CIVIL ENGINEER'S HANDBOOK

ASSOCIATION OF ENGINEERS I&CAD DEPARTMENT

DR.K.L.RAO BHAVAN, OPP: MEDINOVA, ERRUM MANZIL, HYDERABAD - 500 082.

CIVIL ENGINEER'S HANDBOOK

First Edition Printed: 1998 Reprinted: 2009 Copies 1000 Reprinted: 2010 Copies 1500

Price Rs. 250/-Printed at :

SKV COLOR STREAM

15-3-137/3, 'Sant Bhavan' Gowliguda, Hyd - 12.

Ph: 24616187, Mobile 96490 10634.

email: skvcolor@yahoo.com

DATA COLLECTED AND PROCESSED BY

ASSOCIATION OF ENGINEERS I & CAD DEPARTMENT

DR.K.L.RAO BHAVAN, OPP: MEDINOVA, ERRUM MANZIL, HYDERABAD - 500 082.

CIVIL ENGINEER'S HAND BOOK 2010

EDITORIAL COMMITTEE

Chairman : Er. P.E. Ch. Vidya Sagar

Chief Engineer, (QC), Kadapa

Vice Chairman : Er. B. Lakshmana Rao

S.E. (Dams), CDO

Members Er. C. Pardha Saradhi

S.E. Nandyal

Er. C. Venugopala Reddy

E.E. Nandyal

Er. A. Sai Baba

E.E, CDO

Er. S. Panduranga Rao

E.E, CDO

Er. K. Jaya Chandra Raju

E.E, CDO

Er. G. Venkata Ratnam

E.E. Walamtari

Er. D.R.K. Appa Rao

E.E. Walamtari

Er. G. Pattabhi Rama Rajau

S.E. Retd.

Er. P.V. Seshu Babu

D.E.E. Nandyal

Er. V. Uma Maheswara Rao

DEE., Gorakallu

Convenor Member :

Er. K.L.N. Sastry

D.E.E., CDO

Data Collected and Published by:

ASSOCIATION OF ENGINEERS IRRIGATION & CAD DEPARTMENT

Dr. K.L. RAO BHAVAN, ERRUM MANZIL, HYDERABAD.

Ravula Residency, Srinagar Colony, Hyderabad - 82, India Tet +91-40-23737633, Fax: +91-40-23736277 email: aarvee@aarvee.net, web: www.aarvee.net

Engineering

Sewerage Systems

. Economic / Financial Analysis

Project Management Services

Corporate/ Group Housing /

 Architectural / Structural Designs . Design of Special Structures with Wind /

Project Management Services

Economic / Financial Analysis

. DA / EMP and E & # Studies

Feasibility Studies
 Detailed Design and Detailed Project

· Quality Control / Third Party Inspection

Project Management / Construction

Residential infrastructure . Surveys and investigations

Seismic Loads

Port Engineering

Supervision

Solid Waste Management

Environmental, Water Supply and Sanitation

· Planning Surveys Investigations and Design of Water Supply, Drainage and

. Quality Control / Third Party Inspection

. PIA / EMP studies, Rejuvenation Studies

Buildings and Urban Planning
Planning of Industrial / Health / Sports /

Water Resources and Irrigation Engineering

- Surveys and investigation
- Engineering Designs of Dams. Barrages. LIR Schemes. Canais, CM/CD Structures
- Hydrotogy Feasibility Studies and Detailed Project Report
- Electrical / Mechanical Engineering
- Agricultural Flanning Modernization / Rehabilitation Studies

- Highway and Bridge Engineering

 Traffic Studies, Analysis and Farecasting
 Feasibility Studies and Detailed Designs
- Project Management/Construction Supervision
 Independent Engineer / Owners Engineer /
 Lenders Engineer Services
 Maintenance Management
 Economic / Financial Analysis

GIS. Remote Sensing & Codostrol Surveys

- Mapping / Digitization
- GIS applications for Infrastructure
- · Remote Sensing Solutions
- · Cadastrol Surveys

Rallway Engineering

- Traffic Surveys and Studies
- · Feasibility Studies

- Detailed Design and Detailed Project Reports
 Detailed Engineering Trocks, Bridges,
 Yards and Tunnets
- Independent Engineer/Owners Engineer / Lenders Engineer Services **Project Management** · Project Management Services

ASSOCIATION OF ENGINEE RS,(I & CAD) DEPARTMENT

(Recognised in G.O Ms. No.2342 HSC Dated: 28-9-1956)

Honorary President:

Er.P.E.CH VIDYA SAGAR

Former Chief Engineer, Quality Control Unit, Kadapa: Ph: 9949359910

B.LAKSHMANA RAO

Joint Secretary, Technical, A.P.Secretariat, Hyderabad Ph. 9177908811

Associate President:

P.GOPALA KRISHNA REDDY

Superintending Engineer, ISRMC Circle, Eluru Ph: 94409 08030

Vice Presidents:

T.B RAVI

Supdt. Engineer, T.S. P.H.L.C. Circle , Ananthapur Ph.: 949061247

C.P RAVI KUMAR

Supdt. Engineer, AVRHNSS Circle, Kurnool Ph: 94409 03321

D.CHANDRA RAO

Supdt, Engineer, Irrigation Circle, Vijayawada Ph: 96420 29999

G. CHITTIBABU

Supdt. Engineer, AVRHNSS Circle No.3, Yemmiganur Ph; 94409 07003

K. MURALI KRISHNA

Supdt. Engineer, ISP Head Works Circle, Dowalaiswaram Ph:94409 08099

General Secretary:

K.L.N SASTRY

Deputy Executive Engineer,o/o CE,CDO, Hyderabad Ph: 94408 15693

Organising Secretaries:

Er. G.S.S.N MURTY

Dy. Director of Administration, o/o ENC, Jalasoudha, Hyderabad

Er. G.S PRASAD

Dy. Superintending Engineer, Construction Circle, Ongole Ph. 94901 65320

Er. D.R.K APPA RAO

Executive Engineer, o/o ISP Project, Dowalaiswaram Ph:94409 08002

Er, Ch.SIVA KUMAR

Dy. Executive Engineer, JRP Division, Bobbill

Legal Secretaries:

Er.K.A SRINIVASA REDDY

Deputy Executive Engineer, D&L Division, TGP, Hyderabad Ph: 94409 04121

Er. U. RAJANNA

Executive Engineer, GRP Division II , Emmiganoor. Ph.: 94409 07047

Er. A.YASODA RAO

Deputy Executive Engineer, PMU Unit, o/o ENC, Hyderabad Ph: 98665 59010

Secretary (Publications)

Er. B. VEDAVYAS

Executive Engineer, NSRSP Project, Gagan Vihar, Hyderabad

With Best Compliments from:

PRASAD & COMPANY (PROJECT WORKS) LIMITED

(Engineers & Contractors)

An Organisation that has proved its competence on every occasion.

Serving the nation since past 47 years in different areas in construction field by setting new records. We are in execution of Pushkara Lift Irrigation Scheme, a new method of execution, by providing EPC for the first time in Andhra Pradesh.

We set new trends.

An ISO 9001 : 2000 Company

Regd. Office: 6-3-871/3, "SNEHALATHA" Green Lands Road, Begumpet, HYDERABAD - 500 016, A.P. Phone: (040) 23414951, 23404952, 55610891 Fax: (040) 23413687, E-mail ID: mail@prasadandcompany.com.

ASSOCIATION OF ENGINEERS I & CAD DEPARTMENT - GOVT, OF A.P.

PREFACE

The Association of Engineers has the credibility of publishing number of Technical books. The necessity of a comprehensive Civil Engineer's hand book was felt by the Association and the first edition was published in the year 1987. Later as there is a demand from the members & Department Engineers for a revised and enlarged edition of Civil Engineer's Hand book, the revised edition of the Hand book was published in the year 1997.

The book was devised and planned to be a practical guide and most valuable reference book consisting of different chapters. The information was collected and compiled by a team of Engineers with specialisation in respective fields from various text books, BIS Codes and manuals. The Hand book got very much appreciation from all the Departments and all the books were sold with in no time. There is a demand from the members and particularly from the budding Engineers for the Hand book.

The Association considering the demand for the Hand Book from all the engineering sections, decided to bring a new edition duly incorporating additional information on lift Schemes, list of IS Codes required for the design of irrigation components like spillway, No F dams, earth dams, L.I. Schemes, CM & CD works and mechanical works. A new chapter on Quality control aspects (dos and don'ts) is added for the benefit of Engineers in field.

We thank all the Engineers for their continuous support and encouragement to the Association in bringing out this edition. The Association specially thank Sri I.S.N. Raju, Chief Engineer, Central Designs Organisation, Hyderabad for the suggestions given in publishing the new edition of this book.

We except the same cooperation and encouragement from all the members for publishing many more books in future relevant to the Department.

> **EXECUTIVE COMMITTEE** ASSOCIATION OF ENGINEERS.

Project Salient Features:

- Concrete Dam involving 2,05,000 m3 of Concrete & 440 MT of Steel
- Length of Concrete Dam: 72 m
- Length of Spillway: 60 m
- Height of Dam: 44.5 m
- Maximum Water Level: 421.00 m
- Full Reservoir Level: 420.00 m
- Spillway Crest Level: 409.00 m
- Irrigation Potential: 24,000 acres
- Reservoir Capacity: 4.64 TMC
- Radial Gates: 5 Nos. 12 m x 11 m
- Drinking water supply to Raychoti town and 18 other villages and Many More

. ENGINEERING - CONSTRUCTION BOT . ENERGY & HIGHWAYS . URBAN INFRASTRUCTURE

(An ISO 9001 : 2000, ISO 14001 : 2004 & OHSAS 18001 : 1999 Certified Company) 6-3-871, SNEHALATHA', 1st Floor, Greenlands Road, Begumpet, Hyderabad - 500 016. A.P. INDIA. Ph : 91-40-23402153, 66512157 Fax : 91-40-23405016.

Over 48 Years of Excellence Presence in 16 States 8 Verticals

M.K. RAHAMAN M.Tech, F.I.E., F.I.G.S. **ENGINEER-IN-CHIEF** ADMINISTRATION 18 CAD Department Errum Manzil, Hyderabad.

I am very happy to know that the Association of Engineers is bringing out a new edition of the Civil Engineer's Hand Book published in the year 1998 with additions. The data and other relevant information as per IS Codes and manuals will certainly give guidance to our Engineers in their regular work.

I wish all the young Engineers joined in the Department recently to have a copy of this Hand Book and take advantage in performing their duties.

I congratulate the Association of Engineers in bringing out this revised edition

With Best Compliments from:

Tel: 040 - 2780 4178

Fax: 040 - 2771 0854 E-mail: gokul93@hotmail.com

GOKUL ENGINEERING SERVICES

Office: 5-1-458/9, 1st Floor, Dacha Complex, Ranigunj, Secunderabad - 500 003.

Works: Plot No. 200/12, Phase II, IDA, Charlapally, Hyderabad.

AUTHORISED DEALERS (SALES & SERVICE)

For "RADICON" Gear Boxes
Manufacturers of Dial Indicators
and Structural Fabricators.

Project Office for Consultancy Pkgs: 8,9,26,27,28,40,41, 97 & Tunnel for I & CAD Dept., Govt. of Andhra Pradesh 7-1-67/1-8, Dharam Karam Road, Ameerpet, Hyderabad – 500 016 Email: gherzi_hyd@yahoo.com Tel: 040-32004926 Fax: 040-23737960

Head Office : Raheja Point I, Wing 'A', Pt. Jawaharlal Nehru Road, Vakola, Santacruz (E), Mumbal 400 055, Tel: 02Z-67021380 Fax: 02Z-26573193 Email : gel@gherzieastem.com, www.cherzieustem.com

Offices in India: New Delhi, Calcutta, Chennai, Bangkore, Pune, Guwahati, Bhubaneswar, Lucknow & Bhuj Office abroad: Switzerland, United Kingdom, Turkey, Peru, Pakistan, Italy, Germany, Chile & Argentina With best compliments from....

PANCHAYATI

CONRACTORS & PROMOTERS

Ground Floor, Block No. 6, Panchavati Complex, Pragati Nagar, Opp. JNTUC, Kukatpally Hyderabad – 500090.

Ph. 040 - 2389 4649 / 2389 4749

With Best Compliments from:

SAI AVANTIKA

ENGINEERS & CONTRACTORS

NELLORE

Executing HNSS Package Works &

SRBC Works of Irrigation Department

with Best Compliments from :

AKR CONSTRUCTION LIMITED

A. Krishna Reddy Managing Director

A. Sashi Kumar Reddy Executive Director

Executing Prestigious Irrigation Projects in the states of Andhra Pradesh and Karnataka

AKR CONSTRUCTION LIMITED

Plot # 8-2-684/J3, 1st Floor, Bhavani Nagar Colony, Kanakadurga Temple Lane, Road No. 12, Banjara Hills, Hyderabad - 500 034. Phone: 040-23301747, 23303747 Fax: 040-23374747

CIVIL ENGINEER'S HAND BOOK APRIL 2010

CONTENTS

S.No.		Page No.
1.	Plain & Reinforced Concrete	1-1 to 1-164
2.	Soil Mechanics	2-1 to 2-79
3.	Irrigation	3-1- to 3-62
4.	Hydrology	4-1 to 4-23
5.	Design of Channels	5-1 to 5-46
6.	Lift Irrigation Schemes	6-1 to 6-32
7.	Surveying Total Station & Highways	7-1 to 7-18
8.	General	8-1 to 8-53
9.	Quality Control	9-1 to 9-26

CHAPTER - 1 PLAIN AND REINFORCED CEMENT CONCRETE

CONTENTS

SECTION	I - I: PALIN CEMENT CONCRETE	P.No.
1,1,1.0	Types of Cements	1-1
1.1.1.1	Ordinary Portland Cement	1-1
1.1.1.2	Rapid Hardening Cement	1-1
1.1.1.3	Low Heat Portland Cement	1-1
1.1.1.4	Portland Pozzolona Cement	1-2
1.1.2.0	Storing Cement	1-2
1.1.3.0	Aggregates	1-5
1.1.3.1	Classification of Aggregates	1-6
1.1.3.2	Particle Shape	1-6
1.1.3.3	Grading	1-7
1.1.3.4	Field Test for Contamination of Cement	1-7
1.1.3.5	Field Test for Sand	1-7
1.1.3.6	Max Permissible Limits for Solids in Water Used in concreting	1-9
1.1.3.7	Quality of Water Used in Concreting	1-9
1.1.3.8	Admixtures	1-10
1.1.4.6	Examples of Concrete Mix Design	1-15
1.1.5.1	Factors Affecting Permeability	1-24
1.1.6.0	Curing Concrete	1-25
1.1.7.0	Forms Stripping Time of Forms	1-25
SECTION	- II: REINFORCED CEMENT CONCRETE	
1.2.0.0	Symbols Impact and grid only said way per	1-28
1.2.0.1	General Design Requirement	1-30
1.2.0.2	Stability of the Structure	1-30
1.2.0.3	Effective Span	1-30
1.2.0.4	BM and SF Coefficients for continuous beams and slabs	1-31

	2			27	17 012 10
1.2.0.5	Effective depth and widths of beam (or slabs)	1-35	1.3.10 to	Square footing for different bearing capacities of soil	1-85
	Deflections - Span / Depth ratio	1-35	1.3.13	the testing with different capacities	1-92
1.2.0.6 1.2.1.0	Slabs Carrying Concentrated Loads	1-40	1.3.14	Recommended sizes of circular tanks with different capacities	f 1-93
	Development length of bars	1-42	1.3.15	Structural details of circular reinforced concrete water tanks of	
1.2.2.0	Lan length including anchorage value of hooks	1-42	(Massey-	different capacities	1-94
1.2.3.0	permissible loads in compression members	1-44	1.3.16	Recommended sizes of square water tanks with different	1.04
1.2.4.0	Description of reinforcement of structural members	1-45	180000000000000000000000000000000000000	capacities	1-95
1.2.5.0	Members subject to combined axial load and bending	1-46	1.3.17	Structural details of square reinforced concrete water tanks	1-33
1.2.5.1	(Due to eccentiality of Load, Lateral forms etc.)	- 50 1	14.663.00	of different capacities	1-96
4050	Detailing rules for Slabs, Beams and Columns	1-46	1.3.18	Estimated quantities of Accoproof requirement for 100 sqm	1-30
1.2.5.2	Court to reinforcement	1-51	The latest	CM for various thickness	1.07
1.2.5.3	Curtailment of tension reinforcement in flexure members	1-51	1.3.19	Structural details of reinforced concrete roofs for circural	1-97
1.2.5.4	Shear (torsion) Force	1-52	Man No.1+C	water tanks	1-97
1.2.5.5	Shear and Torsion	1-56	1.3.20	Structural details of reinforced concrete roofs for square	1-97
1.2.5.6	Design constants for critical sections	1-58		water tanks	1-101
1.2.6.0	Water retaining structures - General rules	1-59	1.3.21	M-15 mix M.R.factors - Working Stress Method - Unbalanced	1-101
1.2.7.1	General Requirements	1-60	0 103537	sections	1-103
1.2.7.2		1-60	1.3.22	M-20 mix M-20 mixdo	
1.2.7.3	Design	1-61	1.3.23	M-15 mix M.R.factors Doubly Reinforced Sections Working	1-106
1.2.7.4	Basis of Design Permissible stresses in Concrete	1-61	112/12	stress method σ_{st} = 1400 kg/sqcm	4 400
1.2.7.5	Permissible stresses in Steel	1-62	1.3.24	M-20 mixdo	1-108
1.2.7.6	Permissible stresses in Steel		1.3.25	M-15 mix Percentage of Steel requried in Doubly Reinforced	1-110
2012	W PERION TARI ES		no.	beams (Working Stress Method σ _{st} = 2300 kg/sqcm	
SECTION	I - III : DESIGN TABLES		1.3.26	M-20 mixdo	1-112
	Imposed Floor for Different Occupancies (Table)	1-64	1.3.27	Values of V_/d for 2 legged stirrups	1-114
1.3.1	Stair case landing over flight and landing different	1-72	1.3.28	Shear - Bentup Bars	1-116
1.3.2	Stair case landing over hight and landing chronic		1.3.29	Development length of plain bars	1-117
	spans and class of loading (Table)	1-81	1.3.30	Development length of deformed bars	1-118
1.3.3	Minimum depth of Slabs for deflection	1-81	1,3,30A	Anchorage Values of Hooks and Bends	1-119
1.3.4	Rectangular beams with only tension reinforcement	1-82	1,0,00,1		
1.3.5	One Way Slabs (Working Stress Design)	1-82	LIMIT ST	TATE DESIGN	27344
1.3.6	T-Beams with tension reinforcement	1-84	1.3.31	Reinforcement percentage p for singly reinforced section	1-132
1.3.7	Shear Carrying capacity for 2 legged vertical stirrups	20 J. V.	1.3.32	Limiting M.R.factor M /b. d2 f., for singly reinforced 1-beams	1-134
	(Working Stress Method)	1-84	1.3.33	Painforcement % for Doubly reinforced sectors	1-136
1.3.8	Rectangular Columns (Working Stress Design)	1-85	1.3.34	Min.Shear reinforcement (stirrups) in beams for different widt	ths1-138
1.3.9	Load Carrying capacity of longitudinal Steel Columns (Working Stress Design)	, 55	1.0.07		

1.3.35	Ultimate shear resistance of minimum vertical stirrups for different widths and depths of rectangular beams M-15 mix	1-138
1.3.36	Design for shear	1-139
1.3.37	Shear - Vertical Stirrups	1-140
1.3.38to	M.R.Slabs per meter width	1-141
1.3.49		
1.3.50	Fixed end moments for prismatic beams	1-149
1.3.51	Deflection formula for prismatic beams	1-150
CHARTS	to the state of th	
Chart1 to	Compression with Bending Rectangular Sections	1-151 to
Chart 8	CAN be made the formation of the control of the con	1-158
Chart 9 to	Compression with Bending Circular Sections	1-159 to
Chart 12	Stopping details of white-end constraints and Aller and	1-162
Chart 13	Values of Puz for Compression Members	1-163
Chart 14	Biaxial bending in Compression Members	1-164
Chart 15	Compression with Bending Circular Section	1-165

SECTION I PLAIN CEMENT CONCRETE

Concrete is one of the few building material that is manufactured at the site of construction. It is the Resident Engineer who is the sole manufacturer responsible for turning out the best quality concrete and realise its inherent worth as a field made product.

Types of Cement

1.1.1.0 The cement that is most familiar to builders and civil engineers is ordinary portland cement. Special cements are used for special purposes. The properties of certain types of cement are briefly described below:

Ordinary Portland Cement (33 Grade conforming to IS 269)

(43 Grade conforming to IS 8112) (53 Grade conforming to IS 12269)

1.1.1.1 This cement is the basic Portland cement and is commonly manufactured in far larger quantities. It is admirably suited for use in general concrete construction when there is no exposure to Sulphates in the soil or in ground water.

Rapid hardening Portland cement (IS 8041/1990)

1.1.1.2 This cement is similar to ordinary portland cement but an adjustment of its chemical composition to give a higher content of tricalcium silicate (C,S), and a finer grinding, enable it to attain greater strengths at early ages; that is why it is known as high early strength cement in America. The 7 - day strength of portland cement with the same water - cement ratio is attained by 3 days using this cement.

Low heat Portland cement (IS-12600/1989)

1.1.1.3 When a member is being concreted an increase in temperature occurs due to the chemical reaction which takes place while cement is setting and hardening. In ordinary concrete construction this evolution of heat is of little consequence, but in concrete dams and other massive structures such as bridge abutments, piers, and retaining walls, it is of considerable importance.

One of the ways to prevent this build-up of heat in structures and its consequential shrinkage/cracking, is to use low heat portland cement, the chemical composition of which is so designed as to obtain reduced heat evolution. Its rate of development in strength is about one-

Portland - Pozzolana Cement (IS - 1489 / Part 2)

1.1.1.4 This cement is manufactured either by intergrinding portland cement clinker an pozzolana or by intimately and uniformly blending Portland cement and fine pozzolana. IS coo specifies that the latter method should be confined to places where intimate blending can be

The following table compares the strength at different ages of Portland -pozzolana cement and portland cement manufactured by certain factories.

Age în days	Compressive stre	ngth kg/cm2
	Portland pozzolana cément	Ordinary portland cement
7 28	200-220 260-330 370-480	190-230 270-320 360-520

Although IS: 1489/1967 does not specify a minimum, compressive strength at three days, certain factories like ACC ensure that its Portland-pozzolana cement meets the minimum IS requirement for ordinary portland cement (The Indian Concrete Journal - November 1974).

Storing Cement

1.1.2.0 Modern cement is a very finely ground material and as such it is highly hygroscopic. that is to say, it readily absorbs moisture not only in the form of free water but also moisture from the air. It is therefore necessary to protect it from dampness during storage before it is used.

Every year and particularly in the monsoon, large quantities of cement get spoiled due to negligence in keeping the cement bags absolutely dry. The following points on the correct storage of Portland cement will therefore merit careful consideration.

The first requirement is that the bags should be stored in a building or a shed which is completely weather proof and dry. The following points are important;

- The walls should be waterproof masonry construction
- The roof should be leakproof preferably of re inforced concrete construction oversaid with a water proofing course.
- The windows should be few and small and kept tightly shut; this is to prevent moisture from the outside atmosphere entering the building.
- The best floor is 150 mm thick concrete slab laid on a dry course of soling and is 1.2 m above ground level. The ground should be drained away from the building to prevent accumulation of rain fall in its vicinity; this precution will ensure that the floor will be absolutely
- v) The plinth should be fairly high so that a truck can back conveniently to the door and the chassis and building floors are nearly at the same level, thus making loading and unloading of bags very easy.

Having made sure of good weather proof building, certain precautions indicated below must then be observed in storing the bags with a view to prevent them from any possible contact with moisture and to ensure systematic working of the warehouse.

- If the warehouse is to be nearly put into service, make sure that sufficient time has elapsed to allow the interior to dry thoroughly.
- Do not pile bags against the wall. A space of 300 mm all round should be left between the exterior walls and the piles.
- Similarly, bags should be piled off the floor on wooden planks. If however, the floor is a well constructed dry concrete floor, the bags can be placed directly on it.
- Place bags close together in the pile to reduce any circulation of damp air as ix) much as possible.

- Plain & Reinforced Cement Concre Do not pile bags more than about 15 'high, otherwise it becomes cumberson to stack or remove them. The maximum width of pile should also be not more than about 3 n
- If the pile is to be more than 7 or 8 bags high, arrange the bags in header and stretcher fashion, that is, alternatively lengthwise and cross wise so as to tie the piles together and lessen the danger of toppling over.
- For extra safety during the monsoon, or during long periods of storage, enclose the pile completely in 700 gauge polythene sheet. This can be conveniently done by making a large loose sack of the material and arranging the bags within it. The flaps will close on the top of the pile. Take care to see that the polythene is not damaged anytime during use.
- xiii) Owing to the pressure on the lower layer of bags, a phenomenon known as "warehouse pack" sometimes develops in the bags. This can be removed by rolling the bags when the cement is taken out for use. Do not, on account of warehouse pack, move and restack the bags. There is no advantage in doing so.
- When removing bags from storage some bags should be removed from two or three tiers back rather than all from one tier. If the piles are thus stepped back, there is less
- When removing bags for use apply the "first in, first out" rule, that is take the oldest cement, out first. For this purpose, each consignment as it comes in should be stacked separately and a placard bearing the date of arrival should be pinned into the pile. The longer it is stored, the greater is its deterioration besides chances of absorption of moisture and cement

TABLE - 1.1

TABLE - 1.2

	in strength of variation and with stored
Period of storage cement	Minimum expected reductions in strength at 28 days (%)
Bereit Hill	
Fresh	0
Fresh 3 months	20
3 months	20

Test	1:5 concrete made with cement store in bags unde normal cond for 6 months	r % itions
7 days	73	100
28 days	75	100
06 mon	ths 84	100

Note: The above values are approximate.

If cement is likely to have deteriorated during storage, it should br sent to a laboratory for test.

AGGREGATES

- 1.1.3.0 "Aggregates" is a general term applied to those inert (that is, chemically in active) materials which, when bonded together -by cement, form concrete.
 - Natural aggregates :- Sand, crushed rock and gravel.
 - ii) Artificial (processed) aggregates :- Broken brick or crushed air-cooled blast-furnace
 - iii) Light Weight aggregates :- Pumice, furnace clinker, coke breeze, sawdust, foamed slag. expanded clays and shales, expanded slates, expanded vermiculite etc.

Classification of Aggregates

1.1.3.1 Aggregates are commonly classified into two categories, fine and coarse, the dividing line being the 4.75 mm IS sieve. Material which is mainly retained on this sieve is classed as "Coarse aggregate", whereas material mainly passing it is classed as "fine aggregate". For large and important works it has become usual to separeate the coarse aggregate also into two or more sizes, and these fractions are kept separete until the proper quantity of each has been weighed.

"All-in-aggregate", that is to say, aggregate as it comes from the pit or river bed, is

Quality of aggregates

Natural aggregate used for concrete construction is required to comply with the norms failed down in IS: 383-1970, "Specification for coarse and the fine aggregate from natural source for concrete". It should be chemically inert, strong, hard, durable, of limited porosity, free from adherent coatings, clay lumps, coal and coal residues, and should contain no organic or other that may cause corrosion of the reinforcement or impair the strength or durability of the concrete. The limits of the content of deleterious materials in aggregate are indicated in

Particle shape

1.1.3.2 The particle shape of an aggregate is generally classified as rounded, irrregular, angular, or flaky. Experience indicates that angular aggregates do not produce as smooth and workable a mixture as materials having more rounded and smoother particles, the grading and other conditions being similar. The sharp angular fragments of crushed rock require more sand and with consequent decrease in mortar requirement.

Any excess of thin, flat, elongated, flaky, or splintering particles in aggregate is objectionable as it materially decreases the workability for a given water-cement ratio, and necessitates more highly sanded mixes and consequent use of more cement and water.

Grading

1.1.3.3 Almost as important as the quality of the aggregate is its gradation that is to say, its particle size distribution as determined by sieve analysis. The following Indian Standard test sieves are generally required for grading aggregates:

Fine mesh wire cloth 3-35mm, 2.36mm, 1.18mm, 600 micron, 300 micron, 75 micron.

Square hole perforated plate 80 mm, 63 mm, 50 mm, 40 mm, 31.5 mm, 25 mm, 20 mm, 16 mm, 12.5 mm, 10 mm, 6.3 mm, 4.75 mm.

FIELD TEST FOR CONTAMINATION OF CEMENT (Based on Hand Book)

1.1.3.4 Out of the two simple field tests given below, any one can be performed to determine, if the cement has been contaminated.

In the first test a sample of cement is burnt for about 20 minutes on a steel plate. An adulterated sample will change in colour. The colour of an unadulterated sample will, on the other hand, remain unchanged.

In the second test: small pats of 5 x 5 x 2 cm size should be made. If the cement is unadulterated, the pat will have hardened sufficiently in 24 hours to resist any impression of the thumb nail. In 48 hours it should not be easy to break it with the pressure of the fingers.

If the cement fails to pass these tests, it should be sent to a laboratory to determine the extent to which its properties have been affected.

FIELD TEST FOR SAND (IS 1542-1960)

- 1.1.3.5 To check the suitability of sand for being used in mortar or concerete it may be put to the following tests in the feild:
 - Taste of sand shall provided check for the presence of salts.
- ii) Rub a little sand between the fingers, stains left on fingers will indicate the presence of clay impurities.

iv) Stir a sample of sand in a 3% solution of caustic soda and keep the bottle corked for 24 hour. If the colour of the liquid turns brown, then the presence of organic matter is indicated.

TABLE - 1.3
Limits of the content of deleterious materials in aggregate (IS: 383-1970)

Deleterious	Fine Aggreg	gate	Coarse Ag	Coarse Aggregate	
substance _	Uncrushed Crushed		Uncrushed	Crushed	
Coal and ignite	1.00	1.00	1.00	1.00	
Clay lumps	1.00	1.00	1.00	1.00	
Soft fragments	*	at the publishers of the	3.00	l)Wal	
Deleterious substance	Fine Aggregate		Coarse Aggregate		
substance	Uncrushed	Crushed	Uncrushed	Crushed	
Material finer than		TENTENT PROPERTY OF	A STATE OF THE PARTY OF THE PAR		
75 μ -IS Sieve	3.00	15.00	3.00	3.00	
Shale	1.00	estimo biline	1111251001111		
Total of percentages of all deleterious					
materials	+ 5.00	2.00	5.00	5.00	
Percentage by weight	of aggregate		+ Mica is	excluded	

1.1.3.6 Maximum permissible limits for solids in water used for concreting :-

realition permission in	TITLE TOT DOTTED IN THEFT
Organic	200 mg/litre
Inorganic	3000 mg/litre
Sulphates (as SO ₄)	500 mg/litre

Chlorides (as Cl) 2000 mg/litre for plain concrete Chlorides 1000 mg/litre for RCC work Suspended matter 2000 mg/litre

1.1.3.7 Quality of water used in concreting :-

- Under unavoidable circumstances sea water may be used for mixing in plain or R.C concrete which are premanently under sea water.
- 2. Potable water with pH. value not less than 6 & at other situations 6-.9.

3. Presence of tannic acid or iron compounds is objectionable. (Initial setting time 30 minutes for a test block.)

ADMIXTURES

1.1.3.8 Classification of Admixtures :-

14

Admixtures are :-

- 1. Air-entraining agents 2. Retarders 4. Waterproofers
 - Pozzolanas
- Accelerators 6. Pigments and

7. Workability agents

TABLE - 1.4

CONCRETE ADMIXTURES AND THEIR PROPERTIES, CLASSIFICATION OF ADMIXTURES

Classification of concrete admixtures based on their purpose and chemical constituents is tabulated below;

Type of admixt	Materials	
Air Entrainer		Desired effect
andanier	Salts of wood resins, some synthetic detergents, salts of sulphonated lignins, salts of petroleum acids, salts of protein acids and their salts, Organic salts of sulphonated hydrocarbons.	Increase durability if the water cement ratio is reduced.
Shrinkage compensator	Calcium sulphate plus calcium sulpho aluminate, finely divided iron plus oxidizing agent.	Cause expansion of setting.
Gas former	Aluminium powder	
Water reducer	Lignosulphonates and their derivatives salts of hydroxylated carboxylic acids and their derivatives.	Increase strength and workability.

oet-	Sulphonated melamine formaldehyde condesate, Naphthalene sulphonated formal-dehyde condenstate, Modified lignosulphonate.	Increase strenthg and Work ability.
Accelerator	Calcium chloride, other solube chlorides Carbonates, Silicates, Alkali hydroxides, Triethanolamine:	Increase early strenght and accelerate set.
Retarder	Lignin, Borax sugars, Tartaric acid and Salts.	Retardation of set.
Air detrainer	Tributyl phosphate	To dissipate excess air other than gas.
Flocculating agent	Synthetic polyelectrolytes Pastes and mortars	to reduce the flow of mortar and to increase cohesion
Pumping aids	Polythene oxide, Cellulose derivatives, Alginates	Improves the handling of concrete
Pozzolanas	Flyash, Volcanic alass, Diatomite, some clays and shales	To reduce heat of liberation on hydration of economy.
Foaming agents	Sodium laury sulphate, Alkylaryl sulphonate.	For making light weight concrete
Water proofing petroleum products.	Some soaps Butyl stearate, Some water through concrete.	To prevent passage of agents
Bonding agents	Organic polymer emulsions.	To increase bond strenght Between old and new concrete.

TABLE - 1.5

PROPORTIONS FOR NORMAL MIX CONCRETE(By weights)

Grade of concrete	Dry aggregate by weights/ 50 kg (Bag) of cement.(Fine + coarse aggregate in Kgs.)	Maximum water con- tent in litres 50 kg.(Bag) of cement	Remarks
M5 (1:5:10)	800 Proportions of fine	60	When machine mixing is
M7.5(1:4:8)	625 and coarse aggregates	45	employed, mixing time
M10(1:3:6)	480 (1:2) for 20 mm(By mass)	34	may be 1 1/2 to 2 to get
M15(1:2:4)	350 (1.1 1/2) for 10 mm	32	uniform consistency and
M20(1:1 1/2:3) M25(1:1:2)} M30 } M35 }	250 (1:2 1/2) for 40 mm and coarse aggregates To be worked out	30	colour.

SIZE OF AGGREGATE: For heavily reinforced concrete Members, the aggregate should usually be restricted to 5 mm less than the minimum clear distance between the main bars OR 5 mm less than the minimum cover to the reinforcement whicever is smaller.

TABLE 1.6

Minimum Cement Content, Maximum Water-Cement Ratio and Minimum Grade of Concrete for Different Exposures with Normal Weight Aggregates of 20 mm Nominal Maximum Size (Clauses 6.1.2, 8.2.4.1 and 9.1.2)

SI.	Exposure	re Plain Concrete			Reinforced Concrete		
No.		Cement Free	Maximum Free Water- Cement Ratio	Free Water- Grade of	Minimum Cement Content Kg/m³	Maximum Free Water- Cement Ratio	Minimum Grade of Concrete
1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
0	Mild	220	0.60	HILLIAN NO	300	0.55	M 20
ii)	Moderate	240	0.60	M 15	300	0.50	M 25
III)	Severe	250	0.50	M 20	320	0.45	M 30
iv)	Very severe	260	0.45	M 20	340	0.45	M 35
v)	Extreme NOTES	280	0.40	M 25	360	0.40	M 40

- Cement content prescribed in this table is irrespective of the grades of cement and it is inclusive of additions mentioned in 5.2. The additions such as fly ash or ground granulatee blast furnace slag may be taken into account in the concente composition with respect to the cement content and water-cement ratio if the suitability is established and as long as the maximum amounts taken into account do not exceed the limit of pozzolosa and slag specified in IS 1489 (Part 1) and IS 455 respectively.
- 2. Minimum grade for plain concrete under mild exposure condition is not specified.

Plain & Reinforced Cement Concrete

Corrosion Sodii inhibitors -sulpi

Sodium benzoate Calcium Ligno -sulphate, Sodium nitrate.

Corrosion protection of reinforcing steel.

Fungicide and germicigermicides properties

Copper compounds, Dieldrin emulsion, polyhal ogonated Phenels.

To impart fungicidal, dal or insecticidal to cement concrete.

pigments

colour pigment

NOTE: It is understood that the effectiveness is of temporary natrue.

Grey - Black: Carbon black, mineral black,

 Colour fastness when exposed to light.

Balck iron oxide.

Chemical stability in presence of alkalinity produced in set cement.

Blue : Ultramarine blue phthalocyaniae blue

Red : Red iron oxide

Brown: Brown iron oxide, Raw or burnt Umber.

Cream: Yellow iron oxide.

Buff :

Green: Chromium oxide phthalocyanine green

White: Titanium oxide,

Minimum

cement

content

310

Exposure

Note: 1.

Severe - For example,

to sea water, alternative

wetting and drying and to freezing whilst wet subject to heavy condensation or corrosive furnes. (Marine structures)

Maximum

Fatio

5

0.45

water cement

Minimum

cement

content

	D. D	
IΑ	BLL	1 - 8

PROPORTIONS OF SAND & AGGREGATES WITH FINNESS MODULES "ORDINARY CONCRETE"

Max. size of Aggregate	Fine Sand (F M 2.2 - 2.6)	Medium Sand (F M 2.6 - 2.9)	Coarse Sand (F M 2.9 - 3.6)
15 mm	30 - 35 %	35 - 40 %	40 - 45 %
20 mm	25 - 30 %	30 - 35 %	35 - 40 %
30 mm	25 - 30 %	30 - 35 %	34 - 40 %
40 mm	25 - 30 %	25 - 30 %	30 - 35 %
50 mm	20 - 25 %	25 - 30 %	25 - 30 %

60

50

40

30

20

T

STRENGTU

CUBE

1.1.4.1. Illustrative Example on concrete MIX DESIGN (ISI Method)

An example illustrating the mix design for a concrete of M20 grade is given below

Design Stipulations

e) Type of exposure

t	Characteristic compressive strength required in the field at 28 days.	20 N /mm ² (200 kg/cm ²)
	b) Maximum size of aggregates	20 mm (angular)
	e) Degree of workability	0.90 compacting factor
	d) Degree of equal control	Good

Mild

FIG.1.2 WATER/CEMENT RATIO BY UF TYPICAL RELATION BETWEEN COBE STRENGTH AND WATER CHIENT RATIO

When the maximum water-cement ratio can be strictly controlled, the cement content in the above table may be reduced by 1 3%.
in the above table may be reduced by 10%.
The minimum cement content id based 22

Note: 2. he minimum cement content id based on 20mm aggregate. For 40mm aggregate, 1,1.4.0. Examples of concrete MIX DESIGN it should be reduced by 10%; For 12.5 mm aggregate, it should be increased by about 10%. Note: 3.

Plain Concrete

Ratio

3

0.5

Maximum

water cement

Concrete of grades lower than those given in the table may be used for plain concrete constructions, lean concrete, simple foundations for mesonry walls.

Where the concrete is exposed to sulphate attack (as SO₃ ...lih 0.2 to 1% in soil or as 30 to 250 ppm in ground water). The cement content may vary between 180 to 330 kg/m³ with water cement ratio being about 0.5 with a pH value 6 to 9 i.e., near neutral conditions. Super sulphated cement with w/c ratio of 0.4 is for mineral acids down the pH 3.5 or use portland stag cement (slag above 50%). Ordinary portland cement shall not be used in acid conditions with pH value

TABLE 1-7 MIX PROPORTIONS AND AGGREGATES FOR "O

Grade of Concrete	Corresponding Nominal Mix	Sand + Coarse aggregate per	"water per bag of cement	Approximate
M-7.5	1:4:8	bag of cement (50 Kg by volume)	tion per M3 of	cement consump
M-10 M-15 M-20 M-25	1:3:6 1:2:4 1:1 1/2:3 1:1:2	500 L 300 L 220 L 160 L 100 L L = LITRES (1000 C	36 L 34 L 32 L 30 L 27 L	3 1/4 BAGS/M, 4 1/4 BAGS/M, 6 1/2 BAGS/M, 8 1/2 BAGS/M, 11 BAGS/M,

The quantity of water indicated above is for dry condition of sand and coarse aggregates.

Test data for materials	Plain & Reinforced Cemen		
a) Cement used-ordinary	I I I TOUR OF THE STATE OF THE	ed Cemen	
b) Specific gravity of cement	ent conforming to IS - 269/19	76	
c) Specific gravity	3.15	70	
) Corase aggregate			
2) Fine aggregate	2.60		
d) Water absorption	2.60		
1)Coarse aggregate			
2) rine appreciate	0.50 %		
e) Free (surface) moisture	1.00 %		
1) Coarse appregate			
moisture also NIL)	Nil (absorbed		
4) Fine aggragate	New 2017		
f) Sieve Analysis	2.00 %		

1) Coarse aggregate

IS siev		Analysis of aggregate fra	Coarse action	% i	of different	Remarks
20 10 4.75 2.3	100 0	11 100 71.20 9.40 0	0 0 0 0		Passing) COMBINED 100 28.5 3.7 0	Contorming to IS 383 - 1970 (See table 1.15)

2011		
IS sieve sizes mm	Fine aggregate (% of passing)	Remarks
4.75 mm	100	Company of the same same
2.36 mm		Conforming to grading zone III of IS: 383 - 1970
1.18 mm	100	(See table 1.15)
600 microns	93	
300 microns	60	
150 microns	12	

Target Strength For Mix Design :

in order that not more then the specified portion of test results are likely to fall below the characterstic strength, the concrete mix has to be designed for a some what higher target average compressive strength (f.). The margin over the characteristic strength depends upon the quality of concrete (expressed by standard deviation) and the accepted proportion of results of strength tests below the characteristic strength ((fa), given by the relations.

 $f_{st} = f_{st} + t \cdot s$

f = target average compressive strength at 28days in N/mm2 where (kg/cm²)

f = Characterisitic compressive strength at 28 days

S = Standard deviation

t = a statistical constant given in table 1.9

Calculation of Aggregate Content :- With the quantities of aggregates and cement/ unit volume of concrete and the ratio of fine to total aggregate already determined, the total aggregate content/unit volume of concrete may be calculated from the following equations:

$$V = \{W+C/S_c + (1/P_c) (fa/S_{fa}) \times 1/1000, \text{ and} \dots 2\}$$

 $V = \{W+C/S_c + (1/I-P_c) (Ca/S_{fa}) \times 1/1000 \dots 3\}$

Where V = Absolute volume of fresh concrete, which is equal to gross volume (m3) minus the volume of entrapped air,

W = mass of water in Kg/m3 of concrete,

C = mass of cement in Kg/m3 of concrete

S = Sp.gr of cement

P = ratio of fine aggregate ot total aggregate by absolute volume

fa, ca = Total masses of fine aggregate and coarse aggregate in Kg/m3 of concrete.

S₆,S₇ = sp.gr. of saturated surface dry fine and coarse aggregates, respectively.

