

Sports Neurology – is it a man's world?

Claus Reinsberger, M.D., Ph.D.

Division of Sports Neurology and Neurosciences Mass General Brigham

Email: creinsberger@mgb.org

Learning Objectives

recognize sport related concussion, be familiar with therapeutic and return-toactivity concepts & be sensitive to peculiarities of female athletes

 understand & use the potential of sport and physical activity to prevent and treat neurological diseases (in women)

Disclosures

I have no actual or potential conflict of interest in relation to this presentation, but...

... see patients with concussion and neurological disorders in my sports neurology clinic

... use various technologies to assess patients with concussion

... receive scientific funding by the Federal Institute of Sports Sciences (Germany), District of

Paderborn & Paderborn County, Westfalian Foundation, Paderborn University

... am a member of the Medical Committee of the German Football Association (DFB) and

counsel the Union of European Football Associations (UEFA)

Sports Neurology / Neuroscience

sports and exercise associated (overuse) syndromes

CNS: dvstonias, dvsautonomia, PNS: trauma

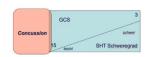
,cerebral performance' in sports (and training)

ANS control, cognitive-motor training, neuroathletic training

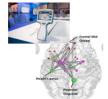
clinical neurology
& neurosciences

sports medicine& sports physiology

sports and exercise to prevent & treat neurological diseases

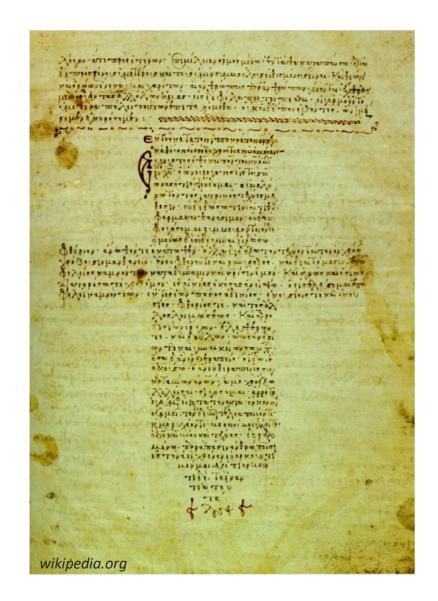

,exercise is medicine'

,sports is pharmacy'


Part 1: Sport Associated Concussion in Women

definition and classification

on pitch, in the gym



diagnosis: biomarkers, devices etc.

The Hippocratic Corpus

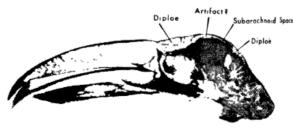
loss of speech, hearing and sight that can result from "commotion of the brain"

There is no good animal model for concussion...

454

THE LANCET, FEBRUARY 28, 1976

WOODPECKERS AND HEAD INJURY


PHILIP R. A. MAY

JOAQUIN M. FUSTER
ADA HIRSCHMAN

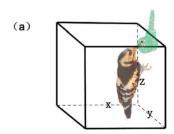
Brentwood Veterans Administration Hospital, Los Angeles, California 90073, and Neuropsychiatric Institute, University of California at Los Angeles, Los Angeles, California 90024, U.S.A.

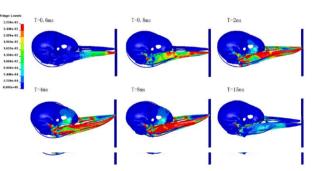
Summary

The woodpecker is an experiment in Nature, a model for the investigation of mechanisms of basic importance for head injury and its prevention. A preliminary anatomical study of the woodpecker's head suggests that it may be fruitful to explore impact protective systems which are radically different from those in common use.

TOUCAN Societal Section

...really?


OPEN ACCESS Freely available online


Why Do Woodpeckers Resist Head Impact Injury: A Biomechanical Investigation

Lizhen Wang^{1,2}, Jason Tak-Man Cheung³, Fang Pu¹, Deyu Li¹, Ming Zhang^{2*}, Yubo Fan^{1*}

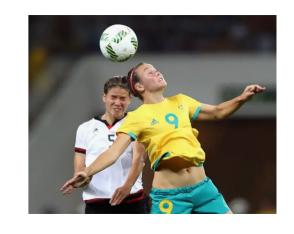
1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China, 2 Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 3 Li Ning Sports Science Research Center, Beijing, People's Republic of China

October 2011 | Volume 6 | Issue 10 | e26490

Is it a man's world?

the game of football is quite unsuitable for females and ought not to be encouraged

English FA, 1921, in: Skillen et al., 2022



Is it a man's world?

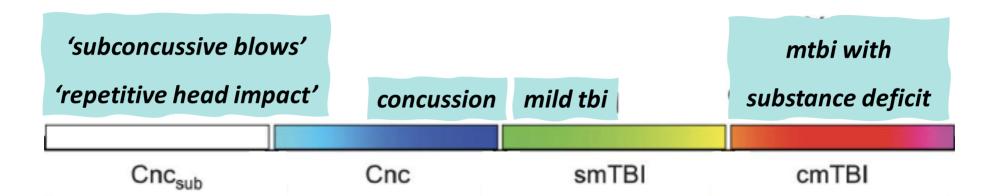
female players are ~ 50% more likely to suffer from a concussion in soccer

Kontos et al., 2023

80 % of sport concussion research in males

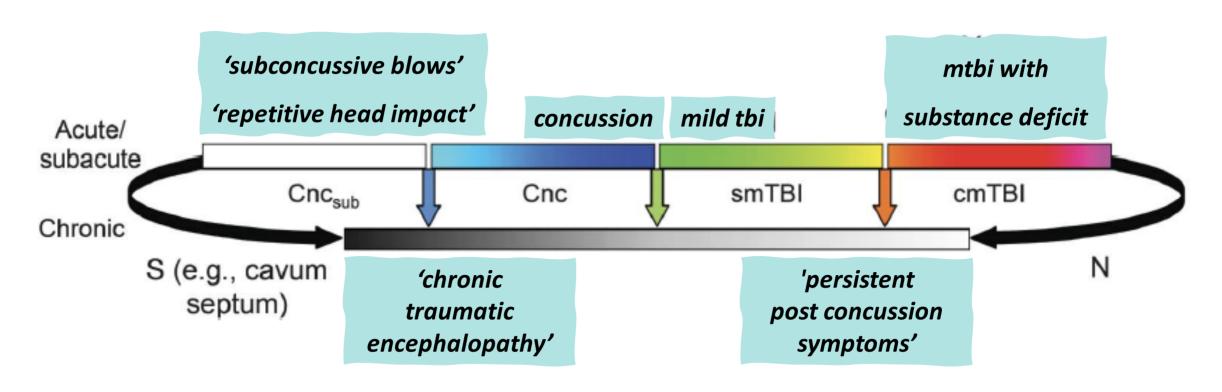
40 % of consensus / position papers without females

D'Lauro et al., 2022


concussion risk in females is not higher in every kind of sport (wrestling)

Van Pelt et al., 2021

Sports associated brain damage is not a clinical entity


spectrum of mild traumatic brain injury

Sports associated brain damage is not a clinical entity

spectrum of mild traumatic brain injury

Definition of sport related concussion

sport related concussion is a traumatic brain injury caused by a direct blow to the head, neck or body resulting in an impulsive force being transmitted to the brain that occurs in sports and exercise-related activities

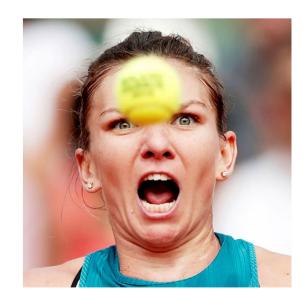
- initiation of a neurotransmitter and metabolic cascade with possible axonal injury, blood flow change and inflammation affecting the brain
- Symptoms and signs may present immediately or evolve over minutes or hours, and commonly resolve within days, but may be prolonged
- no abnormality on standard structural neuroimaging (but in research protocols)
- range of clinical signs and symptoms, loss of consciousness may or may not involved
- clinical signs and symptoms cannot be explained by drug, alcohol, or medication use, other injuries (such as cervical injuries, peripheral vestibular dysfunction, etc.) or other comorbidities (e. g., psychological factors or co-existing medical conditions)

