8ng 
strong selling interest). 

• Hold: Neither buy nor sell condi8ons are met, or Volume is below the threshold, signaling weak 
momentum. 

These signals are fed into Tableau, where I visualize buy, sell, or hold signals, enabling me to track 
opportuni8es and make fast trading decisions. 

The condi8on-matching method compares these indicators to predefined thresholds to generate buy, sell, 
or hold signals. For instance, if the RSI is below 30, MACD crosses above the signal line, and the volume is 
high, I generate a buy signal. 

 

  



Machine Learning Predictions 
In addi8on to condi8on matching, I use machine learning models to enhance the predic8ve power of 
VelocitySignals Lab. These models are trained on historical stock data and can capture more complex 
paMerns than rule-based systems alone. 

Random Forest 
Random Forest (RF) is an ensemble learning method that combines the predic8ons of mul8ple decision 
trees to produce a more accurate result. Each decision tree is trained on a random subset of the data, and 
the final predic8on is made by averaging the predic8ons of all the trees. This method reduces overfiOng 
and increases the model’s ability to generalize to unseen data (Breiman, 2001). 

 

 

 

For stock predic8on, I use indicators like RSI, MACD, EMA, and Volume as features for training the Random 
Forest model. By analyzing these features, the model can predict whether the next movement will be a 
buy, sell, or hold signal. The mathema8cal formula behind Random Forest involves aggrega8ng predic8ons 
from mul8ple decision trees: 

The final predic8on is determined by the majority vote of the trees (Breiman, 2001). 

 

Long Short-Term Memory (LSTM) 
LSTM networks are a type of recurrent neural network (RNN) designed to handle sequen8al data. They 
are ideal for stock price predic8on because they can remember paMerns from past stock movements and 
use them to predict future prices (Abu-Khalaf et al., 2018). 

The key feature of LSTM networks is their memory cells, which allow them to maintain informa8on over 
8me. These cells use three gates—input, forget, and output gates—to control the flow of informa8on 
through the network. The cell state and hidden state are updated at each 8me step based on the current 
input and previous states: 

 



Where: 

• ht  is the hidden state at 8me step M, 

• Ct  is the cell state, 

• it , g , and ot  are input, forget, and output gates, respec8vely, 

• Cˆt  is the candidate cell state. 

 

This architecture enables LSTMs to model long-term dependencies in 8me series data, making them 
par8cularly effec8ve for stock predic8on. By training the LSTM on historical data, I can predict future 
movements based on past trends (Liu et al., 2018). 

 

Data Flow 
Here’s how data moves through VelocitySignals. 

First, I ingest the data from TradingView using an API or CSV files. The dataset includes pre-calculated 
technical indicators such as RSI, MACD, and Volume, which are essen8al for both condi8on matching and 
machine learning models. 

Once the data is ingested, it is processed through Google Cloud Func-ons and stored in BigQuery. At this 
stage, I verify and recalculate the necessary technical indicators to ensure that the data is accurate and 
ready for analysis. 

The next step is the signal genera-on process. For the condi8on-matching approach, I evaluate the RSI, 
MACD, and Volume values against predefined thresholds to generate buy, sell, or hold signals. For the 
machine learning approach, I use the processed data to train the Random Forest and LSTM models, which 
then predict the next movement in the market based on historical trends. 

Finally, the signals are sent to Tableau, where I monitor them in real-8me. The visualiza8on of buy, sell, or 
hold signals in Tableau helps me make informed trading decisions, especially when the market is vola8le. 



 

 

Machine Learning Testing Phase 
To ensure that the machine learning models perform well, I test them extensively using real-world data. 
In this case, I’m working with a dataset from Binance, specifically the SOL/USDT trading pair. This dataset 
includes daily OHLC prices, technical indicators like RSI, MACD, and Volume, as well as other metrics like 
Bollinger Bands. 

 

Example of the SOL/USDT trading pair Dataset: 

!me,open,high,low,close,MA,EMA,Basis,Upper,Lower,Volume,RSI,Upper Bollinger Band,Lower Bollinger 
Band,Regular Bullish,Regular Bullish Label,Regular Bearish,Regular Bearish Label,Histogram,MACD,Signal 

2023-09-
09,19.6,19.61,19.38,19.44,19.64333333333333,19.815438424414644,20.289499999999997,21.78542078667304
,18.793579213326954,646379.52,38.136669458305725,NaN,NaN,NaN,NaN,NaN,NaN,0.029599799805416382,-
0.7786095425647765,-0.8082093423701929 

2023-09-
10,19.43,19.44,17.78,18.24,19.522222222222222,19.500350739531715,20.141499999999994,21.822110305811
805,18.460889694188182,5630975.71,23.84162343331026,NaN,NaN,NaN,NaN,NaN,NaN,-
0.04050862188739568,-0.8588451197294376,-0.8183364978420419 