No 1 Target mean strength of concrete :-

For a tolerance factor of 1.65 and using table 1-9 and 1-10, the target near strength for the specified characteristic strength is

No 2 Selection of water-cement ratio :-

From Fig 1.1, the free water cement ratio required for the target mean strength of 27.6 N/m is 0.50. This is lower than the maximum value of 0.65 prescribed for "Mild" exposure in table 1-6, a

No 3 Selection of water - and Sand content:

From Table 1-16, for 20 mm nominal maximum size aggregate and sand conforming to gn zone il, and sand conforming to grading zonell, water content/m3 of concrete - 186 Kg and content 89% of total aggregate by absolute volume 35%,

For change in values in W/C ratio, compacting factor and sand belonging to zone III, the follow

Change in condition (From table 1.1.3)		Adjustment required in water content and sand in total aggregate %	
For decrease in W/C ratio by (0.65-0.50)that is 0.15		0	- 3.0
For increase in compacting factor (0.9-0.8)that is 0.1		+3	0
For sand conforming to zone III of Table 1.1.2	-	0	- 1,5
Total			
Mark Construction Control (Notice Control Cont		+3%	- 4 5%

Therefore, required sand content as % of total agregate by absolute volume = 35-4.5 = 30.5%.

Required water content =
$$186 + \underline{186 \times 3}$$
 = $186 + 5.58186$
termination of Cement Content = $\approx 191.6 \text{ H/m}^3$

No.4 Determination of Cement Content

Water cement ratio		
Water		0.50
Cement	80	191.6 Litre
Centra	.00	$191.6 = 383 \text{ Kg/m}^3$
		0.5

This cement content is adequate for mild exposure condition according to Table 1.6 (i.e. it is more than 200 Kg/m3) and Table (1.1.1) 310 Kg/m3).

Determination of coarse and fine aggregate content Step No.5

From Table 1-13, for the specified maximum size of aggregate of 20 mm, the amount of entrapped air in the wet concrete is 2%. Taking this into account and applying equations (2) and (3)

$$\begin{array}{lll} \text{(1-0.02)} & = & \text{(191.6+383/3.15+1/0.305x Fa/2.60)x1/1000} \\ \textbf{f}_{a} & = & \text{529 kg/m}^{3} \\ \text{and (1-0.02)} & = & \text{(191.6+383/3.15+1/0.695xCa/2.60)x1/1000} \\ \text{ca} & = & \text{1205 Kg/m}^{3} \end{array}$$

The MIX proportion then becomes

NAME OF STREET	Cement	Fa	Ca
Water	383 kgs	529 kg	1205 kg
191.6 Ltrs	1	1.381	3.146
0.50			

Step No 6 Actual quantities required for the max, per bag of Cement:

The MIX is 0.50: 1: 1.381: 3.146 (by mass). For 50 kg, of cement, the quantity of materials are worked out as below:

- n) Cement = 50kg
- b) Sand = 69 kg
- e) Coarse aggregate = 157 Kg (fraction 1 (60 %) = 94.2 kgs

(fraction II (40 %) = 62.8 kgs

d) Water

- 1. For W/C ratio of 0.50 quantity of water = 25 litres.
- 2. Extra quantity of water to be added for absorption incase of coarse aggregate at 0.5% by = (+) 0.77mass
- 3. Quantity of water to be deducted for =(-1.42)

free moisture present in sand at 2% by mass

- = 25+0.77- 1.42 = 24.35 litres. 4. Actual quantity of water to be added
- e) Actual quantity of sand required after =69+1.42allowing for mass of free moisture = 70.42 kgs.

f) Actual quantity of coarse aggrigate required .

- = 94 0.47=93.73 kgs 1. Fraction 1 = 94.2-0.5/100 x 94.2
- = 62.8-0.5/100 x 62.8 = 62.8-0.31 = 62.49 kgs. 2. Fraction 11

Therefore, the actual quantities of different constitutants required for the Mix are :-

Water = 24.35 kgs litres. 2. Cement = 50 kgs 3. Sand = 70.42 kgs.

= Fraction (1) = 93.73 kgs = Fraction (2) = 62.49 kgs Coarse aggregate

This completes the design of the concrete mix M 20

TABLE 1.9 VALUES OF

Accepted proportion of test results	
1 in S	t
I in 10	
l in 10 l in 15	0.84
l in 20	1.28
l in 40	1.50
1 in 100	1.65
IS: 10262 - 1982)	1.86
	2.33

TABLE 1.10

Assumed Standard Deviation

(Clause 9242 and Tit

Grade of	(Clause 9.2.4.2 and Table 11) Assumed Standard Deviation
M 10 7	N/mm²
M 15 🗦	3.5
M 20 M 25 }	4.0
M 30 M 35	
M 40 M 45 M 50	5.0
NOTE :- The at	

NOTE: The above values correspond to the site control having proper storage of cement; weigh batching of all materials; controlled addition of water, regular checking of all materials, aggregate gradings and moisture content; and periodical checking of workability and strength. Where there is deviation from the above the values given in the above table shall be increased

TABLE 1.11

APPROXIMATE CEMENT AND SAND CONTENTS PER M' OF CONCRETE UPTO MASS MIX. M35

Nominal max. size of aggregate (mm)	Cement per M ³ concrete in kgs.	Water content per M ³ of concrete in kgs.	Sand as percent of total aggregate by absolute volume
10	347	208	40
20	310	186	35
40	245	165	30

Table 1.11 is to be used for concretes grade upto M, and is based on the following conditions:-

- a) Crushed (Angular) coarse, conforming to IS 383 1970.
- b) Fine aggregate, consisting of natural sand conforming to grading zone II of Table 1.15
- c) W/C ratio of 0.6 (by mass) and
- d) Workability corresponding to compacting factor of 0.80

TABLE 1.12

A PPROXIMATE CEMENT AND SAND CONTENTS/M3 OF CONCRETE ABOVE M35 (IS: 10262 - 1982)

Nominal max. size of aggregates mm	Cement/m³ of concrete kg	water content/m³ of concrete kg	Sand as % 0f total aggregate by absolute volume
10	571	200	28
20	514	180	25

Table 1-12 is to be used for concretes of grade above M,, and is based on the following conditions

- a) crushed (angular) coarse aggregate, conforming to IS 383 1970.
- b) Fine aggregate consisting of natural sand conforming to grading Z one 11 of table 1.15.
- c) W/C ratio of 0.35 (By mass), and
- d) workability corresponding to compacting factor of 0.80

For other conditions of workability, W/C ratio, grading of fine aggregate, and for rounded aggregates, certain adjustments in the quantity of mixing water and fine to total aggregates, certain adjustments in the quantity of mixing water and fine to total aggregates ratrio is given in Table 1.10 and 1.11 and are to be made, according to Table 1.12

TABLE 1-13 Adjustment of values in water content and sand % for other conditions.

Change in conditions stipulated for table 1-11 and 1-12	Water content	Adjustment required in % sand in total aggregate
For sand conforming to grading zone 1, zone 111 or zone 1V, of	0	+ 1.5 % for zone 1
table 1 - 11		- 1.5 % for zone 111 - 3.0 % for zone 1V
Increase or decrease in the value of compacting factor by 0.1	3 %	0
B. Each 0.05 increase or decrease		
in free W/C ratio For rounded aggregate	0 -15kg/m³	1 % -7 %

TABLE 1.14 Approximate entrapped air content (depends on max. size of

Nominal Max. size of aggregate mm	Approximate amount of entrapped air, as % of volume of wet concrete in non - air
	entrapped concrete.
10	
20	3.00
40	2.00
e manade	1.00

The specific gravity bulk densuty and voids of different types of aggregates are given in Table

TABLE 1.15 Specific gravity, bulk density and voids of different types of aggregate

1.5	tes	Bulk d	ensity (k	g/ltr) Void	is (%)
Trap Granite Gravel	2 .90 2 .80 2 .66	River sand : Fine Medium Coarse	1.44 1.52 1.60	Fine Coarse Mixed moist	43 35
Sand	2.65 to 2.60	Beach or river shingle Brokers Stone Stone screenings Broken Granite	1.60 1.60 1.44 1.68	Mixed and dry Broken stone graded 25mm max.size 50mm max. size 63mm max. size Stone screenings	30 46 45 41 48

TABLE 1.16 Fine Aggregates

1S sieve		Percenta	ige passing f	or
Designation	Grading zone 1	Grading zone 11	Grading zone111	Grading zone IV
10mm 4.75mm 2.36mm 1.18mm 600 micron 300 micron 150 micron	100 90 -100 60 - 95 30 -70 15 -34 5 - 20 0 - 10	100 90 -100 75 -100 55 -90 35 -59 8 -30 0 - 10	100 90 -100 85 -100 70 -100 60 -79 12 -40 0 - 10	100 95 -100 95 -100 90 -100 80 -100 15 - 50 0 - 15

NOTE:- 1. For crushed stone sands, the permissible limit on 150 micron IS Sieve is increased to 20 percent. This does not affect the 5 percent allownace permitted in 5.3 applying to other sieve sizes

NOTE: -2. Fine aggregate complying with the requirments of any grading zone in this table is suitable for concrete but the quality of concrete produced will depend upon a number of factors including

proportions.

NOTE: - 3. Where concrete of high strength and good durability is required, fine aggregate conforming to any one of the four grading zones may be used, but the concrete mix should be properly designed. As the fine aggregate grading becomes progressively finer, that is, from Grading zones I to IV, the ratio of fine aggregate to coarse aggregate should be progressively reduced. The most suitable fine to coarse ratio to be used for any particular mix will, however, depend upon the actual grading practicle shape and surface texture of both fine and coarse

NOTE:-4 It is recommended that fine aggregate conforming to grading zone IV should not be used in reinforced concrete unless tests have been made to ascertain the suitability of

PERMEABILITY AND DURABILITY OF CONCRETE

1.1.5.1. Factors Affecting Permeability

The factors which affect the permeability of concrete are

Cement and water,

11. Aggregate,

111. Curing ,

Admixtures, and

V. Absorptions and uniformity of concrete.

FIG. 1.3 EFFECT OF WATER/CEMENT RATIO UPON PERMEABILITY 1 - 24

1.1.6.0 CURING CONCRETE: The object of curing is to prevent or replenish the loss of necessary moisture during the (early) rapid stage of hydration .

a) Moist curing: The exposed surfaces are kept moist by sparying ponding, covering with earth, sand etc..., precast works or works in cold weather are steam cured. Early drying must be prevented especially the exposed edges/corners by suitable coverings. Pozzelane cements require 21 days curingperiod. The optimum temparature dring curing period is 15° to 38°C.

b) Membrane curing: An approved curing compound may be applied as soon as the concrete has initially set. This restricts the evaporation of thewater used in mixing. White prigmented sealing compound for curing in slopes of canal linings and related structures is being practised. It can be applied at the rate of (1 gallon/ 150 sqft) 1 litre/sq. Metre of a rea s onably smooth surface. The coating shall be protected for atleast 28 days by a 25mm thick cover of sand or earth.

By steam curing at temperatures between c) Steam curing :

(130° - 160°F) 54° - 74°C, maximum strengths in precast members may be attained by 72 hours, which helps removal of forms much earlier in low pressure (atmospheric) curing. In high pressure curing at 175°c saturated steam at pressures of 8 atmospheres is employed. Certainchemical reactions take place and the strength of concrete is improved by 15% than the normally cured concrete. This precess with the chemical reactions taking place therein have the following advantages.

- a) About 50% of cement is saved .
- b) Leaching and efflorescene is minimised.
- c) Sulphate resistance is built up
- 'd) Initial drying shrinkage is minimised.
- e) No harmful side effects on strength in this rapid build up of temperature.

Accelerarted curing methods such as infra-red radiation (USSR) and electrical curing for 3 days are also rarely employed in precast products.

1.1.7.0. Forms - Stripping time of forms-

Where ordinary portland cement is used (and the temperature is above 20°C) forms may be struck after the expiry of the following periods,

a)Walls, columns and vertical sides of beams

24 to 28 hours

b) Slabs (props. left under)

3 days

	c) Beam soffits (props.left under)	Plain & Reinforced Cement Concrete
	of props, under alat	/days
	ii) Spansis up to 4.5 m	7days
	i) Spanning upto 6m	14 days
	ii) Spanning over 6m	14 days
ote :	The promite	21 days

Note: The props left under may be sufficient to carry the full dead loads with any live load likely to occur during curing or construction. The state of the s Answers place a real pasts promit to be set a see I have been a party of facility

The formal in production of the restaurant to some a south of the product of the south of the so and with a Call and Approximate and address of the following control and the control of the control of the call of the state of the state of the supplication of the supplication of the state of the supplication of the sup

TABLE 1-17 RECOMMENDED MIXES FOR VARIOUS TYPES OF CONSTRUCTION

Type of work		Recomm mix (by vol)	Max size of aggrr	Water in its per bag of cement *	Best consis tency	Slump in cms
Long span arches heavily loaded column	or and the	1:1: 2	12 to 20	16 to 18	medium	
Heavily stressed members; small precast as posts and poles for fencing, telegraph garden furmiture, and decorative and ot of work of very thin sections; watertight of	s, signals her items	1: 2:2	2 to 20	20 to 23	medium	
on for high heads; long piles.						
Columns and members subjected to me loads ;walls and floors of reservoirs and cisterns; sewers;well kerbs, platforms an watertight constructions for moderate his non surfaced roof slabs;concrete deposit	tanks; d other eads;	1:2:3 or 1:1 2/3:3 1/3	20	25	medium	2.5 to 10 mm
water. General building work subjected to ordin stresses such as beams, slabs, columns basement and retaining walls, stairs,linte	ary ,panel walls,		12 to 40 as requir		Stiff to medium	2.5 to
roads,pavements,driveways and sidewal	ks;floors;step	15,				mm
bunkers and silos; bridges, dams, piers action of water and frost; machine found subjected to vibrations; footings; piles		to				
Mass concrete work in culverts, retaining compound walls and ordinary machine to foundation walls which need not be water	cases;	1:3:6	25 to 50	34	111 - 111	
Mass concrete for heavy walls;foundation	nsunder	1:4:8	40 to 75	45 to 48	medium	
column footings and under heavy duty f	loors.	merculali, 10			25 to 10	

^{*} The exact quantity will depend on the method of compaction, i.e., whether the concrete is to be compected by hand or vibrated, and also on the absorption of water by aggregate.

District and an in proper and with a contract state.

SECTION -- II

REINFORCED CEMENT CONCRETE

1.2.0.0 SYMBOLS

For the purpose of this standard, the following letter symbols shall have the meaning indicated against each; where other symbols are used , they are explained at the appropriate place:

A	
A	Area
-,	rica

Breadth of beam, or shorter dimension of a rectangular column Ь bef

Effective width of slab

Ь, Effective width of flange

b Breadth of web or rib

overall depth of beam or slab or diameter of column; dimension of a D rectangular column in the direction under consideration.

D, Thickness of flange

DL Dead load

ď Effective depth of beam or slab d'

Depth of compression reinforcement from the highly compressed face

Modulus of elasticity of concrete

E Modulus of elasticity of steel

Eccentricity

Characteristic compressive strength of concrete fck for

Modulus of rupture of concrete (flexural tensile strength) fd

Design strength

Characteristic strength of steel

Constant OR coefficient OR factor

Ld Development length

LL Live load or imposed load

Length of a column or beam between adequate lateral restraints or the unsupported length of a column

Effective span of beam or slab or effective length of column lef

Effective length about x-x axis lex ley Effective length about y-y axis

ln Clear span, face to face of supports

In' In for shorter of the two spans at right angles

lx	Length of shorter side of slab
ly	Length of longer side of slab
1.	Distance between points of zero moments in a beam
i,	Span in the direction in which moments are determined, centre to centre
1	of supports
1,	Span transverse to I, centre to centre of supports
1,	I for the shorter of the continuous spans
M	Danding mamont
m	Modular ratio
P	Axial load on a compression member
qo	Calculated maximum bearing pressure of soil
r	D. Plan
s	Spacing of stirrups or standard deviation
T	Translated mountain
V	Shear force
W	Total load
WL	Wind load with settle structure
w	Distributed load per unit area
wd	Distributed dead load per unit area
w,	Distributed imposed load per unit area
x	Depth of neutral axis
Z	Madeline of motion
Z	Lever arm
α,β	Angle or ratio
acbc	Permissible stress in concrete in bending compression
σcc	Permissible stress in concrete in direct compression
σsc	Permissible stress in steel in compression
σst	Permissible stress in steel in tension
σsv	Permissible tensile stress in shear reinforcement
τbd	Design bond stress
τς	Shear stress in concrete
τc	Maximum shear stress in concrete with shear reinforcement
TV	Nominal shear stress
de	Diameter of bar

1.2.0.1 General Design Requirements

Assumptions made:

- i) Tensile stresses are taken up by reinforcement and none by concrete
- ii) Stress-strain relationship of steel and concrete is a straight line
- iii) Modular ratio m= 280/ 3σ cbc where

gabce = bending compressive stress in concrete in N/mm²

Tensile strength of concrete in flexure Fer = $0.7\sqrt{fck} N/mm^2$

Loads and Forces: R.C. Concrete weight 2500 kg/m3 (IRC specifies 2400 kg/m3)

= 2 x 10° kg/cm²

Total shrinkage strain = 0.0003

Design load:

- a) It is the characteristic load in the case of working stress method.
- b) It is the charateristic load with appropriate partial safety factors for limit state design.

1.2.0.2 Stability of the structure

- a) Overturning : Restoring moment not less than 1.2 times over turning moment due to D.L. and 1.4 times the Over Turning Moment due to imposed loads.
- Minimum factor of safety :- 1.4. under most adverse combination of forces with 0.9 DL. c) Durability
- Main influencing factore is low permeability which is achieved by strong dense concrete of low water cement ratio; aggregates through compaction, proper curing d) Analysis
- By linear & Elastic theory

1.2.0.3. Effective Span

a) Simply supported beams or slabs: The member is not built integrally with its

lef = Clear span (In) + Effective depth of beam/ slab or c/c of supports whichever is less.

- b) Continuous Beam or Slab :-
- 1. If width of support is less than 1/12 of clear span, then lef = same as (a)
- 2. If supports are wider than 1/12 of clear span or 600mm whichever is less,
- i) For end span, if one end is fixed and the other continuous; OR for intermediate spans,
- ii) For end span with one end free and other continuous :
- lef = ln + d/2 or half the width of discontinuous support, whichever is less.

For spans with rocker or roller bearing, lef = c/c of bearings, only.

: The effective length of cantilever is length to its face + half to effective Cantilever depth except where it forms the end of a continuous beam where the

length to the centre of support shall be taken. c/c of supports (for analysis of continuous frames).

Frames Relative stiffness = Moment of Ineratia of the transformed section, taking Stiffness into consideration the concrete section + area of reinforcement

transformed on the basis of modular ratio, m.

When the design live load does not exceed three fourths of the design Structural Frames: dead load, the load arrangement may be for design dead load and live

load on all the spans simultaneously.

1,2.0.4. BM and SF Coefficients for " Continuous Beams or Slabs "

Uniform cross sections are assumed for all members and U.D.L. is almost uniform for all spans

Individual span lengths do not differ by more than 15 % of the longest span .

1. For moments at supports where the unequal spans meet or in case where the NOTE: spans are not equally loaded, the average of the two values for the negative moment at the support may be taken for design.

> Beam and slabs over free end supports :-When a member is built into a masonry wall which develops only partial restraint, the member shall be designed for a negative moment at the face of support = W1/24 where W = the total design load and 1= effective span (eg. Slab under parapet walls of roofs, etc.,).

B.M. Coefficients for continuous Beams (or Slabs) :-

(Multiply by WL) Total design load x Effective span to get M

Type of load	Span Mo	ments	End span	Support Mo	ments (-)
	(+) Middle of End span		support (-) (*)	At support next to end support	At other interior supports
Dead load and Imported load fixed	1/12	1/16	-1/16 or 1/10	-1/10	-1/12
Imported load fixed	1/10	1/12	-1/10 or 1/16	-1/9	-1/9

b) SF Coefficients :-

	At End support		ort Next to port Inner side	At all other interior supports
Dead load	0.40	0.60	0.55	0.50
Live load	0.45	0.60	0.60	

Shear Force = Coefficient x Total Design Load

Note: For framed sections, T Beam or L Beam will be designed as doubly reinforced rectangular beam at the supports to resist the designed support moments.

c) Slabs spaning in two directions at right angles : BM Coefficients :-

i) Restrained slabs :- When the corners of the slabs are prevented from lifting, the slab may be designed for the Moments of :-

$$Mx = \alpha x \quad x \quad WL^2x$$

 $My = \alpha y \quad x \quad WL^2x$

ii) Simply supported slabs :- When simply supported slabs do not have adequate provision to resist torsion at corners and to prevent the corners from lifting, the maximum moments per

$$Mx = \alpha x \quad x \quad Wl^2 x$$
 $My = \alpha y \quad x \quad Wl^2 x$

where Mx, My, W, Lx and Ly are the same those in C(i) and α x and α y are moment coefficients to be read from the table below.

iii) BM Coefficients for slabs spanning in two directions at right angles, simply supported on four sides :-

Ly/Lx	: 1.0	1.1	1.2		2.2				E 01:000	60
αx	:0.062	0.074	0.084	0.093	0.099	0.104	0.113	0.118	2.5 0.122	3.0 0.124
Genera	lly the mai	n reinfor	cement b	0.055 ars are cor	0.051 ntinued (0.046 up to end	0.037 of the su	0.029	0.020	0.124 0.014 rtailment.
								pports w	mout cu	rtailment.

FIGURE 1.2.1 :- DIVISION OF A SLAB INTO MIDDLE AND EDGE STRIPS

TABLE 1.2.1

BENDING MOMENT CO EFFICIENTS FOR RECTANGULAR PANELS SUPPORTED ON FOUR SIDES WITH PROVISION FOR TORSION AT CORNERS IS: 456-1978

	Case	Type of Panel Moments cons	and idered	sh (v	ort span ralue of l	Co effic y/lx)	ient α:	K.		Co eff	for all
24			10	1.1	1.2	1.3	1.4	1.5	1.75	2.0	
(1)) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
1	Negat	or Panels : ive moment itinuous edge	0.032	0.037	0.043		0.051	0.053	0.060		0.032
		ve moment at	0.024	0.028		2012	TOTAL SERVICE	0.041	0.045	0.049	0.024

(1) (2)	1.0	1.1	1.2	1.3	1.4	15	1 76	27	
2.	One short edge	Diametri	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)

- Nagavite moment at 0.037 0.043 0.048 0.051 0.05 0.057 0.064 0.068 0.037 continuous edge pasitive moment at 0.028 0.032 0.036 0.039 0.041 0.044 0.048 0.052 0.028 mid-span
- 3. One long edge Discontinuous :
 Negivite moment at 0.037 0.044 0.052 0.057 0.063 0.067 0.077 0.085 0.037
 continuous edge
 positive moment at 0.028 0.033 0.039 0.044 0.047 0.051 0.059 0.065 0.028
 mid-span
- 4. Two adjecent Edges Discontinuous:

 Negative moment at 0..047 0.053 0.060 0.065 0.071 0.075 0.084 0.091 0.047

 continuous edge

 positive moment at 0.035 0.040 0.045 0.049 0.053 0.056 0.063 0.069 0.035

 mid-span
- 5. Two short edgs Discontinuous :
 Negative moment at 0.045 0.049 0.052 0.056 0.059 0.060 0.065 0.069 continuous edge positive moment at 0.035 0.037 0.040 0.043 0.044 0.045 0.049 0.052 0.035
 mid-span
- 6. Two long edgs Discontinuous :
 Nagetive moment at continuous edge 0.045
 positive moment at 0.035 0.043 0.051 0.057 0.063 0.068 0.080 0.088 0.035
 continuous
- 7. Three edges Discontinuous (One long edge continuous)
 Negative moment at 0.057 0.064 0.071 0.076 0.080 0.084 0.091 0.097 -

positive moment at mid-span 0.043 0.048 0.053 0.057 0.060 0.064 0.069 0.073 0.043

- 8. Three Edges Discontinuous (one short edge continuous)
 Negative moment at continuous edge - - 0.057
 Positive moment at 0.043 0.051 0.059 0.065 0.071 0.076 0.087 0.096 0.043
 mid span
- 9. Four Edges
 Discontinuous:
 Positive
 moment at
 mid-span

 0.056 0.064 0.072 0.079 0.085 0.089 0.100 0.107 0.056

1.2.0.5 Effective Depths and Widths of - Beams(or Slabs)

Effective depth d= Distance between the centroid of area of tensile reinforcement and the (top of slab) Maximum compression fibre excluding finishings such as tiles, mossaic finish etc.,

T-Beams and L-Beams: Effective width of flanger:a) T-Beams: bf = Lo/6 + bw + 6D f (not more than bw + 1/2 clear distance between adjacent ribs(beams).

b) L-Beams: bf = Lo/12 + bw + 3Df (-Do-)

bf = effective width of flange

Lo = Distance between zero moments in the beam (distance between two consecutive points of contraflexure = 0.7 times effective span, lef).

bw = bredth of web or rib

Df = thickness of flange = thickness of slab itself

1.2.0.6 Deflection - span / Depth Ratios

a) Deflection :- Not more than span / 350 or 20 mm which ever is less
(after partitions etc., are built and finishes completed including temperature effects etc.)

Maximum span / effective depth ratios :- (Beams)

1. Satisfying the deflection lilmit upto 10m spans (beams & slabs)

 Span not greater Cantilever 	than 10m.
Simply supported	7 20
Continuous	26

40

Note:

- 1. For spans above 10 m, the above values may be multiplied by 10 / span in metres (in case of cantilevers, actual deflection may be calculated).
- 2. For tension reinforcement used further modify the above value by multiplying with the
- 3. For compression reinforcement used, modify the above values Sarab arm as per fig. 1.2.3
- 4. For flanged beams the values of (a) or (b) be modified as per Fig. 1.2.4 CASH 0.0010 0010 PART SWALL DOOR STOR DANA 1496
- b) Solid slab: It is a slab in roofs or floors or in irrigation structures as distinct from flat slabs. (Flat slabs are slabs supported by columns but not by beams with or without flared heads of columns). Generally we come accross solid slabs only.
- c) Maximum span / overall depth ratios for small, shorter spans upto 3.5 m lengths :- slabs :

		THE RESERVE				
Simply supported slabs	Two with	way slabs MS with HYSD	slabs spanning in one directi with M S with HYSE			
Continuous slabs	35	0.8x 35=28	30	11130		
Cantilever	40	0.8x 40=32	35	24		
D (ac	trail sta		12	32		
d) Slenderness limits 6			100	10		

d) Slenderness limits for beams to ensure lateral stability :- A simply supported /continuous beam shall be so proportioned that the clear distance between the lateral restraints does not exceed 60 b or 250 b2/d whichever is less. (b=breadth of compression face midway between

Note: f, IS STEEL STRESS OF SERVICE LOADS IN N/mm2

f, =0.58 f, Area of cross-section of steel required Area of cross-section of steel provided

Fig. 1.2.2. MODIFICATION FACTOR FOR TENSION REINFORCEMENT

TABLE 1.2.2

Permissible stresses in concrete (kgs / Cm²) (working stress method)

Grade of Concrete			1-15 M- 1:2:4) (1:	1000	I-25 M :1:2)	I-30 M	-35 M-	40 M	45 M-
Characteristic strengt 15 cm ³ after 28 days	h of						1	H	
Compression									
Bending o chc	30	-							
Direct o ce	25	50 40		85 60	100 80	90	1.00	145	+00
ension					570	200	1.00	110	120
Direct ast									
Ft / Ac. + Ast)	12	20	28	32	36	40	din.		
earing pressure						10	44	48	52
oncrete) only o	20	30	40	50	60	70	80		
r plain M S bars							00		
tension compression	4 5.0	6	8	9	10	11	10	76.6	
-32032240000	5.0	7.5	10	11.2	12.50		12	13	14
r HYSD (T40) bars Tension							7 1911		
compression	5.6 7.0	8.4 10.5	11.2 14.0	12.60 15.75	4.00 17.50	15.40	16.8 21.0		
lulus of rupture by							21.0		- 1
n test after 07 days	17	21	24	27	30	32	34		
ular Ratio, m ected to nearest							10.4		
er)	30	18	13	11	9 8		7		

TABLE 1.2.3

Permissible stresses in steel reinforcement (in N/mm²) In Working Stress Method

Types of stress in steel	Mild steel grade1	HY	
reinforcement tension	1S:432/1966	Tor 40	Tor 50
(σ _{st})	restry, re-	Fe 415 (IS:17	Fe 500 86/1979)
Bars upto 20mm	140	230	275
Bars over 20mm	130	230	
Compression in			
column bars (\sigma sc)	130	190	230
Compression in bars in a or slab when the compres resistance of concrete is i) taken into account ii) not taken into account	ssive surrounding of the modular r	ed compressive concrete multip ratio = (1.5 mo	lied by 1.5 time
or slab when the compres resistance of concrete is i) taken into account	ssive surrounding of the modular of	concrete multip	lied by 1.5 time
or slab when the compres resistance of concrete is i) taken into account ii) not taken into account	ssive surrounding of the modular of	concrete multip ratio = (1.5 mo	lied by 1.5 time cbc) or asc

tilly compresse in neuronal contribution with the size that the personal contribution and the

TABLE 1. 2. 4
Design stresses of Tor steel Tor 40 (In N/mm²)
(in different contexts)

	(ai u	merent contexts)	THE RESERVE	
Type of stress	IRC Bridge code by ministry of ransport	IS 3370 water retaining structures	IS 456 ultimate load design	General buildings (elastic design)
a)Tension	190	150	425	230
		190		
Urit .		(On face away liquid for memi thicker than 22	perc	
b) Compression	160	175	370	100
c)Tension in shear reinforcement	30	150	TOXICE OF THE	190
		(thin member) lesser than 225m	and the same of	
l)Tension in spiral reinforcement	150	175 (members thicker than 225 mm)		160

1.2.1.0 Slabs carrying concentrated load

distance interest process 44

If a solid slab supported on two opposite edges, carries concentrated loads, the maximum bending moment caused by the concentrated loads shall be assumed to be resisted by an effective width of slab (measured parallel to the supporting edges) as follows:

a) For a single concentrated load, the effective width shall be calculated in accordance with the following equation provided that it shall not exceed the actual width of the slab:

pef = kx	1-x/	lef)	+ a	

wher bef	re =	effective width of slab,
k	-	constant having the values given in Table 1.2.5 depending upon the ratio of the width of the slab (1") to the effective span.lef,
x	. -	distance of the centroid of the concentrated load from nearer support,
lef	=	effective span and ,
a		width of the contact area of the concentrated load measured parallel to the supported edge.

And provided further that in case of a load near the unsupported edge of a slab, the effective widths shall not exceed the above value nor half the above value plus the distance of the load from the unsupported edge.

- b) For two or more concentrated loads placed in a line in the direction of the span, the bending moment per metre width of slab shall be calculated separately for each load according to its appropriate effective width of slab calculated as in (a) above and added together for design calculations.
- c) For two or more loads not in a line in the direction of the span, if the effective width of slab for one does not overlap the effective width of slab for another load, both calculated as in (a) above, then the slab for each load can be designed separately. If the effective width of slab for one load overlaps the effective width of slab for an adjacent load, the overlapping portion of the slab shall be designed for the combined effect of the two loads.

TABLE 1.2.5

Value of k for	Concentrated	A19 20 1 100
	concentrated	loade in clab-

1 / lef	simply supported slabs	k for	continuous
0.1	Miles pourse leads and		slabs
0.2			7.7.25.71
0.3	0.8	HIII =3 See	0.4
	1.16		0.8
0.4	1.48		1.16
0.5	1.72		1.44
0.6	1.96		1.68
0.7			1.84
0.8	2.12		1.06
0.9	2.24		
1.0 and	2.36		2.08
above	2.48		2.16
above			2.24

1.2.2.0 Development length of Bars :-

The calculated tension in any bar at any section shall be developed on each side of the section by an appropriate development length or end anchorage or by a combination thereof.

$$L_d = \phi \cdot \sigma_a / 4 \tau_{bd}$$

million of females could be transferenced when we was part of L_d = Development length including anchorage value of Hooks in tension.

 Nominal diameter of bar, τ_{bd} = Design bond stress

Affair forder agreem to be frequi σ_s = Stress in bar at section considered at design load.

1.2.3.0 Lap length including anchorage value of Hooks

In flexural tension - Shall be Ld (or) 30 ¢ In direct tension which ever is greater. - 2Ld (or) 30¢ in compession whichever is greather.

- shall be equal to Ld but not less than 24 φ

 where Ld = development length as described in 1. 2.2.0. The straight length of shall not be less than 15 \(\phi \) (or) 20 cm.

Anchorage value of Hooks : - U - Hook = 16 \(\phi \)

L - (or) 45° bend = 4ϕ

TABLE 1.2.6 Effective length of compression members IS: 456 - 78

Degree of End Restraint of Compression Member	Symbol	Theoretical value of effective length	Recommended value of effective length
191	**************************************	The Super	
(1)	(2)	(3)	(4)
Effectively held in position & Restrained against rotation	1	0.5L	0.65L
both ends.	mim		
Effectively held in position at	man	0.7L	0.80L
both ends restrained against	100		
rotation at one end.	minn		
Effectively held in position at	mu	1.00L	1.00L
both ends, but not restrained	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Alexander Maria
against rotation	,,,,,,,	and the amplero	
Effectively held in position &	200	1.00L	1.20L
restrained against rotation at	70		
one end, and at the other rest-	- 1		
rained against rotation but not	mm		
held in position.			
	177 -		1 501
Effectively held in position and	12		1.50L
restrained against rotation at			
one end, and at the other	mm		

partially restrained against rotation but not held in position. (1) (2) (3)

Effectively held in position at one end but not restrained against rotation at one end, and at the other end restrained against rotation but not held in position.

2.00L

Effectively held in position and restrained against rotation at one end but not held in position nor restrained against rotation at the other end.

2.00L

Note: L is the unsupported length of compression member.

1.2.4.0. Permissible loads in compression Members:

Pedastals/ shortcolumns with lateral ties :

Permissible axial load : P= occ Ac + osc Asc

Note: The minimum eccentricity of ((L/500 +(D or b)/30)) subject to a minimum of 20 mm may be deemed to be incorporated in the above equation.

Long columns: lef / least lateral dimension > 12(15 as per CP.110,117)

a) Correction factor for C, =1.25 - lef/48b, b = least lateral dimension; permisible stress

b) More precisely, lef / least lateral radius of gyration > 40

Correction factor for permissible stressesC = 1.25 -(lef/160 r min)

	1 1	11111 - 16	ast radii	us of gyr	ration = √	1/A	1			
L/D -	12	15	20	25	30	40	48	50	60	Maria de la company
a) Cr.		1.0	0.83	0.66	0.50	0.56		50	60	Remarks
h) C-	1.0		200		0.50	~		-	T	Using 15 as limit
b) Cr.	1.0	0.94	0.84	0.73	0.63	0.42	0.25	~	TOTAL	
c) Cr					3075	(B)	O SAROES	-3		Using 12 as limit
						1.0	0.94	0.87		Using 40 as Limit

1 - 44

1.2.5.0 Requirement of Reinforcement for Structural Members:

Tension - i) minimum A, = 0.85 bd / f, with HYSD bars (f, = 2300) (0.6% to 6% in W.S.

Method. b = breadth of beam or rib

d = effective depth,

ii) Maximum 4% of gross area, (0.40 bD)

(0.8 to 8% in L.S.Method but due to space limitations and difficulty in

compaction, restricted to 4% in all cases)

Compression: Minimum 0.8%; Maximum 6% of Ag (Total sectional area = Ag) but Maximum limited to 0.40 bD. Stirrups act as lateral restrainits.

Side face reinforcement; Where the depth of the web in a beam exceeds 750 mm, side face reinforcement shall be provided along the two faces. The total area of such reinforcement shall be not less than 0.1 percent of the web area and shall be distributed equally on two faces at a spacing not exceeding 300 mm or web thickness whichever is less.

Minimum shear reinforcement; In the form of stirrups:

A = Total C.S.Area of stirrup legs effective in shear Stirrup spacing along the length of member f = 415 N/mm2 in LSM or WSM for T 40 and 250 N/mm2

Note: 0.4 may be taken as 4 kg/cm² in WSM; t = 4150 with T 40 or 2500 with MS rods

Note: For lintels etc., where Mex shear stress < half the permissible value, this provision is not necessary.

(B) Slabs: Minimum steel in either direction not less than 0.15% of total C.S. Area with M.S. or 0.12% Minimum dia of the bar → 1/8D of the slab. Therefore eg., for a 15cm slab, ♦ (uncommon) → 150 / 8 = 18.75 mm)

C) Columns Longitudinal reinforcement - compression: - 0.8% to 6% but limited to 4% due to compaction placement and lapping difficulties. Minimum number of bars 4 in rectangular or square columns and 6 in circular columns. Bers shall not be less than 12 mm in dia. In Helical reinforcement - minimum 6 bars

Pedestals; Compression members whose effective length is within three times the least lateral dimesion. Steel area = 0.15% of cross section area.

Traverse Reinforcement:

Columns:

Spacing / Pitch ;

Least of the following:

Specing of main bars along periphery > 300mm

Least lateral dimesion of compression member

16 \$ (\$ = smallest dia of longitudinal ber to be tied)

48 . (. = dia of traverse reinforcement)

Tie Dia: mein /4 (1/4 maximum main bar), < 5 mm in any case. Note: Shear Strength may be taken as 1.50 times the allowable value in flexural members.

1.2.5.1 D Members subject to combined axial load and bending (due to eccentricity of load lateral forces ect)

a) σ cc.cal/σ cc. + σ cbc. cal/σ cbc. ≤ 1 $P/A + M/Z \le f \le \sigma$ cbc. allowable

(calculated) Direct (axial) compressive Calculated bending compressive stress in stresses in concrete Permissible axial compressive Permissible bending compressive stress in concrete stress in concrete

b) The resultant tension in concrete 35% and 25% of the resultant compression for biaxial and

75% of the 7 day modulus of rupture of concrete (.75 x 21 = 15.75 kg/cm² for M 15 grade, say)

Note: 1. σ cc.cal = Ac+1.5m

2 σ cbc.Cal = M/Z where M equals the moment and Z= Transformed Modulus section considering concrete and steel areas separately with application of modular ratio of m to the appropriate grade.

3. In case of sections subject to moments in two directions, the stress shall be calculated separately and added algebraically.

1. 2.5.2 Detailing Rules for Slabs , Beams and Columns :-

Right type of detailing of reinforcemnts in an essential requisite in the design and execution of RC members. Some of the factors of importance in detailing like quantum of reinforcement, range of diameter and spacing of the reinforcements are dealt with in brief in what follows.

A. Slabs

Based on the regulations in IS: 456 - 1978 and standard construction practice, the guidelines for slabs are summarised as below.

Slab reinforcements (Torsteel) (Common for Tor 40 and Tor 50)

Diameter	Min Max	6mm Least of :	i) One eighth the over-all depth of slab ii) 16 mm
Quantum of Reinforcement	Min Max	+	0.12% of gross sectional area of slab 2% of gross sectional area of slab
Class	MAIN BARS	Min	Greatest of: i) 1.5 times the maximum size of coarse aggregate ii) Diameter of the needle where needle vibrators are used.
Clear Spacing between	man de merce.	Max	Lesser of: i) 45 cm ii) Three times the effective depth of slab
	Distribution bars (Max)	emailee sal	Lesser of: i) 45 cm ii) Five times the effective depth of slab.

B. Columns

Based on the regulations IS: 456-1978 and standard construction practice, the guidelines for columns are summarised in tables below.

ongitudinal Paint	formani 1	Plain & Reinforced Cement Conc.		
Area of reinf.	forcement in columns (Common for Min	or Tor 40 and Tor 50)		
	Max	0.8% of the gross section area of columns*		
		4.0% of the gross sections area of columns		
Diameter	Min			
of bars	Max 10 PEL II	12 mm 40 mm		
Number	Min			
of bars	TUTTO EMPLOY	i) 4 bars for Rectangular columns		
Spacing of bars	Max	ii) 6 bars for circular columns		
		30 cm when measured along the perphery of the column		

In columns that have largest concrete cross sectional area than required, the above should be based upon the actual area of concrete required to resist the direct load acting on the column; but in no case the reinforcement shall be less than 0.4% of the gross sectional

Guidelines for column Ties

C2000	commit i jes			
Min.diameter	Max.diameter	Max.spacing of ties		
Greatest of i) 6 mm	16 mm	Least of		
ii) One fourth the dia of the largest		i) Least lateral dimension of column ii) 16 times the dia of smallest long		
longitudinal bar		itudinal bar. iii) 48 times the dia of the ties,		

SOME DETAILING RULES FOR R.C.BEAMS

Right type of detailing of reinforcements is an essential requisite in the design and execution of R.C. members. Some of the factors of importance in detailing are

(i) Quantum of reinforcement (ii) selection of suitable diameter and (iii) appropriate spacing of reinforcement. These are dealt with in brief in what follows for beams.

A. TENSION AND COMPRESSION REINFORCEMENTS

Based on the regulations in 4S: 456- 2000 and standard construction practice, the requirements are furnished for various values of d/D where d is effective depth and D is overall depth. The table also gives information on side face reinforcement which should be provided when the total depth of section exceeds 75 cm.

Min. & Max. Reinforcement (Torsteel) in Beams

with r	respect to gross press tonal area ceme centage) pect tiona		ssion or com- ssion reinfor- nent with res- et to gross sec- nal area crcentage)	Side face reinforcement with respect to gross sectional area (percentage)		
	MII	N		MAX		MIN.
d/D	0.95	0.90	0.85	0.80	For all values	For all values (D>75 cm)
Tor 40	0.195	0.185	0.174	0.164	4.0	0.1
Tor 50	0.162	0.153	0.145	0.136	4.0	0.1

B. Shear Reinforcement :

The data summarised from the recommendations in IS: 456-2000 are furnished below.

Minimum Shear Reinforcement (Torsteel) in Beams

Right (12 my han)		Breadt	h of bear	n (cm)		
Tor 40 Tor 50	15 1.45 1.45 (cm²/n	20 1.93 1.93 n length	25 2.41 2.41 of beam)	30 2.90 2.90	35 3.37 3.37	40 3.89 3.89

The requirements in Tables above can be simplified for adoption in normal designs C. below. This simplification is easy to adopt and remember and is applicable for all

Bill yes	Simpli Tension rein- forcement w.r.t. gross sectional area (Min.)	fication: Min & Max (To Tension or compre ssion reinforcement w.r.t. gross sectional area (Max)	Side face rein- forcement w.r.t. gross sectional area (D 75cm)	Shear rein- forcement w.r.t.plan area of Web (Min)
Tor 40	0.20%	4.0%		(ivilii)
Tor 50	0.16%	4.0%	0.10%	0.10%
V151-7	Thrist stance		0.10%	0.10%

Spacing of longitudinal Bars and Shear Reinforcement from construction and cracking considerations, certain guide lines have been arrived at for the minimum and maximum clear spacing to be provided between bars in the beams. Similarly from construction and design considerations the minimum and maximum spacing of the stirrups have been arrived at. These are tabulated in below for the different grades of Torsteel.