Patricios et al., 2023

Research in sport related concussion

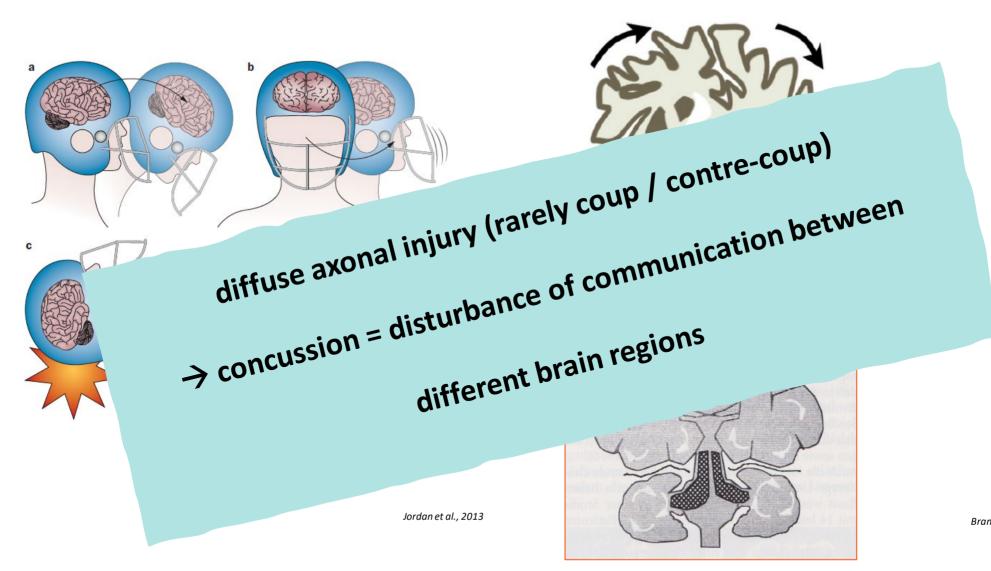
- is it a man's world?

Consensus statement on concussion in sport: the 6th International Conference on Concussion in Sport—Amsterdam, October 2022

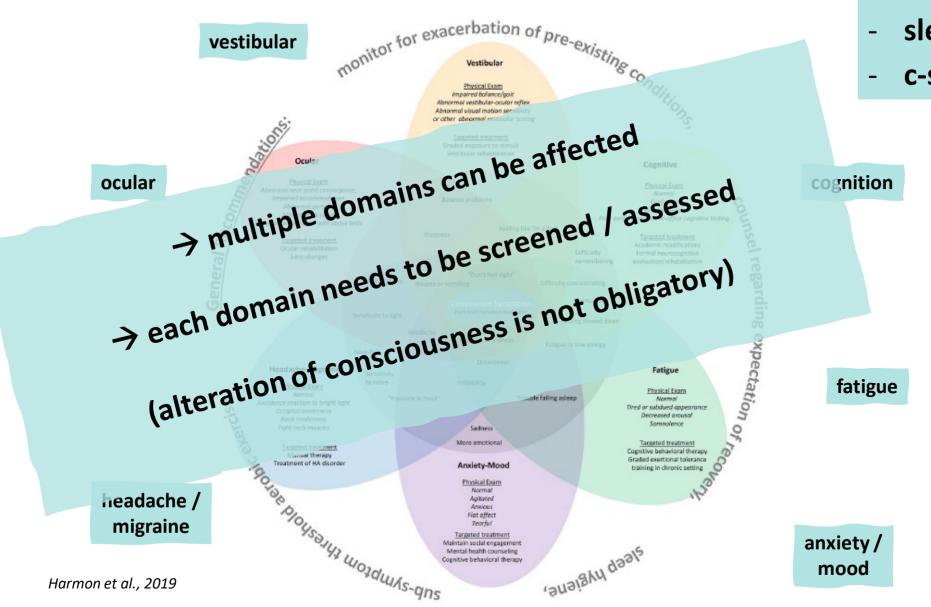

```
Jon S Patricios o, 1 Kathryn J Schneider o, 2 Jiri Dvorak o, 3
Osman Hassan Ahmed o, 4.5 Cheri Blauwet o, 6.7 Robert C Cantu, 8.9
Gavin A Davis o, 10,11 Ruben J Echemendia o, 12,13 Michael Makdissi, 14,15
Michael McNamee, 16,17 Steven Broglio o, 18 Carolyn A Emery o, 2
Nina Feddermann-Demont, 19,20 Gordon Ward Fuller o, 21 Christopher C Giza, 22,23
Kevin M Guskiewicz, 24 Brian Hainline o, 25 Grant L Iverson o, 26,27
Jeffrey S Kutcher, 28 John J Leddy o, 29 David Maddocks, 30 Geoff Manley o, 31
Michael McCrea o, 32 Laura K Purcell, 33 Margot Putukian o, 34 Haruhiko Sato o, 35
Markku P Tuominen, 36 Michael Turner o, 37,38 Keith Owen Yeates o, 39
Stanley A Herring, 40,41 Willem Meeuwisse 42
```

Amsterdam 2022 process: A summary of the methodology for the Amsterdam International Consensus on Concussion in Sport

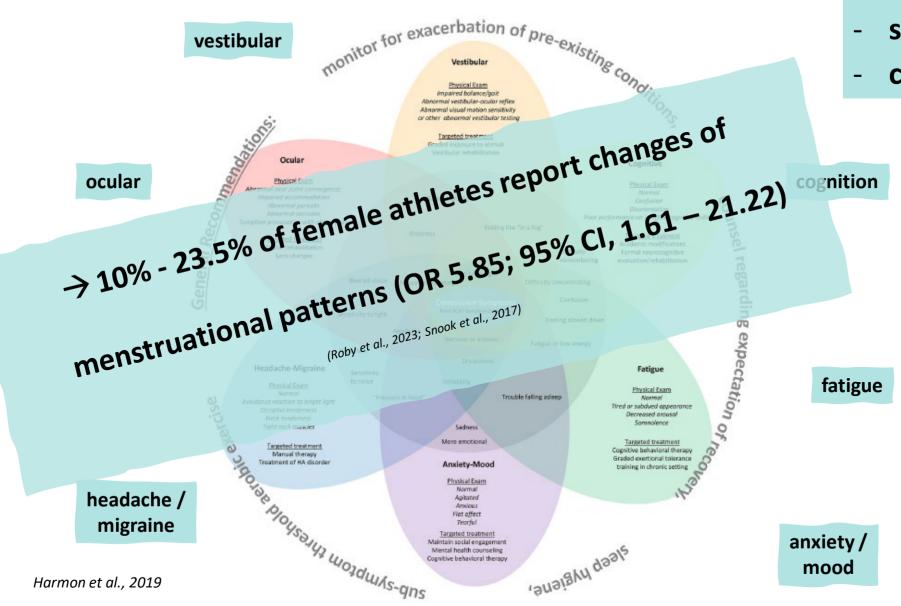
```
Kathryn J Schneider , 1,2,3 Jon S Patricios , 4 Willem Meeuwisse,5 Geoff M Schneider, 6 K Alix Hayden , 7 Zahra Premiji , 8 Osman Hassan Ahmed , 9,10,11 Cheri Blauwet , 12,13 Steven Broglio , 14 Robert C Cantu, 15,16 Gavin A Davis , 17,18 Jiri Dvorak , 19 Ruben J Echemendia , 20 Carolyn A Emery , 1 Grant L Iverson , 21,22 John J Leddy , 23 Michael Makdissi, 24,25 Michael McCrea , 26 Michael McNamee, 27,28 Margot Putukian , 29 Keith Owen Yeates , 2,3,30 Amanda M Black , 1 Joel S Burma , 1 Meghan Critchley, 31 Paul H Eliason , 31 Anu M Räisänen , 32 Jason B Tabor , 31 Clodagh Toomey, 1,33 Paul E Ronksley, 34 J David Cassidy , 1
```


Generalisability

Challenge: Many studies include select samples of high performance male athletes, and are primarily from North America. There are not enough studies of children <12 years, women, non-binary genders and para athletes. Solution: Future studies should be inclusive and more studies need to be undertaken that include all age groups, sexes, genders, races and ethnicities, para athletes, and all levels of sport participation, and geographical regions.