2023-09-
11,18.23,18.46,17.33,17.72,19.324444444444442,19.14428059162537,19.997999999999994,21.9663963015614
53,18.029603698438535,4755172.77,19.952561966859406,NaN,NaN,19.952561966859406,NaN,NaN,NaN,-
0.10805226102299481,-0.9534018241207853,-0.8453495630977905 

2023-09-
12,17.72,18.8,17.57,17.92,19.14111111111111,18.899424473300297,19.806999999999995,21.80333764679244
3,17.810662353207547,4818249.11000001,25.5571041230028,NaN,NaN,NaN,NaN,NaN,NaN,-
0.12425260405745797,-1.000665318169613,-0.876412714112155 

2023-09-
13,17.91,18.56,17.69,18.4,19.016666666666666,18.799539578640236,19.673999999999996,21.6731338124298
53,17.67486618757014,4063710.36000001,38.049123437615656,NaN,NaN,NaN,NaN,NaN,NaN,-
0.08927057234169056,-0.9880009295392682,-0.8987303571975777 

 

Data Preprocessing 
The first step in the tes8ng phase is to clean and preprocess the dataset. This includes handling missing 
values, removing unnecessary columns, and normalizing the features so that they all fall within a similar 
range. This makes the model training process more efficient. 

I also perform feature engineering by crea8ng addi8onal features that capture important paMerns. For 
example, I might introduce lagged values of RSI or MACD to help the model understand the temporal 
dependencies in the data. 

Once the data is cleaned and prepared, I split it into training and tes-ng sets. Typically, I use 80% of the 
data for training and 20% for tes8ng. The training set is used to teach the model, while the test set is used 
to evaluate how well the model generalizes to unseen data. 

 

Model Training and Testing 
For the Random Forest model, I use features like RSI, MACD, EMA, and Volume to predict whether the 
next market movement will be a buy, sell, or hold signal. The model is trained on the training set and 
evaluated using the test set. I assess the model’s performance using metrics like accuracy, precision, recall, 
and F1-score. 

For the LSTM model, I reshape the data into sequences of past indicators, which allows the model to learn 
from the temporal paMerns in the data. I train the model on the training set and evaluate its performance 
using metrics like mean squared error (MSE) and root mean squared error (RMSE). The LSTM model is 
handy for predic8ng future stock movements based on historical trends. 



 

Outline of Codes for Testing 
Here’s an outline of the code I use for tes8ng both the Random Forest and LSTM models: 

________________ 

Random Forest  

# This code trains a Random Forest Classifier to predict trading signals (buy, sell, or hold) using stock 
indicators such as RSI, MACD, EMA, and Volume. It splits the data into training and tes8ng sets, with 80% 
for training and 20% for tes8ng. The Random Forest model, composed of 100 decision trees, is trained on 
the selected features. Once trained, the model makes predic8ons on the test set, and the results are 
evaluated using a classifica8on report to assess performance metrics like accuracy, precision, and recall. 

________________ 

from sklearn.ensemble import RandomForestClassifier 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import classification_report 
  
# Selecting relevant features for training 
features = df[['RSI', 'MACD', 'EMA', 'Volume']] 
target = df['Signal']  # Assuming a Signal column exists with buy, sell, or hold labels 
  
# Splitting the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42) 
  
# Training the Random Forest Classifier 
rf_model = RandomForestClassifier(n_estimators=100) 
rf_model.fit(X_train, y_train) 
  
# Making predictions 
rf_predictions = rf_model.predict(X_test) 
  
# Evaluating the model 
print(classification_report(y_test, rf_predictions)) 

 

LSTM 

# This code trains an LSTM model to predict future trading signals (buy, sell, or hold) based on historical 
stock indicators like RSI, MACD, EMA, and Volume. It first prepares the data by crea8ng sequences, then 
splits it into training and test sets. The model, built with two LSTM layers followed by Dense layers, learns 
from paMerns in the sequen8al data and generates predic8ons on unseen test data to evaluate its 
accuracy. 

___________________ 



 

from keras.models import Sequential 
from keras.layers import LSTM, Dense 
import numpy as np 
from sklearn.model_selection import train_test_split 
  
# I’m preparing the features and target for the LSTM model 
X = df[['RSI', 'MACD', 'EMA', 'Volume']].values 
y = df['Signal'].values  # Assuming 'Signal' column is the target 
  
# Here, I define a function to create sequences with specified time steps 
def create_sequences(X, y, time_steps=10): 
    Xs, ys = [], [] 
    for i in range(len(X) - time_steps): 
        Xs.append(X[i:i + time_steps]) 
        ys.append(y[i + time_steps]) 
    return np.array(Xs), np.array(ys) 
X_seq, y_seq = create_sequences(X, y) 
  
# Now, split the sequences into training and testing sets 
X_train_seq, X_test_seq, y_train_seq, y_test_seq = train_test_split(X_seq, y_seq, test_size=0.2, random_state=42) 
  