Spacing to bars (Tor steel) in beams

einforcement	0.4		
		Shear reinforcen	nent
Max. Horizontal spacing between bars(Clear)	Min. Vertica spacing between bar layers(clear)	Min. spacing	Max. spacing
	arberson and a large		
		(Common	10-
	Tor 40 and Tor 50)	for Tor 40	(Common for Tor 40 &
	32	and 101 30)	Tor 50)
For Ter 40: 18 cm Tor 50 : 15 cm	Greatest of: i) Diameter of the bar	8 cm	Lesser of: i) 0.75 d
(If the redistribution	ii)Diameter of		ii) 45 cms
	For Ter 40: 18 cm Tor 50 : 15 cm	Max. Horizontal spacing between bars(Clear) Min. Vertica spacing between bar layers(clear) (Common for Tor 40 and Tor 50) ' - For Tor 40: 18 cm Tor 50: 15 cm Greatest of: i) Diameter of the bar	Max. Horizontal spacing between bars(Clear) Min. Vertica spacing between bar layers(clear) (Common for Tor 40 and Tor 50) Greatest of: i) Diameter of the bar Shear reinforcen Min. spacing (Common for Tor 40 and Tor 50)

the larger bar wherein different diametersare used	of moment is consi- deration from the section the modified values are: F or T or. 40:12 cm T or 50:10.5	the larger bar where in different diameters are used	
iii) 1.5 times the max size of the course aggregate		iii) 2/3 max.size of course aggregate	
iv) Dia of needle if needle vibrators are used.		iv) 1.5 cm	

1.2.5.3. Cover to Reinforcement :

- Reinforcement shall have concrete cover and the thickness of such cover 1.2.5.3 (exclusive of plaster or other decorative finish) shall be as follows:
 - At each end of reinforcing bar not less than 25 mm nor less than twice the diameter of such bar.

Plain & Reinforced Cement Concrete

- For a longitudinal reinforcing bar in a column, not less than 40 mm nor less than the diameter of such bar. In the case of columns of minimum dimension of 200 mm or under whose reinforcing bars do not exceed 12mm a cover of 25 mm may be used.
- For longitudinal reinforcing bar in a beam, not less than 25 mm nor less, than the diameter of such bar.
- For tensile, compressive, shear or other reinforcement in a slab not less than 15 mm ,nor less than the diameter of such bar; and
- For any other reinforcement, not less than 15mm nor less than the diameter of such bar.
- Special exposures-harmful chemicals, acid, saline atmosphere, Sulphurous 1, 2.5.3 smoke: 15 mm
 - Sea water 40 mm more than specified in the 2.5.3 (i) NOTE: Maximum cover: 75 mm.
- Curtailment of Tension Reinforcement in Flexural Members :-1.2.5.4. Roads to extend upto d or 12 \$\phi\$ whichever is greater from No tension zone except at supports. Where \$\phi\$ is diameter of bar.

Positive moment reinforcement at supports :-

At least 1/3 of + Ve moment reinforcement in simple members and 1/4 of the reinforcement in

Plain & Reinforced Cement Concrete

continuous beams shall extend into thesupport to a length Ld/3. Negative moment reinforcement at supports :-

At least 1/3 of total reinforcement given for - Ve reinforcement at support shall extend beyond the point of inflection for a distance effective depth (d) or 12 or 1/16 clear span whichever

1.2.5.5. Shear (Torsion) Force: Nominal shear stress τ v, in beams or slabs of uniform depth (breadth of beam or web) x (effective depth)

Note: 1. Here effective depth is considered but not lever arm or Jd as per earlier codal practice (IS 456-1964).

2. Generally, we come across beams/slabs of uniform depth.

3. In the revised code, IS.456-1978, it may be seen, the permissible shear stress varis with percentage of steel reinforcement provided in the section along with the grade of mix. The method of design for shear and torsion by working stress method are similar to the limit State Method.

Working stress method :-

Shear- Permissible shear stress in beams using R.C.concrete in kg/cm² without shear reinforcement.

TABLE 1.2.7 (A)

i) BEAMS : Permissible shear stress τ c in kg/cm² in concrete without shear reinforcement.

100 Ast		,	Note the second	The same	an reinforceme	ent.
bd (% of steel)	M 15	M 20	irades of concr M 25	ete M30	M35	M 40
≤ 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90	1.8 2.0 2.2 2.4 2.7 2.9 3.1 3.3 3.4 3.4 3.6	1.8 2.0 2.2 2.4 2.7 3.0 3.2 3.4 3.5 3.6 3.7	1,9 2.1 2.3 2.5 2.8 3.1 3.3 3.5 3.6 3.7 3.9	2.0 2.1 2.3 2.5 2.8 3.1 3.3 3.6 3.7 3.8 3.9	2.0 2.1 2.3 2.5 2.8 3.1 3.4 3.6 3.7 3.8 4.0	(and above) 2.0 2.1 2.3 2.5 2.8 3.2 3.4 3.7 3.8 3.9
			1 50			41

57 Plain & Reinforced Cement Concrete 4.2 4.2 4.1 4.0 3.9 3.7 1.00 4.4 4.3 4.3 4.2 4.0 3.8 1.10 4.5 4.5 4.4 4.3 4.1 4.0 1.20 4.6 4.5 4.5 4.4 4.2 4.0 1.25 4.7 4.6 4.5 4.4 4.3 4.1 1.30 4.7 4.8 4.6 4.2 1.40 4.9 4.9 4.8 4.5 4.6 4.2 1.50 5.1 5.0 4.6 4.3 1.60 5.2 5.1 5.0 4.8 4.7 4.4 1.70 5.2 5.2 5.0 4.9 4.7 4.4 1.75 5.3 5.1 5.2 4.9 4.7 4.4 1.80 5.3 5.4 5.2 5.0 4.8 4.4 1.90 5.5 5.4 5.3 5.1 4.9 4.4 2.00 5.5 5.6 5.4 5.2 5.0 4.4 2.10 5.7 5.6 5.4 5.3 5.1 4.4 2.20 5.7 5.5 5.6 5.3 5.1 4.4 2.25 5.8 5.7 5.5 5.3 5.1 4.4 2.30 5.9 5.7 5.6 5.4 5.1 4.4 2,40 6.0 5.8 5.7 5.5 5.1 4.4 2.50 6.0 5.9 5.7 5.6 5.1 4.4 2.60 6.1 6.0 5.8 5.6 4.4 2.70 6.2 6.0 5.8 5.6 5.1 4.4 2.75 6.2 6.0 5.9 5.7 5.1 4.4 2.80 6.3 6.1 5.9 5.7 5.1 4.4 2.90 6.3 6.2 5.7 6.0 5.1 4.4 > 3.00

Note: Ast = Area of that steel in longitudinal tension reinforcement which continues to atleast one effective depth (d) beyond the section being considered except at support where the full area of tension reinforcement of a steel requirements i.e., upto d, 12 times dia of bar, or upto the point where the actual shear stress is not exceeded by 2/3 of the permissible value.

Maximum τc (shear stress) in N/mm² allowable, even with transverse reinforcement for each mix.

TABLE-1.2.7(B)

Concrete Mix τ c Max	M 15	M 20 1.8	M 25	M 30 2.2	M 35 23 1.15	M 40 2.5 1.25
τ c allowable in slabs in N/mm ²	0.8	0.9	0.95	1.1	1.15	1.23

ii) Solid Slabs: K times τ c given above where K is as given below:-(D) Overall depth of slab in mm 300 & 275 150 above or less 1.0 1.05 1.10 Maximum τ c allowable in slabs = 1.25 1.3 Half the maximum value given above for each mix in beams; M15 M25 M40 т с Мах 0.9 0.95 1.15 1.25

Note:

1. For the remaining half of the shear, shear reinforcement is to be designed for beams.

2. For compressive Members in axial compression, permissible shear stree .. may be upto nearly 1.5 times the values given above for beams.

3. If they do not come under the above limits, better redesign the section with changed parameters.

4. For slabs, shear reinforcement is not usual, so the slab thickness will be modified accordingly Table 1.2.7(c)

Design Shear strength of Concrete, t c N/mm2 (IS: 456, 2000) (Limit

100 Ast bd			Concrete Grad	m² (IS : 456, 2 le	2000) (Limi	ts State)
(% of steel	M 15	M 20	M 25	M30	M35	M 40
(1) ≤ 0.15 0.25 0.50, 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 and above	(2) 0.28 0.35 0.46 0.54 0.60 0.64 0.68 0.71 0.71 0.71 0.71 0.71	(3) 0.28 0.36 0.48 0.56 0.62 0.67 0.72 0.75 0.79 0.81 0.82 0.82 0.82	(4) 0.29 0.36 0.49 0.57 0.64 0.70 0.74 0.78 0.82 0.85 0.88 0.90	(5) 0.29 0.37 0.50 0.59 0.6 0.71 0.76 0.80 0.84 0.88 0.91 0.94	(6) 0.29 0.37 0.50 0.59 0.67 0.73 0.78 0.82 0.86 0.90 0.93 0.96 0.99	(and above) (7) 0.30 0.38 0.51 0.60 0.68 0.74 0.79 0.84 0.88 0.92 0.95 0.98 1.01
HOUVE						

NOTE - The term A is the area of longitudinal tension reinforcement which continues at least one effective depth beyond the section being considered except at support where the full area of tension reinforcement may be used provided the detailing conforms to 26.2.2 and 26.2.3

Note: The term As is the area of longitudinal tension reinforcement which continues at least one effective depth beyond the section being considered except at supports where the full area of tension reinforcement may be used.

> Table 1.2.7 (D) Maximum Shear Stress, Tc max N/mm2 (Limit State)

1 30 3.5 1.75	M 35 3.7 1.8	M 40 4.0 2.0	5 53
-	1.5	3.7	3.5 3.7 4.0

Critical section for Shear :-

i) Maximum shear generally occurs at the face of the support or

ii) At a distance less than d from the face of the support when the reaction in the direction of the applied shear force introduces compression into the end region of the member. Generally shear reinforcement is accomplished through vertical stirrups with double legs (or 3 to 4 legs) depending on its intensity and bent up bars along with the stirrups.

Where bent up bars are provided, not more than 50% of the total shear resistance, through shear reinforcement, be shared by such bent bars.

·a) Strength of shear reinforcement :- for vertical stirrups.

$$V_S = \sigma_{\underline{sv}, \underline{Asv,d}}$$

b) for single bar or single group of parallel bars (more than one also)all bent up at the same cross section

up at the same cross section
$$Vs: \sigma sv. \quad Asv \quad Sin \alpha$$

$$Vs: \sigma sv. \quad Asv \quad Sin \alpha$$

$$(2300 \text{ or } 1400) \quad x \quad Area \text{ of two legs of the stirrups (for tor } 40,50 \text{ , or for M.S) or bent up bars within a distance Sv. } x \sin \alpha$$
and $\sin \alpha = 1/\sqrt{2} = 0.707$, for $\alpha = 45^\circ$

The spacing limitations for nominal shear reforcement are :-

1) 0.75 d, 11) 450 mm or 111) $\frac{A_{yx}}{bs_{y}} \ge \frac{0.4}{f_{y}}$ whichever is less as stated earlier.

1.2.5.6. Shear and Torsion:

Equivalent shear = equivalent shear, Ve shall be calculated from the formula :

where,

Ve. equivalent shear

torsional moment, and

Breadth of beam

The equivalent nominal shear stress tve, in this case shall be calculated as V = V/bd except for substituting V by Ve ie., tve = Ve/bd = (1/bd). (V+1.6T/b) (substituting V by Ve), the values of t ve shall not exceed the value of tc max

If the equivalent nominal shear stress τ ve does not exceed τc, given in Table 1.2.7 minium shear reinforcement shall be provided as specified in 1.2.5.5 (B)

If t ve exceeds to given in table 1.2.7 Aboth longitudinal and transverse reinforcement shall be

Reinforcement in Member Subjected to Torsion

Reinforcement for torsion, when required, shall consist of longitudinal and transverse

Longitudinal Reinforcement - The longitudinal reinforcement shall be designed to resist an equivalent bending moment, Me givenby $M_{\star} = M + M_{\star}$

where

M = bending moment at the cross section, and

 $M_1 = T(1 + D/b)$ where T is the torsional moment, D is the overall depth of the beam and b is the breadth of the beam.

If the numerical value of M, as defined in previous para exceeds the numerical value of the moment M, longitudinal reinforcement shall be provided on the flexural compression face, such that the beam can also with stand an equivalent moment M_{e2} given by $M_{e2} = M_1$ -M, the moment

Me2 being taken as acting in the opposite sense to the moment M.

Transverse Reinforcement - Two legged closed hoops enclosing the corner longitudinal bars shall have an area of cross section Asy given by

 $Ts_{v}/(b_{1}d_{1}\sigma sv) + V.s_{v}/(2.5 d_{1}\sigma s_{v})$ Asv =

but the total transverse reinforcement shall not be less than

(TVE-TC) . 6.5 / osv

torsional moment where

Commence of the Commence of th

shear force, V =

spacing of the stirrup reinforcement S =

centre to centre distance between corner bars in the direction of the width.

centre to centre distance between corner bars in the direction of the depth,

breadth of the member,

permissible tensile stress in shear reinforcement

τ ve = equivalent shear stress as specified in 1.2.5.6

 τ c = shear stength of the concrete as specified in Table 1.2.7 (C)

When a member is designed for torsion Distribution of Torsion reinforcement :reinforcement shall be provided as below:

- a) The transverse reinforcement for tension shall be rectangular closed stirrups placed perpendicular to the axis of the member. The spacing of the stirrups shall not exceed the least of x_i , $(x_i + y_i)/4$ and 300mm, where x_i and y_i are respectively the short and long dimensions of the stirrup.
- b) Longitudinal reinforcement shall be placed as close as is practicable to the corners of the cross-section and in all cases, there shall be at least one longitudinal bar in each corner of the ties. When the cross-sectional dimension of the member exceeds 450mm, additional longitudinal bars shall be provided to satisfy the require -ments of minimum reinforcement and spacing given in side face reinforcement.

Reinforcement in flanges of T and L beams shall satisfy the requirements in 2.5.2. where flanges are in tension, a part of the main tension reinforcement shall be distributed over the effective flange width or a width equal to one tenth of a span, whethever is smaller. If the effective flange width equal to one tenth of the span, whichever is smaller. If the effective flange

These Tables 1.2.8 and 1.2.9 are only for the general guidance in design.

Plain & Reinforced Cement Concrete width exceeds one tenth of the span, nominal longitudinal reinforcement shall be provided in the outer portions of the flange.

Slabs :-

Minimum reinforcement - The reinforcement in either direction in slabs shall not be less than 0.15 percent of the total cross-sectional area. However, this valve can be reduced to 0.12 percent when high strength deformed bars or welded wire fabric are used.

Maximum diameter - The diameter of reinforcing bars shall not exceed one eighth of the total thickness of the slab.

1.2.6.0 Design constants for critical sections :-

Table 1.2.8: Design constants for a balance section with Mild steel IS 432-1960

(t: 1400 kg/cm² for bars upto 20 mm and 1300 kg/cm² for bars above 20mm)

Grade of concrete	Permissible compressive stress in bending in kg/cm ²		91	مورودات الأمل به الأمل	ars above	t (%) of steel
M 10 (1:3:6)	District Constitution	m	K	J	Q	
M 15 (1:2:4) M 20 (1:1 1/2:3) M 25 (1:1:2) M 30 M 35 Psc M 40	30 50 70 85 100 115	31 18 13 11 9 8 7	0.40 0.40 0.40 0.40 0.40 0.40 0.40	0.87 0.87 0.87 0.87 0.87 0.87	5.19 8.70 12.10 14.74 17.00 19.82 22.25	0.43 0.72 0.99 1.21 1.40 1.63 1.83

Table 1.2.9: Design constants for critical section with Tor Steel (Fe 415)

	o cbc	K	j Q
AND STREET	30	0.289	t = 2300 kg/cm ² for all size
M 10	72.53	0.289	0.904 6.50
M 15	50	0.289	0.904 9.10
M 20	70		0.904 11.10
M 25	85	0.289	0.904 13.00
M 30	100	0.289	0.904 13.00
M 35	115	0.289	The state of the s
M 40	130	0.289	

Table 1.2.10: Design constants for balanced sections using torsteel 40 used in different contexts such as (a) tension (b) compression (c) water retaining structures etc., for M 15/ M 20 mixes.

Mix M 20
C t m n j Rbd2 70 2300 13 0.283 0.905 8.964 70 1900 13 0.324 0.892 10.11 70 1500 13 0.378 0.874 11.56 * 3.06 for uncreacked section

1.2.7.0 EXPANSION JOINTS:

For the purpose of general guidance, however, structures exceeding 45m in length may be divided by one or more expansion joints.

1.2.7.1 WATER RETAINING STRUCTURES - General Rules

- 1. Water retaining structures must be built with impermeable Walls which will not creack under storage or due to shrinkage and temperature stresses.
- 2. Since tensile stress in the surrounding concrete must be kept under control high strength steel may not prove to be economical, except in rectangular tanks and mild steel reinforcement is

recommended.

3. Minimum reinforcement for temperature and shrinkage shall be provided.

The coefficient of expansion due to temperature may be taken 11x 10 % /C.

Coefficient of shrinkage may be taken as 450 x 10-6 for initial shrinkageand 200 x 10-6 for drying shrinkage. When allowance is made for shrinkageallowable stresses may be increased by

4. Special attention should be given to flexible joints, contraction joints, expansion joints and

5. The concrete mix generally used is M200, preferably of the controlled concrete based on a

6. Drop in water level in underground water tanks 40mm in seven days.

7. Protection against conrosion must be ensured. For liquid faces, minimumcover is 25mm and for seawater an additional cover of 12mm shall be provided, but the same shall not be included

8. The minimum reinforcement in walls, floors and roofs in each of twodirections at right angles shall have an area of 0.3 per cent of the concrete cross section in that direction for sections upto 10 cm. thickness. For thickness greater than 10 cm and less than 45 cm the minimum reinforcement in each of the two directions shall be linearly reduced from 0.3 per cent for 10 cm thickness to 0.2 per cent for thickness greater than or equal to 45 cm thickness. In concrete sections of 225 mm thickness or more two layers of steel shall be placed, one near each face of the section to make up the minimum reinforcement specified.

1.2.7.2 GENERAL REQUIREMENTS

Design and construction of reinforced concrete liquid retaining structures shall comply with the requirements of IS: 3370 (Part I - 1965) *

1.2.7.3 DESIGN

1. General - Provision shall be made for conditions of stresses that may occur in accordance with principles of mechanics, recognised methods of design and sound engineering practice. In particular, adequate consideration shall be given to the effects of monolithic construction in the assessement of bending moment and shear.

Code of Practice for concrete structures for the storage of liquids Part-1- General requirements

Code of practice for Plain and Reinforces Concrete (Fourth Revision)

2. Before taking up the detailed design, the designer should satisfy himself on the correct estimation of loads and on the adequate statiscal equilibrium of the structure particularly in regard to safety against overturning of over hanging members; in the latter case the general arrangement should be such that statical equilibrium should be satisfied even when the overturning moment is doubled.

1.2.7.4 BASIS OF DESIGN

1. General Basis or design shall be in line with the recommendations of IS:456-2000+ except where otherwise specified in this code. The parts of the structure neither in contact with the liquid on any face nor enclosing the space above the liquid, as in case of stating of a water tower, shall be designed in accordance with the requirements of IS: 456-2000 +

2. Design of members other than those excluded by 3.2.1 shall be based on consideration of adequate resistance to cracking as well as adequate strength. Calculation of stresses shall be based on the following assumptions in addition to the general assumptions given in IS:456-1978 +

a. In calculations for both flexure and direct tensions (or combination of both) relating to resistance to cracking, the concrete is capable of sustaining limited tensile stress, thewhole section of concrete including the cover, together with the reinforcement being taken into account.

b. The total shear stress given by the following equation shall not exceed the value given in 2.8.10 whatever the reinforcement provided;

Total shear stress = Q / bjd

where

O = Total shear

b = breadth, and

id = lever arm.

c. In strength calculations the concrete has no tensile strength.

3. Plain concrete structures: Plain concrete members of reinforced concrete liquid, retaining structures may be designed against structural failure by allowing tension in plain concrete as per the permissible limits for tension in bending specified in IS:456 + 1978. This will automatically take care in accordance with the requirement of IS:456 = 1978 shall be provided for plain concrete structural members.

1.2.7.5 PERMISSIBLE STRESSES IN CONCRETE

1. For resistance to cracking :- For calculations relating to the resistance of members to cracking, the permissible stresses in tension (direct and due to bending) and shear shall conform to the value specified in Table 1.2.11. The permissible tensile stresses due to bending apply to the face of the member in contact with the liquid. In members less than 225 mm thick

and in contact with the liquid on one side, these permissible stresses in bending apply also to the

Table 1.2.11: Permissible Concrete Stress in Calculations Relating to Resistances to Cracking

Direct tension		Shear
M15	Tension due to bending	(Q/b jd)
M20 12 M25 13 M30 15 M35 16 M40 17	15 17 18 20 22 24	15 17 19 22 25 27

For strength calculations :- In strength calculations , the permissible concrete stresses shall be in accordance with 1S: 456-1978. Where the calculated shear stress in concrete alone exceeds the permissible value, reinforcement acting in conjunction with diagonal compression, in the concrete shall provided to take the whole of the shear.

1.2.8.11 PERMISSIBLE STRESS IN STEEL

For resistance to cracking: When steel and concrete are assumed to act ogether for checking the tensile stress in concrete for avoidance of cracks, the tensile stress in the steel will be limited by the requirement that thepermissible tensile stres in the concrete is not exceeded; So the tensile stress in steel shall be equal to the produce of modular ratio of steel and concrete and the corresponding allowance tensile stress in concrete.

For strength calculations :- For strength calculations the permissible stresses in steel reinforcement shall be as given in Table 1.2.12.

TABLE 1.2.12 PERMISSIBLE STRESSES IN STEEL REINFORCEMENT FOR STRENGTH CALCULATIONS.

S.No	Type of stress in steel reinforcement.	Permissible stresses in	kg/cm2
		Plain round mild steel bars comforming to Gr.I.of iS:432 (part.I 1966)	High yeild strength deformed bars conforming to IS:1786 or IS:1139-1966.
1	2	3	40.00
1	Tensile stress in members under direct tension	1150	1500
II a)	Tensile stress in members bending On liquid retaining face of members	1150	1500
b)	On faceway from liquid for members less than 225mm	1150	1500
c)	On face away from liquie for members 225mm or more in thickness	1250	. 1900
III a)	tensile stress in shear reinforcement For members less than 225mm thick		1500
b)	For members 225mm or more in thickness	1250	1750
iv	Compressive stress in columns subjected to direct load	1250	1750

NOTE:

Stress limitations for liquid retaining faces shall also apply to the following.

- a) Other faces within 225mm of the liquid retaining force.
- b) Outside or external faces of strectures away from the liquid but placed in water logged soils upto the level of the highest subsoil water level.

SECTION III - DESIGN TABLES

TABLE 1.3.1 IMPOSED FLOOR LOADS FOR DIFFERENT OCCUPANCIES (CLAUSES 3.1, 3.1.1 AND 4.1.1) | As per IS: 875 (Part 2) - 1987 |

SL No	OCCUPANCY CLASSIFICATION	UNIFORMLY DISTRBUTEED	CONCENTRATED
1 2		LOAD (UDL)	4
		kN/M²	kN
a) Dwe	ENTIAL BUILDINGS Iling houses:		
1)All re	ooms and kitchen	2.0	
2)Toile	t and bath rooms	2.0	1.8
Corri	dors,passages,stair	2.0	
-cases i	ncluding fire escapes	3.0	
4) Baiconies	3.0	4.5	
			1.5 per
			meter run
			concentrated
			at the
b) Dwel	ling units planned and		outer edge.
8888-19	in accordance with IS: 79* only.		
1) Ha	bitable rooms, kitchens,		
toilets	and bathrooms		
	rridors,passages,and	1.5	1.4
stairca	ses including fire		
escape	ses including fire	102	
	conies	1.5	1.4
- J - Dui	comes	3.0	1.5 per
			meter run
			concentrated
			of the
			outer edge.

c) Hotels, hostels, bording houses Lodging houses, dormitories,		
residential clubs: 1) Living rooms, bed	2.0	1.8
rooms,and dormitories 2) Kitchens,and laundries	3.0	4.5
3) Billiards room and	3.0	2.7
public lounges	5.0	4.5
4) Store rooms	4.0	2.7
5)Dining rooms,cafeterias	4.0	
and restaurants	2.5	2.7
6) Office rooms	3.0	1.8
7) Rooms for Indoor games	5.0	1,000
8) Bath rooms and toilets 2.0 9) Corridors,passages,stair	3.0	4.5
cases, fire escapes, lobbies as per the floor serviced (excluding stores and the like)		
but not less than		
10)Balconies	Same as rooms to which they give access but with a minimum of 4.0	1.5 per meter run concent- rated at the outer edge.
d) Boiler rooms and plant rooms to be calculated but not less than	5.0	6.7
e) Garages:		7.4
Garage floors(inluding parking area and repair		9.0
workshops) for passengers		
cars and vehicles not exc		
-ee ding 2.5 tonnes gross		
wieght, including access		
ways and ramps - to be		

		Plain & Reinforced Cement
calculated but not less than		
 Garage floors for vehicles not exceeding 4.0 tonnes 	5.0	9.0
gross weight (including access		
ways and ramps) - to be cal-		
culated but not less than		
ii. EDUCATIONAL BUILDINGS		
a)Class rooms and Lecture rooms	3.0	
(not used for Assembly purposes) +	3.0	2,7
b)Dining rooms, cafeterias, and	3.0	
restaurants	5,0	2.7
c)Offices, lounges staff rooms	2.5	2.7
d) Dormitories	2.0	2.7
e)Projection rooms	5.0	
f)Kitchens	3.0	4.5
g)Toilets and bathrooms	2.0	
h)Store rooms	5.0	4.5
j) Libraries and Archieves : 1) Stack room / stack area		
7) Stack foolii / Stack area	6.0 kN/m ² for a	minimum 4.5
	height of 2.2 +	- 2.0 kN/m ²
	per metre heigh	t beyond 2.2 m.
Reading rooms (without separate storage)	4.0	4.5
 Reading rooms (with separate storage) 	3.0	4.5
k) Boiler rooms and plant rooms-to	4.0	4.5
be calculated but not less than		100
m) Corridors ,passages, lobbies ,		
staircases including fire escapes		
as per the floor serviced (without	4.0	4.5
accounting for storage and projection rooms) but not less		
than		
2000000		

n) Balconies	Same as rooms which they give access but with a minimum of 4.0	1.5 per mtr run concentrated at the outer edge
iii) INSTITUTIONAL BUILDINGS		
 a) Bad rooms, wards, dressing rooms, dormitories and lounges 	2.0	1.8
b) Kitchens, laundries and laboratories	3.0_	4.5
c) Dining rooms,cafeterias and restaurants	3.0+1	2.7
d) Toilets and bathrooms	2.0	
e) X-ray rooms, operating rooms,		
general storage areas-to be calculated but not less than	3.0	4.5
f) Office rooms and OPD rooms	2.5	2.7
g) Corridors, passages, lobbies and staircases including fire escapes- as per the floor ser- vised but not less than	4.0	4.5
h) Boiler rooks and plant rooms- to be calculated but not less than	5.0	4.5
j) Balconies	Same as rooms which they give access but with a minimum of 4.0	1.5 per mtr rur concentrated a the outer edge
(iv) ASSEMBLY BUILDINGS		
a) Assembly areas :		o i lindiff
1) With fixed seats #	4.0	100
2) With out fixed seats	5.0	3.6
 Restaurants (subject to assembly) museums and art gallaries and gymnasia 	4.0	4.5

Plain & Reinforced	Cement Concrete
--------------------	-----------------

a) P	Plain & Rein	forced Cement Concrete
c) Projection rooms d) Stages	5.0	- Concrete
e) Office	5.0	
e) Office rooms, kitchens and laundries	3.0	4.5
July Comes	2.0	4.5
g) Lounges and billiards rooms	2.0	1.8
n) Follets and bathrooms	2.0	2.7
j) Carridors, passages, staircases	4.0	ž.,
including fire escapes	4.0	4.5
k) Balconies		1000
	Same as rooms which they give access but with a minimum of 4.0	1.5 per mtr run concentrated at the outer edge
 Boiler rooms and plant rooms including weight of machinery 	7.5	4.5
m)Corridors, passages subject to loads greater than from crowds, such as wheeled vehicles,	5.0	4.5
trolleys and the like, corridors, staircases and passages in grandstands		
The state of the s		

(V) BUSINESS AND OFFICE BUILDINGS (See also 3.1.2)

a) Rooms for general use with seperate storage	2.5	2,7
b) Rooms without separate storage	4.0	4.5
 c) Banking halls d) Business computing machine rooms (with fixed computers or similar equipment) 	3.0 3.5	2.7 4.5
 e) Records/files store rooms and storage space 	5.0	4.5
f) Vaults and strong room - to be calculated but not less than	5.0	4.5

g) Cafeterias and dining rooms	3.0	2.7	
The Control of the Co	3.0		
h) Kitchens	3.0	2.7	
 i) Corridors, passages, lobbies and staircases including fire escapes as per the floor serviced (exlcuding stotes) butnot less than 	4.0	4.5	
j) Bath and toilet rooms	2.0		
k) Balconies	Same as rooms which 1.5 per me they give access but with a minimum of 4.0 the outer of		
1) Stationary stores	4.0 foreach metre of storage height	9.0	
m)Boiler rooms and plant rooms to be calculated but not less than	5.0	6.7	
n) Libraries	See Sl.No.(ii)		
MERCANTILE BUILDINS			
- \ P 2 1	75%	3.6	
a) Retail shops b) Wholesale shops - to be cal-	4.0 6.0	4.5	
culated but not less than	6.0		
c) Office Rooms	2.5+	2.7	
d) Dining rooms, restaurants and cafeterias	3.0	2,7	
e) Toilets	2.0	1972	
f) Kitchens and laundries	3.0	4.5	
g) Boiler rooms and plant rooms to be calculated but not les than	5.0	6.7	

h) Corridors, passages, staircases	4.0	4.5
including fire escapes and lobbies		7.5
 Corridors, passages, staircases sub- ject to loads greater than from crowds such as wheeled vehicles, trolleys and 	5.0	4.5
the like		
j) Balconies	Same as rooms which they give access but with a minimum of 4.0	1.5 per mtr run concentrated at the outer edge
(vii) INDUSTRIAL BUILDINGS		
 a) Work areas without machinery/ equipment ++ 	2.5	4.5
b) work areas with macinery/ equipment		
1) Light duty } To be cal-	5.0	
2) Medium duty} culated but	7.0	4.5
3) Heavy duty) not less than	10.0	4.5 4.5
 c) Boiler rooms and plant rooms to be calculated but not less than 	5.0	6.7
d) Cafeteries and dining rooms	3.0+	2.7
staircases including fire escapes	4.0	4.5
f) Corridors, passages, staircases subject to machine loads, wheeled vehicles - to be calculated but not		
g) Kitchens	3.0	1 5
h) Toilets and bathrooms	2.0	*.5
(VIII) STORAGE BUILDINGS \$		
a) Storage rooms (other than cold storage)warehouses- to be	2.4 Kn/m² per each 7	7.0

calculated based on the bulk density of materials stored but	height with a min. of 7.5 kN/m ²	
not less than		
b) Cold storage- to be calculated but not less than height with a min.	5.0 kN/m ² per each metre of storage of 15 kN/m ²	9.0
c) Corridors, passages and staircases including fire escapes- as per the floor serviced but not less than	4.0	4.5
d) Corridors, passages subject to loads greater than from crowds such as wheeled vehicles,	5.0	4.5
trolleys and the like e) Boiler rooms and plant rooms	7.5	4.5
Guide for requirements of low income	housing.	

- + Where unrestricted assembly of persons is enticipated, the value of UDL should be increased to 4.0 kN/m²
- # With fixed seats implies that the removal of the seating and the use of the space for other purposes is improbable. The maximum likely load in this case is, therefore, closely controlled.
- ++ The loading in industrial buildings (workshops and factories) varies considerably and so three loadings under the terms "light", "medium" and "heavy" are introduced in order to allow for more economical designs but the terms have no special meaning in themselves other than the imposed load for which the relevant floor is designed. It is, however, important particularly in the case of heavy weight loads, to assess the actual loads to ensure that they are not in excess of 10 kN/m2; in case where they are ine xcess, the design shall be based on the actual loadings.
- S For various mechanical handling equipment wich are used to transport goods, as in warehouses, workshops, store roomds, etc the actual load coming from the use of such equipment shall be ascertained and design should cater to such loads.

REDUCTION IN IMPOSED LOADS ON FLOORS

For Floor supporting Structural Members: The following reductions in assumed total imposed loads on floors may be made in designing columns, load bearing walls, piers, their supports and foundations.

Number of Floors (Including the Roof) to be Carried by Member under consideration	Reduction in Total Distributed Imposed Load on all Floors to be carried by the Member under consideration (Percent)
1	ender consideration (Percent)
2	0
3	10
4	20
S to 10	30
5 to 10	40
Over 10	50

Table 1.3.2
STAIRCASE LOADING OVER FLIGHT AND LANDING
FOR DIFFERENT SPANS AND CLASS OF LOADING

a) Live load = 300 kg/m^2

Span Slab Thickness in cm.	Thickness	Landing load in kg/m ²	FLIGHT LOAD IN kg/m ²				
		Tread= 30 Brick	cm, rise - RCC	15 cm Tread Brick Steps	1=25cm, rise=17.5cm Rcc Steps		
2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00	10 12 13 15 17.5 20 22.5 25	625 675 700 750 813 875 938 1000	830 886 914 970 1040 1110 1180 1249	868 924 952 1008 1078 1148 1218 1287	890 951 981 1042 1119 1195 1272	934 995 1025 1085 1163 1239 1316	

b) Live load = 500 kg/m²

Span	Slab Thickness in cm.	Landing load in kg/m²,		IT LOAD IN		
			Tread= 30 c Brick	m, rise -	Brick Steps	= 25cm, rise= 17.5cm Rcc Steps
2,50	10	825	1030	1068	1090	1134
3.00 3.50	12 13	875 900	1086	1124	1151	1195 1225
4.00	15	950 1013	1170 1240	1028 1278	1242 1319	1286 1363
4.50 5.00	17.5 20	1075	1310	1348	1395 1472	1439 1516
5.50 6.00	22.5 25	1138	1380 1450	1418 1488	1547	1591

Note: Weight of finish and hand rails has been taken as 90 Kg/m²

1.3.2 DESIGN OF BEAMS

1.3.2.1 SINGLY REINFORCED RECTANGULAR BEAMS

Four types of problems encountered in the design of beams and their analytical solutions:

Type1:To design a beam to resist a given B.M:-

Treating it as a balanced section, work out

- a) constants k, j and Q for given allowable stresses
- b) b, is governed by supporting column or aesthetic sense

b/d ratio is 1/2 to 1/4

M = Q bd2, threrfore, d is known

- c) calculate the amount of tensile steel required from At = M/tjd
- d) provide necessary cover for tensile steel and arrive at D. (over all depth)

Type II: To determine permissible BM or loading on beams:-

(given, the section of beam and maximum allowable stresses)

- a) Find out position of hte N,A from $n = (-mAt + \sqrt{(mAt^{2j}+2bm Atd)})/b$
- b) For the given stresses determine the critical neutral axis, no

$$nc = \frac{1 + t/cm}{1 + t/cm} \times d = k d$$

Where k = critical neutral axis depth constant and is given by

c) i) If the depth of critical NA is more thanthe depth of actual N.A., the section is under reinforced and the stress in steel will reach maximum value.

i) If the depth of critical NA is less thanthe depth of the actual N.A, the section will be over - reinforced and the stress in concrete will reach the maximum reach the maximum value

$$MR = b n C/2 (d-n/3)$$

d) Depending on the nature of loading and span, the permissible loading on the beam can also be worked out.

Type III To check the design of beam for stresses :

(given- the section, Area of steel, m to determine the stress developed in concrete and steel when the section subjected to given B,M)

- n) Determine n vaue
- b) Evaluate LA (jd = a) = d-n/3
- c) M.R = ta. At. a = b.n ca (a/2) ,where the actual stresses in

Steel and concrete are 'a and c a respectively

Type IV:- To determine the area of tensile reinforcement :-(given the section of beam, BM to be resisted and maximum allowable stresses)

a) For the given stresses determine k, j and Q

from k or k'=
$$\frac{1}{1+ta/mca} \text{ or k} = \frac{1}{1+t/mc}$$

$$n = kd$$
, $j = d-n/3$, $Q = 1/2$ c.k.j bd^2

b) For the given dimensions find out the moment of resistance or critical section, Mc = Qbd2 c) i) If the actual B M is less than the M R of critical section and the section is to be designed as an under-reinforced section

for
$$MR = t$$
. At $[d-n/3]$

Taking moments about NA bn n/2 = mAt [d-n/2]

$$At = bn^{2}/2m(d-n)$$
 or $\frac{tbn^{2}}{2m(d-n)}$ $MR = \frac{tbn^{2}}{2m(d-n)}$

ii) If the actual BM is more than the moment of resistance of critical section, the section has to

MR = bn C/2 (d-n/3) from which, n, can be found out and At can be found from

$$bn \cdot n/2 = m At (d-n)$$

Altenatively putting $M = Q' bd^2$, value of Q' can be easily evaluated. From the graph or tables, for given stresses % of steel (P) can be found and

 $At = pbd / 100 cm^2$

1.3.2.2. Doubly reinforced Rectangular beam

Three types of problems encountered with their analytical solutions :

Type I: Design of D.R. beams (given BMax, allowable stresses, m and restricted section of

i) nc, J,k and Q can be found for given stresses for a singly reinforced beam.

ii) Assume f, i.e., cover for compressive steel as 4 cms, say

iii) Moment of resistance of singly reinforced beam M1 = Qbd2 balance of Moment for which compressive steel is to be provided $M2 = M-M1 = M-Qbd^2$

iv) Moment resisted by compressive steel = (m-1) Ac.c π -f (d-f) /n = M-M1 = M2 from this, Ac can be found

v) At =
$$At_1 + At_2 = \frac{M1 + M-M1}{tjd}$$
 or At,
or by using graphs the section can be designed.

 $Q' = M/bd^2$ Take some value of f = say 4 to 5 cms.

Choose a mix, M 15 or so, and from f determine pt for tensile steel and pc for compressive steel from graph

At
$$\Rightarrow \frac{Pt}{100}$$
 x bd and Ac = $\frac{Pc}{100}$ x bd, (cm²)

Type II :- To Determine the BM or permissible loading on beams : (given size or section, area of steel and max.allowable stresses)

> i) Determine the depth of actual NA by taking moments of concrete and equivalent steel areas about N.A.

And all all are trained from a sale on the

- ii) For given permissible stresses, determine the critical value nc.
- iii) Compare depth of actual na to critical nc and determine whether concrete reaches maximum stress or steel (over - reinforced or under- reinforced) first. ie., na > nc, or na < nc

a) If na > nc, concrete reaches maximum stress first, then
$$MR = bn \frac{C}{2} (d-n/3) + (m-1) Ac.C \frac{n-f}{n} (d-f)$$

b) If na < nc, steel reaches maximum stress first, corresponding to, maximum stress in steel, stress in concrete will be

$$\dot{C}a = \underline{t} + \underline{(n)}$$

M and R can be found taking moments about tensile steel
$$MR = b.n. \frac{Ca}{2} (d-n/3) + (m-1) Ac.Ca \frac{n-f}{n} (d-f)$$

Type III: To check design of a beam for stresses developed:-(given size of beam, area of steel and B max.)

- i) Equating equivalent areas of steel and concrete determine N.A.
- ii) If Ca is compressive stress in top fibre of concern,

iii) Taking moments of compressive forces about tensile steel and equating to external BM

 $M = (m-1) Ac \times \frac{n-f}{n} Ca (d-f) + bn. \frac{Ca}{2} (d-n/3)$

from which actual stress in top fibre of concrete Ca can be found.

- iv) Stress in tensile steel, ta = m Ca (d-n) /n
- v) Stress in compressive steel m Ca x (n-f)/n

1.3.2.3 T AND L BEAMS

Three types of problems encountered and their analytical solutions :
Type-1 :- To check the section for stresses :-

i) Assume NA to lie in flange. Find the position of NA by equating moments of equivalent areas.

$$B. n^2/2 = mAt (d-n)$$

- ii) Let Ca be actual stress in concrete
 If N.A lies in flange, MR = B.n.Ca (d-n/3) /2 = M, the given moment
- iii) If N.A does not lie in flange but lies in the web, B ds (n-ds/2) = m At (d-n) and

MR = B.ds
$$\frac{\text{Ca}}{2} [(1+ds/n)^2] [(\frac{d-ds}{2}) + \frac{ds^2}{6(2n-ds)}]$$

From this, value Ca can be found.

iv) Stress in steel, ta = m Ca. (d-n) /n

Type -II: - To find MR of a given T-Beam (given, the section and allowable stresses):-

 By taking moments of equivalent areas about NA, find the position of NA from either, (as in I (ii) and (iii) above.

a)
$$Bn^{2}/2 = m$$
 At (d-n) or

b) B.ds
$$x [n - ds] / 2 = m.At (d-n)$$

ii) From the permissible (allowable) stresses given, determine critical N A depth constant,

$$K = 1/(1+t/c.m)$$
 from which depth of critical N.A = nc = kd= [1/(1+t/Cm)] x d

iii) If the depth of actual NA is greater than n c, section is over-reinforced and concrete reaches its maximum stress first.

The compressive stress in top fibre of concrete = C (allowable)

a) If the NA lies in the flange:

MR = Bn C/2 [d - n/3] as for rectangular section

b) If NA lies in the web, lever arm is given by

$$d - ds / 2 + ds^2 / 6 (2n - ds)$$

$$MR = B.ds \cdot (c + c')/2 \cdot a$$

iv) If the actual NA is above the critical NA, the section is under reinforced and steel reaches its maximum stress first. The corresponding maximum stress in concrete in the top fibre

$$Ca = t/m \cdot [n/(d-n)]$$

a) If NA is found to lie in the flange MR = Bn Ca/2 (d-n/3)

b) If NA found to be in web:

MR = B.ds. Ca/2 (1+ n-ds)/n
$$\frac{(d-ds)}{2}$$
 + ds² / 6(2n-ds)]

Type III : - Design of T-beam (given the thickness of slab and the Mix).

1)Assume breadth of rib such that it can accomodate the steel

2) Determine width of flange from the ISI code of practices

$$bf = Lo/6 + bw + 6.Df$$

3) Determine effective depth of beam for balanced section from graph or from

$$MR = B.C.ds \left[d - \frac{(ds(1+k) + ds^2)}{2k} \right]$$

when k=0.4 for all mixes with $t=1400 \ kg/cm2$

M/Bc =
$$ds[(1-1.75 ds + ds^2 / 1.2d)]$$
 or Bds.C(2kd-ds)kd x LA

This is on the assumptin that NA lies in rib and the compression taken by the concrete in the rib is neglected. M/BC graphs are available against effective depth d for various slab thicknesses ranging from 8 to 20 cm s. or LA lever arm can be safely assumed to lie between 0.88 to 0.95d, or (d-ds/2)

or M = 0.45 Bds,
$$\frac{C(2kd-ds)}{kd}$$
, when k = 0.4

For Tor steel apply value of k = 0.289 (approximate) for M15 mix Alternatively, knowing flange width, moment to be resisted, Mix used, vaue of M/BC, vlaue of d can be found for a given slab thickness of ds, from the graph.

Also determine the effective depth so that shear stress is within the permissible limits for assumed effective depth. Maximum depth of ebeam from the above, will be the effective depth of the beam, cover to it, to get D i.e. Total Depth.

- Calculate steel area from M/t a where a is LA (Lever arm)
 Can be assumed as d-ds/2 and provide steel reinforcement
- 5) Check the section for stresses in
 - (a) Steel
 - (b) Concrete
 - (c) Shear
- (d) development length at supports and critical sections and provide shear reinforcement as per code through bent up bevs and vertical stirrups.