What happens during concussion? diffuse axonal injury

Brandt, Dichgans, Diener, 2007 Noble & Hesdorffer, 2013


Clinical Signs / Symptoms

- sleep
- c-spine

Clinical Signs / Symptoms

modifiers:

- sleep
- c-spine

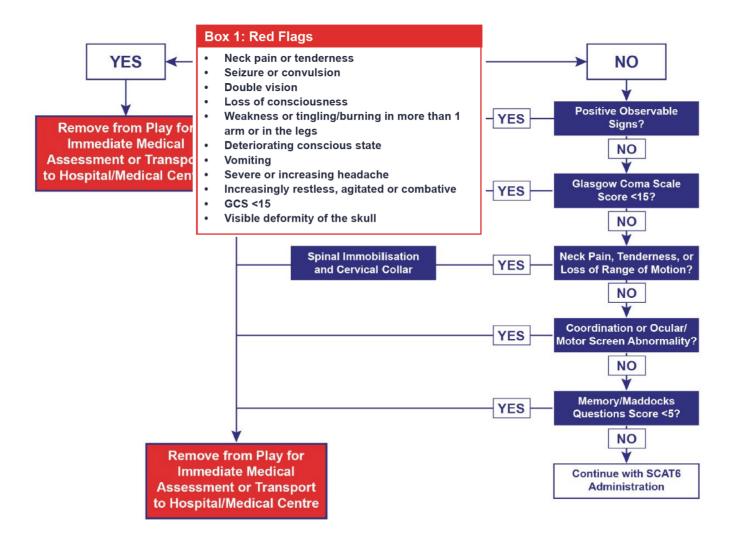
Initial Assessment (on pitch, in the gym)

? substitution & outpatient care

? substitution & inpatient care

Glasgow Coma Scale

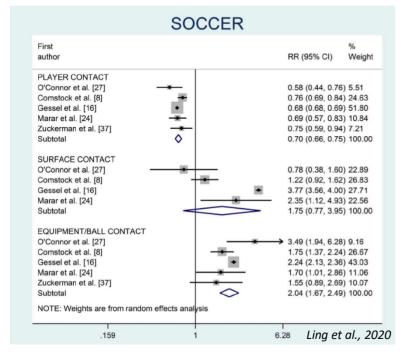
neurological assessment



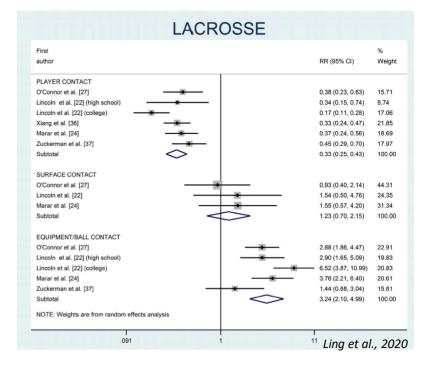
Sport Concussion Assessment Tool

For Adolescents (13 years +) & Adults

Immediate Assessment/Neuro Screen


Mechanisms leading to Concussion are different in women

women report more symptoms than men


(Blyth et al., 2021)

football: head/ball contact rather than head/body (or head) contact

(Blyth et al., 2021; Dave et al., 2022)

Mechanisms leading to Concussion are different in women

different reporting behavior

(Van Pelt et al., 2021)

access to medical support

(Bretzinet al., 2021)

training of heading technique

(Parsanejad et al., 2021)

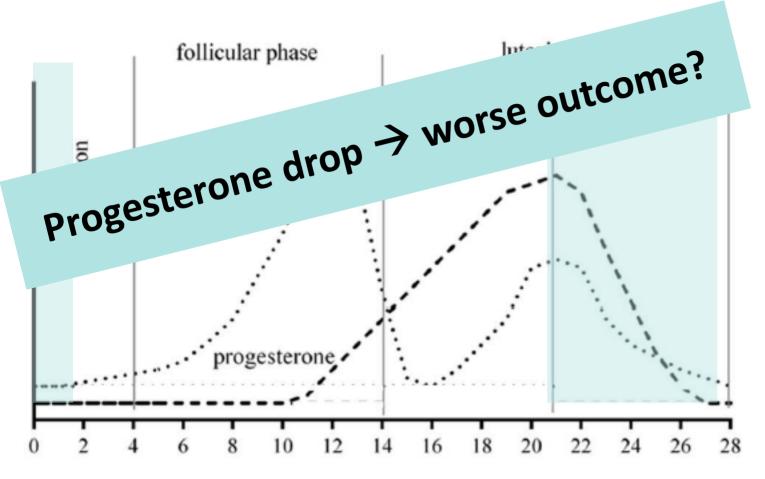
eyes closed during headers?

(Clark et al., 2017)

Sports Medicine (2023) 53:1335–1358 https://doi.org/10.1007/s40279-023-01852-x

REVIEW ARTICLE

Where are We Headed? Evidence to Inform Future Football Heading Guidelines


Kerry Peek¹ · Rob Duffield^{2,3} · Ross Cairns^{4,5} · Mark Jones³ · Tim Meyer⁸ · Alan McCall^{2,3} · Vincent Oxenham^{6,7}

The Female cycle – not a man's world!

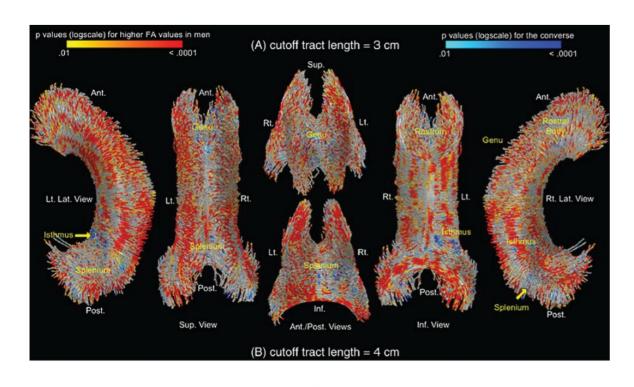
concussion risk depending on cycle? (Blyth et al., 2021; Musko & Demetriades, 2023))

concussion during follicular phase

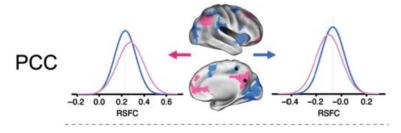
→ lower symptom endorsement

Roby et al., 2023

(not sports associated) concussion during luteal phase


→ worse symptoms

Wunderle et al., 2014


The Female brain – not a man's world?

female corpus callosum more vulnerable? (Solomito et al., 2019, Gong et al., 2011)

females:

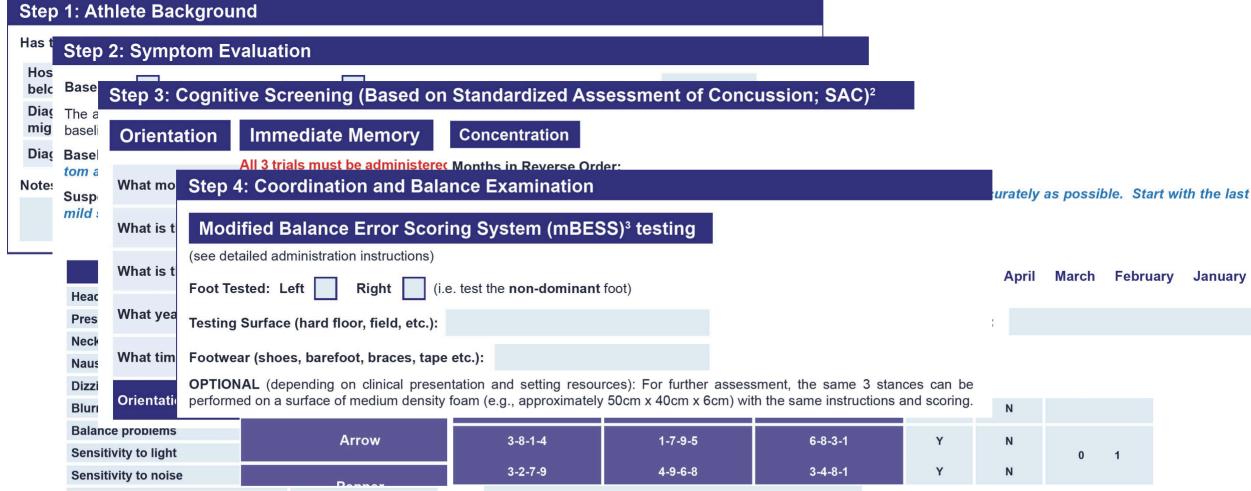
- less fibers & cross sectional areas (parasaggital & midsaggital)
- more utilization of both hemispheres
- less functional connectivity (e.g. posterior cingulate)

Anterior cruciate ligament injury: towards a gendered environmental approach

How to Diagnose a Concussion

→ history

→ 'physical' exam


→ additional exams / workup

Off-Field Assessment

Off-Field Assessment

Step 4: Coordination and Balance Examination (Continued)

Modified BESS (20 seconds each)

Double Leg Stance: of 10

Tandem Stance: of 10

Single Leg Stance: of 10

Total Errors: of 30

Note: If the **mBESS** yields normal findings then proceed If the **mBESS** reveals abnormal findings or clinically sign

Timed Tandem Gait

Dual Task Gait (Optional. Timed Tandem Gait must be completed first)

Place a 3-metre-long line on the floor/firm surface with athletic tape. The task should be timed.

Say "Now, while you are walking heel-to-toe, I will ask you to count backwards out loud by 7s. For example, if we started at 100, you would say 100, 93, 86, 79. Let's practise counting. Starting with 93, count backward by sevens until I say "stop"." Note that this practice only involves counting backwards.

Dual Task Practice: Circle correct responses; record number of subtraction counting errors.

Task									Errors	Time
Practice	93	86	72	65	58	51	44	37		

Saw "Cood, New Lwill ask you to walk heal to too and sount healtwards out loud at the same time. Are you ready? The

Step 5: Delayed Recall

The Delayed Recall should be performed after at least 5 minutes have elapsed since the end of the Immediate Memory section:

aumber of subtraction counting errors.

Task														Errors	Time (circle fastest)
Trial 1	88	81	74	67	60	53	46	39	32	25	18	11	4		

SCOAT6TM

SCAT6™ (\bigcirc) Sport Concussion Assessment Tool For Adolescents (13 years +) & Adults

Completion Guide

Blue: Complete only at first assessment

Green: Recommended part of assessment

Orange: Optional part of assessment

Sport Concussion Office Assessment Tool

For Adults & Adolescents (13 years +)

Standing (after 1 minute) Orthostatic Vital Signs Supine Cervical Spine Palpation Signs and Symptoms Blood Pressure (mmHa)

Cranial Nerves

Other Neurological

Limb Tone:

Strength:

Muscle Spasm Heart Rate (bpm)

Normal

Midline Tenderne Notes:

- Fainting Paravertebral Ter
- Blurred or fading vis

Dizziness or light-he

Nausea

Symptoms1

Fatique Lack of concentratio Flexion (50-70°)

Results

Extension (60-85)

Right Lateral Flex Deep Tendon Reflexes:

Left Lateral Flexion Sensation:

Right Rotation (6 Cerebellar Function:

Left Rotation (60-Comments:

Modified Vestibular/Ocular-Motor Screening (mVOMS) for Concussion

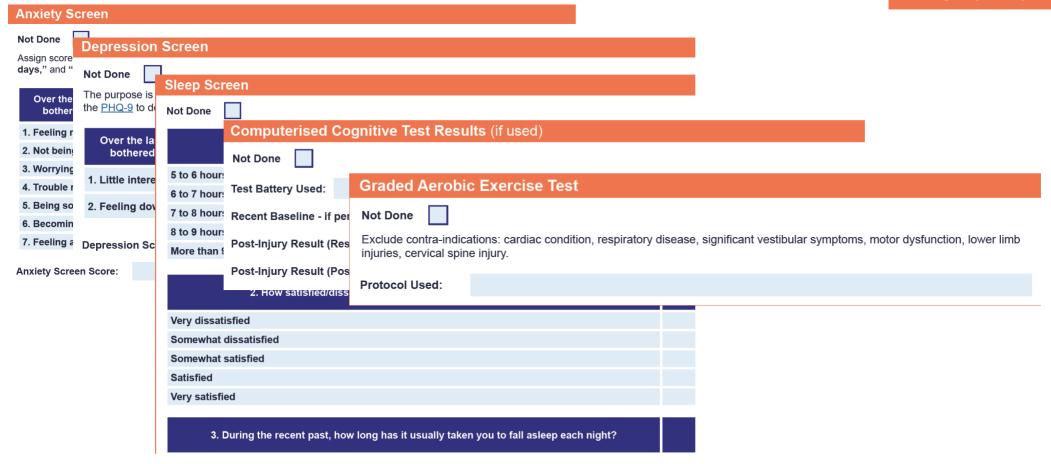
For detailed instructions please see the Supplement.

	mVOMS	Not Tested	Headache	Dizziness	Nausea	Fogginess	Comments
	Baseline symptoms	N/A					
	Smooth pursuits (2 horizontal and 2 vertical, 2 seconds to go full distance right-left and back; up-down and back)						
	Saccades – Horizontal (10 times each direction)						
1	VOR – Horizontal (10 repetitions) (metronome set at 180 beats per minute – change direction at each beep, wait 10 secs to ask symptoms)						
r	VMS (x 5, 80° rotation side to side) (at 50 bpm, change direction each beep, wait 10 secs to ask symptoms)						

SCOAT6[™]

Sport Concussion Office Assessment Tool

For Adults & Adolescents (13 years +)