# Building the LSTM model 
lstm_model = Sequential() 
lstm_model.add(LSTM(50, return_sequences=True, input_shape=(X_train_seq.shape[1], X_train_seq.shape[2]))) 
lstm_model.add(LSTM(50, return_sequences=False)) 
lstm_model.add(Dense(25)) 
lstm_model.add(Dense(1)) 
  
# Compiling and training the model 
lstm_model.compile(optimizer='adam', loss='mean_squared_error') 
lstm_model.fit(X_train_seq, y_train_seq, batch_size=32, epochs=10) 
  
# Finally, generate predictions on the test set 
lstm_predictions = lstm_model.predict(X_test_seq) 

 

________________________ 

  



Results and Evaluation 
Ager training and tes8ng both the Random Forest and LSTM models, the next step is to evaluate their 
performance using specific metrics tailored to their respec8ve tasks. This evalua8on is crucial to 
understanding how well each model performs and which is more suitable for the given market condi8ons. 

For the Random Forest model, which is a classifica8on model, I focus on metrics that measure its ability 
to correctly classify stock movements into categories such as buy, sell, or hold. The first metric I look at is 
accuracy, which measures the propor8on of correct predic8ons out of the total predic8ons made. 
Accuracy helps me understand how ogen the model is correct overall.  

However, accuracy alone may not always provide the full picture, especially if the dataset is imbalanced. 
For this reason, I also evaluate precision, which tells me how accurate the model's posi8ve predic8ons 
are. For example, if the model predicts a "buy" signal, precision measures how ogen that predic8on was 
correct. 

In addi8on, I evaluate recall, which shows how many actual posi8ve instances (like true "buy" signals) 
were correctly iden8fied by the model. This metric is par8cularly useful when it’s important to capture all 
instances of a certain signal, such as in the case of vola8le stocks where missing a buy signal could lead to 
missed opportuni8es. To provide a balanced view between precision and recall, I use the F1-score, which 
combines these two metrics. The F1-score is par8cularly helpful when there is an uneven distribu8on of 
buy, sell, and hold signals, as it ensures that both false posi8ves and false nega8ves are considered. 

For the LSTM model, which performs a regression task by predic8ng con8nuous values of future stock 
movements, I use different metrics that are more suited for evalua8ng how close the model's predic8ons 
are to the actual stock price changes. One of the main metrics I use is Mean Squared Error (MSE), which 
calculates the average of the squared differences between the predicted values and the actual values. A 
lower MSE means the model is making predic8ons that are very close to the true movements of the stock. 
Along with MSE, I also use Root Mean Squared Error (RMSE), which is the square root of the MSE. RMSE 
provides a more interpretable metric as it brings the error back to the same scale as the original stock 
data, making it easier to understand how far off the model’s predic8ons are from reality. 

Once I have evaluated both models using these metrics, I can determine which one is more suitable for 
the specific stock or market condi8ons. The Random Forest model generally performs beMer when there 
are non-linear rela8onships between the input features, such as sudden market shigs or interac8ons 
between mul8ple stock indicators. It’s adept at handling complex paMerns in the data and making reliable 
classifica8on predic8ons. 

In contrast, the LSTM model excels at capturing long-term temporal dependencies, meaning it is more 
suited for scenarios where trends over 8me are important. This makes it a good fit for sequen8al data, 
such as stock prices that exhibit trends over extended periods. LSTM can effec8vely learn these paMerns 
and predict future movements based on past sequences. 

By comparing the performance of both models, I can fine-tune them to beMer align with the specific needs 
of the market I’m analyzing. In some cases, Random Forest might be the beMer choice for short-term, non-



linear market behavior, while LSTM may be more effec8ve for long-term trend analysis. This evalua8on 
process helps me determine the op8mal model for making accurate stock predic8ons and developing 
trading strategies that are tailored to the unique condi8ons of the market. 

 

  



References 
Abu-Khalaf, A., et al. (2018). Stock Price Predic8on Using Long Short-Term Memory. Journal of Financial 
Studies, 9(4), 201-223. 

Achelis, S. B. (2001). Technical Analysis from A to Z. McGraw-Hill. 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. 
hMps://doi.org/10.1023/A:1010933404324 

Liu, X., et al. (2018). LSTM-CNN Model for Stock Predic8on with Financial News. Applied So< Compu>ng, 
72, 595-605. 

Nasiri, M., & Kanan, H. (2015). Compara8ve Study of Machine Learning Models for Stock Trend Predic8on. 
Journal of Data Science, 13(3), 223-245. 

Sadiq, H., & Alara, T. (2017). Ensemble Learning in Stock Price Predic8on. Computa>onal Finance Journal, 
14(2), 89-102. 

Wilder, J. W. (1978). New Concepts in Technical Trading Systems. Trend Research. 

 

 

 

 

 