TABLE: 1.3.3 MINIMUM DEPTH-OF SLABS FOR DEFLECTION

published Streets with the real Bulletin Street

Span (m)	Depth of Slab simply supported	(mm) Continuous	Remarks
		-	
2.00	75	15	
2.50	90	75	
2.75	100	90	Doubl Conn =
3.00	100	90	Depth/ Span = 1/30 for Simply
3.25	110	100	
3.50	120	100	supported
3.75	130	110	1/35 for continuous
4.00	140	110	1/33 101 Continuous
4.25	140	120	
4.50	150	130	

TABLE 1.3.4 RECTANGULAR BEAMS WITH ONLY TENSION REINFORCEMENT

277729	V T 100 t	Width (cm.)	CUEU	REMARKS
Depth (cm)	23 M	As	30 M	As	gesteges madrism modifished PAP
20 25 30 35 40 45 50	41 70 106 150 200 260 326	1.2 1.6 2.0 2.3 2.7 3.1 3.4	54 92 138 196 261 339 426	1.6 2.1 2.5 3.0 3.5 4.0 4.5	Concrete M15 Steel HYSD Bars M = Max moment capacity at working load As- Corresponding Aera of Steel mm ² Notes: 1. Clear cover to main reinf. = 2.5 cm
60 70	481 666	4.1 4.9	628 869	6.3	For design moments less than the tabulated value, the area of steel can be reduced in direct proportion.

TABLE 1.3.5 ONE WAY SLABS (working stress design) STEEL = HYSD BARS

Overall Depth	Main Dia.mm	Steel spacing	Distribution Dia.mm mm	Steel Spacing	Resisting moment mm	REMARK!
75	8	165	6	250	22.7	regin .
100	8	200	6	250	200	
110	8	180		190	420	Stress
	10	270	6	170	530	σcb= 50kg/cm ²
120	8	160	6	MRS		ost= 2300Kg/cm
	10	250	6	160		m = 18
130	10	230	6			Constnats
	12	320	6	140	790	'k" = 0.29
140	10	210		5. 000		d = 0.90
	12	300	6	130	940	Q = 6.55
50	10	190	6	120	1100	M.R = 6.55 bd ² Cover = 15 mm

NOTE: For two way slabs, calculate moments in both directions and read the main steel from the Table for moment in each direction and provide.

TABLE 1.3.6 T-BEAMS WITH TENSION REINFORCEMENT

M = Maximum moment capacity of T-beam in 1 m width of flange(Tonnes)

As= Corresponding area of steel (Sq mm)

Overall depth (cm)		EXACTORES EXECUTED IN		Flang	e thickne	ss (cm)	
20	M	177	177	177	177	177	177
	As	5.2	5.2	5.2	5.2	5.2	5.2
25	М	301	301	301	301	301	301
	As	6.8	6.8	6.8	6.8	6.8	6.8

1.0000000000000000000000000000000000000	addining pain	nev Inggal I	Flange t	hickness	(cm)			
depth								
cm	М	458	458	458	458	458	458	
30	As	8.4	8.4	8.4	8.4	8.4		
	М	647	647-	647	647	647	647	
35	As	9.9	9.9	9.9	9.9	9.9	9.9	
	м	869	869	869	869	869	869	
40	AS	11.5	11.5	11.5	11.5	11.5	11.5	
	М	1100	1121	1124	1124	1124	1124	
45	As	12.7	13.0	13.1	13.1	13.1	13.1	
	м	1337	1376	1402	1410	1410	1410	
50	As	13.7	14.2	14.5	14.7	14.7	14.7	
	M	1815	1897	1964	2017	2054	2078	
60	As	15.1	15.9	16.5	17.4	17.4		
	М	2297	2427	2538	2632	2712		
70	As	16.1		18.0	18.7	19.4		
2011								
					1			

Ov bea dep (cm	th (6 8	6 m	m dia		i steel		8mm 6	dia (I	HYSD 10		20	0 :	25	3
20	2.1	1.6	3		174	17.59									
25	2.8		1.7					6.3	4.7						
30	3.5		2.1	1.4		190.0		8.2	6.2	4.9					
35	4.1	3.1	2.5	1.6				10.4	7.6	6.1	4.1				
40	4.8	3.6	2.9	1.9	1.4			12.1	9.1	7.2	4.8				
45	5.4	4.1	3.3	2.2	1.4			14.0	10.5	8.4	5.6	4.2			
50	6.1	4.6	3.6	2.4	1.6			15.9	11.9	9.5	6.4	4.8			
60	7.4		4.4	3.0	1.8	1.5	5578 U	17.8	13.4	10.7	7.1		4.3		
70	8.7			3.5	2.2	1.8 2.1	1.5	21.7 25.5	16.2 19.1	13.0 15.3		6.5	5.2	4	-7200

NOTE: Maximum spacing is limited to 0.5 x depth of beam

TABLE 1.3.8 RECTANGULAR COLUMNS Working Stress Method Concrete = M - 15; Steel = HYSD BARS;

Size mm x mm	Cm ² (T) Max: 0.04 Sc Ac		8Sc Ac	Tota (Ton	l capacity nes)	Recom -	
			Min	Max	Min	Max.	-mended ties
230 x230	530	21	8	40			ires
x 300 -	690	28	10	40	29	61	
350	800	32		52	38	80	
400	920	37	12	60	44	92	6 mm ф
450	1030		14	70	51	107	and the second s
100000	1030	41	15	78	56	119	@150c/c
300 x300	900	36	12				
350	1050	42	13	68	49	104	
400	1200	200	16	80	58	102	
450	05350400	48	18	91	66	139	0
1.50	1350	54	20	102	74	150	8 mm φ @ 200 c/c

1 - 84

TABLE - 1.3.9

Working Stress Design Steel: HYSD BARS

> LOAD CARRYING CAPACITY OF LONGITUDINAL STEEL IN COLUMNS (TONNES)

Bar Dia	Area	Load on each Bar		N	o. of Ba	rs		
mm.	Cm ²	FIRST TO	4	6	8	10	12	14
12	1.13	2.1	8.6	13	17	21	26	30
16	2.01	3.8	15	23	31	38	46	53
	3.14	5.9	24	36	48	60	71	83
20		7.2	29	43	58	72	87	101
22 25	3.80 4.91	9.3	37	56	75	93	112	131

TABLE 1.3.10 SQUARE FOOTING Safe bearing capacity of soils = 5 t/m2

Footing	Total	a	D	As	
Width (A) (m)	load (Tonnes)	cm	cm	cm²	
1.0	4.5	23	25	0.80	
1.2	6.5	23	25	1.50	
1.4	8.9	23	25	2.60	
1.6	11.6	23	30	3.3	
1.8	14.7	23	35	3.9	
2.0	18.1	23	40	4.9	
2.2	22.0	23	45	5.8	
2.4	26.2	23	50	6.8	
2.6	30.7	23	60	7.2	

				Plain & Re	infor
2.8	35.6	23	65	0.4	
3.0	40.9	23	75	8.4	
3.2	46.6	23		9.0	
3.4	52.60	23	80	10.30	
3.6	58.9	23	90	11.00	
3.8	65.60	5300	95	12.40	
4.0	72.70	23	105	13.20	
4.2		23	115	14.10	
4.4	80.20	23	120	15.70	
4.6	88.00	23	130	16.70	
4.8	96.20	23	140	17.80	
	104.70	23	150	18.90	
5.0	113.60	23	160	20.10	

The steel (As) is to be provided in each direction.

TABLE 1.3.11 SQUARE FOOTING

Person	Safe b	earing capac	ity of soils	= 10 t/m ²	
Footing Vidth (A)	Total	а	D	Areas of Steel	
(m)	(Tonnes)	cm	cm	As (cm ²)	
1.0	9.10	23	25	2.10	_
1.2	13.10	23	25		
1.4	17.81	23	30	2.90	
1.6	23.30	23	40	3.50 4.73	
1.8	29.45	23	45	5.75	
2.0	36.35	23	55	6.84	
2.2	44.00	23	60	Talling	
2.4	52.36	23	70	7.98 8.18	
2.6	61.45	23	80	10.45	
2.8	71.30	23	90	11.75	
3.0	81.80	23	100	13.10	
3.2	93.10	23	110	14.50	
3.4	105.10	23	120	15.97	
3.6	117.80	23	130	17.47	
3.8	131.30	23	145		
1.0	145.45	23	155	19.02	
4.2	160.35	23	165	22.23	

TABLE 1.3.12 SQUARE FOOTING

Safe bearing capacity of soil = 15 t/m2

91

Footing	Total	, a	D	Areas of	Steel
Width (A)	load		Tariba I		As (cm ²)
(m)		(Tonnes)	cm	cm	As (cm /
1.0	13.70	23	25	2.69	
1.2	19.30	23	30	3.55	
1.4	26.70	23	35	3.91	
1.6	34.90	23	45	5.80	
1.8	44.20	23	55	7.05	
2.0	54.50	23	65	8.37	
2.2	66.00	23	75	9.77	
	78.55	23	85	11.21	
2.4	92.20	23	95	12.79	
2.6	106.90	23	110	14.39	
2.8	122.72	23	120	16.06	
3.0			135	17.78	
3.2	139.60	23		19.56	
3.4	157.60	23	150	19.50	

TABLE 1.3.13 SQUARE FOOTING

Safe bearing capacity of soil = 20 t/m2

Footing	Total	a	D	Areas of Steel
Width (A) (m)	load (Tonnes)	cm	cm	As (cm²)
1.0	18.20	23	25	2.97
1.2	26.20	23	35	4.10
1.4	35.63	23	45	5.35
1.6	46.54	23	55	6.69
1.8	58.90	23	65	8.14
2.0	72.70	23	75	9.67
2.2	88.00	23	85	11.29
2.4	104.70	23	100	12.99
2.6	122.90	. 23	110	14.77
2.8	142.50	23	125	16.62
30.0	163.60	23	140	18.54

1.3.2 DESIGN OF STAIR CASES

1.3.2.1 Desired width of stair cases and balconies

a) Residential buildings: minimum 85 cms (75 - 95 cm)

T TOWN	No.of users	width of stair in cms
b) Battle 4	10 11-20 21-100	110 125 140
b) Public buildings ware houses Industrial buildings public houses	upto 200 - 200 - 300 -	155 185

Note: Increase by 25 mm for every additional 15 persons until a maximum of 2.75 metres is c) Tread (width of step)

Residences Non-residential buildings; factories / cinema theatres 27 - 30 cms 25 - 27 cms

d) Rise (vertical distance between two steps)

Residences 15 - 18 (20) cms	Non-residential buildings; factories / cinema theatres
	19 - 25 cms

Thumb rule Tread	: - 2 R+T	= 60 cms,	Tr = 40	0 450 (SOON		
Rise	23 19	25 17	28 16	30 15	33 14	35 12	38

Total number of steps in a single flight Minimum clear head room over stairs Maximum heights of flight without landings or winders

e) Winders: Provided if unavoidable, Tread should be at least 23 cms, at about 45 cms from the (inner small end of the tread) handrail, generally located in the lower reaches but not on the top of the stairs. For quarter space landing, not more than three winders shall be used.

1.3.2.2 Design aspects

Stairs spanning horizontally :- Stairs supported at each side by walls, stringer beamsor at one side by wall and the other side by a beam.

1.3.2.3 Effective span of Stairs :- The effective span of stairs without stringer beams shall be taken as the following horizontal distances:

a) Where supported at top and bottom risers by beams spanning parallel with the risers, the distance centre-to-centre of beams,

b) Where spanning on to the edge of landing slab, which spans parallel with the risers (see Fig.), a distance equal to the going of the stairs plus at each end either half the width of the landing or one metre, whichever is smaller, and

c) Where the landing slab spans in the same direction as the stairs, they shall be considered as acting together to form a single slab and the span determined as the distance centre to centre of the supporting beams or walls, the going measured horizontally.

X	٧	SPAN IN HETRES
<1 m	<1 m	G + X + Y
<1 m	>1 m	G+X+1
>1 m	<1 m	6+4+1
>1 m	≥1 m	0 - 1 - 1

EFFECTIVE SPAN FOR STAIRS SUPPORTED AT EACH END BY LANDINGS SPANNING PARALLEL WITH THE RISERS.

EFFECTIVE SPAN FOR STAIRS SUPPORTED AT EACH END BY LANDINGS SPANNING PARALLEL WITH THE RISERS

1.3.2.4 Distribution of laoding on Stairs :- In the case of stairs with open wells where spans partly crossing at right angles occur, the laod on areas common to any two such spans may be taken as one-half in each direction as shown in fig. Where flights or landings are embedded into walls for a length of not less than 110 mm and are designed to span in the direction of the flight, a 150 mm strip may be deducted from the loaded area and the effective breadth of the section increased by 75 mm for purposes of design (see fig.)

Fig. LOADING ON STAIRS WITH OPEN WELLS

Stairs spanning longitudinally: - Staire span between supports and the ,bottom and top of flight and remain unsupported at sides.

Bending Moment: Coefficients WL2/8 if simply supported

and WL2 / 10 if continuous

Loading: See Table 1.3.1 I.S 875 - 1964 (Revised)

300 kg/m2 for residences

00 Kg/m2 for offices and balconies

Mix M 15

To arrive at teh corresponding load on plan, for waiste slab multiply L by a factor:

 $\equiv (R^2 + T^2)$

1.3.3.0 SMALL WATER TANKS

1.3.3.1 Illustrative Example

Let us consider a water tank with a storage capacity of 7,000 liters. From Table 1.3.14 and 1.3.15 the following particulars may be set out.

> 7.000 Litres Capacity of tank Inside diameter 2.5 m Depth (including free board) 1.6 m 10 cm Wall thickness Floor thickness 10 cm. 10 mm dia at 20 cm c/c (Reinforcement in wall, hoop bars conforming to bars c in fig1.3.1)

Vertical bars (a and b fig.3.11) 10 mm dia at 20 cm c/c

Reinforcement in floor 10 mm dia at 20 cm c/c mesh at top and bottom

TABLE 1.3.14 RECOMMENDED SIZES OF CIRCULAR TANKS WITH DIFFERENT CAPACITIES

	CAFAC	TITES
Capacity of tank Litres	Internal diameter	Depth including free board of 15 cm
	m	m
2,500 5,000 7,000 10,000 20,000 30,000 40,000 50,000	1.75 2.25 2.50 2.75 3.50 4.00 4.50 5.00	1.20 1.40 1.60 1.85 2.25 2.55 2.65 2.70

TABLE 1.3.15 STRUCTURAL DETAILS OF CIRCULAR REINFORCED CONCRETE WATER TANKS OF DIFFERENT CAPACITIES (Figure 1.3-1)

Capacit	,	Thickn	ess of	(On ground / level platforn) Reinforcement in wall Mesh rein				
litres		concre	Dag Committee	Hoop bars*	Vertical bars**	cement in floor at top and		
		Wall	Floor			bottom ++		
To compare 1		10,000	I SKEN			10 mm dia		
2,500		10	10	10 mm dia	10 mm dia	@20 cm c/c		
and the same of th		2000	No.	@20 cm c/c	@20 cm c/c	10 mm dia		
5000		10	10	10 mm dia	10 mm dia			
		1-20	diego	@20 cm c/c	@20 cm c/c	@20 cm c/c		
7,000		10	10	10 mm dia	10 mm dia	10 mm dia		
				@20 cm c/c	@20 cm c/c	@20 cm c/c		
10,000		13	13	10 mm dia	10 mm dia	10 mm dia		
				@20 cm c/c	@20 cm c/c	@20 cm c/c		
20,000		15	15	10 mm dia	10 mm dia	12 mm dia		
				@18 cm c/c	@18 cm c/c	@18 cm c/c		
30,000		15	15	10 mm dia	10 mm dia	12 mm dia		
				@18 cm c/c	@18 cm c/c	@18 cm c/c		
40,000		18	18	12 mm dia	12 mm dia	12 mm dia		
NORTH PARKS				@20 cm c/c	@20 cm c/c	@20 cm c/c		
50,000		18	18	12 mm dia	12 mm dia	12 mm dia		
		950		@19 cm c/c	@19 cm c/c	@19 cm c/c		
	Shape	conformi	ng to ba	rs c		· July is the		
				rs a and b	Grade of	concrete = M 20		
++		conform						

NOTE: 1. This table applies only to those tanks, the sizes of which conform to those given in table 3-16 for the respective capacities.

- 2. Only hydrostatic pressure is considered in the design.
- 3. Wind pressure resistance has to be separately designed.

RECOMMENDED SIZES OF SQUARE TANKS WITH DIFFERENT CAPACITIES

0	The Land Land		CAPACITIES
Capacity of tanks of 15cm litres		Internal dimensions	Depth including free board
mics		m	m
2,500 5,000 7,000 10,000 20,000 30,000 40,000 50,000	1.5 x 2.0 x 2.3 x 2.6 x 3.3 x 3.8 x 4.2 x 4.5 x	1.5 2.0 2.3 2.6 3.3 3.8 4.2 4.5	1.25 1.40 1.50 1.65 2.00 2.25 2.45 2.65

TABLE 1.3.17 STRUCTURAL DETAILS OF SQUARE REINFORCED CONCRETE WATER TANKS OF DIFFERENT CAPACITIES (FIG 1.3-2)

Capacity This		Thic	Thickness Reinforcement in					Mesh rein forcement
litres		floor	bars in bottom half *	Vertical bars in bottom half **	Vertical bars+	Vertical bars in Tophalf	Horizontal bars	in floor, alternate bars bent up ends
2500	10	10	10 mm dia @20 cm oc	10 mm dia @20 cm oc	10 mm di @ 20 cm	T	10 mm dia @ 20 cm oc	10 mm dia @20 cm oc
5000	10	10	10 mm dia @20 cm oc	10 mm dia @20 cm oc	10 mm di @20 cm		10 mm dia @ 20 cm oc	10 mm dia @20 cm oc
7000	10	10	12 mm dia @20 cm oc	2.41.2	10 mm d @20 cm		10 mm dia @20 cm oc	10 mm dia @20 cmoo
10000	13	13	16 mm dia @20 cm oc	12 mm dia @20 cm oc	12 mm c @ 40 cm	CONTRACTOR OF THE PARTY	A description of the Land Control of the Control	10 mm dia @20 cm oc
20000	15	15	16 mm dia @20 cm oc	12 mmdia @20 cm oc	12 mm d @ 40 cm		100000	12 mm dia c @20 cm oc
30000	18	18	16 mm dia @20 cm oc	12 mm dia @20 cm oc	12 mm d @40 cm	TOPAC		10 mm dia c @20 cm oc
4000	0 18	18	20 mm dia @20 cm oc		12 mm (@ 40 cm	The second second		10mm dia @20cmoc
5000	0 20	20	22 mm dia @20 cm oc		12 mm d @ 40 cm	FOLLOW !		to deline dell'interes
+	Shap	e con	forming to forming to oncrete N			onforming onforming		

NOTE: This table applies only to those tanks, the size of which conform to those given in Table

1.3.3.2 Uses of Accoproof

To make the concrete used in building water storage tanks water tight, it is necessary to mix 2 % of Accoproof integrally with the concrete, which should consist of 1 part of cement, 1½ parts of clean graded sand 4.75 mm down, and 3 parts of broken stone graded from 20 to 4.75 mm.

For rendering newly built concrete storage tanks water tight, their walls and floors should depending on their unevenness, be treated with two or three caots, each of cement, mortar comprising 1 part of cement admixed with 2 % of Accoproof and 3 parts of clean graded sand

Where repairs for stopping leakage have to be carried out to an existing concrete masonry tank, the base of finishing coats of plaster, each 12.5 mm thick, should be made water proof by admixing 2 % of Accoproof with the cement mortar 1:2 1/2 mix.

Number of Coats: If the surface of newly built wall to be renderd is fairly even, two coats should be sufficient - the backing coat being 10 to 12.5 mm thick and the finishing coat required. If the surface of the wall is rough and uneven, three coats should be used, the first coat about 10

TABLE 1.3.18 ESTIMATED QUANTITIES OF ACCOPROOF REQUIRED FOR 100 MP OF CEMENT MORTAR FOR VARIOUS THICKNESS Accoproof assumed at 2 % by weight of Cement

	Acco	proof in l	Kg for 10	00 M² of	cement	mortar	for	thickness	in	-	- 6
Mix.	10	12.5	15	20	25	30				ш	10
1:2½	11.8	14.7 12.6	17.8 15.2	23.6 20.2	29.4 25.2	35.4 30.3					

ROOF

It is desirable to provide a roof over concrete tanks to prevent pollution of water. By referring to Table 1.3.19 and 1.3.20 the thickness of the roof slab and reinforcement required for circular and square water tanks, respectively, for capacities varying from 2,500 to 50,000 litres

TABLE 1.3.19 STRUCTURAL DETAILS OF REINFORCED CONCRETE ROOFS FOR CIRCULAR WATER TANKS

Capacity	Internal dia	meter Thickr	Grade: M - 15 Thickness Mesh reinforcement in of roof roof (alternate bars bent u				
litres	m	cm					
2,500	1.75	10	10 mm dia	@ 20 cm c/c			
5,000	2.25	10	10 mm dia	@ 20 cm c/c			
7,000	2.55	10_	10 mm dia	@ 20 cm c/c			
10,000	2.75	10	10 mm dia	@ 20 cm c/c			
20,000	3.50	10	10 mm dia	@ 20 cm c/c			
30,000	4.00	10	10 mm dia	@ 15.5 cm c/ç			
40,000	4.50	10	10 mm dia	@ 15.5 cm c/c			
50,000	5.00	10	10 mm dia	@ 12.5 cm c/c			

Note: Design live load assumed as 150 kg / m2

TABLE 1.3.20 STRUCTURAL DETAILS OF REINFORCED CONCRETE ROOFS FOR SQUARE WATER TANKS

Capacity litres	Internal size of tank, m		of tank, of roof		Mesh reinforcement in roof (alternate bars bent up at			
2,500	1.5	x	1.5	10	10 mm dia	@ 20 cm c/c		
5,000	2.0	x	2.0	10	10 mm dia	@ 20 cm c/c		
7,000	2.3	x	2.3	10	10 mm dia	@ 20 cm c/c		
10,000	2.6	×	2.6	10	10 mm dia	@ 20 cm c/c		
20,000	3.3	x	3.3	10	10 mm dia	@ 20 cm c/c		
30,000	3.8	x	3.8	10	10 mm dia	@ 17.5 cm c/c		
40,000	4.2	x	4.2	10	10 mm dia	@ 16.5 cm c/c		
50,000	4.5	x	4.5	10	10 mm dia	@ 14.0 cm c/c		

Note: Design live load assumed as 150 kg/m2.

Grade of concrete: M 15

FIG 1.3-2 SECTION OF SQUARE TANKS SHOWING DETAILS OF REINFORCEMENT

1,3.4 DESIGN AIDS FOR WORKING STRESS METHOD:

13.4.1 Flexural Members :

(1) Singly reinforced rectangular members :-

Modular ratio

$$m = 2800 = 933.33$$

 $3\sigma cbc = \sigma cbc$

Therefore, for all values of m, σ cbc = 933.33 Balanced section: σ st: m σ cbc(1/k - 1)

$$(1/k - 1) = \frac{\sigma st}{m \sigma cbc} = \frac{\sigma st}{933.33}$$

$$1/k = \frac{\sigma \text{ st}}{933.33} + 1 = \frac{\sigma \text{ st} + 933.33}{933.33}$$

$$k = 933.33 / (\sigma \text{ st} + 933.33)$$

Note:- Value of K for balanced section depends on ost only and it is independent of

MR for balanced section. M bal = $(bd^2/2)$. σ cbc k (1-k/3)

The values of Mbal / bd2 for different values of ochc and ost are given below.

Concrete	σ cbc		σ st in kg/cn	n²-	
grade	kg/cm²	MS 4500	Fe 415- Tor40 2300	Fe.500-Tor50 2750	
M15	50	8.7	6.50	5.80	
M20	70	12.10	9.1	8.10	
M25	85	14.70	11.10	9.90	
M30	100	17.30	13.0	11.60	

Percentage of steel (pt) for balanced section :-

Compressive force C: Tensile force = T

$$\frac{\text{gcbc} \underline{\text{kbd}}}{2} = \frac{\text{Pt,baL} \ \text{x} \ \text{bd, gst}}{100}$$

Pt bal =
$$50 \text{ K} \text{ } \sigma \text{ cbc}$$

 $\sigma \text{ st}$

Pt.of steel (tensile reinforcement) for a balanced Singly reinforced section

			ast in Kg	/cm²
Concrete grade	σ cbc kg/cm²	M.S. 1400	Tor40=Fe415	Tor50=Fe 500
M15 M20 M25 M30	50 70 85 100	0.71% 1.00% 1.21% 1.43%	0.31 0.44 0.53 0.63	0.23 0.32 0.39 0.46

Under reinforced section: Singly reinforced section

Equating moments :- N A =

b.kd.
$$\frac{\text{kd}}{2} = \frac{\text{pt}}{100}$$
 bd m (d-kd) or $\frac{\text{bn}^2}{2} = \text{Ast.m(d-n)}$

COLOR DE SERVE LA COLOR DE LA

$$\frac{bd^2}{2} \frac{k^2}{2} = bd^2 \underline{ptm} (1-k)$$

$$k^2 = \underline{ptm}_{50} (1-k)$$

$$\frac{k^2 + \underline{pt \, mk}}{50} - \underline{ptm}}{50} = 0$$

$$k = \frac{-ptm}{100} + \frac{pt m^2}{(100)^2} + \frac{ptm}{50}$$

MR for under reinforced section:

M: bd2 pt. ost (1-k/3) / 100 or Ast. ost (d-n/3)

Table 1.3.2 1 M15 Mix - MR factors

Working stress Method

Flexure - Moment of resistance factor for a singly reinforced Reinforced Rectangular section with different % of steel for different grades of steel and concrete (unbalancedSection)

σ Cbc = 50Kg/cm², grade = M=15 Moment of Resistance factor = M/bd²(in kg/cm²)

ost kg/cm²

pt	Ms/1400	Tor . 40	Tor . 50	os	t in Kg	/cm²		+3
% of steel (100 Ast)/bd		Fe 415 2300	Fe 500 2750	Pt.	M.S	T40	T50	00
0.12	1.57	2.58	3.09	0.47	5.83			
0.13	1.70	2.79	3.34	0.48	5.95			
0.14	1.83	3.00	3.59	0.49	6.07			
0.15	1.95	3.21	3.84	0.50				
0.16	2.08	3.41	4.08	0.51	6.30			
0.17	2.20	3.62	4.33	0.52	6.42			
0.18	2.30	3.83	4.57	0.53	6.54			
0.19	2.45	4.03	4.82	0.54				
0.20	2.58	4.23	5.06	0.55	6.77			
0.21	2.70	4.44	5.31	0.56	6.89			
0.22	2.82	4.64	5.55	0.57	7.00			
0.23	2.95	4.84	5.79	0.58	7.12			
0.24	3.07	5.05		0.59	7.24			
0.25	3.19	5.25		0.60				
0.26	3.32	5.45		0.6	7.47			

VACUL	1. 1	
ost	kg/cm	31
1555		

and the control of American

		ost kg/cm	Ť.				
pt % of stee		Tor . 40 Fe 415	Tor . 50 Fe 500		ost	in Kg/cn	n²
(100 Ast)/	/bd	2300	2750	Pt.	M.S	T40	T50
0.27	3.44	5.65		0.62			
0.28	3.56	5.85		0.62			
0.29	3.68	6.05		0.63			
0.30	3.80	6.25		0.64			
0.31	3.92	6.45			7.93 8.04		
0.32	4.05			Viscari.			
0.33	4.17			0.67	The state of the s		
0.34	4.29			0.68	8.27		
0.35	4.41			0.69	8.39		
0.36	4.53			0.70	8.50 8.62		
0.37	4.65			0.70			
0.38	4.77			0.72			
0.39	4.89			0.73			
0.40	5.00			0.74			
0.41	5.12			0.75			
0.42	5.24						
0.43	5.36			0.77			
0.44	5.48			0.78			
0.45	5.60			0.79			
0.46	5.72			0.80			

Table 1.3.22 M.20 - MR Factor Working Stress Method

Flexure: Moment of Resistance factor M/bd²/ in kg/cm² for singly reinforced Rectangular section using different % steel for different grades of steel and concrete (Unbalanced section)

		ost kg/cn	n ²		
pt	Ms/1400	T 40	T 50	ost in Kg/cm ²	- 0
% of steel		2300	2750	Pt M.S. T 40 T 50	
100 Ast)/b	d			PI N.S. 140 150	
0.20	2.81	4.28	5.12	0.71 8.78	
0.22	2.86	4.70	5.62	0.72 8.90	
0.24	3.11	5.11	6.11	0.73 9.01	
0.26	3.36	5.52	6.60	0.74 9.13	
0.28	3.61	5.93	7.09	0.75 9.25	
		2032	222	0.76 0.26	
0.30	3.86	6.33	7.57	0.76 9.36	
-0.32	4.10	6.74	8.08	0.77 9.48	
0.34	4.35	7.14		0.78 9.60	
0.36	4.59	7.55		0.79 9.71	
0.38	4.84	7.95		0.80 9.83	
0.40	5.08	8.35		0.81 9.94	
0.40	5.32	8.75		0.82 10.06	
0.42	5.45	8.95		0.83 10.18	
0.43	5.57	0.75		0.84 10.29	
0.44	5.69			0.85 10.41	
	6 91			0.86 10.52	
0.46	5.81	α.		0.87 10.64	
0.47	6.05			0.88 10.75	
0.48				0.89 10.87	
0.49	6.17			0.90 10.99	
0.50	6.29				
0.51	6.41			0.91 11.10	
0.52	6.53			0.92 11.22	
0.53	6.65			0.93 11.33	

1 - 102

1 - 103

		-		1.0.6	2	Plain & Re	inforced
		ost kg/ci	m²	N-HIS	4.45-	11-01	
pt % of steel	Ms/1400	T 40 2300	T 50 2750		ost in	Kg/cm ³	
(100 Ast)/b	od		277000	Pt	M.S. T	40 T 50	
0.54	6.77			2720			
0.55	6.89			0.94			
0.56	7. 01			0.95	11.56		
0.57	7.13			0.96	11.68		
0.58	7.24	1.5		0.97	11.79		
0.59	7.36				11.90		
0.60				0.99	12.02		
0.00	7.48			1.00	TH.		
0.61	7.60				7000		
0.62	7.72			1.01			
0.63	7.84			1.02			
0.64	7.95			1.03			
0.65	8.07			1.04			
	7003			1.05			
0.66	8.19						
0.67	8.31			1.06			
0.68	8.43			1.07			
0.69	8.54			1.08			
0.70	8.66			1.09			
				1.10			
				1.11			
				1.12			
1.3.4.2 Flever	ol Manil			1.13			

1.3.4.2 Flexrual Members - Doubly reinforced rectangular section Working design

When the Moment to be resisted exceeds the balancing moment, these section are used upto certain extent: Afterwards, they will be replaced by T & L Beams or the sections will be redesigend changing the parameters if permissible.

M total = M for balanced section + M' to be taken by compressive steel and additional tensile reinforcement over the steel used in balanced section.

The Stress in compression reinforcement is taken as 1.5 m times the actual stress in the surrounding concrete.

Additional R.M M' =
$$\frac{\text{Pc bd}}{100} (1.5\text{m-1}) \text{ ocbc x } \frac{(\text{kd-d'})}{\text{kd}} (\text{d-d'})$$

$$= \frac{\text{Pc}}{100} (1.5\text{m-1}) \text{ ocbc x } (1 - \frac{\text{d'}}{\text{d'}} - \frac{\text{d'}}{\text{d'}} \text{ b'd}^2)$$

$$= \frac{\text{Pc}}{100} (\text{by taking moments about centroid of tensile steel})$$

Equating Addl. tensile force and addl. compressive force (by virtue of addl. steel provided in the section)

bd (Total pt)

$$\frac{(Pt, bal)}{-100} \sigma st = \frac{Pc. bd}{100} (1.5m - 1) \sigma cbc \frac{(1 - d')}{kd}$$
or $(pt - pt, bal)\sigma st = pc (1.5m - 1) \sigma cbc (1 - d'/kd)$
Total R.M = M bal + $\frac{(pt - pt, bal)}{100} \sigma st (1 - d'/d) bd^2$

Where M bal = $k bd^2 \sigma cbc (1-k/3)$

$$A_{ii} = (Ast1 + Ast2) = Pt, bal \times \frac{bd}{100} + \frac{M'}{\sigma st (d-d')}$$

To simplify matters, the compression reinforcement, Asc can also be expressed as a ratio of the additional tensile steel Ast, as

Asc =
$$\frac{Pt}{Ast2}$$
 = $\frac{cst}{(Pt-Pt,bal)}$ = $\frac{cst}{scbc}$ x $\frac{1}{(1.5m-1)(1-d'/kd)}$

WEST COSTS ON CHEAT LIES SECTION

Values of ratios Asc/As2 for four different alues of d'/d (cover to compressive steel/Effective depth) for four grades of concrete and two grades of steel

ost kg/cm ² grade of Steel	and grade of mix	Value Ration 0.05	of the Ratio s of cover/d 0.10	epth = d'/ d
1400 M.S	M15= 50 M20= 70 M25= 85 M30= 100	1.19 1.20 1.22 1.23	1.38 1.40 1.42 1.44	0.15 0.20 1.66 2.07 1.68 2.11 1.70 2.13 1.72 2.15
2300 T-40	M15= 50 M20= 70 M25= 85 M30= 100	2.06 2.09 2.12 2.14	2.61 2.65 2.68 2.71	3.55 5.54 3.60 5.63 3.64 5.69 3.68 5.76

TABLE - 1.3.23

DOUBLY REINFORCED SECTIONS - M.R. FACTORS MI5 MIX -

Flexure - doubly reinforced beams - % of steel in tension (pt) and compression (Pc) for given M/ bd2, kg/cm2 and compressive steel cover/beam depth ratios using different grades of concrete

M15 (1:2:4) Mix, ocbc : 50 kg/cm², Ms,(ost)= 1400 kg/cm²

	45/00/00/0							
<u>M</u> 2			d'/d=0.10		d'	d'/d=0.15		4 000
bd ²	Pt	Pc	Pt	Pc	Pt	Pc	Pt	d= 0.20
2200					100.7		rı	Pc
8.70	0.717	0.003	0.717	0.004	0.717	0.005	21232	THE SECTION
9.00	0.739	0.030	0.741	0.037				0.006
9.50	0.777	0.070	0.780	0.091		0.046		0.062
10.0	0.815	0.119	0.820			0.116	0.789	0.154
10.50	0.852	0.163		0.146		0.186	0.833	0.247
	0.002	0.103	0.860	0.201	0.868	0.256	0.878	0.340
11.0	0.89	0.208	0.000		variation i			DESTRUCTION IN
11.50	0.927	0.252	0.899	0.256		0.325	0.923	0.432
	0.72/	0.232	0.939	0.311	0.952	0.395	0.967	

A CONTRACTOR OF STREET

M15 (1:2:4) Mix, ocbc : 50 kg/cm2, Ms,(ost)= 1400 kg/cm2 d'/d= 0.20 d '/d=0.15 d'/d=0.10 d'/d=0.05 M² Pt Pc bd 2 1.042 0.617 0.994 0.465 0.297 0.979 0.366 0.965 12.0 1.057 0.710 1.036 0.534 1.019 0.421 0.342 1.003 1,101 0.802 1.078 0.604 1.058 0.476 0.386 1.040 13.0 1.146 0.895 1.098 0.530 1.120 0.674 0.431 1.078 1.162 0.744 1.190 0.988 1.138 0.585 1.115 0.475 1.235 1.080 1.204 0.813 1.177 0.640 1.153 0.520 14.50 1.280 1.173 1.217 0.695 1.247 0.883 0.564 1.190 1.289 0.953 1.324 1.265 1.257 0.750 0.609 15.50 1.228 1.331 1.023 1.369 1.358 1.296 0.805 1.226 0.653 1.414 1.451 1.373 1.092 1.336 0.860 0.698 1.303 1.458 1.543 1.376 0.914 1.415 1.162 1.341 0.743 17.0 1.503 1.636 1.457 1.232 1.415 0.969 1.378 0.787 1.548 1.728 1.455 1.024 1.499 1.301 1.416 0.832 18.00 1.592 1.821 1.541 1.371 1.495 1.079 0.876 1.454 18.5 1.914 1.637 1.534 1.134 1.583 1.441 0.921 1.491 1.682 2.006 1.625 1.511 1.574 1.189 0.965 1.529 19.50 1.726 2.099 1.667 1.580 1.614 1.244 1.566 1.010 1,771 2,191 1.653 1.299 1.702 1.650 20.50 1.604 1.054 1.815 2.284 1.751 1.720 1.693 1.353 1.099 1.642 1.860 2.377 1.793 1.789 1.408 1.733 1.679 1.144 1.905 2.469 1.835 1.859 1.772 1.463 1.717 1.188 1.877 1.929 1.949 2.562 1.812 1.518 0.233 1.754 1.919 1.999 1.994 2.654 1.852 1.573 1.277 1.792 2.039 2.747 1.961 2.068 1.892 1.628 1.322 23.50 1.830 2.003 2.138 2.083 2.840 1.931 1.683 1.867 1.366 2.932 2:045 2:208 2.128 1.971 1.738 1.905 1.411 2.087 2.277 2.17 3.025 2.011 1.792 1.455 1.942 2.129 2.347 2.217 3.117 2.050 1.847 1.500 1.980

(1) a series (1)

2002				
Plain &	Reinforced	P	CO.	
I IRRITE OC	remoreed	Cement	Concrete	

26.00	2.018	1.545	2.090	1.902	2.171	2.417	2.262	3.210	
26.50	2.055	1.589	2.130	1.957		2.487	2.307	3.302	
27.00	2.093	1.634	2.169	2.012		2.556	2.351	1000000000	
27.50	2.130	1.678	2.209	2.067		2.626		3.395	
28.0	2.168	1.723	2.249	2.122			2.396	3.488	
			2.247	2.142	2.339	2.696	2.440	3.580	
28.50	2.206	1.767	2.288	2.177	2.381	2.765	2.485	2 (22	
29.00	2.243	1.812	2.328	2.231	2.423	2.835		3.673	ņ
29.50	2.281	1.857	2.368	2.286			2.530	3.765	
30.00	2.318	1.901	2.407		2.465		2.514	3.858	
30.50		7/15/17/19	- F-10070	2.341	2.507		2.619	3.951	
30.30	2.356	1.946	2.447	2.396	2.549	3.044	2.664	4.043	
Note-	Pt =	% Total	Tensile	Steel (1	00 4+/1	ketV.			
	Pc =	% Com	pressive	Steel (1	000 Ac/	be)		1000	

112

THE PART COLD IN THE WAY 4500 MALL OVER **TABLE 1.3.24**

the state of the s

DEAL DEAL CORPORER SHARE AND STREET THAT THE PARTY TO STREET M20 - Mix - Doubly Reinforced Section - MR Factor Flexure - Doubly Reinforced Beams - % of steel in tension(Pt) and compression (Pc) for given M/bd2, (kg/cm2) and compressive steel cover beam depth ratios using different grades of concrete and steel.

M	20 (1:5	4:3) Mis			n ² , MS,	(ost)= 1	400 kg/	cm ²	
<u>M</u> 2		=0.05	d '/d=0.10			d=0.15			
bd ²	Pt	Pc	Pt	Pc	Pt	Pc	Pt	Pc	
12.20	1.005	0.006	1.005	0.007	1.006	0.089	1.006	0.013	
12.50	1.028	0.033	1.029		1.031				
13.0	1.065	0.078	1.069			0.123		0.069	
13.50	1.203	0.124	1.108	0.152		0.123		0.163	
14.0	1.140	0.169	1.148	0.208		0.193		0.257 0.351	
14.50	1.178	0.214	1.188	0.264	1.199	0.335	1.211	0.445	
15.00	1.216	0.259	1.228	0.319	1.241			0.539	
15.50	1.253	0.305	1.267	0.375	1.283		1.301	0.633	
16.00	1.291	0.350	1.307	0.431		0.547		SEED TATE	
16.50	1.328	0.395	1.341	0.486	1.367		CO	0.727	
17.00	1.366	0.440	1.386	0.542	1.409	0.689	1.435	0.915	

					d ' /d=	00 kg/c	d ' /d=	0.20	
M2	d' /d=0		d'/d=(Pc	
bd ²	Pt .	Pc	Pt	Pc	Pt	Pc	Pt	PC	
17.50	1.404	0.485	1.426	0,598	1.451	0.760	1.479	1.009	
17.50	1.444	0.531		0.653	1.493		1.240	1.103	
18.00	1.429	0.576		0.709	1.535		1.568	1.197	
18.50	1.516	0.621		0.765	1.577		1.613		
19.00	1.510	0.021	1.545	0.7.02	00.01				
10.50	1.554	0.666	1.585	0.821	1.619	1.043	1.658	1.385	
19.50	1.591	0.712		0.876	1.661	1.113	1.702	1.479	
20.00	1.629	0.757	1.664	0.932	1.703	1.184	1.747	1.573	
20.50	1.667	0.802	1.704	0.988	1.745	1.255	1.792	1.667	
21.00	1.704	0.847	1.743	1.043	1.787	1.326	1.876	1.761	
21.50	1.704	0.047	1.173	55000		100.00			
22.00	1.742	0.892	1.783	1.099	1.829	1.396	1.881	1.855	
22.00	1.779	0.938	1.823	1.155	1.871	1.467	1.926	1.949	
22.50	1.817	0.983	1.862	1.210	1.913	1.538	1.970	2.043	
23.00	1.855	1.028	1.962	1.266	1.955	1.609	2.015	2.137	
23.50	1.892	1.073	1.942	1.322	1.977	1.680	2.060	2.231	
24.00	1.092	1.075	1.,,,,,,,		101.11				
24.50	1.930	1.119	1.981	1.378	2.039	1.750	2.104	2,325	
25.00	1.967	1.164	2.021	1.433	2.081	1.821	2.145	2.419	
25.50		1.209	2.061	1.489	2.123	1 10 10 10 10 10 10 10 10 10 10 10 10 10	2.193	2.513	
26.00		1.254	2.101	1.545	2.165	1.963	2.238	2.608	
26.50		1.299	2.140		2.207	2.033	2,283	2.701	
20.50	2,000	1.277	012.5	- Secto					
27.00	2.118	1.345	2.180	1.656	2.249	2.104	2.327	2.795	
27.50			2.220		2.29			2.888	
28.00			2.259			3 2.246	2.417	2.982	
28.50			2.299			5 2.316		3.076	
29.00			2.339			7 2.387		5 3.170	
29.00	2.200	1.520	2.55		0.00				
29.50	2.306	1.571	2.379	8 1.934	2.45	9 2.458	2.55	4 3.264	
						1 2.529		5 3.358	
30.00				5 Table 3 St. 1 to		3 2.599		0 3.452	
50.31	4.30	1.001	4.70	0 210.40		5 2.670		5 3.546	

115 con Thi

	Plain	&	Reinforced (Cement	Con-
--	-------	---	--------------	--------	------

	2000				114		Plain & Reinford	ced Cement C
31.50	2.456	1.752	2.537	2.157	2.627	2.741		- amont C
32.50 33.00 33.50	2.531 2.569 2.607	1.797 1.842 1.887 1.933 1.978	2.656	2.213 2.269 2.324 2.380 2.436	2.669 2.711 2.754 2.796 2.838	2.953 3.024	2.774 3.734 2.818 3.828 2.863 3.922 2.908 4.016 2.952 4.120	
				TA	DIE	DAM!		