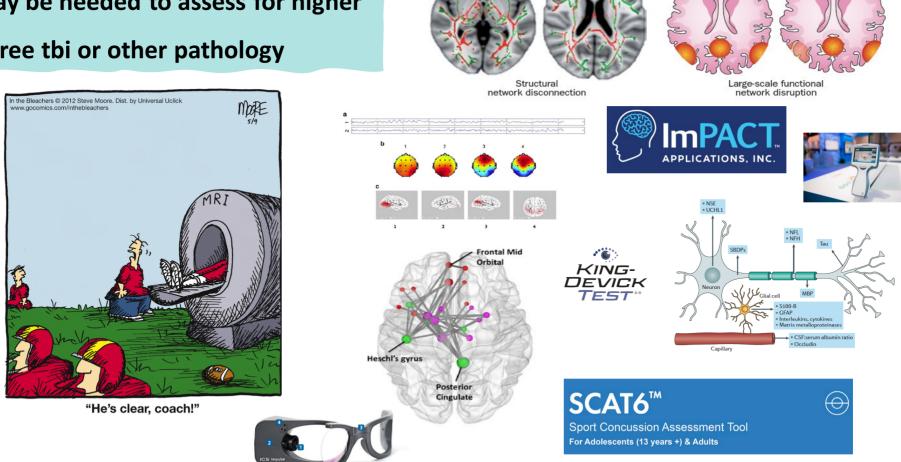


Completion Guide

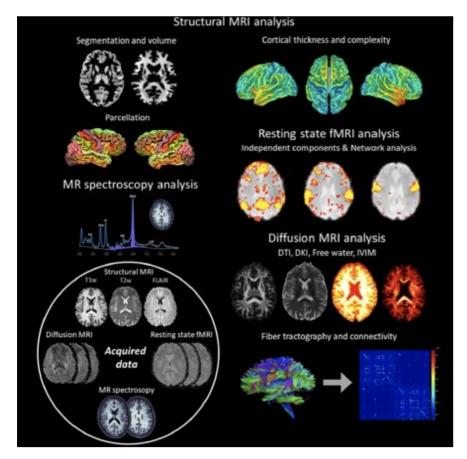
Blue: Complete only at first assessment

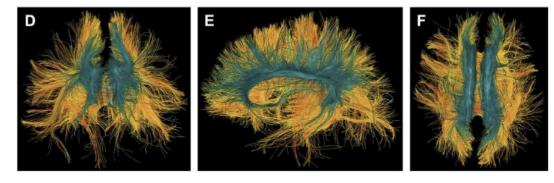
Green: Recommended part of assessment

Orange: Optional part of assessment



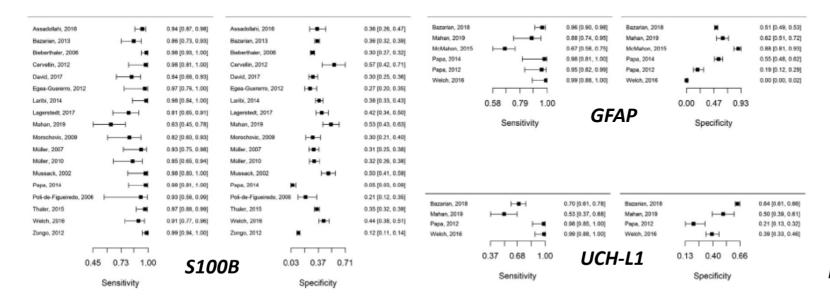
The Quest for Biomarkers


→ concussion is a clinical diagnosis

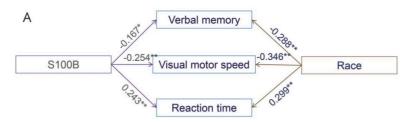

→ workup may be needed to assess for higher degree tbi or other pathology

Neuroimaging

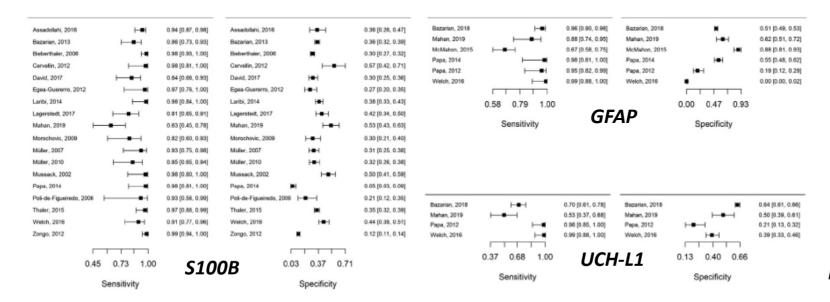
Guenette et al., 2017


- group vs. individual level
- diagnostic sensitivity& specificity not clear

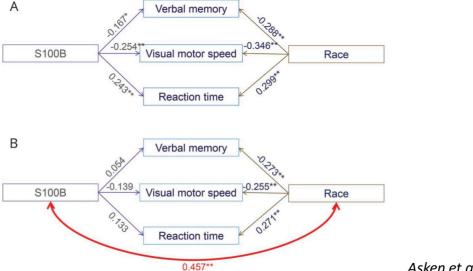
Koerte et al., 2021


- → not (yet) ready for clinical use to dx concussion!
 - → but important to assess for higher degree tbi!

Serological Biomarkers



Rogan et al., 2022



Serological Biomarkers


Rogan et al., 2022

Guidelines

- 1.) concussion diagnosed / suspected:
 - → no return to play/practice on the same day

2.) after init:

earlier access to specialized care → faster and better recovery!

earlier access to specialized care → faster and better recovery!

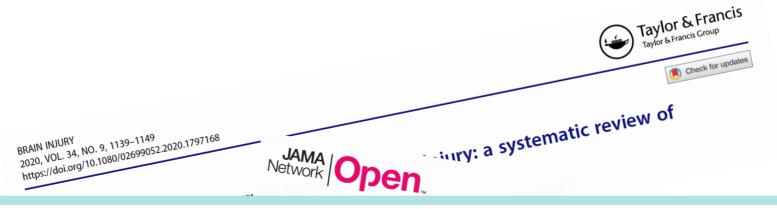
→ 80-90%: favorable prognosis with complete remission of symptoms after 2 week ...if diagnosed and managed correctly!

,Return-to'-activity

Table 2	Return-to-sport (RTS) strategy—each step typically	takes a minimum of 24 hours	
Step	Exercise strategy	Activity at each step	Goal
1	Symptom-limited activity	Daily activities that do not exacerbate symptoms (eg, walking).	Gradual reintroduction of work/school
2	Aerobic exercise 2A—Light (up to approximately 55% maxHR) then 2B—Moderate (up to approximately 70% maxHR)	Stationary cycling or walking at slow to medium pace. May start light resistance training that does not result in more than mild and brief exacerbation* of concussion symptoms.	Increase heart rate
3	Individual sport-specific exercise Note: If sport-specific training involves any risk of inadvertent head impact, medical clearance should occur prior to Step 3	Sport-specific training away from the team environment (eg, running, change of direction and/or individual training drills away from the team environment). No activities at risk of head impact.	Add movement, change of direction
•	nould begin after the resolution of any symptoms, abnormalitions	es in cognitive function and any other clinical findings rela	ted to the current concussion, including with
4	Non-contact training drills	Exercise to high intensity including more challenging training drills (eg, passing drills, multiplayer training) can integrate into a team environment.	Resume usual intensity of exercise, coordination and increased thinking
5	Full contact practice	Participate in normal training activities.	Restore confidence and assess functional skills by coaching staff
6	Return to sport	Normal game play.	

ble	1 Return-to-learn (RTL) strategy		
lep	Mental activity	Activity at each step	Goal
	Daily activities that do not result in more than a mild exacerbation* of symptoms related to the current concussion	Typical activities during the day (eg. reading) while minimising screen time. Start with 5–15 min at a time and increase gradually.	Gradual return to typical activities
	School activities	Homework, reading or other cognitive activities outside of the classroom.	Increase tolerance to cognitive work
	Return to school part time	Gradual introduction of schoolwork. May need to start with a partial school day or with greater access to rest breaks during the day.	Increase academic activities
	Return to school full time	Gradually progress in school activities until a full day can be tolerated without more than mild* symptom exacerbation.	Return to full academic activities and catch up on missed work

Return to daily activities / school


Return to sport

Return to play

Return to performance

Treatment / Rehabilitation

Exercise is Medicine for Concussion

John J. Leddy, MD, FACSM, FACP¹; Mohammad N. Haider, MD¹; Michael Ellis, MD, FRCSC²; and Barry S. Willer, PhD³

Different Outcome in females?

more neck pain (King et al., 2024)

A prospective investigation of the effects of soccer heading on cognitive and sensorimotor performances in semi-professional female players

Jan Kern*, Philipp Gulde and Joachim Hermsdörfer

Chair of Human Movement Science, Department Health and Sport Sciences, TUM School of Medicine and Health. Technical University of Munich. Munich. Germany

* frontiers | Frontiers in Human Neuroscience

TYPE Original Research
PUBLISHED 09 February 2024

Received: 23 February 2022 | Revised: 3 January 2023 | Accepted: 31 January 2023 |
DOI: 10.1111/sms.14324

ORIGINAL ARTICLE

WILEY

Cortical thickness and neurocognitive performance in former high-level female soccer and non-contact sport athletes

Franziska Katharina Haase¹ | Annika Prien^{2,3} | Linda Douw^{4,5} | Nina Feddermann-Demont⁶ | Astrid Junge² | Claus Reinsberger¹

Therapeutic principles of Concussion

Systematic review

Rest and exercise early after sport-related concussion: a systematic review and meta-analysis

To cite: Leddy JJ, Burma JS, Toomey CM, et al. Br J Sports Med 2023;**57**:762–770. **Conclusion** Early PA, prescribed aerobic exercise and reduced screen time are beneficial following SRC. Strict physical rest until symptom resolution is not effective, and sleep disturbance impairs recovery after SRC.