TABLE 1.3.25 M15 - Mix - % Steel required in Dubly reinforced BeamsWorking stress method - flexure. Doubly reinforced Rectangularsections - % of steel in tension (pt) and compression (pc) for given M/bd2, (kg/cm2) and compresive steel cover/beamdepth ratios using didfferent grades of

M15 (1:2:4) Mix, acbc: 50 kg/cm², Fe 415 at T-40 ,(ast)= 2300 kg/cm²

							155 W 10 COM 3		r
M ²		1=0.05	d'	/d=0.10	d	/d=0.1:	5 d'	d= 0.20	
Du -	Pt	Pc	Pt	Pc	Pt		Pt	Pc Pc	
6.60		0.007	0.318	0.010	0.31	8 0.014	0.744	1	
7.00	0.336	0.045					AC 100 EU C	0.023	
7.50	0.359	0.092		-1000		8 0.087			
8.00	0.381		0.385	1000	0.36		Control of the	44.000.75	
8.50	0.404		0.409			0.268		0.446	
			0.403	0.249	0.41	0.359	0.421	0.596	
9.00	0.427	0.234	0.433	0.312	0.441	0.460	1000		
9.50	0.450	0.281	0.458	0.375		100000000000000000000000000000000000000		0.747	
10.00	0.473	0.328	0.482	0.438	0.466	24 400 (4 100)	0.476	0.898	
10.50	0.496	0.375	0.506	0.501		0.631	0.503	1.048	
11.00	0.519	0.422	0.530			0.722	0.530	1.199	
- 1122	0.500	0.422	0.330	0.564	0.543	0.812	0.557	1.350	
11.50	0.542	0.469	0.554	0.627	0.568	0.000		151.	
12.00	0.564	0.577	0.578	0.690			0.584	1.501	
12.50	0.587	0.564	0.603	0.753	0.594	0.994	0.611	1.651	
13.00	0.610	0.611	0.627	0.816	0.620	1.085	0.639	1.802	
13.50	0.633	0.658	0.657		0.645	1.175	0.666	1.953	
		0.036	0.037	0.879	0.671	1.266	0.693	2.104	
14.00	0.656	0.705	0.675	0.942	0.696	1.357	0.720 2	2.254	

COMMENTS OF THE PARTY IN THE PARTY OF THE PA

Plain & Reinforced Cement Concrete

1	15 (1:2	4) Mix	ocbe : 5	0 kg/cm	, Fe 41	5 ot T-4	(ost)= 2300	kg/cm ² = 0.20		
(V)	M ²	d' /d=0	0.05	u /u	100	2000	Transfer or the same		De		
	bd 2	Pt	Pc	Pt	Pc	Pt	Pc	Pt	P.C		
	ESTO HIS			CON 2000 17		0.000	V 444	0.747	2.405		
	14.50	0.679	0.752	0.699	1.005	OL-Williams			2.556		
	15.00	0.702	0.800	0.723	1.068	0.747	1.538		2.707		
	15.50	0.725	0.847	0.747	1.131	0.773	1.629		2.857		
	16.00	0.748	0.894	0.722	1.194	0.799	1.712	0.829	2.031		
	2000				471-14	2022		0.056	3.008		
	16.50	0.770	0.941	0.796	1.257	0.824		0.856			
	17.00	0.793	0.988	0.820	1.319	0.850		0.883			
	17.50	0.816	1.035	0.844	1.382		1.992		3.309		
	18.00	0.839	1.082	0.868	1.445		2.082		3.460		
	18.50	0.862	1.130	0.892	1.508	0.826	2,173	0.965	3.611	HC4-D	
	(35)(15)								2.762		
	19.00	0.885	1.177	0.917	1.571		2.264		3.762		
	19.50	0.908	1.224	0.941	1.634		2.354	1.019	3.912		
	20.00	0.931	1.271	0.965	1.679		2.445		100		
	20.50	0.953	1.318	0.989	1.760		2.536	5	231		
	21.00		1.365	1.013	1.823	1.054	2.627	1.5	300		
	21.50	0.999	1.413.	1.037	1.886	1.080			589		
	22.00		1.460	1.061	1.949	1.105		107	5Uk		
	22.50		1.507	1.086	2.012	1.13		•	•		
	23.00		1.554	1.110	2.075		7 2.989		2000		
	23.50		1.601	1.134	2.138	1.182	2 3.080	PIN			
	24.00	1.114	1.648	1.158	2.201		8 3.171				
	24.50			1.182			3 3.262	100			
	25.00			1.206	2.327		9 3.352	2			
	25.50			1.231			4 3,443				
	26.0					1.31	0 3.534	1			
		57 50000	(1 - 138735)34					1			
	26.5	0 1.228	1.884	1.279	2.516		6 3.62	4			
	27.0			1.303			1 3.71	5			
	27.5						7 3.80	6			
	28.0						2 3.89	7			
	28.5				1000						
	20.3	0. 1.02	A	1,000	# 11 N SEC # C 1 T 1 T	0 189967					

M20 Mix - % Steel required for Doubly reinforced BeamsWorking Stress method - flexure doubly reinforced Rectangular sections - % of steel in tension (pt) and compression (pc) for given M/bd², (kg/cm²) and compressive steel cover/beam depth ratios using different grades of concrete and steel.

M20 (1:11/2:3) Mix, ocbc: 70 kg/cm², Fe 415 ot T-40 ,(ost)= 2300 kg/cm²

M		/d=0.05	d'	/d=0.10		i'/d=0.	15 4.	/
bd 3	Pt	Pc				r P	(I 1 5/250)	/d= 0.20
							Pt Pt	Pc
9.20	0.44	2 0.007	7 0.44	3 0.009				
9.50					S. 11 5.50		111	0.021
10.0	0 0.47							0.113
10.5		77.4		SS MARKET	1000		Call 17-14 307-1	0.266
11.0							2 0.514	0.419
	3333	0.179	0.536	0.239	0.53	5 0.34	4 0.541	0.572
11.5	0.548	0.227	0.554	0.303	0.50	////	s reserve	
12.0		0.275	0.578		0.56	The state of the state of	-	0.725
12.50	0.593		0.602		W.107.00			0.878
13.00	0.616		0.626			2 0.620	SI / A VANTE	1.031
13.50	0.639		0.650			7 0,712		1.184
			0.050	0.558	0.66	0.805	0.677	1.337
14.00		0.466	0.674	0.622	0.688	0.000	PHU	200000
14.50	44.44	0.514	0.699	0.686	0.714			1.490
15.00		0.562	0.723	0.750		- 77.0	0.731	1.643
15.50	0.731	0.610	0.747	0.814	0.739			1.796
16.00	0.754	0.658	0.771	0.878	0.765			1.949
		1800000	Sec. 1. 15. 14	0.076	0.791	1.265	0.813	2.012
16.50	0.777	0.705	0.795	0.942	0.016		ry last ser	
17.00	0.799	0.753	0.819	1.006	0.816	1.357	CONTRACTOR OF THE PARTY OF THE	2.255
17.50	0.822	0.801	0.844	1.070	0.842	L449		.408
18.00	0.845	0.849	0.868	1.134	0.867	1.541	0.894 2	.561
18.50	0.868	0.897	0.892		0.893	1.633		.714
			0.092	1.198	0.919	1.725	0.948 2	.867
19.00	0.891	0.945	0.916	1.262	0.944	1.817	0.976 3.	.020

<u>M</u> ²	d' /d=	0.05	d 1/d=	0.10	d'/d	=0.15	d'/d	= 0.20			
bd 2	Pt	Pc	Pt	Pc	Pt	Pc	Pt	Pc			
19.50	0.914	0.993	0.940	1.325	0.970	1.909		3.173			
20.00	0.937	1.040	0.964	1.389	0.995	2.002	1.030	3.326			
20.50	0.960 .	1.088	0.988	1.453		2.094	1.057	3.479			
21.00	0.982	1.136	1.013	1.517		2.186	1.084	3.632			
21.50	1.005	1.184	1.037	1.581	1.072	2.278		3,785			
22.00	1.028	1.232	1.061	1.645	1.098	2.370	1.139	3.978			
22.50	1.051	1.280	1.085	1.709	1.123	2.462				8	5
23.00	1.074	1.328	1.109	1.773	1.149	2.554					
23.50	1.097	1.376	1.133	1.837	1.174	2.646			LIDEA		
24.00	1.120	1.423	1.158	1.901		2.738					
24.50	1.143	1.471	1.182	1.965		2.830					
25.00	1.166	1.519	1.206	2.028		2.922					
25.50	1.188	1.567	1.230	2.092		3.014					
26.00	1.211	1.615	1.254	2.156	1.302	3.106					
20000											
26.50	1.234	1.663	1.278	2.220		3.198					
27.00	1.257	1.711	1.303	2.284		3.291					
27.50	1.280	1.758	1.327	2.348		3.383					
28.00	1.330	1.806	1.351	2.412		3.475					
28.50	1.326	1.854	1.375	2.476	1.430	3.567					
29.00	1.349	1.902	1.399			3.659					
29.50	1.371	1.950	1.423		1.48						
20.00	1.394	1.998	1.447	2.668	1.50	7 3.843					
30.00	W + 10 10 14	715-515			40.00000						

1.472 2.731

1.496 2.795

2.046

30.50 1.417

31.00 1.440 2.093

1.532 3.935

1.558 4.027

1.3.4.2 Shear-Design of vertical stirrups - values of Vs/d = for two legged stirrups

Shear reinforcement through stirrups/depth in kg/cm² for two grades of steel (M.S and T-40)

Shear reinforcement shall be provided to carry a shear equal to V - tc.bd

 $V_S = \sigma Sv Asv.d/sy$ Asv. Total area of C.S of stirrup legs in the spacing Sv. σSv. allowable tensile stress in shear reinforcement 1400 kg/cm2 (OR) 2300 Kg/cm2

TABLEJ3-27 values of Vs/d for two legged stirrups is T/metre

Stirru spacir		$\sigma Sv = 140$	00 kg/cm ²	(M.S)	Sv = 2	300 kg/	cm² (To	r 40)	1
	cms	For bar Kg/cm2	s < 20 m for bars >	m ¢ and 20 mm	1300 ¢	for ba	rs of all	sized	
	6	8	10	12	6	8	10	12	
5	15.		43.98	63.33	26.01	46.24	72.26	104.05	
6	13.	14 23.46	36.65	52.78		38.54			
7	11.3	31 20.11	37.42			33.03		Contract of the contract of th	
	9.90	17.59		1 1 2 2 2 2 2 2 2 2		28.90	100 May 100 Ma	74.32	
9	8.80	15.64				35.69	1000	65.03	
10	7.92			31.67		23.12		57.81 52.02	
11	7.20	12.79	19.99	28.79	11.00				
12	6.60	 T.T. TOTAL ST. 10. 	18.33	26.39		21.02	32.84	- Control (4.5%)	
13	6.09		16.92		10.84	19.27		43.35	
14	5.65		15.71	24.36	10.00	17.79	27.79	40.02	
15	5.28	THE PERSON NAMED IN		22.62	9.20	16.52	25.80	37.16	
(5)	2.20	9.38	14.66	21.11	8.67	15.41	24.09	34.68	
16	4.95	8.80	13.74	19.79	8.13	14.45	22.50		
17	4.66	8.26	12.94	18.63		14.45	22.58		
		0.20	12.34	10.03	7.65	13.60	21.25	30.60	

Stirrup		σSv =	1400 k	g/cm ² (N	1.S)	Sv = 230	00 kg/cm	12 (Tor 4	.0)		
spacing (Sv)in o	-	For Kg/cr	bars m2 for	< 20 mm bars > 2	φ and O mm o	1300 for bars of all sized \$\phi\$					
	6		8	10	12	6	8	10	12	101	(A. La Kaul
18 19 20	4.4 4.1 3.9	7 7	.82 .41 .04	12.22 11.57 11.00	17.59 16.67 15.83	7.23 6.50 6.05	12.85 12.17 11.56		28.90 27.38 26.01		
25 30 35 40 45		64 26 98	5.63 4.69 4.02 3.52 3.13	8.80 7.33 6.26 5.50 4.89	12.67 10.56 9.05 7.92 7.04		9.25 7.71 6.61 5.78 5.14	14.45 12.04 10.32 9.03 8.03			(5) (5) (6) (7)

1.3.4.3 Shear design of Bent up bars

Shear reinforement shall be provided to carry shear equal to V- tc.bd. The strength of Vs shall be calculated as For inclined stirrups or a series of bars bent up at different (intervals) cross sections.

$$V_S = \sigma sv. \frac{Asv}{sv} \cdot d \left(Sin\alpha + Cos\alpha \right) = 1 + cos\alpha + cos\alpha$$

Asv = total sectional area of bent up bars within a spacing Sv.

Sv = spacing of bent up bar along the length of member

 α = angle between inclined bent up bar and axis of member, not less the 45°.

For a single bar or a single group of parallel bars, all bent up at the same cross section.

$$V_S = \sigma_{SV}$$
 . Asv . Sina

121

TABLE 1.3.28 Shear - Bent up Bars

		Values of Vs. f	or a single bar in l	egs			
Bar dia in mm (¢) (or Fe 415)	os. 140 upto 20 and 13 for MS	00 kg cm ² 0 mm¢ 00 kg/cm ² . bars - (0) 20 mm¢	σ Sv:	σ Sv:2300 kg/cm for T 40			
	α=45°	α =60°	α=45°	α =60°			
10 12 16 18 20 22 5 8 8 2	778 1120 1990 2519 3110 3494 4512 5660 7393 9357	952 1371 2438 3086 3809 4280 5526 6932 9054	1277 1839 3270 4139 5109 6182 7983 10014 13080 16554	1564 2253 4005 5069 6258 7572 9777 12265 16019 20275			

1.3.4.4 Development Length and Anchorage:

The method of calculating the development length is the same as given limit state design. The difference is only in the values of the bond stresses applicable for each method.

Development length for plain bars (in Cms)

σst	1400kg/cm² for bar upto 20 mm ¢	
ret	1200t / 2 to the upto 20 mm o	(In tension)

ost 1300kg/cm² beyond 20 mm¢

ost 1300kg/cm² for all diameters (in compression).

TABLE 1.3.29 DEVELOPMENT LENGTH FOR PLAIN BARS

M20 26.3 35.0 43.8 52.5	23.3 31.1 38.9 46.7	M30 21.0 28.0 35.0 42.0	M15 26.0 34.7 43.3 52.0	M20 19.5 26.0 32.5 39.0	M25 17.3 23.1 28.9 34.7	M30 15.6 20.8 26.0
35.0 43.8	31.1 38.9	28.0 35.0	34.7 43.3	26.0 32.5	23.1 28.9	20.8 26.0
35.0 43.8	31.1 38.9	28.0 35.0	43.3	32.5	28.9	26.0
43.8	38.9	35.0				
			52.0	39.0	24.7	
					34.7	31.2
70.0	62.2	56.0	69.3	52.0	46.2	41.6
0 78.8	70.0	63.0	78.0	58.5	52.0	46.8
7 87.5	77.8	70.0	86.7	65.0	57.8	52.0
2 89.4	79.4	71.5	95.3	71.5	63.6	57.2
4 101 6	90.3	81.3	108.3	81.3	72.2	65.0
	55123511		121.3	91.0	80.9	72.8
	2000		138.7	104.0	92.4	83.2
	1 III 1/3/4/3/22N		57,050,051,12	117.0	104.0	93.6
.0 146.3	130.0	117.0	2.00 SA	S47,09421		
3	1.7 113.8 3.3 130.0 5.0 146.3	1.7 113.8 101.1 3.3 130.0 115.6 5.0 146.3 130.0	.7 113.8 101.1 91.0 3.3 130.0 115.6 104.0 5.0 146.3 130.0 117.0	1.7 113.8 101.1 91.0 121.3 1.3 130.0 115.6 104.0 138.7	1.7 113.8 101.1 91.0 121.3 91.0 1.3 130.0 115.6 104.0 138.7 104.0 1.5 146.3 130.0 117.0 156.0 117.0	1.7 113.8 101.1 91.0 121.3 91.0 80.9 1.3 130.0 115.6 104.0 138.7 104.0 92.4 1.5 146.3 130.0 117.0 156.0 117.0 104.0

TABLE - 1.3.30 DEVELOPMENT LENGTH FOR DEFORMED BARS (Tabulated Values are in cms)

Development length for deformed Bar (in cms) for Fe 415 ost: 2300 kg/ cm2 } for all diameters

ost: 1900 kg/ cm² }

Bar Dia		Tension Grade o	bars/ of concrete		ession bars of concrete	in mm			
	M15	M20	M25	M30	M15	M20	M25	M30	
8	41.1	30.8	27.4	24.6	27.1	20.4	18.1	16.3	
	54.8	41.1	36.5	32.9	36.2	27.1	24.1	21.7	
10	68.5	51.3	45.6	41.1	45.2	33.9	30.2	27.1	
12	82.1	61.6	54.8	49.3	54,3	40.7	36.2	32.6	
16	109.5	82.1	73.0	65.7	72.4	513	40.0	1102 97	
18	123.2	92.4	82.1	73.9	81.4	54.3	48.3	43.4	
20	136.9	102.7	91.3	82.1	90.5	61.1	54.3	48.9	
22	150.6	112.9	100.4	90.4	99.5	67.9 74.6	66.3	54.3 59.7	
25	171.1	128.3	114.1	102.7	113.1	940	70.4		
28	191.1	143.8	127.8	115.0	126.7	84.8	75.4	67.9	
32	219.0	164.3	146.0	131.4		95.0	84.4	76.0	
36	246.4	184.8	164.3	147.9	144.8 162.9	108.6	96.5 108.6	86.9 97.7	

TABLE - 1.3.3DA ANCHORAGE VALUES OF HOOKS AND BENDS (Tabulated values are in cms)

Bar dia in mm	6	8	10	12	16	18	20	22	25	28	32	36
Anchorage value of hook	9.6	12.8	16.0	19.2	25.6	28.8	32	35.2	40	44.8	51.2	57.6
Anchorage value of 90° bend	4.8	6.4	8.0	9.6	12.8	14.4	16	17.6	20	22.4	25.6	28.8

STANDARD HOOK AND BEND

Type of steel

Minimum value of K

Mild steel Cold worked steel

MIARTE 2 - MARGAIG4

Note: 1 Table is applicable for all grades of reinforcement bars.

2. Hookes and bends shall conform to the details given above.

1.3.5 DESIGN TABLES (LIMIT STATE METHOD)

Extract of SP 16 (Design Aid to IS 456 - 1978)

TABLE A -VALUES OF X us max /d FOR DIFFERENT GRADES OF STEEL

f _y , N/mm ²	250	415	500
X max /d	0.531	0.479	0.456

TABLE B - LIMITING MOMENT OF RESISTANCE AND REINFORCEMENT INDEX FOR SINGLY REINFORCED RECTANGULAR SECTIONS

f., N/mm ²	250	415	500
M _{vi} lim	0.149	0.138	0.133
f _{ck} / bd ² P _{ii} lim f _y	21.97	19.82	18.87

TABLE C - LIMITING MOMENT OF RESISTANCE FACTOR Mullim/bd², N/mm² FOR SINGLY REINFORCED RECTANGULAR SECTIONS

fck N/mm²		fy N/mm ²	
N/mm-	250	415	500
15	2.24	2.07	2.00
20	2.98	2.76	2.66
25	3.73	3.45	3.33
30	4.47	4.14	3.99

TABLE D - MAXIMUM PERCENTAGE OF TENSILE REINFORCEMENT Pt lim FOR SINGLY REINFORCED RECTANGULAR SECTIONS

fck		y N/mm²		
N/mm ²	250	415	500	
	250		0.57	
15	1.32	0.72		
20	1.76	0.96	0.76	
25	2.20	1.19	0.94	
30	2.64	1.43	1.13	

Example 1 Singly Reinforced Beam

Determine the main tension reinforcement required for a rectangular beam section with

Size of beam 30 x 60 cm Concrete mix M 15

Characteristic strength 415 N/mm²

of reinforcement

and the medium of the same

* Factored moment 170 k N.m.

Assuming 25 mm dia bars with 25 mm clear cover, and the property of the cover of th

Effective depth = 60 - 2.5 - 2.5 = 56.25 cm

From table C, for fy = 415 N/mm² and fck = 15 N/mm²

 $Mu_1 lim/bd^2 = 2.07 N/mm^2$

2.07 x (1000)2

1000

 $= 2.07 \times 10^3 \text{ kN/m}^2$

Therefore Mu,lim = 2.07 x 10°bd² and the transfer and the first term of the first te

= $2.07 \times 10^3 \times 30/100 \times (56.25/100)^2 = 196.5 \text{ kN.m}$ Factored moment means the moment due to characteristic loads multiplied by the appropriate value of partial safety factor (usually 1.50)

Actual moment of 170 kN.m is less than Mu,lim. The section is therefore to be designed as a singly reinforced (under reinforced) rectangular section.

METHOD OF REFERRING TO TABLES

For referring to tables, we need the value of Mu/bd2

<u>Mu</u> = 170 x 106 30 x 56.25 x 56.25x10³

= 1.79 N/mm²

From Table 1.3.31

Percentage of reinforcement, pt = 0.594

Therefore As = $0.594 \times 30 \times 56.25 = 10.02 \text{ cm}^2 = 10.02 \text{ cm}^2$

For designing of slabs also similar procedure may be adopted, assuming appropriate value of d (depth of slab) and width b as 100 cm.

*Factored moment means the moment due to characteristic loads multiplied by the appropriate value of partial safety factor (usually 1.50)

STRESS IN COMPRESSION REINFORCEMENT f N/mm2 IN DOUBLY REINFORCED BEAMS WITH COLD WORKED BARS

f _{yo} N/mm²		d' /	d	
N/mm*	0.05	0.10	0.15	0.20
415	355	353	342	329
500	424	412	395	370

Example 2 Doubly Reinforced Beam

Determine the main reinforcement required for a rectangular beam section with the

followingdata:

30 x 60 cm Size of beam M 15 Concrete mix 415 N/mm2 Characteristic strength of

Reinforcement

Factored moment

320 kN.m

Assuming 25 mm dia bars with 25 mm clear cover, d= 60 - 2.5 - 2.5/2 = 56.25 cm

From table C for fy = 415 N/mm² and fck = 15 N/mm² Mu lim/bd² = 2.07 N/mm^2 = $2.07 \times 10^3 \text{ kN/m}^2$, therefore, Mu lim = $2.07 \times 10^3 \text{ bd}^2$ = 2.07 x 10³ x 30/100 x 56.25/100 x 56.25/100 = 196.5 kN.m

Actual moment of 320 kN.m is greater than MU_ilim Therefore, the section is to be designed as a doubly reinforced section .

Reinforcement from Tables :-

Mu/bd² = 320/ 0.3x(0.5625)²x10³ = 3.37 N/mm²
d'/d =
$$\frac{(2.5+1.25)}{(56.25)}$$
 = 0.07

Next higher value of $d^3/d = 0.1$ will be used for referring to Tables.

Referring to Table 1.3.33 corresponding to $Mu/bd^2 = 3.37$ and d'/d = 0.1, pt = 1.117, pc = 0.418 Therefore Ast = 18.85 cm^2 , Asc = 7.05 cm^2

EXAMPLE 3 Square Column with Uniaxial Bending

sandlemmeanits 6

Determine the reinforcement to be provided in a square column

subjected to uniaxial bending, with the following data: 45 x 45 cm Size of column M 25

Concrete mix 415 N/mm2 Characteristic strength

of reinforcement

2500 kN Factored load(characteristic

load multiplied by

200 kN.m Factored moment

(a) On two sides Arrangement of (b) On four sides reinforcement

(Assume moment due to minimum eccentricity to be less than the actual moment).

Assuming 25 mm bars with 40 mm cover,

d' = 40 + 12.5 = 52.5 mm = 5.25 cm

d'/D = 5.25 / 45 = 0.12

Charts for d'/D = 0.15 will be used

 $Pu / fck bD = 2500 \times 10^3 / 25 \times 45 \times 45 \times 10^2 = 0.494$ $Mu / fck. bD^2 = 200 \times 10^6 / 25x45x45x45x10^3 = 0.088$

a) Reinforcement on two sides,

Referring to Chart 3 $p/f_{cx} = 0.09$

Percentage of reinforcement, $p = 0.09 \times 25 = 2.25$

 $As = p \ b \ D/100 = 2.25x45x45/100 = 45.56 \ cm^2$

b) Reinforcement on four sides from Chart 7,

 $p/f_{CK} = 0.10$ $p = 0.10 \times 25 = 2.5$ $As = 2.5 \times 45 \times 45/100 = 50.63 \text{ cm}^2$

Example 4 Circular Column with Uniaxial Bending

Determine the reinforcement to be provided in a circular column with the following data:

50 cm Diameter of column M 20 Grade of concrete

250 N/mm² for bars upto Characteristic strength

20 mmb of reinforcement

240 N/mm2 for bars over

20 mm

Factored load

1600 kN 125 kN.m

Factored moment Lateral reinforcement :

a) Hoop reinforcement

b) Helical reinforcement

(Assume moment due to minimum eccentricity to be less than the actual moment). Assuming 25 mm bars with 40 mm cover,

d' = 40 + 12.5 = 52.5 mm = 5.25 cm

d'/D = 5.25/50 = 0.105

Charts for d'/D = 0.10 will be used.

Column with hoop reinforcement

 $Pu/fck D^2 = 1600 \times 10^3 / 20x50x50x10^2 = 0.32$

 $Mu/fck D^3 = 125x10^6 / 20x50x50x50x10^3 = 0.05$

Referring to Chart 15, for fy = 250 N/mm2

p/fck = 0.87

 $p = 0.87 \times 20 = 1.74$

As = $p\pi D^2/400 = 1.74x \pi x50x50/400 = 34.16 cm^2$

For fy=240 N/mm²,

 $As = 34.16 \times 250/240 = 35.58 \text{ cm}^2$

Example 5 Rectangular Column with Biaxial Bending

Determine the reinforcement to be provided in a short column subjected to biaxial bending. with the following data:

Size of column

40 x 60 cm

Concrete mix Charecteristic strength

M 15 415 N/mm²

of reinforcement

Factored load, Pu

1600 kN

Factored moment acting

parallel to the larger

dimension, Mux

120 kN

Factored moment acting

parallel to the shorter

dimension, Muy

90 kN

Moments due to minimum eccentricity are less than the values given above. Reinforcement is distributed equally on four sides. As a first trial assume the reinforcement percentage, p=1.2 p/fck = 1.2/15 = 0.08Uniaxial moment capacity of the section about xx-axis: d'/D = 5.25 / 60 = 0.0875 Chart for d'/D = 0.1 will be used. $P_1 1/f ck \ bD = 1600 \times 10^3 / 15 \times 40 \times 60 \times 10^2 = 0.444$ $m_{1}(A_{1},A_{2},A_{3}) = m_{1}(m_{1},m_{2})(A_{2},a_{3})(A_{2},a_{3})(A_{3},a_{3})$

Referring to Chart 6, Mu/fck b D2 = 0.09 $Mux1 = 0.09x15x40x60^2x10^3 / 10^6 = 194.4 \text{ k N.m}$ Uniaxial moment capacity of the section about yy-axis: d'/D = 5.25/40 = 0.131Chart for d'/D = 0.15 will be used.

Referring to Chart 7, Mu/fck b D2 = 0,083 $Muy1 = 0.083x15x60x40^2x10^3 / 10^6 = 119.52 \text{ kN.m}$ Calculation of Puz: Referring to Chart 13 corresponding to p=1.2, fy=415 and fck = 15. $Puz / Ag = 10.3 \text{ N/mm}^2$ $Puz = 10.3 \text{ Ag} = 10.3 \text{x} 40 \text{x} 60 \text{x} 10^2 / 10^3 \text{ kN}$ = 2472 kN $P_{y}/P_{yz} = 1600/2472 = 0.647$ $M_{UX}/M_{UX1} = 120 / 194.4 = 0.617$

$$M_{uv}/M_{uvi} = 90/119.52 = 0.753$$

Referring to Chart 14, the permissible value of Mux/Mux1 corresponding to the above values of Muy/Muy1 and Pu/Puz is equal to 0.58.

The actual value of 0.617 is only slightly higher than the value read from the Chart. This can be made up by slight increase in reinforcement.

 $As = 1.2x40x60 /100 = 28.8 \text{ cm}^2$ 12 bars of 18 mm will give As = 30.53 cm2 Reinforcement percentage provided,

```
p = 30.53 \times 100 / 60 \times 40 = 1.27
```

With this percentage, the section may be rechecked as follows p/fck = 1.27 /15 = 0.0847

Referring to Chart 6.

Mu / fck b D2 = 0.095

 $Mux1 = 0.095 \times 15x \cdot 40x \cdot 60^2 \times 10^3 / 10^6$

= 205.2 kN.m

Referring to Chart 7.

Mu / fck b $D^2 = 0.085$

Muy1 = $0.085 \times 15 \times 60 \times 40^2 \times 10^3 / 10^6 = 122.4 \text{ kN.m}$

Referring to Chart 13

 $Puz/Ag = 10.4 \text{ N/mm}^2$

 \therefore Puz = 10.4 x 60 x 40 x 10² /10³ = 2496 kN

Pu / Puz = 1600 / 2496 = 0.641

Mux / Mux1 = 120 / 205.2 = 0.585

Muy /Muy1 = 90 / 122.4 = 0.735

Referring to Chart 14

Corresponding to the above values of Muy /Muy I and Pu/Puz, the permissible value of Mux / Mux1 is 0.6.

Hence the section is O.K.

Example 6 Shear

Determine the shear reinforcement (vertical stirrups) required for a beam section with the following data:

Beam size

30 x 60 cm

Depth of beam Concrete grade

60 cm M 15

Characteristic strength

of stirrup reinforcement

250 N/mm²

Tensile reinforcement

percentage

Factored shear force, Vu 180 k N

Assuming 25 mm dia bars with 25 mm cover,

 $d = 60 - 2.5 / 2 - 2.5 \approx 56.25$ cm

Shear stress, $\tau v = Vu /bd = 180x10^3/30x56.25x10^2$

= 1.07 N/mm²

1 - 128

From Table 1.2.7(D) for M15, tc,max = 2.5 N/mm² r v is less than rc,max From Table 1.2.7(C) for Pt = 0.8, $\tau c = 0.55 \text{ N/mm}^2$ Shear capacity of concrete section = \tau to bd $= 0.55 \times 30 \times 56.25 \times 10^2 / 10^3 = 92.8 \text{ kN}$

Shear to be carried by stirrups, Vus = Vs- \tau cbd

=180 - 92.8 = 87.2 kN

Vus / d = 87.2 / 56.25 = 1.55 kN/cm

Referring to Table 1.3.37 for steel fy = 250 N/mm².

Provide 8 mm diameter two legged vertical stirrups at 14 cm spacing.

Example 7 Torsion

Determine the reinforcements required for a rectangular beam

section with the following data:

30 x 60 cm Size of the beam M 15

Concrete grade

Characteristic strength

415 N/mm2 of steel

Factored shear force 95 kN Factored torsional moment

45 kN.m 115 kN.m

Factored bending moment Assuming 25 mm dia bars with 25 mm cover,

d = 60 - 2.5 - 2.5/2 = 56.25 cm

Equivalent shear, Vc= V + 1.6 (T/b)

=95 + 1.6 x 45/0.3 = 95+240 = 335 kN

Equivalent shear stress, tvc = Vc/bd

 $= 335 \times 10^{3}/30 \times 56.25 \times 10^{2}$

 $= 1.99 \text{ N/mm}^2$

For Table 1.2.7(D) for M15, \tauc,max = 2.5 N/mm2

τvc is less than τc,max; hence the section does not require revision.

From Table 1.2.7(C) for an assumed value of pt = 0.5

 $\tau c = 0.46 \text{ N/mm}^2 < \tau \text{ vc.}$

Hence longitudinal and transverse reinforcements are to be designed

Longitudinal reinforcement

Equivalent bending moment, Mc1 = Mu + Mt

= Mu + Tu(1+D/b) / 1.7

1 - 129

= 115 +45(1+60/30) /1.7 = 115 + 79.4= 194.4 kN.m

 $Mc1/bd^2 = 194.4 \times 10^6 / 30 \times (56.25)^2 \times 10^3$ $= 2.05 \text{ N/mm}^2$

Referring to table 1.3.31 corresponding to $Mu/bd^2 = 2.05$ pt = 0.708

Ast = 0.708 x 30 x 56.25/100 = 11.95 cm²

Provide 4 bars of 20 mm dia (Ast = 12.56 cm²) on the flexural tensile face. As Mt is less than Mu, we need not consider Mc2

Therefore, provide only two bars of 12 mm dia on the compression face, one bar being at each

As the depth of the beam is more than 45 cm, side face reinforcement of 0.05% on each side is to be provided

1 - 130

providing one bar at the middle of each side,

Spacing of bar = 53.4/2 = 26.7 cm

Area required for each bar = $0.05x30x26.7/100 = 0.40 \text{ cm}^2$

provide one bar of 12 mm dia on each side.

Transverse reinforcement

Area of two legs of the stirrup should satisfy the following: Asu = Tu Sv / bldl(0.87 fy) + Vu Sv / 2.5 dl (0.87 fy)

Assuming Diameter of stirrups as 10mm

$$= 60 - (2.5+1.0) - (2.5+0.6) = 53.4$$
 cm

Asy (0.87 fy) / Sv = 45 x
$$10^6$$
 / 23 x 53.4 x 10^2
+ 95 x 10^3 / 2.5 x 53.4 x 10

Area of all the legs of the stirrup should satisfy the condition that Asv/Sv should not be less

From Table 1.2.7(C) for tensile reinforcement percentage of 0.71, the value of to is 0.53 N/

Asv (0.87 fy) / Sv = (tvc - tc)b

= (1.99 - 0.53) 30/10 = 438 N/mm = 4.38 kN/cm

Note :- It is only a coincidence that the values of Asv(0.87fy)/Sv calculated by the two equations are the same.

Referring Table 1.3.37 (for fy = 415 N/mm²).

Provide 10mm \$ two legged stirrups at 12.5 cm spacing.

According to IS 456-1978 the spacing of stirrups shall not exceed x1, (x1+y1)/4 and 300 mm, where x, and y, are the short and long dimensions of the stirrup.

 $x_i = 30 - 2(2.5 - 0.5) = 26$ cm

 $y_1 = 60 - 2(2.5 - 0.5) = 56 \text{ cm}$

 $(x_1+y_1)/4 = (26+56)/4 = 20.5$ cm

10mm \$\phi\$ two legged stirrups at 12.5 cm spacing will satisfy allthe codal requirements.

			525	2.	· Jam O	Reinforced Cement Concn
FL	EXURE -	REINFORG	TEMENT OF	ABLE 1.3.3	I	GLY REINFORCED
SECTI	ONS	- I OALL	EMENT PE	RCENTAGE	PI FOR SIN	GI V PENICODO
Mu/bd ²						fek = LENL
N/mm ²				fy' N/mm2	É	$fck = 15N / mm^2$
V 20000	24	0 250	410			
0.30		47 0.14	415	480	500	
0.35	0.1				0.071	1000
0.40	0.1			0.000	0.083	
0.45	0.2		0.114		0.095	
0.50	0.2	50 0.240	V.123		0.107	
0.55	0.27	76 0.265	0.00	0.125	0.120	
9.60	0.30		0.103	0.138	0.132	
0.65	0.32		0.175	0.151	0.145	
0.70	0.35		0.190	0.164	0.158	
0.75	0.38		0.206	0.178	0.171	
0.80	0.410		0.221	0.191	0.184	
0.82	0.42		0.237	0.205	0.197	
0.84	0.433	24.400	0.244	0.211	0.202	
0.86	0.444		0.250	0.216	0.208	
0.88	0.455		0.257	0.222	0.213	
0.90	0.466		0.263	0.227	0.218	
0.92	0.477		0.270	0.233	0.224	
0.94	0.489		0.276	0.239	0.229	
0.96	0.500		0.283	0.244	0.235	
0.98	0.512	0.480	0.289	0.250	0.240	
1.00	0.523		0.296	0.256	0.246	
1.02	0.535	0.502	0.303	0.262	0.251	
1.04	0.546	100000000000000000000000000000000000000	0.309	0.267	0.257	
1.06	0.558	0.524	0.316	0.273	0.262	
1.08	0.570	Parks Carried States	0.323	0.279	0.268	
.10	0.581	0.547	0.329	0.285	0.273	
.12	0.593	0.558	0.336	0.291	0.279	
.14	0.605	0.570	0.343	0.297	0.285	
.16	0.617	0.581	0.350	0.303	0.290	
.18	0.629	0.592	0.357	0.309	0.296	
20	0.641	0.604	0.364	0.315	0.302	
22	0.653	0.615	0.371	0.321	0.308	
	0.000	0.627	0.378	0.327	0.314	
					0.514	

			1,000				
24	25	0.665	0.639	0.385	0.333	0.319	
.24		0.678	0.650	0.392	0.339	0.325	
26		0.690	0.662	0.399	0.345	0.331	
.28		0.702	0.674	0.406	0.351	0.337	
.30		0.715	0.686	0.413	0.357	0.343	
.32		0.727	0.698	0.420	0.364	0.349	
.34		0.740	0.710	0.428	0.370	0.355	
.36		0.752	0.722	0.435	0.376	0.361	
.38		0.765	0.734	0.442	0.382	0.367	
1.42		0.778	0.747	0.450	0.389	0.373	
1.44		0.790	0.759	0.457	0.395	0.379	
		0.803	0.771	0.465	0.402	0.386	
1.46 1.48		0.816	0.784	0.472	0.408	0.392	
		0.829	0.796	0.480	0.415	0.398	
1.50		0.842	0.809	0.487	0.421	0.404	
1.52 1.54		0.856	0.821	0.495	0.428	0.411	
1.56		0.869	0.834	0.503	0.434	0.417	
1.58		0.882	0.847	0.510	0.441	0.423	
1.60		0.896	0.860	0.518	0.448	0.430	
		0.909	0.873	0.526	0.455	0.436	
1.62		0.923	0.886	0.534	0.461	0.443	
1.64		0.936	0.899	0.542	0.468	0.449	
1.66		0.950	0.912	0.550	0.475	0.456	
1.68		0.964	0.925	0.558	0.482	0.463	
1.70		0.978	0.939	0.566	0.489	0.469	
1.72		0.992	0.952	0.574	0.496	0.476	
1.74		1.006	0.966	0.582	0.503	0.483	
		1.020	0.980	0.590	0.510	0.490	
1.78		1.035	0.993	0.598	0.517	0.497	
		1.049	1.007	0.607	0.525	0.504	
1.82		1.064	1.021	0.615	0.532	0.511	
1.84		1.078	1.035	0.624	0.539	0.518	
1.86		1.093	1.049	0.632	0.546	0.525	
1.88		1.108	1.063	0.641	0.554	0.532	
1.90		1.100	1.003	0.014	111 151		
1.02		1.123	1.078	0.649	0.561	0.539	
1.92		1.138	1.092	0.658	0.569	0.546	
1.94		1.130	1.072	0.000			

Plain & Reinforced Comput Consul	

			1.2.1		Plain & Rei	nforced Ceme	nt Concrete
1.96	1.153	1.107	0.667	0.576	0.553		
1.98	1.168	1.121	0.676	0.584	0.561		
2.00	1.184	1.136	0.685	0.592	0.501		
2.02	1.199	1.151	0.693	0.332			
2.04	1.215	1.166	0.703				50
2.06	1.231	1.181	0.712				
2.08	1.247	1.197	0.712				
2.10	1.263	1.212					
2.12	1.279	1.228					
2.14	1.295	1.243					
2.16	1.312	1.259					
2.18	1.328	1.275					
2.20	1.345	1.291					
2.22	1.362	1.308					
2.24	1.379	1.508					
	1.319						

174

Note: Blanks indicate inadmissible reinforcement percentage.

TABLE 1.3.32

FLEXURE - LIMITING MOMENT OF RESISTANCE FACTOR Mu lim /bwd² fck FOR SINGLY REINFORCED T-BEAMS, N/mm²

 $fy = 415 \text{ N/mm}^2$

Df/d											
DIJO				bf	/bw						
0.00	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	
0.06	0.138	0.164	0.190	0.216	0.242	0.268	0.294	0.320	0.346	0.372	
0.07	0.138	0.168	0.198	0.228	0.259	0.289	0.319	0.240		12/10/201	
0.08	0.138	0.172		0.241				0.349	0.379	0.409	
0.09	0.138	200000				0.309	0.344	0.378	0.412	0.446	
	100000000000000000000000000000000000000	0.176	0.215			0.330	0.368	0.406	0.445	0.483	
0.10	0.138	0.180	0.223	0.265	0.308	0.350	0.392	0.435		0.000	
0.11	0.138	0.184	0.231			100000000000000000000000000000000000000			0.477	0.519	
0.12	0.138					0.370	0.416	0.463	0.509	0.555	
V-100	E1 2522	0.188	0.239		0.339	0.390	0.440	0.490	0.541	0.591	
0.13	0.138	0.192	0.247	0.301	0.355	0.409	0.463	0.518	0.572	0.526	

			200					5						
1.661		** *****	87 0.	0.48).429	70	0.3	112	0.7			_		
).695	14000			0.50	0.448	96	0.3	314	0.3	.254			0.138	.14
).729	****			0.5	0.466	01	0.3	225	0.3	.262		10.75	0.138).15
0.762				0.5	0.485	16	0.4	246	0	.269			0.138).16
0.796	THE RESERVE TO SERVE THE RESERVE TO SERVE THE RESERVE			0.5	0.503	170	0.4	340	0	.277			0.138	0.17
0.828				0.5	0.522	145	0.4	331	0	.284	[17] 그 [17] 그 보고		0.138	0.18
0.861		A 4 (4) (4)			0.540	150	0.4	308	0.).291			0.138	0.19
0.887	0.804 0	.721 (100000	0.554	471	0.4	319	0.	0.299			0.138	0.20
2000			E-F-0-E-F 30.		0.554	411	0.4	.388	0.	0.305	.221 0	(0.138	0.21
0.908			551 0	0.0	0.566	400	0	200						*****
0.928	48 4 60 7 7	0.753	665 (0.577	400	0.	.395	0	0.309			0.138	0.22
0.949		0.768), 33	0.588	409	. 0.	1.402	1 0	0.314	and the same of th		0.138	0.23
0.969	0.876	0.784			0.600	490	0.	1.408	8 0	0.318			0.138	0.24
			0,2		0.000	,507	0).413	3 0	0.323	0.230	8	0.138	0.25
0.989	0.894	0.800	705	0	0.61									
			,,,,,		0.01	210	2 0	0.42	7 (0.32	0.233	8	0.138	0.26
1.008		0.815	.718	0 0	0.62	***							8	55155
1.028	0.929	0.830	.731		0.63	.525	8 0	0.42	1 (0.33	0.235	8	0.138	0.27
1.047	0.946	0.845	.744		0.64).534	5 (0.43	6	0.33	0.237	8	0.133	0.28
1.066	0.963	0.860	.757		0.65).542	11	0.44	10	0.34	0.239	8	0.13	0.29
1.085	0.980	0.875	770		0.66	0.551	18	0.44	14	0.34	0.241	38	0.13	0.30
1.104	0.997	0.890).782		0.60	0.559	14 (0.43	49		0.243	38	0.13	0.31
1.123	1.014	0.904	0.795		0.61	0.568	50	0.40	53		0.245	38	0.13	0.32
1.142	1.030	0.919	0.807			0.570	56	0.4	57		0.248	38	0.13	0.33
1.160	1.046	0.933	0.819	39 7 8 - 3		0.58	73	0.4	61		0.250	38	0.13	0.34
1.178	1.063	0.947	0.831			0.59	79	0.4	65		0.252	38	0.13	0.35
1.196	1.079	0.961	0.843	200		0.60	85	0.4	69		0.254	38	0.13	0.36
1.214	1.094	0.975	0.855	T 0		0.60	91	0.4	73		0.256	38	0.13	0.37
1.232	1.110	0.989	0.867			0.61	97	0.4	377	0.3	0.258	38	0.1	0.38
1.249	1.126	1.002	0.879	55	100	0.62	503	0.5	381	0.3	0.260	138	0.1	0.39
1.267	1.141	1.016	0.890		-0.50	0.63	508	0.5	385	2 0.3	0.262	138	0.1	0.40
1.284	1.156	1.029	0.902	65		0.64	514	0.5	389	3 0.	0.263	138	0.1	0.41
1.301	1.172	1.042	0.913	175	14. 15.	0.6	520	3 0.	393	5 0.			0.1	0.42
	1.187	1.055	0.924	784		0.6	526	6 0.	396	7 0.		138		0.43
The second second	1.201	10724	0.936	793	777	0.6	531	0 0.	.400	9 0.		138		0.44
		000	0.930	803	0 0.	0.6	537	4 0.	.404	1 0.		131	200	
		277	0.930	803	0 0.	0.6	537	4 0.	.404	1 0.	0.27	13	0.	0.45

Plain & Reinforced Cement Concrete

TABLE 1.3.33

FLEXURE - REINFORCEMNT PERCENTAGES FOR DOUBLY REINFORCED SECTIONS

					SEC	TIONS		
						fck =	15 N/mm	2
Mu	bd ²	d'/d = 0	0.05	/d =0.10		fy = 41	5 N/mm ²	
- War (247)	555401		0.05 a	/d =0.10		d'/d =(d = 0.20
N/m	m2 Pt	Pc	Pt	Pc				
		13.7		PC	Pt	Pc	Pt	Pc
2.08		19 0.0	03 0.72	0.003	0.70	*** ***********		
2.10			C-20 1 C C C C C C C C C C C C C C C C C C			77.7	7. O.	
2.20	0.7				10000	11		
2.30	0.7				0.00	7,777,74		0.050
2.40	0.8		The second second			****		0.089
			V.011	8 0.106	0.824	0.115	0.831	0.127
2.50	0.84	2 0.12	9 0.849	0.138	4422	120000		
2.60	0.87				7,00			0.166
2.70	0.90		The second second	7 7 7 7 7 7 7 7	-100		0.900	0.205
2.80	0.92				0.922	0.0000000000000000000000000000000000000	0.935	0.244
2.90	0.95				0.954	0.255	0.969	0.282
			0.7/2	0.267	0.987	0.290	1.004	0.321
3.00	0.98	0.280	1.003	0.299	1.000	1748 NAVIDA		
3.10	1.017	0.311		10.000.00	1.020	0.325	1.039	0.360
3.20	1.046				1.052	0.360	1.073	0.399
3.30	1.075				1.085	0.395	1.108	0.438
3.40	1.104	10 1 To 1	1.126	0.395	1.117	, 0.430	1.142	0.476
	DE DATA	0.101	1.120	0.427	1.150	0.465	1.177	0.515
3.50	1.134	0.432	1.157	0.460				1
3.60	1.163	0.462	1 - 1	0.492	1.183	0.500	1.212	0.554
3.70	1.192	0.492	1.218	100000000000000000000000000000000000000	1.215	0.535	1.246	0.593
3.80	1.221	0.522	1.249	0.524	1.248	0.571	1.281	0.631
3.90	1.250	0.552	1.280	0.556	1.280	0.606	1.316	0.670
4.00	1.279	0.583	1.311	0.588	1.313	0.641	1.350	0.709
1.10	1.309	0.613	1.342	0.621	1.346	0.676	1.385	0.748
1.20	1.338	0.643	1.372		1.378	0.711	1.420	0.787
.30	1.367	0.673		0.685	1.411	0.746	1.454	0.825
.40	1.396	0.703	1.403	0.717	1.443	0.781	72 TELEFO 1	0.864
200	11070	0.703	1.434	0.749	1.476	0.816	2 - C. C. C. C. C.	0.903

FLEXURE - REINFORCEMNT PER	CENTAGES FOR DOUBLY REINFORCED
SECTIONS	ALCOHOLD TO THE RESERVE OF THE PARTY OF THE

200						ck = 15 N							
					fy	= 415 N	/mm ²						
Mu/bd ²	d' / d	= 0.05	d'/d =	0.10	d	'/d =0.15	d'/d =	0.20					
N/mm2	Pt	Pc	Pt	Pc	Pt	Pc	Pt	Pc					
4.50	1.425	0.734	1.465	0.781	1.509	0.851	1.558	0.942					
	1.455	0.764	1.495	0.814	1.541	0.886	1.593	0.980					
4.60	1.484	0.794	1526	0.846	1.574	0.921	1.627	1.019					
4.80	1.513	0.824	1.557	0878	1.606	0.956	1.662	1.058					
4.90	1.542	0.855	1.588	0.910	1.639	0.991	1.697	1.097					
5.00	1.571	0.885	1.619	0.942	1.672	1.026	1.731	1.136					
5.10	1,600	0.915	1.649	0.975	1.704	1.061	1.766	1.174					
5.20	1.630	0.945	1.680	1.007	1.737	1.096	1.801	1.213					
5.30	1.659	0.975	1.711	1.039	1.769	1.131	1.835	1.252					
5.40	1.688	1.006	1.742	1.071	1.802	1.166	1.870	1.291					
5.50	1.717	1.036	1.773	1.103	1.835	1.201	1.905	1.329					
5.60	1.746	1000000		1.136	1.867	1.236	1.939	1.368					
5.70	1.775		1.834	1.168	1.900	1.271	1.974	1.407					
5.80	1.805	- A 100 000 000		1.200	1.932	1.306	2.008	1.446					
5.90	1.834			1.232	1.965	1.341	2.043	1.485					
6.00	1.863	1.187	1.927	1.264	1.998	1.376	2.078	1.523					
	1.892				2.030	1.411	2.112	1.562					
6.10	1.921			1.329	2.063	1.446	2.147	1.601					
	1.950		1 1 1 1 1 1 1 1 1		2.095	1.481	2.182	1.640					
6.30	1.980				2.128	1.517	2.216	1.678					
100000000													

	550	44.27	48.12	57.75	67.37	73.15	77.0	86.62	
600	600	48.30	52.50	63.00	73.50	79.80	84.0	94.50	
650	000	1777	12 5 7 E	5757333	77.17	83.79	002	99.22	
680	630	50.71	55.12	66.15	77.17	83.19	00.4		
700	650	52.32	56.87	68.25	79.62	86.45	91.0	102.37	
750	700	56.35	61.25	73.50	85.75	93.10	98.0	110.25	
1211	LANG.	and the same of	O 5 + 40 W						

For obtaining Shear resistance for concrete grade M20 multiply the above values by 36/35.
 For obtaining Shear resistance at working loads multiply the above values by 22/35.

TABLE 1.3.36 DESIGN FOR SHEAR - LIMIT STATE METHOD

a) Des	ign sh	ear stre	ngth To	d in N	/mm²	b)She	ar strength of	bentup B	ars in kN	u,
Pt	M15	M20	Pt	M15	M20	Dia	Fe 250	I	e415	
%			%			mm	0-45°	0-60°	0-45°	0-60°
0.75	0.35	0.36	1.40	0.67	0.70	10	1205	14.79	20.05	24.56
0.25	0.38	0.39	1.50	0.68	0.72	12	17.39	21.30	28.87	35.36
0.40	0.43	0.44	1.60	0.69	0.73	16	30.92	37.87	51.33	62.87
0.50	0.46	0.48	1.70	0.71	0.75	18	39.14	47.93	64.97	79.87
0.60	0.50	0.51	1.80	0.71	0.76	20	48.32	59.18	80.21	98.23
0.70	0.53	0.55	1.90	0.71	0.77	22	58.46	71.60	97.05	118.86
0.80	0.55	0.57	2.00	0.71	0.79	25	75.49	92.46	125.32	153.48
0.90	0.57	0.60	2.10	0.71	0.80	28	94.70	115.98	157.20	192.53
1.00	0.60	0.62	2.20	0.71	0.81	32	123.69	151.49	205.32	251.47
1.10	0.62	0.64	2.30	0.71	0.82	0 =	angle between	bar &ax	is of the n	nember
1.20	0.63	0.66	2.40	0.71	0.82	1				

MINIMUM SHEAR REINFORCEMENT (STIRRUPS) IN BEAMS FOR DIFFERENT WIDTHS **TABLE 1.3.34**

					0.000	***			
Dia mm	Area 2 legs mm ²		250	300	350	380	400	450	
6 8 10 12,	56 100 157 226	150 270 425 450	Max 140 250 390 450	225 200 325 450	100 175 280 400	165 255 370	in mm 155 245 350	135 215 310	
Steel : 6 8 10 12	Fe 415 56 100 157 226	250 450 450 450	230 415 450 450	190 345 450 450	165 205 450 450	150 270 425 450	145 260 405 450	125 230 360 450	

ULTIMATE SHEAR RESISTANCE OF MINIMUMVERTICAL STIRRUPS IN KN FOR DIFFERENT WIDTHS AND DEPTHS OF RECTANGULAR BEAMS - CONCRETE M 15

Depth	in mm		2232727		41047		100		
Total	Effec-	230	250	of Bear 300	m in mm 350	380	400	450	
300 350 380 400 450 500 530 550	250 300 330 350 400 450 480 500	20.12 24.15 26.56 28.17 32.20 36.22 38.64 40.25	21.87 26.25 28.87 30.62 35.00 39.37 42.00 43.75	26.25 31.50 34.65 36.75 42.00 47.25 50.40 52.50	30.62 36.75 40.42 42.87 49.00 55.12 58.80 61.25	33.25 39.90 43.89 46.55 53.20 59.85 63.84 66.50	42.0	39.37 47.25 51.97 55.12 63.00 70.87 75.60 78.75	

TABLE 1.3.37
SHEAR - VERTICAL STIRRUPS
Values of Vus/d for two legged stirrups, kN/cm.

Stirrup spacin cm		fy = 250 1 Diameter				fy = 41: Diamet	5 N/mm² er, mm	
	6	8	10	12	6	8	10	12
5	2.460	4.373	6.833	9.839	4.083	7.000		
6	2.050	3.644	5.694	8.200		7.259	11.34	16.334
7	1.757	3.124	4.881	7.028	10 mm and 10 mm	6.049	9.452	13.611
8	1.537	2.733	4.271	6.150		5.185	8.102	11.667
9	1.367	2.429	3.796	5.466	2.269	4.537	7.089	10.208
10	1.230	2.100	3.416	4.920		4.033	6.302	9.074
11	1.118	1.988	3.106	4.472	2.042	3.630	5.671	8.167
12	1.028	1.822	2.847	4.100		3.299	5.150	7.424
13	0.946	1.682	2.628	3.784	7.77	3.026	4.720	6.806
14	0.879	1.562	2.440	3.514	1.571	2.702	4.363	6.286
15	0.820	1.458	2.278	3.280	1.458	2.593	4.051	5.833
16	0.769	1.366	2.135	2.075	1.361	2.420	3.781	5.445
17	0.723	1.286	2.010	2.894	1.276	2.269	3.545	5.104
18	0.683	1.215	1.898	2.733	1.201	2.135	3.336	4.804
19	0.647	1.151	1.798	2.589	1.134	2.016	3.151	4.537
20	0.615	1.093	1.708	2.460	1.075	1.910	2.985	4.298
25	0.492	0.875	1.367	1.968	1.020	1.815	2.836	4.083
10	0.410	0.729	1.139	1.640	0.817	1.452	2.269	3.267
	0.351	0.625	0.976		0.681	1.210	1.890	2.722
	0.307	0.547	0.854	1.406	0.583	1.037	1.620	2.333
	0.273	0.486	0.759	1.230	0.510 0.454	0.907 0.807	1.418 1.260	2.042 1.815

TABLE 1.3.38 FLEXURE — MOMENT OF RESISTANCE OF SLABS, kN.m. PER METRE WIDTH

 $f_{ck} = 15 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$ Thickness = 10 0 cm

20		BAR DIAME	TER, INIII		BAR		BAR DIAM	CETER, IDM	U Secret
SPACING	6	8	10	12	SPACING, cm	6	8	10	12
5 6 7 8	13-53 11-72 10-32 9-21 8-31	0.00 0.00 0.00 0.00 13.20	0-00 0-00 0-00 0-00	0-00 0-00 0-00 0-00	20 21 22 23 24	3-98 3-80 3-64 3-49 0-00	6-71 6-42 6-15 5-91 5-68	9·79 9·39 9·03 8·69 8·37	12:91 12:44 12:00 11:59
10 11 12 13 14	7:56 6:94 6:42 5:96 5:57	12-16 11-26 10-48 9-80 9-20	0-00 0-00 0-00 0-00 13-04	0.00 0.00 0.00 0.00	25 26 27 28 29	0.00 0.00 0.00 0.00	5-47 5-28 5-09 4-92 4-77	8:08 7:81 7:55 7:31 7:08	10:84 10:50 10:18 9:88 9:59
15 16 17 18	5-22 4-92 4-64 4-40	8-67 8-19 7-77 7-38 7-03	12:37 11:75 11:20 10:69 10:22	0.00 0.00 0.00 0.00	30 35 40	0-00 0-00	4·62 3·99 3·51	6-87 5-97 5-28	9·32 8·16 7·26

Note 1 - Zeros indicate inadmissible reinforcement percentage.

Note 2 - Bar spacings below the dividing line exceed 3d.

TABLE 1.3.39 FLEXURE — MOMENT OF RESISTANCE OF SLABS, kN.m. PER METRE WIDTH

 $f_{ck} = 15 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$ Thickness = 11 0 cm

BAR		BAR DIA	METER, mm		BAR		BAR DIAME	TER, mm	
SPACING	6	8	10	12	SPACING.	6	8	10	12
5 6 7 8 9	13·42 11·77 10·48 9·44	0 00 0 00 0 00 16 67 15 21	0-00 0-00 0-00 0-00 0-00	0-00 0-00 0-00 0-00 0-00	20 21 22 23 24	4·49 4·29 0·00 0·00 0·00	7-62 7-29 6-98 6-70 6-44	11-21 10-74 10-32 9-92 9-55	14-95 14-39 13-86 13-37 12-91
10 11 12	8·59 7·87 7·27	13:97 12:91 12:00	0.00	0.00	25 26 27	0-00 0-00	6-20 5-97 5-77	9·21 8·90 8·60	12-48 12-07 11-69
13	6·75 6·30	10-50	15-96 15-06	0.00	28 29	0.00	5-57 5-39	8·32 8·06	11:00
15 16 17 18 19	5-90 5-55 5-24 4-97 4-72	9-88 9-33 8-83 8-39 7-99	14:26 13:53 12:86 12:26 11:71	0.00 0.00 0.00 16-22 15-56	30 35 40 45	0-00 0-00 0-00	5:22 4:51 0:00 0:00	7-82 6-78 5-99 5-36	10:68 9:33 8:28 7:44

Note 1 - Zeros indicate inadmissible reinforcement percentage.

Norre 2 - Bar spacings below the dividing line exceed 3d.

TABLE 1.3.40 FLEXURE — MOMENT OF RESISTANCE OF SLABS, kN.m. PER METRE WIDTH

fek = 15 N/mm² /y - 415 N/mm²

BAR SPACING.		BAR DIAM	erra, me		BAR	BAR DIAMETER, mm				
cm	6	8	10	12	SPACING,	6	8	-		
5 6 7 8 9	17-61 15-12 13-23 11-76 10-57	0.00 0.00 21.00 18.94 17.23	0.00 0.00 0.00 0.00	0 00 0 00 0 00 0 00 0 00	20 21 22 23 24	0.00 0.00 0.00 0.00	8:53 8:15 7:80 7:49 7:19	10 12:62 12:09 11:60 11:15 10:74	16-99 16-33 15-71 15-14	
10 11 12 13 14	9-61 8-80 8-12 7-53 7-02	15:79 14:56 13:51 12:59 11:79	0°00 20°65 19°32 18°14 17°09	0-00 0-00 0-00 0-00 0-00	25 26 27 28 29	0.00 0.00 0.00	6-92 6-67 6-44 6-22 6-02	10-35 9-99 9-65 9-33 9-04	14-61 13-64 13-20 12-79 12-41	
15 16 17 18 19	6-58 6-19 5-84 5-53 5-26	11:09 10:46 9:90 9:40 8:94	16·14 15·30 14·53 13·84 13·20	0.00 20.24 19.33 18.49 17.71	30 35 40 45	0.00 0.00 0.00	5 83 0 00 0 00 0 00	8:76 7:59 6:70 5:99	10-50 9-30 8-16	

Norm I - Zeros indicate inadmissible reinforcement percentage.

Nore 2 - Bar spacings below the dividing line exceed 3d.

TABLE 1.3.41 FLEXURE — MOMENT OF RESISTANCE OF SLABS, kN.m.

fek = 15 N/mm1 fy = 415 N/mm²

	BAR BAR DIAMETER, IDEA		and		kness -	13.0 cm					
cm	6	8	10	12		SPACIN		DAK	DUMETER,	mm	
	Course	0.00		14	16	cm.	6	8	10	12	16
6 7 8 9	19-65 16-82 14-69 13-03 11-71	0-00 0-00 23-59 21-21 19-24	0-00 0-00 0-00 0-00	0.00 0.00 0.00 0.00	0-00 0-00 0-00 0-00	20 21 22 23 24	0 00 0 00 0 00 0 00 0 00	9-43 9-01 8-63 8-28 7-95	14·04 13·44 12·89 12·39 11·92	19:04 18:27 17:57 16:92	0-00 0-00 0-00
10 11 12 13 14	10 63 9 73 8 97 8 32 7 75	17:60 16:21 15:02 13:99 13:09	24-99 23-23 21-68 20-32 19-11	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	25 26 27 28 29	0-00 0-00 0-00 0-00	7-65 7-37 7-11 6-87 6-64	11:48 11:08 10:70 10:35 10:01	15-74 15-21 14-72 14-25 13-81	0 00 0 00 0 00 22 92 22 30
15 16 17	7-26 6-83 6-44	12:30 11:39	18-03 17-07	23·95 22·79	0.00	30	0.00	6-43	9-70	13:40	21-70
18 19	6-10	10-97 10-40 9-90	16-20 15-41 14-69	21:73 20:75 19:86	0.00 0.00	35 40 45	0.00	0.00	8·40 7·41 6·62	11-66 10-32 9-25	18-66 16-69 15-09

- 1-142 -

Note 1 - Zeros indicate inadmissible reinforcement percentage.

Nore 2 - Bar spacings below the dividing line exceed 3d.

FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m. PER METRE WIDTH

 $f_{ck} = 15 \text{ N/mm}^2$ $f_7 = 415 \text{ N/mm}^2$ Thickness = 14.0 cm

3,0458		BAR	DIAMETER,	mm	Carrier .	BAR		BAR	mm	100	
BAR		8	10	12	16	SPACING, CIII	6	8	10	12	16
5 6 7 8 9	21-69 18-52 16-15 14-31 12-84	0.00 29-54 26-18 23-48 21-26	0-00 0-00 0-00 0-00	0-00 0-00 0-00 0-00	0-00 0-00 0-00 0-00	20 21 22 23 24	0.00 0.00 0.00 0.00	10·34 9·88 9·45 9·06 8·71	15:46 14:79 14:18 13:62 13:10	21-08 20-22 19-43 18-69 18-01	0.00 0.00 0.00 0.00
10 11 12 13 14	11-65 10-65 9-82 9-10 8-48	19·41 17·86 16·53 15·38 14·38	27-82 25-80 24-05 22-50 21-14	0:00 0:00 0:00 0:00 28:14	0.00 0.00 0.00 0.00	25 26 27 28 29	0.00 0.00 0.00 0.00	8-37 8-07 7-78 7-52 7-27	12-61 12-17 11-75 11-36 10-99	17-37 16-78 16-23 15-71 15-22	27-18 26-37 25-61 24-89 24:20
1000	19245	00-0	10.00	26.68	0.00	30	0.00	0.00	10.65	14.76	23:55
15 16 17 18 19	7-94 7-47 0-00 0-00 0-00	13·51 12·73 12·03 11·41 10·85	19-92 18-84 17-87 16-99 16-19	25·34 24·13 23·02 22·01	0-00 0-00 0-00	35 40 45	0.00 0.00	0.00 0.00	9·21 8·12 7·25	12:83 11:34 10:16	20:74 18:51 16:70

Note 1 — Zeros indicate inadmissible reinforcement percentage. Note 2 — Bar spacings below the dividing line exceed 3d.

FLEXURE — MOMENT OF RESISTANCE OF SLABS, kN.m. PER METRE WIDTH TABLE 1.3.43

 $f_{ck} = 15 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$ Thickness = 150 cm

BAR SPACING.	20 -0		BAR DIAM	terra, rom		
cm	6	8	10	12		- Alexander
5 6 7 8 9	23:73	0.00			16	18
6	20-22	32-56	0.00	0.00	0.00	1
7	17:60	28.77	0.00	0.00	0.00	0.00
8	15:58	25.74	0.00	0.00	0.00	0.00
9	13-97	23-27	33-30	0.00	0.00	0.00
10	12:67	101/04		0.00	0.00	0.00
11	11-58	21:23	30.66	0.00	0.00	
12	10-67	19-51	28:38	0.00	0.00	0.00
13	9-89	18-04 16-78	26-41	0.00	0.00	0.00
14	9-21	15.68	24.68	32-91	0.00	0.00
		13.03	23.16	31-06	0.00	0.00
15	3.62	14.72	21.81	10000		0.00
16	0.00	13.86	20-61	29-40	0.00	0.00
17	0.00	13-10	19-53	27-89	0.00	0.00
19	0.00	12:42	18-56	26-53	0.00	0.00
17	0.00	11-80	17-68	25·29 24·16	0.00	0.00
20	0.00	11.25	00000000	24.10	0-00	0.00
21	0.00	11·25 10·74	16-88	23-12	0.00	200
22	0.00	10-28	16-14	22-16	0.00	0.00
20 21 22 23 24	0.00	9.85	15-47	21.28	0.00	0.00
24	0.00	9.46	14-85	20-47	32-08	0.00
20		.00.1900	- 14-28	19.71	31.05	0-00
25	0.00	9-10	13-75	1000000		0.00
27	0.00	8.76	13:26	19-01	30-08	0-00
28	0.00	8:45	12:80	18-35 17-74	29-16	0.00
26 27 28 29	0.00	0.00	12:37	17-17	28.30	0-00
~	0.00	0.00	11-97	16-63	27.48	0.00
30	0.00			10 03	26.70	31-22
35	0.00	0-00	11-59	16-12	24.07	MACON TO
40 45	0.00	0.00	10-02	14-00	25-97 22-81	30-43
45	0.00	0.00	8-82	12-36	20-32	26.97
		0.00	0.00	11.07	18-31	24-18

Note - Zeros indicate inadmissible reinforcement percentage.

FLEXURE — MOMENT OF RESISTANCE OF SLABS, kN.m. PER METRE WIDTH TABLE 1.3.44

 $f_{ck} = 20 \text{ N/mm}^2$ $f_{\gamma} = 415 \text{ N/mm}^2$ Thickness = 10.0 cm

					HAR		BAR DIAN	SETER, ISSUE	-
BAR		BAR DIAN	RETER, MIN		SPACING,	-6	8	10	12
SPACES	6	8	10	12	cm	1000	6:87	10-18	13:72
5 6 7 8	14·33 12·27 10·72 9·52	0:00 0:00 17:11 15:40 13:98	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	20 21 22 23 24	4:03 3:85 3:68 3:52 0:00	6:37 6:29 6:01 5:79	9-74 9-35 8-98 8-64	13:17 12:67 12:20 11:76
10 11 12 13	7-77 7-11 6-55 6-08	12:79 11:79 10:92 10:18 9:52	0:00 16:78 15:67 14:70 13:83	0 00 0 00 0 00 0 00	25 26 27 28 29	0.00 0.00 0.00 0.00	5-57 5-37 5-18 5-00 4-84	8-33 8-03 7-76 7-51 7-27	11-36 10-98 10-63 10-29 9-97
15 16 17 18	5:67 5:31 4:99 4:71 4:46	8 95 8 44 7 99 7 58 7 21	13-05 12-36 11-73 11-16 10-65	17-32 16:39 15:64 14:94 14:30	30 35 40	0.00	4·69 4·04 3·55	7:04 6:10 5:38	9-68 8-43 7-46

Note 1 -- Zeros indicate inadmissible reinforcement percentage.

Note 2 — Bar spacings below the dividing line exceed 3d.

TABLE 1.3.45 FLEXURE — MOMENT OF RESISTANCE OF SLABS, kN.m. PER METRE WIDTH

 $f_{ck} = 20 \text{ N/mm}^2$ $f_{\gamma} = 415 \text{ N/mm}^2$ Thickness = 11.0 cm

W2000			100 Total 100 CO	METER, THE		D.SR	HAR DIAMETER, mm				
	BAK SPACING.		BAR DIA	A		SPACING,	6	8	10.	12	
	CUI	6	8	10	12	24500		7.78	11-59	15.76	
	5 6 7 8	16:37 13:97 12:18 10:79 9:6"	0-00 22:23 19:70 17:66 15:99	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	20 21 22 23 24	4·34 4·33 0·00 0·00 0·00	7-43 7-11 6-82 6-55	11 09 10 64 10 21 9 82	15-11 14-52 13-97 13-46	
	10	8:79 8:04	14·61 13·44	30:87 19:35 18:03	0 00	25 26 27	0.00	6-30 6-07 5-85	9-46 9-12 8-81	12-99 12-55 1 12-13	
	12 13 14	7:40 6:86 6:40	12:44 11:57 10:82	16-88 15-85	0 00 21 04	28 29	0.00	5-65 5-47	8:52 8:24	11-75	
	15 16 17 18	5-99 5-63 3-31 5-03 4-77	9:57 9:05 8:55 8:16	14:94 14:13 13:40 12:74 12:14	19-94 18-94 18-04 17-21 16-45	30 35 40 43	0-00 0-00 0-00 0-00	5-29 4-56 0-00 0-00	7-99 6-91 6-09 5-44	9-59 8-48 7-60	

Nore I - Zeros indicate inadmissible reinforcement percentage.

Norr : - Bar spacings below the dividing line exceed 3d.

TABLE 1.3.46 FLEXURE — MOMENT OF RESISTANCE OF SLABS, kN.m.

 $f_{ck} = 20 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$ Thickness = 12.0 cm

BAR SPACING,			BAR DIAM		BAR		BAR DIAMPTER, mm				
	cm	6	of try 8	10	12	SPACING, cm	6	8	10	12	
	5 6 7 8 9	18-41 15-67 13-64 12-07 10-32	0.00 25.25 22.29 19.93 18.01	0.00 0.00 0.00 0.00 25.76	0.00 0.00 0.00 0.00	20 21 22 23 24	0.00 0.00 0.00 0.00	8·69 8·29 7·93 7·61 7·30	13.01 12.44 11.92 11.45 11.00	17-80 17-06 16-38 15-75 15-16	
	10 11 12 13 14	9·81 8·96 8·26 7·65 7·13	16-42 15-08 13-95 12-97 12-12	23.70 21.93 20.40 19.06 17.88	0-00 0-00 26-99 25-39 23-95	25 26 27 28 29	0.00 0.00 0.00 0.00	7-02 6-77 6-52 6-30 6-09	10-59 10-21 9-86 9-53 9-22	14-62 14-12 13-64 13-20 12-79	
	15 16 17	6-67 6-27 5-91	11·37 10·71	16·83 15·90	22-66 21-49	30	0.00	5-90	8-93	12:40	
	18	5-60 5-31	9-59 9-12	15-07 14-31 13-63	20·44 19·48 18·60	35 40 45	0.00	0.00 0.00 0.00	7-72 6-80 6-07	10-76 9-50 8-50	

Note 1 - Zeros indicate inadmissible reinforcement percentage.

Note 2 - Bar spacings below the dividing line exceed 3d.

month (14 - 3

TABLE 1.3.47 FLEXURE — MOMENT OF RESISTANCE OF SLABS, kN.m. PER METRE WIDTH

 $f_{ck} = 20 \text{ N/mm}^2$ $f_y = 415 \text{ N/mm}^2$ Thickness = 13-0 cm

SPACE		B.	AL DIMET	te, mm		BAR		BAR	DIAMETER,	mm	
cm	6	8	10	12	16	SPACING	6	8	10	12	16
5 6 7 8 9	20:45 17:38 15:10 13:34 11:95	32-66 28:28 24:88 22:20 20:02	0.00 0.00 0.00 31.72 28.91	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	20 21 22 23 24	0.00 0.00 0.00 0.00	9-59 9-16 8-76 8-39 8-06	14·43 13·79 13·21 12·68 12·18	19:84 19:00 18:23 17:52 16:87	30'85 29'73 28'67 27'69 26'77
10 11 12 13 14	10·83 9·89 9·11 8·43 7·86	18-23 16-73 15-46 14-36 13-41	26-54 24-51 22-76 21-24 19-90	0-00 32-49 30-39 28-53 26-87	0.00 0.00 0.00 0.00	25 26 27 28 29	0-00 0-00 0-00 0-00	7-75 7-46 7-20 6-95 6-72	11.73 11.30 10.91 10.54 10.20	16-25 15-69 15-16 14-66 14-20	25-90 25-08 24-31 23-59 22-90
15 16	7·35 6·91	12:58 11:84	18·72 17·67	25'38 24'04	0.00	30	0.00	6:50	9-88	13:76	22-26
17 18 19	6·51 6·16 0·00	11·19 10·60 10·07	16:73 15:89 15:12	22:84 21:74 20:75	0.00 0.00 0.00	35 40 45	0.00	0.00	8:53 7:50 6:70	11:92 10:52 9:41	.19·49 17·33 15·59

Nore 1 - Zeros indicate inadmissible reinforcement percentage.

Note 2 - Bar spacings below the dividing line exceed 3d.

TABLE 1.3.48 FLEXURE - MOMENT OF RESISTANCE OF SLABS, kN.m. PER METRE WIDTH

 $f_{\rm ok} \Rightarrow 20 \, {\rm N/mm^2}$ f_y =415 N/mm² Thickness = 140 cm

of the stand policy is not only the september

						BAR	1100	BAR D	LAMETER, TO	m	OTTO
BAR		BAR I	NAMETER, II	nm		SPACING	6	8	10	12	16
SPACE	6,6	8	10	12	16	cm		10-50	15-85	21-88	34.48
5 6 7	22:49 19:08 16:56 14:62	36-29 31-30 27-48 24-47	0.00 0.00 39*12 35:26	0-00 0-00 0-00	0.00 0.00 0.00	20 21 22 23 24	0.00 0.00 0.00 0.00	10·02 9·58 9·18 8·82	15·14 14·50 13·91 13·37	20-95 20-09 19-30 18-57	33·18 31·97 30·84 29·79
9	13-09	22.04	32-06	0.00		25	0.00	8.48	12.86	17:89	28-80 27-87
10 11 12 13	11.85 10.82 9.96 9.22	20-05 18:38 16:97 15:76	29-37 27-08 25-12 23-42	38-94 -36-20 -33-79 -31-67 -29-78	0.00 0.00 0.00 0.00	26 27 28 29	0.00 0.00 0.00	8·16 7·87 7·60 7·34	12:39 11:96 11:55 11:18	17-26 16-67 16-12 15-60	27:00 26:18 25:41
14	9·22 8·58 8·03	14:71	21-93	28-10	0.00	30	0.00	0.00	10·82 9·34	15·12 13·09	24.68
15	7-55	12:98	19:44	26.60	0.00	35	0.00	0.00	8-21	11:54	19:14
16 17 18	0.00	11.61	17:46 16:61	24·01 22·90	35·87	40	0.00	0.00	7:33	10-32	17:20

Nors 1 - Zeros indicate inadmissible reinforcement percentage.

Nort 2 - Bar spacings below the dividing line exceed 3d.

TABLE 1.3.49 FLEXURE-MOMENT OF RESISTANCE OF SLABS, kN.m. PER METRE WIDTH

fek =	20 N/mas
	415 N/mm2
Thickness =	15:0 cm

BAR SPACING.	غصرتني	tal 1	BAR DIAM	ETER, mm		
cm	6	8	10	12	16	
5	24-53	39-92	7200737	5777	10	18
6 7	20:78		0.00	0.00	0.00	
7	18-01	34:32	0.00	0.00	0.00	0.00
9	15-90	30.07	43.16	0.00	0.00	0:00
9	14-22	26.73	38-80	0.00		0.00
1,54	14.72	24.06	35:21	0.00	0.00	0:00
10	12.87	200	9 25 30 5	0.00	0.00	0-00 0-00 0-00
11		21.86	32:20	43:03	V4055	
12	11.75	20:03	29.66	39-91	0.00	0.00
13	10-81	18-48	27-48		0-00	0.00
14	10.00	17-15	25.60	37-19	0.00	0-00
19	9-31	16.00	23.95	34.80	0.00	0.00
10			23 93	32.70	0.00	0.00
15	8.71	15.00	22.50	17.06010±0		0.00
16	0.00	14:11	22:50	30-82	0.00	0.00
17	0.00	13.32	21.22	29-15		
18	0.00	12.61	20:07	27-64	43-25	0.00
19	0.00		19:04	26-28	41:40	0.00
	0.00	11-98	18-11	25:04	39-69	0.00
20 21 22 23 24	0.00				22.03	0-00
21	0.00	11:41	17:26	23:92	38-11	2000 2000
22	0.00	10-88	16:49	22.89		0.00
23		10-41	15.79	21-94	36.64	0.00
24	0.00	9.97	15-14	21:07	35:27	41-27
	0.00	9.57	14.55	20:27	34.00	39-90
25				20'21	32.81	38-60
26	0.00	9-20	14.00	10.60		
26 27 28	0.00	8.86	13.48	19:52	31*70	37:38
30	0.00	8.54	13.01	18.83	30.66	36-24
20	0.00	0.00	12.57	18-18	29-69	35-15
29	0.00	0.00	12.37	17-58	28.77	34-13
223	300000	0.00	12:15	17:01	27-91	33.16
30	0.00	0.00	4 4 144			33.10
35	0.00	0.00	11-77	16:48	27:09	****
40	The second secon	The state of the s	10-15	14.26	23.64	32-24
45	0-00	0.00	8-92	12:56		28-29
1667	0.00	0.00	0.00	11.22	20-95	25-19
W07507 SEC			0.4.15.6.1	11.77	18-81	22:69

Note 1 — Zeros indicate inadmissible reinforcement percentage.

Nore 2 — Bar spacings below the dividing line exceed 3d.

LOAD TYPE	Mex	Mes
P b	B + Pab ²	Pa³b
A P 1/2 - 1/	B + P1 8	- P1
A a b -	B + ws [12 ab2+ s2 [1-3b]]	- <u>w5</u> 121 ² [12 a ² b+s ² (1-3 a)
A	• <u>w s</u> 1 2 1 (31-45)• 35 ² 1	-ws3(41-3s)
A	B • w 1 ²	- wt²
A 1/2 - 1/2-	8 • 5 w 1 ²	- 5wl³
A TOTAL TOTA	+ <u>w1</u> ²	- w1 ²
A	$= \frac{1}{100}$ $= \frac{1}{100}$ $= \frac{1}{100}$ $= \frac{1}{100}$	-M a (2 - 3a)

TABLE 1.3.51 DEFLECTION FORMULAE FOR PRISMATIC BEAMS

Chart 1 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Two Sides

Chart 2 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Two Sides

Chart 3 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Two Sides

Chart 4 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Two Sides

Chart 5 COMPRESSION WITH BENDING—Rectangular Section—Reinforcement Distributed Equally on Four Sides

Chart 6 COMPRESSION WITH BENDING — Rectangular Section — Reinforcement Distributed Equally on Four Sides

Chart 7 COMPRESSION WITH BENDING—Rectangular Section—Reinforcement Distributed Equally on Four Sides

Chart 9 COMPRESSION WITH BENDING - Circular Section

Chart 11 COMPRESSION WITH BENDING - Circular Section

Chart 12 COMPRESSION WITH BENDING - Circular Section

Chart 13 VALUES OF Puz for COMPRESSION MEMBERS

1-163

Chart 14 BIAXIAL BENDING IN COMPRESSION MEMBERS

Chapter II Index

30

20	Soil Mechanics and Foundation Engineering	
2.0.0		P.No
2.0.0	Introduction	2.1
2.1.0	Definitions	2.1
2.2.0	Certain Important Relationships	2.3
2.1	Basic Soil Components (Table)	2.4
2.2	Soil Classification (Including Field Identification	2.4
	& Classification) (Table) (Cl. 3.3, 3.3.3 & 3.4) of	
	I.S 1498-70	2.6
2.3	Classification of Coarse-grained Soils (Table)	
2.4	Auxiliary Laboratory Identification Procedure	2.8
	(Table)	2.9
2.5	Characteristics Pertinient to Embankment & Foundation(Table)	
2.3.0	Field Identification & Classification of Soils	2.11
2.3.1	Procedure for collection & Sending disturbed	2.12
	Soil samples from borrow area for embankment construction	214
2.3.2	Procedure for collecting and sending undisturbed soil samples	2-14
	for foundation studies of Earth Dams	2.15
2.4.0	Procedure for the determination of permeability (insitu)	2-15
	(Japanese method)	2.10
2.6	Suitability of soils for Canal Sections(Table)	2-19
2.6(a)	Void Ratio, porosity and Bulk unit Weight of typical soils(Table)	2-22
2.6 (b)	Textural Classification of soil based on grading(Table)	2-23
2.6 (c)	Permeability & drainage characteristics of Soils (Table)	2-23
2.6 (d)	Approximate values of for granular soils (Table)	2-24
2.7	Mechanical properties of various Rocks (Table)	2-25
	, - Fallous Nocks (Table)	2-26

	(Table)	2-27
2.8	Coefficient of frictions of Rock and Minerals (Table)	2-28
2.9	Cubic metre of Rock broken per metre of Bore hole.(Table)	2-29
2.10	Loading density in Kgs/Meter of Bore hole(Table)	2-30
2.11	Test for different phases of Exploration(Table)	2-32
2.12	Current Method of Sub-soil Exploration(Table)	2-36
2.4.1	Outline of Seismic & Electrical Resistivity Method.	2-36
2.5.0	Field Tests to Measure Properties of soil	2-37
2.6.0	Foundation on Black Cotton soil	2-39
2.7.0	Computation of BearingCapacity of soils - Terzaghi	2-42
2.8.0	Earth Pressure - Coulomb's Theory	
2-13	Table showing safe load for vertical under reamed piles	2-44
	in sand and clayey soil	2-48
2-14	Safe bearing pressures on construction Materials(Table)	2-49
2-15	Pile cap depth (Table)	2-49
2-16	Safe Bearing Capacity(Table)	
2-17	Safe Bearing Capacity & Foundation based on	2-52
	N-Value (Table)	2-53
2-18	Approximate weights of soils and angles of repose(Table)	2-55
2-19	Coeff. used in Rankines Earth Pressure Calculation(Table)	2-56
2-20	Table showing Rankine's coefficients	2-57
2-21	Table showing soil particle Fraction	2-57
2-22	Coefficient of friction of concrete on soil (Table)	2-58
2.9.0	Well Foundation	2-59
2.10.0	Scour depth Calculation	2-62
2.11.0	Impervious Zone and cut off trench	2-63
2-23	Predicting performance of Embackment on soft soils(Table)	2-64
2.12.0	Design of Retaining Walls	2-64
2.12.1	Design of Masonry Retaining Walls	2-74
2.12.2	Design of Cantilever Wall-R.C.C. Retaining Wall	1000

121

SECTION II

SOIL MECHANICS AND FOUNDATION ENGINEERING

2.0.0 Introduction: Soil is a complex material formed of the weathering process in solid rocks containing solid particles, water, air and other gases including organic matter. Its properties cannot be predicted with the same accuracy as other building materials due to its heterogeneous nature and varying characteristics. Besides theoretical concepts, it is essential to explore the soils, test them well before adequate design and construction controls are exercised for best results.

Boulders, gravels, sands clays and silts extending upto 75 microns in size are termed soils. Formation of soils is the result of geologic cycle continuously taking place, the cycle being weathering or denudation, transportation, deposition and upheaval etc., Weathering by physical agencies such as periodical temperature changes, impact and splitting action of flowing water or ice, wind, plants and animals etc., results in formation of cohesionless soils and residual soils of shallow depth formed at the parent rock, chemical weathering may be due to oxidation, hydrotion, carbonation and leaching by organic acids and water. Transported soils may be homogeneous or heterogeneous depending on the manner of transportation and deposition and will be of considerable depth; agencies of transport being water, ice, wind and gravity etc.,

Alluvial, marine or locustrine soils are of water transport. Glacial drift or simply drift is due to flow of molten ice and the components being of various kinds. Glacial streams contribute to stratified depths. Loess or aeoline is due to wind blown dunned sands or silty clays with no stratifications. Soils transported by gravitation forces are termed colluvial soils such as Talus (below pick up weirs).

2.1.0 Definitions: Soil mass consists of solid particles, water and air, the voids being occupied partly both by water and air in a saturated soil. In a fully saturated soil only water occupies the voids. In a dry soil mass the voids are filled with air only. Moisture content shall be expressed as w generally as a percentage and equal to

$$W = \frac{W - W_d}{W_d} \times 100$$

Where W = total weight of soil sample in grams W d = Dry weight of soil solids in the sample (oven dry)

Bulk Density γ is the total weight ω per unit of its total volume including water (and air).

Then $\gamma = W/V$.

 $\frac{Dry\ Density}{T}$ γ_d is the unit dry weight of soil solids per unit volume before drying.

 $\gamma_d = W_d / V$.

 $\underline{\text{Saturated Density}} \qquad \gamma_{\text{sat}} \ \text{ is the bulk Density of soil in its moist state}.$

Submerged Density γ buoyant (γ') = $\gamma_{Sat} - \gamma_{W}$

Specific gravity: G is the ratio of the weight of a given volume of soil solids in air at a given temperature (27° C) to the weight of an equivalent volume of water (distilled) and

 $G = \gamma_s / \gamma_{\omega}$

Voids ratio:- e is the ratio of volume of voids to the volume of soil solids in a sample and e = V_v / V_s.

Porosity n is the ratio of volume of voids to the total volume of a given soil mass and $n = V_v / V$ generally expressed as a percentage.

Also $n = V_v / V = e / 1 + e$ where $e = V_v / V_s = n/1 - n$ n = e / (1 + e) = e (1 - n) or (1 - n) = 1/1 + e.

 $\underline{\text{Degree of saturation S}_r} \text{, is the ratio of the volume of water present in a soil mass to the total volume of voids (including air) in it.}$

 $S_r = V_w / V_v$ and is usually expressed as a percentage.

For a fully (100%) saturated sample, $V_w = V_v$ and $S_r = 1$, and in a perfectly dry sample, $V_w = 0$ and $S_r = 0$ (V_w and V_v can be represented by e_w and e also when $S_r = e_w / e$)

Density Index I_D = the relative density or degree of density usually indicates the relative

compactness of the natural soil Deposit and is given by

Where e max = void ratio in the loosest state of the soil

e min = void ratio in the densest state of the soil

e = natural void ratio of the deposit.