- 1.) brief (!) protection from stimuli, reduction of screen time
- 2.) interventions to enhance the regeneration of the cerebral metabolism

RESTORATION OF CEREBRAL ENERGY METABOLISM

Exercise is Therapy!

- aerobic / cardio exercise
- monitoring: hr, RPE, symptom scores
- no significant worsening of symptoms
- careful with resistance training (initially)
- consider cognitive motor training

(Restoration of Healthy) Sleep is Therapy!

Consensus statement

Sleep and the athlete: narrative review and 2021 expert consensus recommendations

Neil P Walsh , ¹ Shona L Halson, ² Charli Sargent, ³ Gregory D Roach, ³ Mathieu Nédélec, ⁴ Luke Gupta, ⁵ Jonathan Leeder, ⁶ Hugh H Fullagar, ⁷ Aaron J Coutts, ⁷ Ben J Edwards, ¹ Samuel A Pullinger , ^{1,8} Colin M Robertson, ⁹ Jatin G Burniston, ¹ Michele Lastella, ³ Yann Le Meur, ⁴ Christophe Hausswirth, ¹⁰ Amy M Bender, ¹¹ Michael A Grandner, ¹² Charles H Samuels ¹³

Tool Box for Athletes:

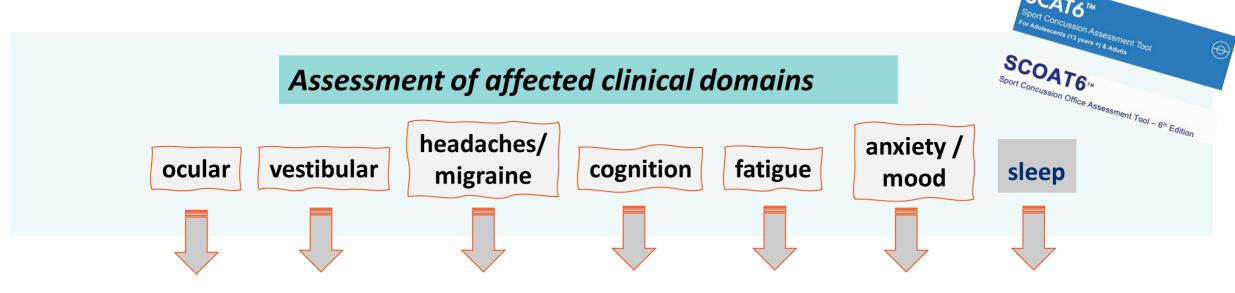
- Sleep Education for athletes
- Screen for sleep problems
- Encourage power naps
- Bank sleep

Therapeutic principles of Concussion

Systematic review

Rest and exercise early after sport-related concussion: a systematic review and meta-analysis

```
John J Leddy , <sup>1</sup> Joel S Burma , <sup>2</sup> Clodagh M Toomey, <sup>3</sup> Alix Hayden, <sup>4</sup> Gavin A Davis , <sup>5</sup> Franz E Babl , <sup>6</sup> Isabelle Gagnon, <sup>7,8</sup> Christopher C Giza, <sup>9,10</sup> Brad G Kurowski, <sup>11</sup> Noah D Silverberg , <sup>12</sup> Barry Willer, <sup>13</sup> Paul E Ronksley, <sup>14</sup> Kathryn J Schneider , <sup>15</sup>
```


To cite: Leddy JJ, Burma JS, Toomey CM, et al. Br J Sports Med 2023;57:762–770. **Conclusion** Early PA, prescribed aerobic exercise and reduced screen time are beneficial following SRC. Strict physical rest until symptom resolution is not effective, and sleep disturbance impairs recovery after SRC.

- 1.) brief (!) protection from stimuli, reduction of screen time
- 2.) interventions to enhance the regeneration of the cerebral metabolism
- 3.) interventions to improve symptoms

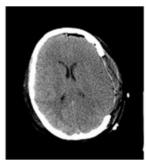
INDIVIDUALIZED SYMPTOMATIC TREATMENT

need for further diagnostic work-up?

lling

Concussion Therapy is Teamwork! رريت pharmacological and/or non-pharmacological therapy

Individualize return-to protocol according to affected clinical domain


Second Impact Syndrom

Rugby

Jake Snakenberg, 14, R.I.P American Football

Neurochirurgie
Available online 10 March 2020
In Press, Corrected Proof (?)

Original article

Second Impact Syndrome. Myth or reality?

J. Engelhardt ^a, D. Brauge ^b, H. Loiseau ^c △ ⊠

44 cases

1:205.000 athlete seasons

male, <20 years

? Postconcussion Syndrome better: Persistent Postconcussion Symptoms

Elena Myers Taylor

risk factors

pre-existing:

- prior tbi
- psychiatric disease
- headache syndrome
- genetic predisposition

- female

Definitions for postconcussion syndrome and related disorders

	ICD-10	DSM-IV	DSM-V	5th International Consensus Conference on Concussion in Sport
Terminology	Postconcussion syndrome	Postconcussional disorder	Major or mild neurocognitive disorder: traumatic brain injury	Sports-related concussion: symptoms and signs
Trauma	History of head trauma	History of head injury	Impact to head or rapid movement/displacement of brain	Impulsive force transmitted to the head
Loss of consciousness (LOC)	"Usually sufficiently severe to result in loss of consciousness"	Suggested criterion: > 5 minutes	Not required	Not required
Altered consciousness / cognitive impairment	Yes	Relative attention or memory impairment on neuropsychologic testing	Yes, or (+) imaging/ neurologic exam	"Impairment of neurologic functioning"
Maximum symptom delay for attribution to trauma	4 weeks	N/A	Immediate or when conscious	Minutes to hours
Minimum duration	N/A	3 months	"Past the acute injury phase"	Adults: 10–14 days Children: 4 weeks
Objective evidence	Not required	Required	Not required	Not required

DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, fourth edition; DSM-V, Diagnostic and Statistical Manual of Mental Disorders, fifth edition; ICD-10, International Statistical Classification of Diseases and Related Health Problems. 10th revision.

Dwyer and Katz, 2018

mechanism of injury:

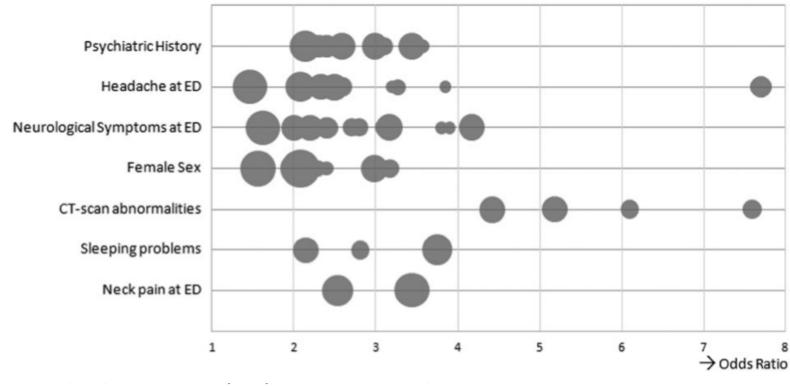
- quick onset of symptoms
- outside of sport

after injury:

- adjustment disorders, secondary gain
- bad compliance

Persistent Postconcussion Symptoms

Elena Myers Taylor


risk factors

pre-existing:

- prior tbi
- psychiatric disease
- headache syndrome
- genetic predisposition

- female

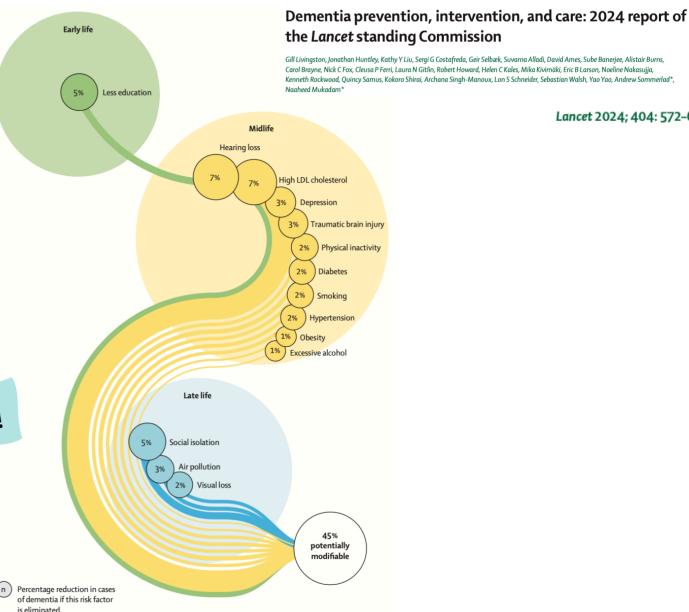
Risk Factors at the ED with Odds Ratios found per Sample Size

Lubbers et al., 2024

mechanism of injury:

- quick onset of symptoms
- outside of sport

after injury:


- adjustment disorders, secondary gain
- bad compliance

Long Term Health of Athletes after Concussion

14 potentially modifiable risk factors account for ~45% of worldwide dementias

early specialized care improves outcome!

Lancet 2024: 404: 572-628

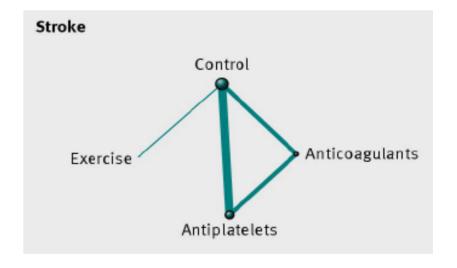
or

Sports is Pharmacy for Patients with Neurological Diseases

stroke

preventative effects by sports/PA on mortality larger than by medications

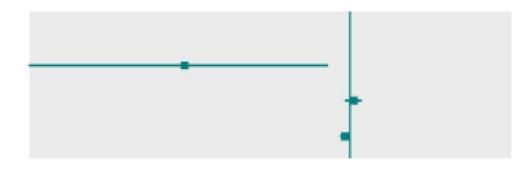
Naci et al., 2013


Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study

Huseyin Naci researcher¹ fellow², John P A Ioannidis director³

BMJ 2013;347:f5577 doi: 10.1136/bmj.f5577 (Published 1 October 2013)

16 meta analyses
305 studies
~ 340.000 patients



Stroke

Exercise

Anticoagulants

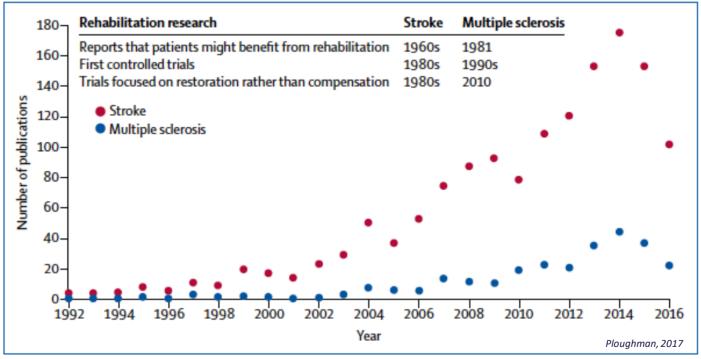
Antiplatelets

0.09 (0.01 to 0.72)

1.03 (0.93 to 1.12)

0.93 (0.85 to 1.01)

stroke


preventative effects by sports/PA on mortality larger than by medications

multiple sclerosis

relapses reduced by 27% through sports/physical activity

Pelutti et al., 2014

Multiple Sclerosis and Sports & Exercise

effects on...:

Kargarfard (aquatic Ex. versus no intervention Ex.)-MFIS [25]

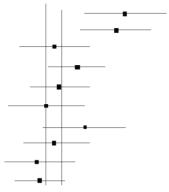
Hebert (vestibular Rehab versus control Ex.)-MFIS [26]

Velikonja (climbing versus yoga)-MFIS

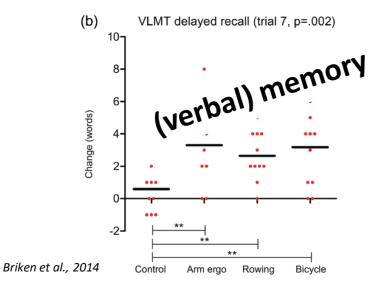
Daglas (prog. resis . v

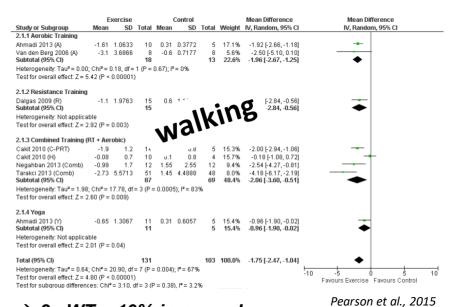
Moster (aerobic E fatis

Van den Berg (treac 400 intervention)-FSS [30]


Klefbeck (inspiratory Ex. versus usual care)-FSS [31]

Cakit (prog. resis. versus home Ex.)-FSS [32]


Hayes (high intensity Ex. versus standard Ex)-FSS [33]


Oken (aerobic versus yoga)-MFI GF [34]

effect size: 0.57

Asano & Finlayson, 2014

→ 2mWT ~ 19% improved

→ 10mWT ~ 16.5% improved

etc...

Multiple Sclerosis and Sports & Exercise

is it safe?

no study has ever demonstrated worsening of disease (progression) by physical exercise / exercise

,side effects': 1.2% (ctrl.) vs. 2.0 % (sports), RR 1.67

- → identical rates in healthy subjects
- → mostly musculo-sceletal

relapse rate: 6.3% (Ctrl.) vs. 4.6 % (Sport), RR 0.73

→ 27% exercise induced risk reduction

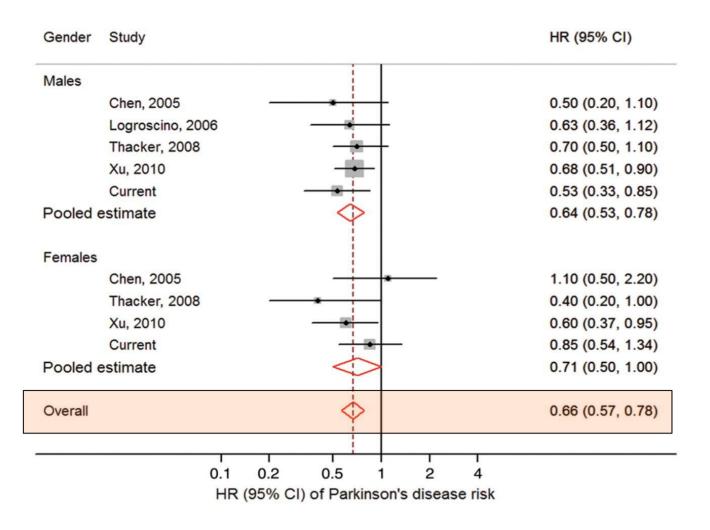
Pelutti et al., 2014

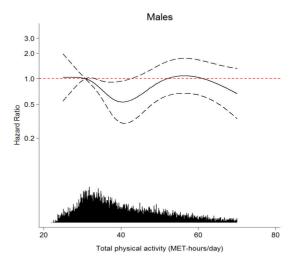
stroke

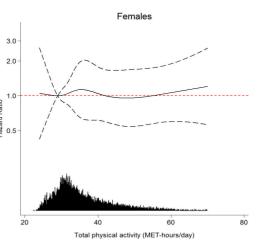
preventative effects by sports/PA on mortality larger than by medications