It is generally used for cohesionless soils only and it varies between 0 and 1

2.2.0 Certain important relationships:

a) e W = e
$$S_r$$
, (for a fully saturated sample, ea = 0, e W = e and $S_r = 1$)

$$w = Ww / Wd = ew - \gamma_w / \gamma_s$$

but G =
$$\gamma_s / \gamma_w$$
 or $\gamma_s = G \gamma_w$

Therefore,

ew
$$\gamma_w$$
 w ----- = ew /G or ew = water void ratio = Gw = e. Sn, or e = Gw / S_r G $\gamma_{\rm m}$

b)
$$\gamma_d = Wd \, / \, v = \, \gamma_s$$
 . Vs / V but Vs = 1, V = (i+e)

Yd

$$Yd = G. .\gamma_w (i-u)/1 = (1-u) G.\gamma_w$$

$$= \frac{\gamma_s. V_s + \gamma_w. V_w}{V}$$
 but $Vs = 1$, $Vw = e$, $V = 1 + e$

$$\gamma_s(1+\gamma_w.e)$$
 $G.\gamma_w+\gamma_w.e$ $\gamma_w(W+e)$

$$\gamma_sat = \frac{}{(1+e)} = \frac{}{(1+e)} = \frac{}{1+e}$$

d) W = Ww / Wd,

Wd = W / (1+w);
$$\gamma = Wd/V = W/(1+w)v$$
 or $\gamma_d = \gamma/(1+w)$
 $\gamma = \gamma_d (1+W)$

Table 2-1 BASIC SOIL COMPONENTS (Clause 3.3.2 of 1498-1970)

Soil	Soil Com- ponent	Symbol	and Description
(2)	(3)	(4)	(5)
parse-grained component	Boulder	None	Rounded to angular, bulky, hard, rock particle; average diameter more than 300 mm
month of	Cobble	None	Rounded to angular, bulky, hard, rock particle; average diameter smaller than 300 mm but retained on 80-mm IS Sieve
	Gravel	G	Rounded to angular, bulky, hard, rock particle; passing 80-mm IS Sieve but
	(2) parse-grained	ponent (2) (3) parse-grained Boulder component Cobble	(2) (3) (4) parse-grained Boulder None omponent Cobble None

		Soil Mechanics
		retained on 4.75 mm IS Sieve
		Coarse: 80 mm to 20-mm IS Sieve Fine: 20-mm to 4.75-mm IS Sieve
Sand	S	Rounded to angular, bulky, hard, rock particle; passing 4.75-mm IS Sieve but retained on 75-micron IS Sieve
		Coarse: 4.75-mm to 2.0-mm IS Sieve Medium: 2.0-mm to 425-micron IS Sieve
		Fine: 425-micron to 75-micron IS Sieve
Silt	М	Particles smaller than 75-micron IS Sieve; identified by behaviour, that is,
		slightly plastic or non plastic regardless of moisture and exhibits little or no strength when air dried.
Clay	C	Particles smaller than 75-micron IS Sieve; identified by behaviour, that is, it can be made to exhibit plastic
		properties within a certain range of moisture and exhibits considerable strength when air dried
Organic matter	0	Organic matter in various sizes and stages of decomposition.
	Clay	Silt M Clay C

Note—A comparison between the size classifications of IS:1498-1959 'Classification and identification of soils for general engineering purposes' and the present revision is shown in Appendix A.

Table 2-2 soil classiffication (including pield inspirancation and description) (Chair 33, 3.33 on 3.4) Is 1406-1970	Group Hatter Marth Same Trecal Name Trecal	9 4 8	Well graded gravels, gravel-and tanis in grain into and nults and intermediate institution; depres of maintenest, little or no fines particle sizes to the competences, competences, competences, competences, competences, conficient and desirances in the configurations.	GP * * * * * * * * * * * * * * * * * * *	OM B Wellow Silty gravels, poocly graded gravets Salay matters of Decentral Constitution process and and all matters of matters, or ML and MI below) persistent departments and departments ar	GC Yellow Chyrey gravely, pourly graded Planic time (for identification pro-	SW Note and to the state of no fines of the same state of the state of	Red Footly graded sands or gravelly or the or a range annula little or no fines of sizes with some intermediate view mining.	Non-playte fine or flow with few measures and all the measure planticity for intermediate procedures, see ML and MI below)	To the state of th
MITTERTON (INCLA					- Farmer		3		Yellow	
טנד פרייה								301		-
2-2 80	Greur Larran Svarot		8	5	OM.	8	AS .	ä	354	
Table	Sus-Division	EN.	Clear gravits	(Link or no fines)	Gravels with face (Apr	preciable amount of fines)	Clean sands	(Little of no fines)	Sands with	amount of
	g-ang			Start in huts Sieve size	sessos lo llad e 21 mm-27.4 nm-27.4 ads os s		ned) y	illame el noitaes stia sessi	heal. I senect to Heal : I El mm-27-9 Silvats fautir v	ned)
	Divisios	-		1		noim-25 neile t	SARSO-328AO Sprain is laintan iv abimen malla	to that each wa	nk	

Interreceptor Productives (or Fraction Esisten Trans (15-Moreof III, Mars Ser.)	Serength Diktoney Toughness	e tiery for ands or tiery for loss to Quick its with name to	genetify class. Mestum very slow stelly	Organic alta and organic siliy Lew Stow days d'aw plasticity	friegenic ultr, illy ar chyey fees the Quick to such or chyey the of negleon the que planting	Integrate they, gravelly then Medium Stone of sentium plantery in high	Organic alto and responde tilty shops there the standards of meetings planterey.	haly, missions of high comprose. Line to Show to haly, missions or distributed out. medium mater few souly or this solls, classic tills medium water	Incepant they of high plantisty, High to Nessellia days	Organic clays of maritium to high Medium Stock to plustering	Results indentified by colour, often, when our highs remains mile semps feel and frequently by filtrous teams.
1000		Languair silu and very fac samb rock face, siry or stery fac ands ordery sile with mas to be placificy	Geren Georgean clean, gravelly already and clean, bear clean, deep of clean, deep at the planticity	Service Organic elles en days et liner ple	Insurante Alla, 2 anda or cher plantetity	Integrated Edysols and Stayes of A sention of	Brown Organic silva and	Brocenic alls Safety, metabors for sandy or t	Green Brafaye	Organic clays Brawn particity	Orange Passind other
	100e C.C										
		¥	Situ and copy with low seems or beautiful and liquid limit O. I for that 25	70	194	Sile and clays with medica congeredibility and liquid has there than 35 and has then 50	5	, KA	Site and clays with high concernability and liquid inti greater than 50	0	4
			als pages to		m-25 mad walls	PATANCAMINE The marks of mark The marks of mark	9698 83 mm		.07111		Highly Organic

SOILS	
MAINED	
SE-GI	
F COAF	
LION O	620)
SIFICAT	S 1498-1
CLAS	5.1 of 1.
ble 2.3	lause 3.
E	0

Cc Between 1 and 3 Not meeting all gradation requirements for GW Atterberg limits below 'A' line with lp line or lp greater than 7 symbol Atterberg limits above 'A' symbol Cu greater than 6 Cu greater than 7 I ine or lp less than 4 between 4 and 7 are border-line cases a porder-line cases a symbols ine with lp greater than 7 I = Plasticity Index	Group		Laboratory Clas	Laboratory Classification Criteria
Atterberg limits below 'A' line with Ip line or Ip greater than 7 line with Ip greater than 7 line with Ip greater than 7 symbol Cu greater than 6 Cu greater than 6 Cc between 1 and 3 symbol In line or Ip less than 4 line with Ip line or Ip less than 4 line with Ip greater than 7 line with Ip greater than 7 symbols Atterberg limits below 'A' line with Ip line or Ip less than 4 line or Ip less than 4 line with Ip greater than 7 symbols In line with Ip greater than 7 symbols	NO.	Cu Greater Cc Between	than 4 1 and 3	Determine percentages of gravel and sand from grainize curve. Depending on percentage of fines (frac-
Atterberg limits below 'A' ine with lp line or lp greater than 7 ine with lp greater than 7 are border-line cases symbol Cu greater than 6 Cc between 1 and 3 Symbol Ine or lp less than 4 between 4 and 7 are symbol Atterberg limits below 'A' line with lp line or lp less than 4 between 4 and 7 are border-line cases afterberg limits above 'A' line with lp greater than 7 symbols Ine with lp greater than 7 symbols Atterberg limits above 'A' line with lp greater than 7 symbols Ine with lp greater than 7 symbols	В	Not meeting all gradation	requirements for GW	tion smaller than 75 micron IS stave) coarse - grant soils are classified as follows:
Atterberg limits above 'A' symbol Cu greater than 6 Cu between 1 and 3 Not meeting all gradation requirements for SW Atterberg limits below 'A' line with 1p line or 1p less than 4 line or 1p less than 4 line with 1p greater than 7 I = Plasticity Index	8	Atterberg limits below 'A' line or lip greater than 4	Limits plotting above 'A' line with Ip between 4 and 7 are	Less than 5% GW, GP, SW, Sp More than 12% GM, GC, SM, SC 5% to 12% Border-line cases requiring use of d
Cu greater than 6 Cc between 1 and 3 Not meeting all gradation requirements for SW Atterberg limits below 'A' line with 1p line or lp less than 4 Atterberg limits above 'A' line with 1p border-line cases a symbols Ine with 1p greater than 7 L = Plasticity Index	8	Atterberg limits above 'A' line with Ip greater than 7	requiring use of dual symbol	symbols Leitormite coefficient Cu = D/ D
Atterberg limits below 'A' line with 1p line or 1p less than 4 between 4 and 7 are border-line cases requiring use of dual symbols. I = Plasticity Index	WS	Cu greater Cc between	than 6 1 and 3	Coefficient of curvature, Co = (D ₃₀) ² / (D ₁₀ × D ₆₀)
Atterberg limits below 'A' line with ip line or ip less than 4 between 4 and 7 are border-line cases a symbolic line with ip greater than 7 a symbolic line with ip greater than 3 a symbolic line with ip greater than 3 a symbolic line with in the symbolic line with	В	Not meeting all gradation	requirements for SW	Where,
1	₹	Atterberg limits below 'A' line or lp less than 4	Limits plotting above 'A' line with Ip between 4 and 7 are between 4 and 7 are	$D_{so}=60$ percent finer than size $D_{so}=30$ percent finer than size $D_{to}=10$ percent finer than size
I_ = Plasticity Index	8	Atterberg limits above 'A' line with Ip greater than 7	requiring use of dual symbols	
2			$I_p = Plasticity Index$	\$

2-8

	Contract Contract of the last
	6
	7 2
	BANGORES
	TO EN
	TACAMETRICAL
	ACTEMBRICS
ł	5

### POUNDATIONS ### ### ### ### ### ### ### ### ### #				Requirements	Contract,	Pusitive count	ş	Tee treach to mone		Nane	Upstreum blanket and the drainage or wells	9	ds		None	The tranch to pope	None	4	3	-8	ş	5
A Characteristic of the sand draw of Educations Characteristics and draw of Educations of Characteristics (4) Remainably studie, pervises abirth of dilties and draw (5) 10-3 (2) (4) Remainably studie, pervises the first of dilties and draw (5) 10-3 (2) (4) Remainably studie, pervises the first of dilties and draw (5) 10-3 (2) (4) Remainably studie, pervises the first of dilties and draw (5) 10-3 (2) (4) Remainably studie, may be used for improvious (5) 10-3 (2) (2) (3) (4) Remainably studies are particularly suited (6) (8) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2							de	a a	- 1	9			4		Good to poor bearing		Good to poor bearing	Fair to poor bearing.	MAY have excessive settlements	Poor bearing	hir to poor bearing	
CROCKS Water or Estandement Remainably inable; pervious shells of dibes and dams Remainably inable; pervious shells of dibes and dams Remainably inable; pervious sterious, days protect Very table; pervious sterious, days protect Remainably inable; may be used for improvious Remainably inable; may be used for improvious Remainably inable; may be used to dibe Remainably inable; may be used to the Remainable Remainable; may be used for understood Remainable; may the used for understood Remainable; may be used for understood Remain	D POUNDATION		User Day	Wanner	(3)	2-00-2-16	1.84-2:00	1.92.2.16	1.86.2.08		176208	25.100	1.76-2.00	1.611 0.44	3							THE PERSON NAMED IN
A. CROCKS VALUE OF REMANDER: (2.) Very stable; pervious shells of dikes and dama Resambly stable; nor particularly suited to shell, but may be used for knyewicus Cores or blausers be used for knyewicus Very stable; pervious sections, dope protec- tions required Resambly, table; may be used for imprevious Very stable; pervious sections, dope protec- tions required Resambly, table; may be used in dike shells, ber may be used in dike shells, ber may be used for imprevious Rolly stable; not particularly suited to the shells, ber may be used for imprevious Rolly stable; not particularly suited to the shells; ber may be used for imprevious Rolly stable; not particularly suited to the shells; the may be used for imprevious Rolls imprevious cores and blankers Not suitable for embandancess Rair stabliny, such first steepest this cores, ke blankers and dike sections Not suitable for embandancess Rolls stabling with first sheepest this cores, ke blankers and dike sections	AN STATISHED TO EMBANGACINE AN	(Chua 18)			Good basics	ruller	Se in the second	therpa-foot roller	Fair, rubber-tyred, aberpa-faot coller	Good; tracture	Good, transc	Good; with class control	Merge-foot ruller	Fair; sheeps-foot roller, Pubber 1911d.	Good to news often	rubber-tyred roller, theeps-foot rules	tyred food; sheeps foot ruller, rubber.	Tair to poor; thequelost ruller	Poer to very poer: shows Co.	And the second second second second	boor; stockedoot ruler	Foot to very poor; shorts, face 1.
Cactors Value or Estanomerer. (2.) Very stable; pervious shells of dikes and dama and dama and dama and dama and dama. Reasonably stable; nor particularly suited to shells, last may be used for improvious cores or blankers why be used for improvious rections, dage protection required and shells, nor pervious sections, dage protection required for imprevious sections, dage protection retains for imprevious one for shells, but may be used for imprevious failed cores or diken. Fairly stable; nor particularly suited to shells, but may be used for imprevious nore for shells, but may be used for imprevious for different or different shells; may be used for imprevious one for shells; may be used for imprevious one for shells; may be used for imprevious for different shells; may be used for imprevious one for means which proper cores and blankers. (c) Not rainable for embandaments. Pour stability, core of hydraulic fill dama had demanded and different sections. Fair stability with flat idepost this cores, had abades and differ sections.			Presentation						N 101 81	X > 10-1	X > 10-4	1 i		100 ×	K = 10*	101 or 3	0 0		K = 10-4	1 1 2 X	1 1	
Of Cases			VALUE OF ESPACEMENT	(2)	Very table; pervious shells of dikes and dama	Resembly reable, pervious shells of dilars	Remonably stable; not particularly suited to shells has now be	Corts or blackers	managing per sam of his	Very stable; pervious sections, d'opt protec-	Reatonably stable; may be used in dike section with flat alogue	Fairly stable; not particularly suited to shalls, but may be sard for impression	Fairly and district	flood control structures	Poor stability; may be used for embanis- ments with projet coursel							
		100 may 100 ma	Son. Gaous	(1)	WD	å	OM	9	Ent	4.5	ė,	N.	10								27	

IS: 2720 (Part VII)-1963* J.

73.0 FIELD IDENTIFICATION AND CLASSIFICATION OF SOILS

Field classification is based on:

- (a) Particle size distribution discerned by the eye, and
- (b) Plastic properties of the fine material

The general procedure is to make accurate visual observation and a few simple tests as described below and compare the results with description set out in the table.

Classify a representative sample as coarse or fine grained by observing whether 50 per cent or more of the sample consists of particles that can be individually seen by the naked eye; if the sample is coarse grained, observe if 50 per cent or more of the coarse grains are larger than 1/4 inch in diameter, in which case the soil belongs to the gravel group; and if otherwise, to the send groups; classify this further into one of the many gravel or sand groups described in the table by tests on the fraction smaller than 1/8 inch.

When the sample consists of particles more than 50 per cent which cannot be seen individually, the soil is fine grained Classify the sample by performing the shaking, breaking and thread tests on the minus 1/8 inch material and noting the colour and odour.

If the characteristics are 50-50 give the two identification symbols, the sample may be classified as under. In addition to mentioning the group symbols, always furnish other pertinent data like colour, maximum grain size shape and hardness of the grains, surface condition, friability, quality and quantity of extraneous material, etc. Do not attempt to classify on the result of any one test; complete all the tests and then compare with the description in the table to determine the grouping.

The following describes the procedure for the different tests:

- Visual inspection:
- (a) Grain shape:- Observe the sand and gravel particles and describe whether they are angular, sub-angular, rounded or sub-rounded.

- (b) Grading:- The naked eye can identify only particles retained on 200 mesh sieve. Spread a representative sample on a flat surface and observe the distribution or uniformity of grain size, see if all sizes are proportionately seen, say well graded. If one
- 2. Shaking test:- This helps identification of a fine grained soil as fine sand, Silt or clay. Wet or saturate a small sample. Form into a small pat and shake it horizontally in the palm of the hand; observe whether there is a watery film on the surface, then squeeze the pat between fingers and see whether water seen disappears leaving a dull surface. Rapid reaction (Water appears and disappears, rapidly) shows plastic silt or silty clay. No reaction shows clay or organic matter with high plasticity.
- 3. Breaking Test:- The breaking test is a measure of the cohesion of the soil. Wet the soil and form it into a pat. Dry the pat and break it between the fingers and see if the resistance is slight, medium or high. Slight dry strength (very easily broken by finger) shows inorganic silt, very fine sand or rock flour or combination of these with traces of clay. Medium strength show low to medium plastic inorganic clay, silty-clay or sandy clay; if the powdered soil feels gritty, the material is sandy. If it is impossible to break the pat with the fingers, the soil is highly plastic clay or contains cementing material like Calcium
- 4. Plasticity or Thread Test:- The test indicates the degree of plasticity of a soil. Remove the coarse fraction from the sample, wet the fines and mix thoroughly be kneading. Roll the wet soil between the palms of the hands or on smooth surface to form threads 1/ 8 inch in diameter. The moisture content at this stage is called the plastic limit of the soil. Note the toughness of the thread and see if it can be lumped again. High plasticity is indicated by a tough thread which can be lumped again: Medium plasticity, by a thread of medium toughness which cannot be lumped again without getting crumbled; and low plasticity by a weak thread breaking easily and not letting itself to be lumped.
- 5. Odour and Colour Test:- Wet organic soils have a bad odour felt more when heated. Organic matter is generally dark in colour, clays smell 'earthy' when slightly
- 6. Acid Test:- This is mainly intended for showing up Calcium Carbonate. Treatment with a dilute solution of Hydro Chloric Acid will cause the material to react

- 7. Shine Test:- This enables quick detection of the presence of clay in a soil. Cleave or cut through a lump of the sample and see if the surface is shining. A shiny surface indicates clay while a dull surface shows silt, sandy clay or clay of low plasticity.
- Sedimentation Test:- This test helps approximate gradation of fine-grained soil. Shake a small quantity of the sample in a jar of water and let it settle. Grading is indicated by the materials in the different layers of the suspension. Sand settles in less than a minute, silts from one minute to sixty minutes; clays take comparatively a long time, sinking approximately about six inches in one hour. Observe settlements in a period of ten minutes.
- Procedure for collecting and sending disturbed soil samples from borrow areas for embankment construction.
- Exploration for borrow areas is performed to locate comparatively large quantities of soils in which accessibility, uniformity and workability are very important. Generally it is preferable on the upstream side of the proposed earth dam and within the allowable leads as for as possible. These areas so selected should not be within 100m from the toe of the embankment proposed. This type of borrow areas is first located on the basis of surface indication.
- In each area, three or four pits of dimensions 1 x 1 x 1.5m should be excavated at well distributed location so as to fix the stretch of each type of the soil available.
- Different layers of soil exposed in each pit should be examined excluding the top 15cm. layer. Thickness of each layer of soil should be noted so as to establish the volume of soil available.
- About 25 to 30 Kgs. of soil of each type should be scraped and securely packed in gunny bags.
- With each soil sample sent, a slip containing following information should be enclosed and the same details should also be written on the outside of the gunny bags.
 - Name of the scheme or project.
 - Pit No.
 - iii) Sample No.
 - Depth at which sample is taken.
 - Survey No. and Chainage No.

- The soil sample should be sent to Director, A.P.Engineering Research Labs., Himayatsagar, Hyderabad - 500 030 AP. If the Soil samples are to be sent by train, they should be sent by passenger train and freight paid. Samples can be sent, by lorry transport
- Alongwith the samples the following information and drawings should be sent. (7)
 - i) A short note regarding the location and history of the Project.
 - ii) A contoured site plan showing the borrow areas and borrow pits and the alignment of the proposed embankment.
 - iii) The L.S. and Cross Section of the proposed embankment showing the position of the sluices, weir etc.
 - iv) Profile of each borrow pit.

2.3.2 Procedure for collecting and Sending Undisturbed Soil Samples for Foundation Studies of Earth Dams.

The main purpose of the Foundation Investigations is to study the strength and permeability characteristics of the Sub-Soil Strata along the axis line by testing the undisturbed soil samples in the laboratory. The depth to which these studies are confined is governed by the height of water column at every chainage under M.W.L.conditions. Normally the trial pits are opened at intervals of four or five chains (closer if justified) to the maximum depth of water, which is going to be stored. As open trial pits may not be practicable beyond. 4.5 to 6 m feet depth, hand boring set or mechanical rotary type of boring machines may be used for obtaining undisturbed soil samples. For taking undisturbed soil samples from open pits following procedure is recommended:

- Soil samples to be made out of thin walled seamless tube either 38mm dia. and 20 to 25cm, long or 10cm, dia, and 45cm, long. Each sampler should be provided with a cutting edge at one end bevelled on the outside. The other end be provided with holes to pit the adopter of the sampling rod shown in the drawing. 10cm dia. samplers are preferred.
- After scraping the exposed layer of the soil 5cm. to 8cm. the sampler well oiled inside, should be driven in vertically or horizontally by giving light blows on the head of the rod with 5 kg, hammer. Care should however be taken not to over drive the sampler and disturb the density of the soil. To remove the sampler, the soil core should be sheared by rotating the sampler and then screwed out without giving a jerk.

- The sampler is detached from the adopter and is sealed by melted paraffin about 12.5cm thick at both the ends. The object of the paraffin plugs is to conserve the moisture content of the sample during transit.
- Undisturbed samples have to be taken for each distinctive layer of soil exposed or at intervals of 3 to 5 feet if the profile shows uniform stratum. At least three samples from every sampling point should be taken to give an average idea of density of the soil layer, if 38mm dia. samples are used. Otherwise one 10cm. dia. sampler is sufficient. At least 25 Kgs. of disturbed soil samples of each type should also be collected and sent to the laboratory in the gunny bags. Every sample should bear the following particulars written legibly:
 - Name of Scheme or Project.
 - Pit No.
 - Sample No.
 - Depth of sampling and reduced level.
- Along with the samples following drawings be sent:
 - Site plan showing the trial pits along the axis of the dam.
- L.S. of the embankment showing the profile of the trial pits and other relevant details like ground water table, and sheet rock if met during the investigations.

NOTE:

Sampling Equipment: Sampling tubes, adopter, Auger rods, turning rods, extension rods are required. Sampling tubes shall be made of thin walled seamless, M.S. or G.I. tubes of 10cm dia. and 45 cm. in length. They shall be provided with a cutting edge on one side and bevelled out side. The other end shall be provided with holes to fit the adopter of the rods. The wall thickness of the sampling tube shall be such that the area ratio (Ar) given by the following does not exceed 10 to 15 percent.

$$A^* = \frac{D^2 - d^2}{d^2} \times 100$$

D = external dia. of sampling tube, d = internal dia. of sampling tube Generally the internal dia. = 10 cm and external dia = 10.6 cm.

BORING OF RECORD

Ground surface level. Type of boring: Wash boring Dameter of boring: Boring: Boring: Vertical Boring: Configuration of Particular Configurati	Ash boring all	Total and a second a second and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P. C. et	53	saming sam	Boring Not. Soil sampler used. Date started. Date completed: Recorded: * * * * * * * * * * * * * * * * * * *	Page 1	Ed.
Albir slores at marchine alexalistic no exercise er marchine seends	5		<u> </u>		İ	1 1 1		## ## ## ## ## ## ## ## ## ## ## ## ##	

0-4-10E CM - Y4(19-0CW) ADD (ALL) STEEL)
-AUGIR AND 2 (SOCIA) (MILD STEEL)
(THE ENDED AT THE BESTOM END) ADOPTER (MILD STEEL) THREADED SCREW (5/8 4) 13 Sem YENT (PORCUR LET OF HATER) BAMPLING TUBE (NO) 2 LONG INDEX - 14 BOR-4 (10-3cm) - RED MARK INDICATES THE UNITING POINT UP TO WHICH THE SAMPLING TUBE CAN BE NOTE: - (WITH REGARD TO THICKNESS OF SAMPLING TUBE) THE SAMPLING TUBE SMOULD HAVE DRIVEN IN TO THE GROUND AREA RATIO DEPARTS ON THE TYPE OF THE SOIL TO BE SIMPLED AREA RATIO-(1) (2 - 0) 7 by FOR SOFT FINE GRAINES SOIL (1)(2 - 4) 7 25/. FOR HARD SOIL 1 (1/4"(635mm) CHERE: - D.= EXTERNAL DIMETER OF SAMPLING TUBE.

FIG. 2. 10-30 CH & SAMPLING TUBE WITH ADOPTER USED

FOR SAMPLING FROM OPEN TRIAL PITS

2.4.0 PROCEDURE FOR THE DETERMINATION OF PERMEABILITY (INSITU) (JAPANESE METHOD)

- Scrape all the top loose material at the desired area for an extent of 6' X 6'.
- Make a trench of bottom dimensions 4' X 2' and 1' 9" deep with sides. 1/4:1 slope.
- A can calibrated in 1/10 gallons from which water can be fed into the trench.
- 4. Fill up the trench with water to a depth of 2" from the top and go on feeding water into the trench from the top calibrated can, so that water level is main tained constant at a depth of 3" from the top surface.
- Record the water in-take every one hour.
- The experiment should be continued till the in-take readings are steady say for a period of 4 hours.
- Extend the pit to the dimensions of 4' X 4' at the bottom by cutting an extra width of 1 foot on either side of the shorter sides of the trench.
- Feed the trench with water as in the previous case maintaining the water level in the pit 3" from top.
- Measure the in-tak havery one hour for a period of 2 hours or more till the intake is constant.
- Determine the extra amount of water required to maintain the level in the pit after it has been extended.

If the extra amount of water is 1/100 gallon per hour permeability is 1 ft/year.

If the extra amount of water is 1/10 ga!lon per hour, the permeability is 10 ft/year.

Suppose: = 1/100 G.P.H. Then K = 1 ft/year.

= 1/100 G.P.H. to 1/10 G.P.H. is in the limits of 1-10 ft/year.

= 1/10 G.P.H. to 1 G.P.H. K is in the limits of 10-100 ft/year.

1 Gallon = 4.536 litres

1/10 Gallon = 453.600 C.C.

1/100 Gallon = 45.360 C.C.

Note: 1. After excavating the pit, the bottom and sides may be searified with an iron nail before water is fed into the pit.

- 2. The bottom of the trench should not be allowed to be trampled under the feet and after dewatering the pit and before extending the width from 2' to 4' it shall be covered by polyethylene cloth or tarpaulin or empty gunny bags. Only one man should be allotted to work in the pit.
- 3. While extending the width of bottom of trench from 2'-0" to 4'-0" all precautions shall be taken to remove the excavation material with minimum disturbance to the foundation soil in the trench.

TABLE 2-6 SUITABILITY FOR CANAL SECTIONS, COMPRESSIBILITY, WORKABILITY AS A CONSTRUCTION MATERIAL AND SHEAR STRENGTH (Clause 3.8 of IS 1498-1970)

MAJE BUILDE

URT	Relative	e suitability for car	nal sections	25-16	STATE OF THE PARTY
Soil Group	Erosion Resistance	Compacted earth lining	Compressibility when compacted and saturated	Workability as a construction Material	Snearing strength when compacted and saturated
GW	31	10.1.1.0.1 (8)	Negligible	Excellent	Excellent
GP	2	194	Negligible	Good	Good
GM	4	ces (4)	Negligible	Good	Good
GC	3	1	Very low	Good	Good to fair
sw	6	0.5171	Negligible	Excellent	Excellent
SP	7,if gravelly	40.000	Very low	Fair	Good
SM	8,if gravelly	5(Erosion critical)	Low	Fair	Good
sc	5	2	Low	Good	Good to fair
ML,MI		6(Erosion critical)	Medium	Fair	Fair 1989 N
CL,CI	9	3	Medium	Good to Fair	Fair
OL,OI		7(Erosion critical)	Medium	Fair	Poor
мн	DOTO A FIRE	0 111230 10123	High	Poor	Fair or Poor
СН	10	8(Volume change (critical)	High	Poor	Poor
ОН	Q1.0	\$ 1	High	Poor	Poor
Pt	200		00.48	,8400 01 P	2000 Conqui N

* Number 1 is th best.

SECTION ON AA NOTE:-

SIDE SLOPES OF THE THE CH DEPEND ON THE SOIL HET WITH BUT ARE THINK TWELV FE TOOLD AS I'VE TREMER MAY BE BURNATED MITH VERFICAL SIGNS IF THE SOIL PERMITS.

FIG. 2.21 N-SIT U PERMEA BILLITY TEST (TRENCH NETHOD)

(JAPAWESEMETHOD)

SCALE: 1 -1-0

TABLE 2-6(a)

Void Ratio, Porosity and Bulk Unit Weight of Typical Soils (Kezdi, 1974)

Soil Type	State of Soil	Porosity	Void Ratio			weight, g/cc	DIASW
	5011			Dry	natural	saturated	buoyant
Sandy gravel	loose	38-42	0.61-0.72	1.42-1.73	1.81-2.03	1,93-2.13	0.91-1.12
	dense	18-25	0.22-0.33	1.93-2.13	2.03-2.34	2.13-2.42	1.12-1.42
Coarse sand	loose	40-45	0.67-0.82	1.31-1.51	1.61-1.93	1.81-1.93	0.81-0.90
Medium sand	dense	25-32	0.33-0.47	1.73-1.81	1.81-2.13	2.03-2.13	1.01-1.12
Uniform fine	loose	45-48	0.82-0.82	1.42-1.51	1.51-1.93	1.81-1.93	0.81-0.91
sand	dense	33-36	0.49-0.56	1.73-1.81	1.81-2.13	2.03-2.13	1.01-1.12
Coarse silt	loose	45-55	0.82-1.22	1.31-1.51	1.51-1.93	1.81-1.93	0.81-0.91
	dense	35-40	0.54-0.67	1.61-1.73	1.73-2.13	2.03-2.13	1.01-1.12
Silt	Soft	45-50	0.82-1.00	1.31-1.51	1.61-2.03	1.81-2.03	0.01 1.01
	slightly plastic	35-40	0.54-0.67	1.61-1.73	1.73-2.13	2.03-2.13	0.81-1.01
	hard	30-35	0.43-0.49	1.81-1.93	1.81-1.93	1.81-2.23	1.12-1.21
Lean clay	soft	50-55	1.00-1.22	1.31-1.42	1.51-1.81	1.81-2.03	0.81-1.01
	slightly plastic	35-45	0.54-0.82	1.51-1.81	1,73-2.13	1.93-2.13	0.91-1.12
	hard	30-35	0.43-0.54	1.81-1.93	1.81-2.23	2.13-2.23	1.12-1.21
Fat clay	Soft	60-70	1.50-2.30	9.05-1.51	1,21-1,81	1.42-1.81	0.40-0.81
	slightly plastic	40-55	0.67-1.22	1.51-1.81	1.51-2.03	1.73-2.13	0.70-1.12
	hard	30-40	0.43-0.67	1.81-2.03	1.73-2.23	1.93-2.32	0.91-1.31

TABLE 2-6(b) TEXTURAL CLASSIFICATION OF SOIL BASED ON GRADING

Textutal class		Compo	osition in per cent	
	Sand	1	Silt-size	Clay-size
Sand	80-100		0-20	0-20
Sandy loam	50-80	***************************************	0-50	0-20
Loam			30-50	
Silt loam			50-100	0-20
Sandy clay loam	50-80		0-30	 0-20
	20-50			 20-30
Printed Company of the Company of th	0.30		20-50	20-30
Sandy clay	EE 70		50-80	20-30
City clay	35-70			30-45
Silty clay	0-15		55-70	 30-45
Clay	0-55		0-55	 30-100

(2)(C)	armeability and drainage characteristics of soils	(Casagrande and Fadum)	
	Perm	n ii	

Drainage		Good			Poor	ractic	Practically impervolus
Soil types	Clean gravel	Clean gravel Clean sands, sand and mixtures	gravel	Very fi inorga sand s stratifie	Very fine sand, organic and inorganic silts, mixtures of sand silt and clay, glacial till, stratified clay deposits etc.		Impervious solls, e.g. homogeneous clays below zone of weathering
		Attiving	Impervious soils modifie vegetation and weathering	soils m	Impervious soils modified by effects of vegetation and weathering	70	endle endle
Direct deter- mina-	Direct testing reliable if pro required	Direct testing of soil in its original position : pumping tests - reliable if properly conducted; considerable experience required	nal position : pu	mping t experi	ests -		
tion of	Constant -head experience required	head permeameter	eter : Ilitle			ų į	molto molto
Indirect deter-	Fall Fall	Falling head permeameter Reliable Little experience required	meter Reliable lired	75081	Falling head permeameter, unreliable Much experience required	MULAL.	Falling head permeameter fairly r e l l a b l e considerable experiençe
tio of	Computatio distribution Applicable cohesionless	Computation from grain sizedistribution Applicable only to clear cohesionless sands and gravels	n size clean ravels	gystanki† kyumbani	Computa of consol	putatio nsolidi nsider ired	Computation based on results of consolidation tests, reliable considerable experience required

Table 2-6(D)

Approximate Values of φ' for granular Soils as affected by Stte of compaction, Size, Gradation and Angularity of Grains (Leonards, 1962)

SN	Size of grains	State of	Values o	of ¢' deg
-		compaction	Rounded grains	Angular grain
1	Medium Sand	Very loose Moderately dense Very dense	28-30 32-34 35-38	32-34 36-40 44-46
2	* Sand and Grav 65%G - 35%S 65%G - 35%S 80%G - 20%S 80%G - 20%S	Loose Moderately dense Dense Loose	37 34	39 41 45
3.	Blastererd Rock fragments		40 -45	

^{*} Values interpolated from Holtz and Gibbs (1956)

Relationship between Relative Density, Penetration Resistance and Angle of Internal Friction of Cohesionless Soils (Winterkorn and Fang, 1975)

Type of Soil	Penetration resistance N	Relative density Dr	Angle of Inte	ernal friction Meyerhof(1956)
Very loose Sand	< 4	< 0.2	< 29	< 30
Loose	4-10	0.2 - 0.4	29-30	30-35
Medium Sand	10-30	0.4-0.6	30-36	35-40
Dense Sand	30-50	0.6-0.8	36-41	40-45
Very dense Sand	>50	>0.8	>41	> 45

	Rock Type	Bulk	Porosity %	Compre range K	Compressive strength range Kg/cm² x 10²	Tensile strength	Modulu range k	Modulus of Elasticity range kg/cm² x 10² / 10-3 cm/cm)	Breaking range Ratio	ф	Poisson's
		3 / GC		Min	Max	Kg/sqcm	Min	Max	Min	Max	
	Marble	2.6-2.7	0.5-2	4.71	24.25	70-200	90'9	8.36	930	4300	0.27-3.0
ci	Lime stone	22-26	5-20	0.49	20.95	52-250	0.28	8,43	1630	8000	0.27-3.0
	Granite	2.6-2.7	0.5-1.5	16.17	29.95	70-250	2.18	7.03	4030	8660	0.23-0.27
	Diorite			18.42	27.98	150-300	5,62	10.26	2070	3370	0.26-0.27
	Gneiss	2.9-3.0	0.5-1.5	15.60	18.56	50-200	2.46	6.81	2300	7790	
9	Sand stone	2.0-2.6	5.0-25.0	3.37	23.97	40-250	0.63	5.13	3150	12000	int nulé lym
- 3	Dolomite	25.26	1.0-5.0	7.73	37.26	150-250	1.97	7.94	2170	4649	0.30
80	Mari Stone	7 .	TI X	5.69	19.82	11	1.26	4.92	1800	6610	
.6	Diabase)¥)	15.88	32.76	•	6.25	22.6	2540	4010	0.27-0.30
10	Basalt	2.8.2.9	0.1-1.0	12.44	36.70	100-300	5.83	8.71	2540	5980	
-	Green stone		110	12.44	31.99	H (1)	4.85	10,68	1540	3800	
Ç.	Shale	20-24	10-30	7.6	23.55	20-100	1.12	96.9	1720	9250	s .
9	Cill otono			3.51	45.50		3.16	7.59	890	4910	31. 4

21.6 27.0 32.4 37.8 43.2

16.2

9.0

9

Burden

75.6

60.8 65.5 70.2

40.6

43.2

75.6

20,07

60.5

59.4

45.4

35.3

30.2

25.2

20.0

15.1

10.0

7.8

64.8

60.5

51.9

43.2

38.9

34.6

30.2

21.6

13.0

23.4

23.8 25.9 28.1

15.8 17.3 18.7

19.8

10.8

6.6

39.6

32.5

65.1

54.0

55.4

46.8 57.5 56.1

40.3

28.8 32.2 36.0

26.0

23.0 26.0 28.8 31.7

20.0 22.6 25.2 27.7

59.4

TABLE 2-8
Coefficient of Friction of Rocks and Minerals
(Laeger & Cook, 1969)

Minerals	Coefficient of friction	(West)	Rocks	Coefficient of friction
Nacl Pbs S Al2O3 Glass Diamond Quartz Feldspar Calcite Muscovite Biotite Serpentine Talc	0.70 0.6 0.50 0.40 0.70 0.10-0.30 0.11-0.19 0.1 0.14 0.43 0.31 0.62 0.36	0.42-0.65 0.46 0.68 0.23 0.13 0.29 0.16	Sand Stone Granite Quartzite Dolorite Dolomite Tracyte Marble Porphyry Gneiss Gabbro	0.51-0.68 0.60-0.64 0.48-0.67 0.64-0.95 0.40 0.56-0.68 0.62-0.75 0.86 0.61-0.71 0.18-0.66

Classification of Explosives

Classification of Explosives
Gun Powder
Nitrate mixtures(All slurry explosives manufactured by IDLChemical Limited)
Nitro Compounds
Division 1 : Nitro - Glycerine based Explosives
Division 2 : PETN, TNT and Pentolite Boosters
Chlorate Mixtures
Initiators (Lead Azide, Fulminate etc.)
Ammunition
Division 1 : Safety Fuse, Ignitor Cord, Connectors
Division 2: Plastic Ignitor cord, Detonating Fuse, (D-Cord I-Cord & S-Cord)
Division 3 : Detonators, Detonating Relays
Fire Works
Lox

1100			Cubic	Table 2-9 Cubic metre of Rock broken per metre of bore hole	of Ro	Tab ck bro	Table 2-9 broken p	er met	re of 1	oore h	ole		
					G.	-	Spaci	Spacing between Charges	reen Cl	narges	(m)		
8	1.2	1.8	2.4	3.0	3.6	4.2	4.8 Yield	4.8 5.4 6.0 6.6 7 Yield of muck in cubic metres	6.0 in cub	6.6 ic metr	7.2 es	7.8	4.8
1 00	5,	8.1	2.4	3.0	3.6	4.2	8.4	5.4	6.0	6.6	7.2	7.8	8.4
33	4.1	2.2	2.9	3.6	4.3	5.0	5.8	6.5	7.0	7.9	8.6	9.4	6
25.2	2.2	3.2	4.3	5.4	6.5	9.7	9.6	9.7	10.9	11.9	13.0	14.0	5
0.52	2.9	4.3	5.8	7.2	8.6	10.1	11.5	13.0	14.4	15.8	18.7	18.7	8
	3.6	5.4	7.2	9.0	10.8	12.6	14.4	16.2	18.0	19.8	21.8	23.4	25
"	4.3	6.5	8.6	10.8	13.1	15.1	17.3	19.4	21.6	23.8	25.9	28.1	30
1	u	7	101	12.6	15.0	17.6	20.0	22.7	25.2	27.7	30.2	32.8	35

3.0

1.8

Soil (Hasharaca

Table 2-10

Loading Densities in Kgs/ Metre of Bore Hole

Bore		8			Density of Explosives in gm/cc						
Hole dia in mm	0.9	0.95	1.00	1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40
32	0.72	0.76	0.80	0.84	0.88	0.92	0.96	1.00	1.04	1.08	1.12
40	1.13	1.19	1.26	1.33	1.39	1.45	1.50	1.56	1.62	1.68	1.75
50	1.76	1.86	1.96	2.05	2.15	2.25	2.35	2.45	2.54	2.64	2.74
75	3.96	4.18	4.41	4.63	4.85	5.07	5.29	5.51	5.73	5.95	6.17
100	7.06	7.45	7.25	8.24	8.63	9.02	9.42	9.81	10.2	10.6	11.0
125	11.04	11.65	12.27	12.88	13.50	14,11	14.72	15.34	15.95	16.56	17.17
150	16.86	17.76	18.65	19.55	20.59	21,49	22.38	23.28	24.32	25.22	26,11
175	21.64	22.84	24.05	25.25	26.45	27.65	28.86	30.36	31.26	32.46	33.67
200	28.27	29.85	31.42	32.99	34.56	36.13	37.70	39.27	40.84	42.42	43,99
250	44.18	46.63	49.09	51.54	54.00	56.45	58.91	61.36	63.82	63.27	68.72

TABLE - 2-11
TESTS FOR DIFFERENT PHASES OF EXPLORATION
(Clause 8.1 of IS 1892-79)

Timiled mirror hashin	Tests Nec	essary on a Sample
Phase of Exploration	Type of Test	Detailed Tests
i) Reconnaissance exploration		Visual classification (see IS:1498-1970)
ii) Detailed exploration	Physical Tests	Liquid and plastic limits (see IS:2720 (Part V) -1970) Grain size analysis (see IS:2720 (Part IV) - 1975) Specific Gravity (see IS:2720 (Part III) - 1980) Natural moisture content (see IS:2720 (Part III) - 1973) Unit weight (see IS:2720 (Part III) - 1980) Consolidation test (including pre-consolidation pressure) (see IS:2720 (Part XV) - 1973) Shear strength: unconfined compression (see IS:2720 (Part X) - 1973) Triaxial Compression (see IS:2720 (Part XI) - 1971) Direct Shear Test (see IS:2720 (Part XIII) - 1986) Permeability Test (see IS:2720 (Part XVIII) - 1986)

Chemical tests

Soluble salt content: Chlorides and sulphates (see IS:2720 (Part XXVII) - 1977)

Calcium Carbonate content (if warranted) (see IS:2720 (Part XIII) - 1976)

Organic matter content (if warranted) (see IS:2720 (Part XXVI) - 1972)

Ground water

Chemical analysis including PH determination (see IS:2720 (Fart XXVI) - 1973)

Bacteriological analysis (if necessary)

Rock drilling

- (a) Visual examination unit weight Water absorption porosity.
- (b) Petro-graphic analysis compressive strength. shear strength.