multiple sclerosis

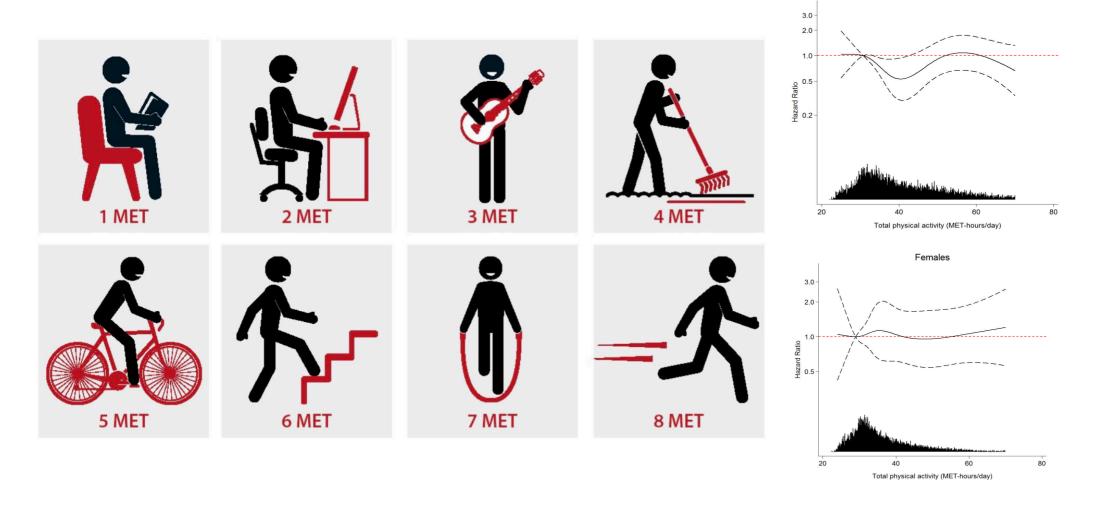
relapses reduced by 27% through sports/physical activity

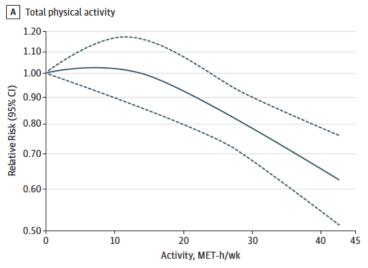

Pelutti et al., 2014

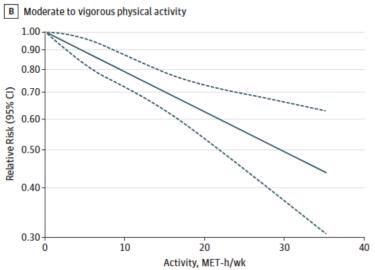

parkinson's disease


prevention by sports/PE: ~34% (predominantly males)

Yang et al., 2015, Fang et al., 2018






51

Males

increase of physical activity by 20 MET-h / week

→ risk reduction by:

-10% (total)

- 35% (vigorous)

... only in males ...

	Muscle strength	Balance	Gait	Endurance	Function	UPDRS motor	Fall reduction
Gait training with cues			✓				
Brisk walking		✓		✓			
Nordic walking			✓	✓			
Gait training using treadmill		✓	✓	✓			
Balance training		✓	✓		✓	✓ (on-med)	✓
Progressive resistive exercise	✓					✓ (off-med)	
Virtual-reality therapy		✓	✓		✓		
Tai Chi		✓	✓		✓		1
Dance		✓		✓		✓ (off-med)	

stroke

preventative effects by sports/PA on mortality larger than by medications

multiple sclerosis

relapses reduced by 27% through sports/physical activity

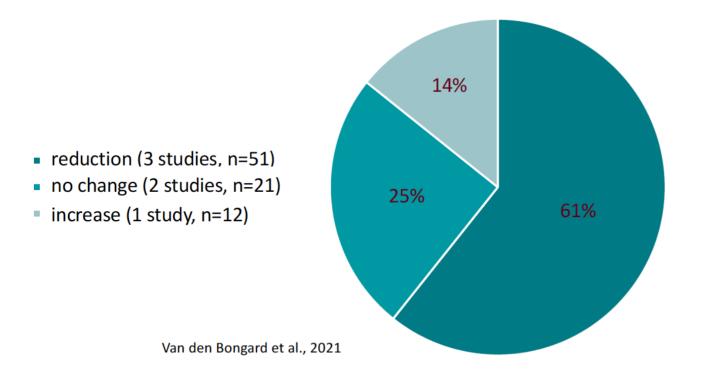
Pelutti et al., 2014

parkinson's disease

prevention by sports/PE: ~34% (predominantly males)

Yang et al., 2015, Fang et al., 2018

epilepsies


well described effects in animals only few (but not neg.) clinical studies

Van den Bongard et al., 2020

Epilepsies and Sports & Exercise

studies investigating the relationship between exercise & seizure frequency

type of exercise 	>/= 1 sympt. sz	single unprov. sz	> / = 12 months sz free	sleep ass. sz	no loc	with loc	cured epilepsy	AED reduction
1								
2								
3								

Capovila et al., 2016

stroke

preventative effects by sports/PA on mortality larger than by medications Naci et al., 2013

multiple sclerosis

relapses reduced by 27% through sports/physical activity

Pelutti et al., 2014

parkinson's disease

prevention by sports/PE: ~34% (predominantly males)

Yang et al., 2015, Fang et al., 2018

epilepsies

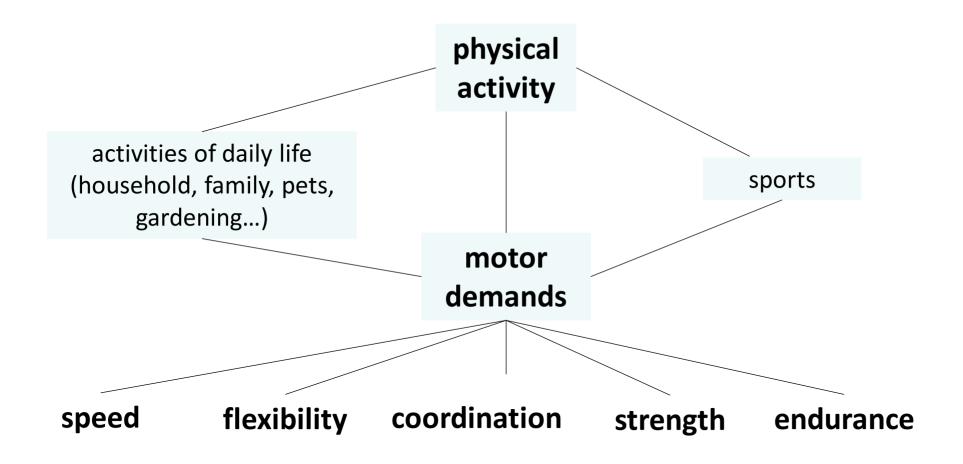
well described effects in animals only few (but not neg.) clinical studies

Van den Bonaard et al., 2020


dementias

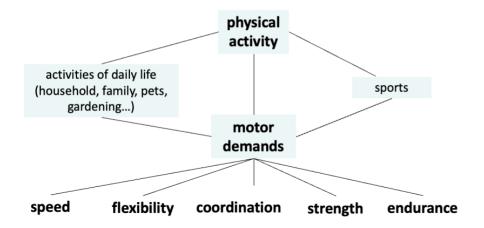
risk reduction by sports/PE: up tp ~45% (Alzheimer's)

Williams et al., 2010, Erickson et al., 2012



Dementias and Sports & Exercise

Which Exercise is (the best) Medicine?


cognition, social interaction, memory, decision making...?

Does training change the brain?

Peter B. Rosenberger, MD; and David A. Rottenberg, MD

cognition, social interaction, memory, decision making...?

does variability make training more effective for the brain?

influence of joy and pleasure?

Mass General Brigham Sports Neurology & Neurosciences it's not a man's world!

Claus Reinsberger, MD PhD

Chief, Division of Sports Neurology and Neurosciences

Mass General Brigham

Email: creinsberger@bwh.harvard.edu

Mass General Brigham