TABLE 2-12 (Clause 3.1.2 of IS:1892-1979) CURRENT METHODS OF SUBSOIL EXPLORATION

203

A. RECONNAISSANCE METHODS I) Geophysical

METHOD 1) Electrical resistivity method (ac or dc)	MODE OF OPERATION Measurement of variations in the apparent resistivity as measured on the ground	TYPE OF FORMATION Alluvial deposits weathered and fissured rock, buried channels and ground water
Seismic refraction method	Measurement of velocities of compressional waves from the travel time curves of seismic waves	do
3) a) Standard penetration test (see IS:2131-1963*)	Variations in the stratification is correlated with the number of blows required for unit penetration of standard penetrometer by a drive hammer.	Non-cohesive soils without boulders
b) Static cone penetrometer test (see IS:4968 (Part III) - 1976)	The cone penetrometer is advanced by pushing and the static force required for unit penetration is correlated to the engineering properties like density, bearing capacity, settlement, stratification, etc.	Primarily used in cohesive soils
c) Dynamic cone penetrometer test (see IS:4968 (Part II) - 1976)	The cone is driven by a standard hammer and the rest is as in (b) above	Primarily used in cohesive soils

Soil Mechanics

204	B. EXPLORATORY METHODS 1) Drilling	
4) Shell and auger L fi t t	Using auger for soft clays and shell or firm to stiff clays; in sand to be used with casing for lining and with pentonite; for boring at depths if more han 25m power operator winches are used	All types of soils specially soils of mixed type
5) Hand auger	The auger is power or hand operated with periodic removal of the cuttings	All soils except sands and gravels above water table
	Manual rotation of cutter fixed with drill rods by means of pipe wrench; simultaneously pumping of bentonite slurry by manually operating a double piston pump. Chisel and gravel trap used for hard bed, gravel and kankars	Silts and sands or mixed soils specially below water table
7) Wash boring	Light chopping, strong jetting and removal of cuttings by circulating water. Change of stratification could be guessed from the rate of progress and colour of the wash water	Soft to stiff cohesive soils and fine sand except gravel and boulders
8)Percussion drilling	Power chopping, hammering and periodic removal of the slurry with bailers. The strata could be identified from the slurry	loose sand
9) Rotary drilling	Power rotation of the coring bit which may vary from metal bits to tungster carbide or diamond bits depending upon the hardness of formation (see IS:6926-1973 and IS:5313-1980)	n Rocks, fissured rock and a soils except cobbles and boulders

10) Open tube sampler and split tube sampler	Driving standard sampler by a hammer weighing 65.0 kg through a drop of 750 mm (see IS:2131-1963)	Cohesive soils and silts
11) Double tube core barrels	Used with a rotary machine; non rotating inner barrel of swivel type slips over the sample and retains it as the outer bit advances (see IS:6926-1973)	Coarse sand and gravels; most suitable for soft rocks like shale and any weathered rock formation
	C. DETAILED INVESTIGATIONS i) Undisturbed Sampling	
12) Thin walled tubes 50 to 125 mm	The tubes are jacked into a cleaned hole under a static force (see IS:2132-1972)	Soils of medium strength
13) Piston type sampler	The tubes are jacked into a cleaned hole under a static force	Clays and silts
14) Samlers with special core retainers	do tenu minimum elle annu	do alegal patte
15) Sand sampler	The tubes are jacked into a cleaned hole under a static force (see IS:8763-1978)	Sand without boulders
16) Solidification methods	Solidification at the bottom of the sampler after jacking the sampler into soils	
17) Open cuts and trenches	d The sample is cut from the sides and bottom of a trench and sealed in a wooden box	All types of formations
	2 - 34	

= 7

ii) Bearing Capacity Tests

18) Plate load test Loading a steel plate at desired elevation and measuring the (soils) settlement under each load, until a desired settlement takes place or failure occurs (see IS:1888-1971)

Clay sandy formations

19) Load test (rocks)

Loading two dises placed diametrically opposite each other on two sides of a trench, by means of a jack and measuring the deflection near the sides

20) Vane shear test

Advancing a four-winged vane into a fresh soil at desired elevation and measuring the torque developed in rotating the vane (see IS:4434-1978)

Soft and sensitive clays

iii) Logging of Bore Holes by Geophysical Methods

Electrical 21) Logging

Measuring the potential and resistances of formation by an electrode system at various elevations

22) Neutron Logging

Measuring the intensity of scattered radiation from a system at desired elevation

23) Gamma ray Logging.

Measuring the intensity of scattered gamma radiation from a system at desired elevation.

2.5.0 FIELD TESTS TO MEASURE PROPERTIES OF SOIL

VERTICAL LOADING TESTS

Loading tests may be used to determine whether the proposed loadings on foundations and subgrades are within safe limits, and subject to certain limitations, to assess the likely settlement of a structure. The greater, the uniformity of the strata tested, the more reliance may be placed on the results obtained.

Table gives guidance regarding the methods of estimating bearing capacity and settlement of structures for various types of soils.

The various velocities for different materials is given below as a guide: for Seismic Method,

Materials	Velocity, m/s	
Sand and top soil	180 to 365	
Sandy clay	365.to 580	
Gravel	490 to 790	
Glacial fill	550 to 2135	
Rock talus	400 to 760	
Water in loose materials	1400 to 1830	
Shale	790 to 3350	
Sandstone	915 to 2740	
Granite	3050 to 6100	
Limestone	1830 to 6100	

METHODS OF ESTIMATION OF BEARING CAPACITY AND SETTLEMENT

S.N Type of Strata	Type of Strata	Methods of	Estimation
	Herrythap dy	Ultimate bearing Capacity	Settlement of Structures
1)	a) Hard rocks	ion dol a	i sama ilm
	 b) Soft rocks, such as shales, weak limestones and sand stones 	FL	ī.
	c) Non-cohesive soils	FL	F F
	.d) Soft compressible soils	1.E	LF.
	e) Stiff, fissured clays	LF	LF
2) Sof	t, compressible stratum overlying		
har	d stratum en en com	LF	L
3) Hai	rd stratum overlying compressible stratum	LF*	L
4) Ver and	y variable strata varying in type, thickness arrangement	Each case to on its merits.	be dealt with

· Tests should be made on each stratum.

Note: Methods are given in order of preference:

F = Field Load Test

L = Laboratory te sts : Compression and shear tests on undisturbed samples. Consolidation test on undisturbed samples. Elastic modules tests on undisturbed samples.

2.6.0 FOUNDATIONS ON BLACK COTTON SOIL

1. The exact depth where cracks in Black Cotton Soil disappear can be ascertained only by proper observation in driest months by excavating trail pits. In other period trail pits should be excavated and left for some time to sun to obtain the dry weather conditions and the depth of cracks carefully observed. The water table during driest months should also be observed. The bottom of concrete should be taken to 2 ft. O" below this point where cracks in soil disappear. The concrete should rest on a sand cushion of atleast 2"-O" depth.

- 2. The sides of the foundation trench should be sloped of consistent with the capacity of the soil to retain slopes. Refilling foundations should never be done by the excavated Black Cotton soil but with sand right to the ground level outside. No part of the foundation concrete or masonry should be allowed to be exposed to Black Cotton Soil to avoid lateral pressures on the masonry due to shrinkage and expansion of side earth.
- 3. A sloping ramp 10'-0" wide all-round the building with the impervious pavement should be laid and surface finished with asphalt so that this forms an effective seal against rain water soaking into the foundations and thus eliminating a possible cause for differential shrinkage of soils under foundations.
- 4. Inside the building all filling should be done with sand or other non-active material (whichever is cheaper) upto the cracking depth and not with the excavated soil, so that flooring is laid on non-active soil filling and not on Black Cotton Soil base.

All these operations should be done in dry weather well ahead of monsoons and the aim should be that the foundations are fully loaded before the onset of monsoons.

- PENETROMETER TEST: It consists of driving a sampling spoon of 2 in, diameter with a 140 lb weight falling through 30 in and noting the number of blows required for 1 ft penetration. Generally if the number of blows is less than ten, the soil is considered to be in a loose state.
- 2. THE LOAD TEST: For this a test pit is dug 5 to 6 ft. square to the desired elevation, and at the bottom of the pit a bearing plate 1 ft square is placed and loaded in increments of 200 lb till 1 1/2 times the estimated allowable soil pressure is reached. An average value of six or more tests is taken. The allowable bearing pressure if the soil is sandy is taken as half the load corresponding to half an inch settlement. These values are halved if the water-table is near the base of the footing.

On clayey soils, the settlement is found to vary in direct proportion to the width of the footing, and the ultimate bearing capacity is dependent on the compressive strength of the soil. For rectangular footing the ultimate bearing capacity is equal to.

q = 2.85 C (1+0.3 B/L) + YD

Where q is the unconfined compressive strength of the soil and B and L are the breadth and length of the footing. An excellent treatment on the allowable pressures on soil is found in soil Mechanics in Engineering Practice, by Karl Terzaghi and Ralph B. Peck (1948).

211

2.7.0 COMPUTATION OF BEARING CAPACITY OF SOILS - TERZAGHI

1. a) Continuous Footings:

$$q_c = [C.N_c + \gamma D_t(N_q-1) + 0.5 \gamma BN_y]/F$$

Where q = safe bearing capacity.

C = cohesion;

γ = unit weight of the soil;

D₁ = the distance from the level of the ground surface to the base of the footing (depth of foundation)

B = width of footing;

F = factor of safety; and

N_c N_q N_γ = non-dimensional bearing capacity factors depending on the angle of internal friction

Values of $N_c N_q N_{\gamma}$ may be obtained from curves in the annexed Fig.

b) Square Footing:

Safe bearing capacity

$$q_a = [1/F1.3 .C.N_a + D_t(N_a-1) + 0.4 \gamma BN_B] + \gamma_d$$

Where

B = Side of square

c) Circular Footing:

Safe bearing capacity
$$q_{\gamma} = [(1/F)^*1.3 \cdot C.N_q + p(N_q-1) + 0.6 \gamma BN_{\gamma}] + \gamma_{\sigma}$$

B = Radius of Footing

2. Fairly Loose or Soft Soil (Local Shear Failure) - In the case of fairly loose or soft soil

the values of C' and &' be obtained arbitrarily as follows:

$$\tan \phi' = 2/3 \tan \phi$$

The N_c N_q N_{γ} values corresponding to C' and ϕ ' can be obtained from firm curves of Fig or alternatively C and ϕ values can be directly used to getN_c N_q N_{γ} from the dotted curves of Fig. In either case, the bearing capacity can be obtained by using the equations given in 1.

3. Coarse Grained Cohesionless Soils, Sands and Gravels

In this case C = 0

therefore, $q_c = (\gamma / F)[D_t(N_c-1) + 0.5 BN_y] + \gamma_d$

a) for strip footing

 $q_s = (\gamma / F)[D_t(N_q-1) + 0.4 BN_y] + \gamma_d$

b) for square footing

$$q_y = (\gamma / F)[D_1(N_q-1) + 0.6 BN_y] + \gamma_d$$

c) for circular footing

4. Fine Grained Cohesive Soils

In this case ϕ is nearly equal to zero and therefore.

$$N_c = 5.7$$
 and $N_q = 1$

- a) for strip footing = qc $5.7C/F + \gamma_d$
- b) for circular or square footing q_r or $q_s = 7.4C/F + \gamma_d$
- c) for rectangular footing q = 5.7C/F [1+0.3 B/L] + γ_d

where,

L is length of footing.

2.8.0 EARTH PRESSURE

COULOMB'S THEORY

According to Coulomb's Theory, earth Pressure Pa is given by the formula:

$$Pa = \frac{\sin^4(\alpha - \phi)}{\sin^2\alpha \sin(\alpha + \delta) - \left[1 - \sqrt{(\sin(\phi + \delta)\sin(\phi - \beta)/\sin(\alpha + \delta)\sin(\alpha + \beta))}\right]^2} + wh^2/2 = kwh^2/2$$

Where, α = Angle of the back wall,

\$\phi\$ = Angle of friction of the back fill,

 δ = Angle of wall friction between back fill and wall,

 β = Angle of surcharge or the angle of the stoping fill.

h = Height of back fill,

W = Unit weight of back fill

Note: For Values "K", see the table below:

COULOMB'S THEORY - PRESSURE CONSTANTS

S.No.	Rear batter	k	P/h ²	a	PH/h ²	PV/h ²	Remarks
1	1:2	0.5019	27.61	44 4'	19.82	19.21	
2	1:2.25	0.4674	25.71	41 28'	19.26	17.02	.8. P
3	1:2.5	0.4402	24.21	39 8'	18.74	15.34	ues $\phi = 35^{\circ}$, $f \beta = 0$ cft in to the the resultant h = PCosa
4	1:2.75	0.4183	23.02	37 24'	18.28	13.98	values φ 30'β=(s/cft i tion to th of the re d Ph = Pq
5	1:3	0.4024	22.13	35 56'	17.92	12.99	Assumed value = \(\psi \) = \(\psi \) = 17°30' \(\psi \) = 110 lbs / c \(\text{Notations} : \) = inclination \(\text{iorizontal of t} \) \(\text{if inclined Ph} \)
6	-1:3.25	0.3884	21.36	34 36'	17.58	12.13	Assumed = \(\phi = 17 \) w = 110 lb Notations \(\phi = \text{incline} \) horizontal (if incline)
				2-41		XY G	7 7 2 0 5 0 6

7	1:3.5	0.3770	20.74	33 27	17.30	11.43	
8	1:3.75	0.3642	20.14	32 26'	17.00	10.80	
9	1:4	0.3583	19.71	31 32'	16.80	10.30	
10	,1:4.25	0.3526	19.39	30 45	16.69	9.92	
11	1:4.5	0.3446	18.94	30 02'	16.36	9.46	
12	1:4.75	0.3386	18.62	29 23'	16.22	9.14	
13	1:5	0.3337	18.35	28 49'	16.08	8.847	
14	1:6	0.3177	17.48	26 58	15.58	7.925	
15	1:10	0.2875	15.81	23 13'	14.53	6.233	
16	1:12	0.2803	15.42	22 16'	14.27	5.842	
17	Zero(Vertical)	0.2460	13.53	17 30'	12.91	4.069	
18	1:12(Reverse)	0.2124	11.69	12 48	11.40	2.58	
19	1:10(Reverse)	0.2088	11.49	11 45	11.25	2.34	

Structures designed to retain earth fills shall be proportioned to withstand pressure calculated in accordance with any rational theory. Coulomb's theory shall be acceptable subject to the modification that the centre of pressure exerted by the back fill when considered dry is located at an elevation of 0.42 of the height of the wall above the base instead of 0.33 of the height. No structure shall, however, be designed to withstand a pressure less than that exerted by a fluid weighing 30 lb/cft.

1). Circular footings : 94 = 1.5 CNc+0.6 PONy+ PDy (Ng-1)

2). Square footings : qu = 1.3 (Ne+0.478.N++ D+(Nq-1)

3). Strip footings : 9 = CN + 1 x 8.Ny + Dy (Ng-1)

a a construct All products for the agent harden half agent and depleading

magnified by Datastay or believe to program more at 2-43 or ments of language instructions. alternation of the in vice is already by what it multipliers are not individually in the large state.

hardwise in the finalligation printing architic of president countries on the back for the selection a start of \$1 housest allow and the microsit name of \$1,00 to be migroups recommodificated as you to the microsity \$ is benefitted in British of the content of the property of the

Table 2-13

SAFE LOAD FOR VERTICAL UNDER - REAMED PILES IN SANDY AND CLAYEY SOILS INCLUDING BLACK COTTON SOILS [Clauses 6.3, 6.3.1, 6.6 and 6.3.2.2 IS 2911 (Part III) - 1973 |

		FORCE	CNT					1	SAFE L	DADING		-	Later	of le
_	REIN	FORCE		nr.	B.	agrinn F	Resistan	oe I	Up III	rt Resist	ance		Resistance	
	(WC+5-E2	Longitu		Ring spec-		Double	lect-	Decr-	Single	Double	Incr-	Oecres-	Single	Double
of Dia-	Under - rouned Dia- meter	No. of bers	Dia	ing of Sem Dia weter Rings	under flea- med	undet Ree- ned	ease per 30 cm. Length	per XI cm. Length	under Resmed	under Reseat	per 30 cm- Langth	se per 30 cm. Length	Rearmd	Reuner
4		3	4	5	6	7	. 8	9	10	41	12	13	14	15
1	2	3	-	-		100	7.				t	t	1	
OR	CRE	No.	-	CM	1			Local District	4	6	0.55	0.55	1.0	1.2
20	50	3	10	18	- 6	12	0.9	0.7	6	9	0.85	9.79	1.5	1.8
25	62.5	4.	10	22	12	16	1.15	0.9	8	12	1,05	0.05	3.0	2.4
30	75	1 *	12	25	16	24	1.4	131	112	18	1.35	1,10	3.0	3.6
37.5	94	.5	12	30	24	35	1.8	1.4	1	21	1.05	1.15	3.4	440
40	100	6	12	30	25	142	1.9	1.5	14:	25,75	1	100000	4.0	4.5
45	112.5	7	12	37	35	52.5	2.15	3.7	17.5	1000	0.50	12001	4.5	5.4
50	125		12	30	42	63	2.4	1.9	21	31.5	1.80	1		

2-44

218

- Note: 1. The value of bearing resistance, uplift resistance and lateral thrust given in the table are for a minimum pile length of 3.5 m. except in double under-reamed piles. In double under-reamed piles the minimum recommended lengths for 37.5m, 40 cm, 45 cm, and 50 cm, piles will normally be 3.75 m, 4.0 m, 4.5 m, and 5.0 m respectively so as to suitably accommodate the bulbs at specified distance.
- Langitudinal bars should normally be provided with a clear cover of 4 cm and may be curtailed or eliminated towards the toe depending upon the stresses in pile section.
- For under-reamed piles subjected to a pull and/or lateral thrust, the requisite amount of steel should be provided.
- 4. Values given in column 14 & 15 for lateral thrusts may not be reduced for changes in pile lengths and are fairly conservative. Higher values may be adopted after conducting lateral load tests on single or group of piles.
- 5. In 25 and 30 cm dia. normal under-reamed piles when concreting is done by a tremie, equivalent reinforcement in shape of single iron piece placed centrally may be used.
- When a pile designed for a certain safe load is found to be just short of the load required to be carried by it, an overload of 10 percent should be allowed on it.
- 7. For working out the safe load for a group of piles the safe load on individual piles is multiplied with the number of piles in the group.
- 8. Only 75 pecent of the above safe loads should be taken for piles in which the bore holes are full of subsoil water during concreting. When water is confined to the bottom portion only, no such reduction need be made. For board compaction piles safe loads upto 85 percent of the values given in the table may be taken before applying the multiplying factor specified in 6.6
- In sandy soils when boring and under-reaming under water, minimum size of pile recommended is 25 cm.
- 10. In multi under-reamed piles the depth of the centre of upper bulb below ground level shall be kept at a minimum of two times the diameter of the under-ream bulb.

- 11. The values given should be increased by 50 percent for broken wire condition in the design of transmission line tower fottings.
- 12. Safe loads for multi under-reamed piles may be worked out from the table by allowing 50 percent of the loads as per col.6 for each additional bulb. Increase in capacity due to increase in lengthwill be as per col.8.
- 13. For taking very high loads, the pile shaft above the top most under-ream should be either increased in diameter and/or additional reinforcement provided as in short column.

DIFFERENTIAL FREE SWELLTEST

Two samples of the dried soil weighing 10 g each and passing through 425 micron sieve should be taken. One sample should be put in a 50 ml graduated glass cylinder having kerosene oil (a nonpolar liquid). The other sample should be similarly put in the cylinder having water (preferably distilled water). Both the samples should be left undistribed for 24 hours and then their volume noted.

The differential free swell, DFS, shall be expressed as,

Soil volume in water
DFS = Soil volume in Kerosene /

Soil Volume in

The degree for expansivenessand consequent damage to the structures with light loading may be qualitatively judged by the following table.

Degree of	DFS
expansiveness	percent
Low	< 20
Moderate	20 to 35
High	35 to 50
Very High	> 50

In areas of soil showing high or very high DFS, concentional shallow foundations will not be adequate.

Reference: Hand book on under-reamed and Bored Compaction Pile Foundations CBRI, Roorkee.

\$1.45 APPROX. \$2=30-45 APPROX. Du . NORMALLY 2.5 D 1A. SECTION OF SINGLE 1B. SECTION OF MULTI-UNDER - REAMED PILE UNDER - REAMED PILE.

ALL DIMENSIONS ARE IN MILLIMETRES

FIG. 2.4: TYPICAL DETAILS OF BORED CAST IN SITU UNDER - REAMED PILE FOUNDATIONS.

Table 2-14
SAFE BEARING PRESSURES ON CONSTRUCTIONAL MATERIALS

Cons	tructional ma	terial	Max. bearing pressure under uniform load		Max. bearing pressure under eccentric load =1.25x that under uniform load		
Description	28-day cube N/mm ²	strength 1b/in²	MN/m²	1b/in²	Max. bearing pressure under concentrated load = 1.5x that under uniform load		
1:4:8 1:3:6 Plain concrete 1:2:4	8.6 11.5 21.0 25.5 30.0	1,250 1,650 3,000 3,750 4,500	1.7 2.4 5.3 6.5 7.6	250 350 760 950 1,140	If slenderness ration K-6 use tabulated values of max. bearing pressure directly-If 5-k-27, multiply tabulated value by a=1:165-0.2/5k-0.06e (6-k) where e=eccentricity of vertical loading as proportion of thickness. (Expression valid only when a <-0.2) (Expression valid only when a <-0.2) for member having a cross-sectional area A of less than 0.3m² or 500in², the max, bearing pressure calculated must be multiplied by the reduction factor (9+10A) 12 (metric units) or (1,500+A)/2,000 (imperial units)		
Masonry brickwork (unreinforced) with 1:3 cement morta	20.5 27.5 34.5 52.0	3,000 4,000 5,000 7,500 0,000 4,000 or more	1.65 2.05 2.50 3.50 4.55 5.85	300 360 510 680 850	If stenderness ratio k < 15, use tabulated value of max bearing pressure directly If 15 <k<24, (45-k)="" 3<="" by="" multiply="" tabulated="" td="" value=""></k<24,>		

2-48

Soil Mechanics

TABLE - 2.15 PILE CAP DEPTH:

Pile caps provide the medium through which the load is transmitted from the column to the piles. They are constructed deep, usually not less than 630mm and with general recommendation that the depth be related to the pile size used, as detailed below:

Pile Size (mm) 300 350 400 450 500 550 600 750
Pile Cap Depth (mm) 700 800 900 1000 1100 1200 1400 1800

Ref : Reinforced Concrete foundation by Bell P 256

TABLE 2.16 SAFE BEARING CAPACITY

SI. No.	Type of Rocks/Soils	Safe Bearing capacity KN/M (kgf/fms)	Tonnes	Remarks
1.	2.	3.		4.
	a) Rocks			
i)	Rocks-hard without lamina- tion and defects, for example, granite, trap and diorite.	3,240 (33)	330	19.0
ii)	Laminated rocks for example, sandstone and lime-stone in sound conditon	1,620(16.5)	165	Thm II Sne
ii)	Residual deposits of shatte- red and broken bed rock and hard shale, cemented material	880 (9.0)	90 .	
	. +	2-49		

				Soil Wechanics
iv)	Soft Rock	440 (4.5)	45	ring yethings O
	(b) Non-cohesive Soils	440 (4.5)	45	am de militir
v)	Gravel, sand and gravel com- pect and offering high resis- tance to penetration when			
	excavated by tools.	440 (4.5)	45	(See Note 2)
vi)	Coarse sand, compact and			Dry means that the
	dry	440 (4.5)	45	ground water level is at a depth not less than the width of foun- dation below the base of the foundation.
/ii)	Medium sand, compact			
11/2/20	and dry	245 (2.5)	25	and the management
/iii)	Fine sand, silt (dry lumps			
	easily pulverised by the fingers)	150 (1.5)	15	- 1
ix)	Loose gravel or sand gravel mixture loose coarse to			
	medium sand, dry	245 (2.5)	25	(See Note 2)
x)	Fine sand, loose and dry	Carrier March		
	(c) Cohisive Soils	100 (1.0)	10	Sample of the Party
xi)	Soft shale, hard or stiff clay			
	in deep bed, dry	440 (4.5)	45	This group is susceptible to long term consolidation
103				settlement.
xii)	Medium clay, readily inden-			
	ted with a thumb nail	245 (2.5)	25	enti ozi mini <u>rin</u> om
		2-50		
		Office and the second		

investigation

TA	BI	F	2.1	7	
	~	-	***	0.000	

SAFE BEARING CAPACITY AND FOUNDATION BASED ON N-VALUE

1. Penetration Resistances and Emprical Correlation for Non-cohesive Soil

Penetration Resistance N (Blows)	Approx. (degree)	DensityDes Index (%)	cription		pproximate sity (t/m)
-	25.30	0	Very Lo	oose	1.12-1.60
4	27.32	15	Loose		1.44-1.84
10	30.35	35	Mediun	n	1.76-2.08
30	35.40	65	Dense		1.76-2.24
50	38.43	100	Very de	ense	2.08-2.40

2. Penetration Resistance and Empirical Correlation for Cohesive Soil.

Penetration resistance (Blows)	Unconfined compressive strength (t/m)	Saturated density	Consistency
0	0	has a feet an animal and	Very soft
2	2.5	1.60-1.92	Soft
4	5 1500		. Medium
8	10	1.76-2.08	Stiff
16	20		Very stiff
32	40	1.92-2.24	Hard

				Soil Mechanics
xiii)	Moist clay and sand clay, mixture which can be indented	in in	Sollie	etheral ether
	with strong thumb pressure	150 (1.5)	15	and the second of the
xiv)	Sift clay indented with mode- rate thumb pressure	100 (1.0)	10	
xv)	Very soft clay which can be penetrated several inches with the thumb	50 (0.5)	5	on the properties of the particular of the parti
xvi)	Black cotton soil of other shrinkable or expansive clay in dry condition (50 percent saturation)			See Note 3. To be determined after investigation.
	d) Made-up Ground	Shows Cale	Mary Street	D Marijaan santaj ex seebality
xvii)	Fills or made-up ground		Tagrid (e	See Note 2 and Note 4.

Note:-

- 1. Values listed in the table are from shear consideration only.
- Values are very much rough due to the following reasons:
 - a) Effect of characteistics of foundations (that is, effect of depth, width, shape, roughness, etc.) has not been considered
 - Effect of range of soil properties (that is, angle of frictional resistance, cohesion, water table, density, etc) has not been considered.
 - c) Effect of eccenticity and inclination of loads has not been considered
- For non-cohesive soils, the values listed in the table shall be reduced by 50 percent if the water table is above on near the base of footing.
- 4. Compactness or looseness of non-cohesive soils may be determined by driving the cone of 65 mm dia and 60 apex angle by a hammer of 65 kg falling from 75 cm. If corrected number of blows (N) (see IS:6403-1971*) for 30 cm penetration are less than 10, the soil is called loose, if N lies between 10 and 30, it is medium, if more than 30, the soils is called as dense.

Code of practice for determination of allowable bearing pressure on shallow foundations.

				Soil Mechanics
3. Type of Soil and P	roper Soil Te	st to be done		
Type of Test Class	Lab, Test for Mechanical Analysis	C- Standard Penetration Test	Load Test	Static Class Resistance Test
Type of soil for which the test is recommended for good results	C-	Sandy soils	Gravelly Soil and Sandy Soils	Fine sand with varying density
Type of soil for which the test is not recom- mended for better results	Gravelly Soil	Gravelly soil and fine sand	Clayey soils	Gravelly soils and Clayey soils
Type of soil particularly suited for the test	C-φ Soil	Sandy soil	Gravelly and sandy soil	Fine sand with varying density
		TABLE - 2.18	mit, diaren	
		O C TO SERVICE CONTROL OF THE SERVICE CONTROL		

Approximate weights of soils and Angles of Repose

	Material	Angle of Repose Degrees	Weight of soil in lbs/cft	Kgs/m
1. Clay	Wet Damp, We	15-20	140-160	2240-2560
	drained	30-45	125-160	2000-2560
	Dry	25-30	110-130	1760-2080

			27				Soil M	echanics
2. Sano	Wet	15-30		110-12	25	USST	1760-2000	BIT III
	Moist	30-45		100			1600	
	Dry	25-35		90-100)		1440-1600	
3. Earth	Loose	30-45		100-11	0		1600-1760	e er ikk
	Rivermud	50-65		120	oca Hilaya		1920	55
	Dry	30-40		110			1760	3)
4. Sand	lv Clav							
4.0011	Wet	18-20		125			2000	
- 0	The Total							
5. Grav	Dry			90			1440	
	Wet			125			2000	
	Gravelly							
	clay wet	18		127			2000	
	Gravelly sand							
	and clay wet	19		130			2080	
	Gravelly sand			100-11	0		1600-1760	
6. Shing	nle That							
o. Orang	Dry			90			1440	
	Shingle			0.000%			15:70 15:70	
	or earth						331.0	
-	moist	40		140			2240	
7. Orga	nic soils							
	Dry	30		90-100	30.0		1440-1600	
	Moist	45-50		100-11	0		1600-1760	
	Very wet	17		110-12	0		1760-1920	
				2-54				

Table 2-20

See Parenty Promote

-							
8. Silt	Wet		10-20	110		1760	
	Dry	diar	20	100		1600	
Minimum Depth of foundations: d =			p (1-sin¢)²	11.75			
TOTAL HITTER	an Deb	ill of loui	idations. u =	w(1+ sin φ)	05		

d = Depth in feet or meter: P=intensity of pressure in lbs/sft or kg/m² W = Weight of soil in lbs/cft or Kgs/m² 0= Angle of repose in degrees.

TABLE 2.19
Coefficients used in Rankines Earth pressure calculations

φ in degrees	1-sino 1+sino	(<u>1-sinφ</u>)² (1+sinφ)	1+sino 1-sino	$(1+\sin\phi)^2$ $(1-\sin\phi)$
15	0.59	0.35	1.70	2.88
17	0.55	0.30	1.82	3.33
18	0.53	0.28	1.89	3.59
20	0.49	0.24	2.04	4.16
22.5	0.45	0.20	2.24	5.02
25	0.41	0.16	2.46	6.07
26	0.39	0.15	2.56	6.56
28	0.36	0.13	2.77	7.67
29	0.35	0.12	2.88	8.30
30	0.33	0.11	3.00	9.00
31	0.32	0.10	3.12	9.76
32	0.31	0.09	3.25	10.59
33	0.29	0.09	3.40	11.50
34	0.28	0.68	3.83	12.57
35	0.27	0.07	3.69	13.62
40	0.22	0.05	4.60	21.16
45	0.17	0.03	5.83	33.94
50	0.13	0.02	7.54	56.85
	The second secon			U. S. S. S. S. S. S.

Rankines C	Coefficients	16	ibie 2-20			
Slope	Angle	(Degrees)		1-Sin φ 1+Sin φ (Active state)	1+Sin φ 1 - Sin φ (Passive state)
1:6	a	10°		0.84 0.704	1.19 1.42	de l
1:5		11° 20'		0.672	1.49	-00 S
1:4		14º 15º		0.610 0.589	1.64 1.70	MAY 4
1:3		18° 30' 20°		0.518 0.490	1.93 2.04	1. Cal
12		30° 56° 30'		0.383 0.333	2.61 3.00	Wast Fr
1:11/2		33° 40' 40°		0.287 0.217	3.49 4.60	
1:1		45°		0.172	5.83	Kerellon Market

Table 2-21

TELS HOU

Soil Particle Fractions

		Diame	ter of Soil particle in m	m
Designation of soil fractions		U.S.Dept of Agriculture Bureau of soils.	American Society for testing materials	International society of soil science
-	Mari	1951	1958	
1.	Fine gravel	2-1	2.0	
2.	Coarse sand	1-0.5	2-0.42	2 - 0.2
3.	Medium sand	0.5-0.25		**
4.	Fine sand	0.25-0.10	0.42-0.74	0.2 - 0.2
5.	Very fine sand	0.10-0.05	**	
6.	Silt	0.05-0.002	0.074.0-0.005	0.024 - 0.002
7.	Clay	0.002	0.005	0.002
8.	Colloids	384	0.0001	

Wall Friction and Adhesion

The angle of friction between the back of a wall and the backfill is often assumed to $2/3\phi_{\lambda}$ or between $1/2\phi_{\lambda}$ and $3/4\phi_{\lambda}$. In general it is suggested that the angle be assumed to be equal to $2/3\phi_{\lambda}$ and that wall adhesion be assumed to be equal to 2/3 C for retaining wall design where ϕ_{λ} = angle if internal friction of the backfill soil and c = un cohesive strength.

Ref : earth Pressures and Retaining walls- Whitnfy Clark Huntington Table 2-22

Co-efficient of friction of concrete on soils (average values)

Class Committee and Committee		
y Clay Gravel Loam or Sand	**** *** ***	0.5 to 0.6
oist Clay or Moist Sand	*** *** **	0.33
et Clay	*** *** **	0.6 to 0.7
y rock		0.6 to 0.7
et rock	** ** **	0.5
	pist Clay or Moist Sand et Clay y rock et rock	oist Clay or Moist Sand et Clay y rock

2.9.0 Well Foundations

Thickness of staining \$ 450 mm (18 in) or less than that given by the following equation

- For circular shaped wells of cement concrete :
- Thickness for wells in sandy strata = 1.0 [(H/100) + (D/10)]
 Thickness for wells in soft clay strata = 1.1 [(H/100) + (D/10)]
- Thickness for wells in Hard clay strata = 1.25 [(H/100) + (D/10)]
- Thickness for wells in strata where boulders, kankar, shale or laterite or such hard materials are met with = 1.25 [(H/100) + (D/8)]

where D = external dia of the well, many munder and the well are the second of the well and the second of the well are the second of the second of the well are the second of the second o

H = full depth to which the well is designed to be sunk below the bed.

Reinforcement in concrete well stening:

Vertical bond rods in the steining 49 kg per m³ (56 ib/100 cft.). This should be provided on both faces of the well adequately tied up with hoop steel not less than 3.25 kg/m³ (20 ib/100 cft.). The cover over the bond rods shall not be less than 75 mm (3 in.) well curb: Minimum reinforcement shall be 72 kg/m³ 4.5 ib/cft.).

DETERMINATION OF THE MAXIMUM DEPTH OF SCOUR

(as per clause 110.1.2 of I.R.C. code-section. i)

The following theoretical method may be used when dealing with natural channels in regime in alluvial beds and where the effective linear waterway provided is not less than the regime width d = 1.34 (Q^2/f) ^{1/3}.

Where d = normal depth of scour in metres below the flood level corresponding to the value of Q adopted.

Q = The discharge adopted for the design, in cubic metre per second; per meter width f = The slit factor for a representative sample of the bed material;

= 1.76 m where, m is the mean dia in millimetre.

The values of 't' normally recommended for various grades are as under:

Type of bed material to which applicable		Mean dia of particle in mm.	Value of 'f'
Fine silt		0.081	0.500
Fine silt		0.120	0.600
Fine silt	110 20002 111	0.158	0.700
Medium silt	***	0.233	0.850
Standard silt	34.	0.323	1.000
Medium sand	**	0.505	1.250
Coarse sand	***	0.725	1.500
Fine bajri and sand	2.42	0.988	1.750
Heavy sand	3546	1.290	2.000

Soil Mechanics

Maximum scour dept	below H.F.I	shall be taker	as follows:
--------------------	-------------	----------------	-------------

1.	In a straight reach	=	1.27 X	[Normal depth of scour]
2.	At a moderate bend	=	1.50 X	[do]
3.	At a serve bend		1.75 X	[do]
4.	At a right angled bend	==	2.00 X	[do]

When the bridge causes contraction i.e. L< W

The normal scour depth D' = D (W/L)0.6 (metric)

Where L = Linear waterway of the bridge and W is the regime width in the case of alluvial streams and unobstructed natural width in the case of quasialluvial streams.

RULES FOR FINDING MAXIMUM SCOUR DEPTH

- Rule (1) : For average conditions on a straight reach of stream and when the bridge is a single span structure, i.e, it has no piers obstructing the flow, the maximum scour depth should be taken as 1.5 times the normal scour depth, modified for the effect of contraction where necessary, (L = 0.65 W)
- Rule (2) : For bad sites on curves or where diagonal currents exist or the bridge is a multi-span structure, the maximum scour depth should be taken as 2 times, the normal scour depth modified for the effect of contraction where necessary. (L_ 0.47 W < 0.67 W)
- Rule (3) : For bridges causing contraction, scour depth obtained by rule (1) or (2), should be compared with that given by the following equation and the greater of the two values adopted.

 D_m = D (W/L)^{1.56} (Fps)

Where D_m = the maximum scour depth and D,L,W being as defined above.

2.10.0 Scour Depth Calculations

Lacey's water way L: 4.75 (Q) 1/2 (Metric)

1) When Actual water way is less than the Legace's water way L, as above the maximum scour depth.

R = : 1.346 (q²/f) * (metric)

R : Probable normal scour depth in metres

q : Intensity of discharge/in curnecs per metric

f : Lacey's slit factor = 1.76/m

: md : mean dia of spheres : oblate spherical particles of bed in mm particles of bed in mm.

Factor of Sa	afety or scour factors genera	lly adopted
LUEST	U/s of pucca of piers	1.50 R
	D/s of pucca floor of pie	ers 2.0 R

Guide Bunds

Noses	2.25 R	
Transition from nose to straigh	t 1.50 R	
Straight reaches of guide bank	s 1.25 R	

Type of r	naterials	Grain size in mm	f.silt factor
Silt	Fine	0.12	0.60
E. C.	Medium	0.233	0.85
	Standard	0.323	1.00
24		- I Latertine Constitution	4.05
Sand	Medium	0.505	1.25
	Coarse	0.725	1.50
Bajra	Fine	0.988	1.75
Dajia	Medium	1.29	2.00
	Coarse	2.422	2.75
Gravel	Medium	7.28	4.7
	Heavy	26.1	9.0
Boulders	Small	50.1	12.00
	Medium	72.1	15.00
	Large	188.8	24.00

Depth of foundations : Df :

- Rule 1 : Erodible beds : HFL 1^{1/3} calculated maximum scour depth subject to a minimum of 1.2 cm below scour fine (like sand)
- Rule 2 :Hard beds : (Solid rocks etc.,) : The foundation shall be securely anchored into that material ie., 0.30m or so into rock and 0.6 m or so into other hard material.
- Rule 3: All beds: The pressure on foundations must be well within the safe bearing capacity of the materials. In case of small culverts (Structures) keep the top of floor at about 0.30m below bed level; take abutment foundations 1.2m deep below the top of floor level. U/s and D/s curtain walls 0.9m to 1.5 m and 1.5m to 2.4m deep from top of floor depending on the velocity of flow, through structure and erodibility of bed material.

(in the absence of scour depth. data)

ii. When actual water way is not equal to or more than the Legacey's linear water, L

R = 0.4774 [Q/f]1/3 (Metric)

Where Q = Total discharge in cumecs. R: H.M.D or normal scour depth in meters.

Earth canal : Approximate HMD 0.75 Q; 0.25 (F.P.S.)

Transmission losses in canals in cusecs per millionsquare feet

Decayed rock Gravel 1
Alluvial or red soil 8
Black cotton soil 5
Rock 3

2.11.0 IMPERVIOUS ZONE AND CUT OFF TRENCH

Whenever the depth of water upto F.T.L. in a particular cross section of the bund exceeds 3m then impervious zone should be invariably proposed. The top of the impervious zone should be 0.3m above the maximum water level and the top width of that will be 2/3 of the top width of the bund.

The side slopes will be 1/2 to 1 (1/2 horizontal to 1 vertical) and hence the bottom width of the impervious zone will be the height of Impervious zone plus the top width of the Impervious zone plus th top width of the impervious zone. The depth of the cut off trench will be half the height between the average ground level and the F.T.L. The bottom width of cut off trench will be 3m and its outer edges will be connected with that of impervious zone.

KEY TRENCHES:

Key trenches will be provided in the upstream half of the bund at 4.5m centre to centre from the upstream outer edge of the impervious zone. In the cross sections where there is no IPZ key trenches should invariably be provided throughout the bottom width of the bund to have proper bond of the bund with the earth below. The size of teh trenches will invariably be a trapezium in shape having a bottom width of 1.5m with side slopes 1 to 1 and a depth of 0.3m from the average ground level.

HYDRAULIC GRADIENT:

The Hydraulic Gradient line will be drawn in the cross section of a bund from a point at which the FTL meets the upstream face of the bund and its slope will be and 1 in 4 in SPZ and 1 in 3 in IPZ. When the Hydraulic Gradient line cuts the bottom surface of the bund beyond 3/4th of the width of bund from the upstream edge, filters should be invariably be provided at the downstream edge of the bund.

FILTERS:

As stated in the above para graded filters of size 2.7m x 0.9m will be provided in the down stream edge of the bund, graded filters alone are provided upto 6m depth of graded filter should be provided.

TOE DRAIN:

Toe drain should invariably be provided in all cross sections of the bund in the rear side, to discharge the rain water falling over the bund to the adjacent drainage course. The bottom width will be 0.9m and the side slopes will be 1 to 1. The bottom level will be at the same level of the bottom of the filter.

TOE WALL:

Whenever revetment with gravel backing is proposed in the cross sections of the bunds, then a square toe wall of size 0.9m x 0.9m as shown in the sketch at page 277 of Ellis Manual of Irrigation (1963 Edition) should be provided at the bottom of the revetment.

Table 2-23 Predicting Performance of Entandement on Safe 2-11

70 Gara			E =0.5 EMPIRICAL CORRELATIONe.g., E /S = UV LAB TESTSnot recommended U CU LAB TESTStrianglal commended	etitary 22 will	Ko FIELD TESTSpressure	ss history	in situ stress history LAB OCOUNCIER TESTS	A CU LAB TESTStriaxial compression	Membured vert. strain	17.	u'	C. 1 LAB DEDONETER and CD stress path tests	k, /k, (AB PERPEABILITY TESTS on vertical and horizontal numericans	Eu, K-0.5 SEE II A	E # -0.5 k, 5 (V),5 (H) SEE II B	E, - K SE 1110	8 VI 38E IN 8
STRESS METHOD		A	ELASTIC	FINITE		A ONE-DIMENSIONAL	3KEMP		"LANTEE STRESS PATH (1964, 1967)	FINITE ELEMENT &	A TERZAGHI 1-0	FINITE ELEMENT &	TATLE DIFFERENCE	ELASTIC	FINITE ELEMENT	FINITE ELEMENT	et el
	MCT+00 5	N B EFFECTIVE C," \$\phi\$	8 EFFECTIVE C," ф	RETRECTIVE C.,	RETECTIVE STRESS PETHOD A ELASTIC B FINITE ELPPONT ELDENT RETRECTIVE C," \$\phi\$ SIRESS METHOD U A ELASTIC E, =0.5 B FINITE ELECTAN C, " \$\phi\$	RETHER E	STRESS S RETRECTIVE STRESS FETHOD A ELASTIC E. = 0.5 B FINITE ELEFENT K A ONE-DIMENSIONAL A DAME-DIMENSIONAL A DA	STRESS S RETRECTIVE STRESS RETHOD A ELASTIC E. =0.5 B FINITE ELEFENT R A A ONE-DIMENSIONAL B A CHENTON-BJERRUM In situ stress history to make the stress history to make	STRESS S RETRECTIVE STRESS FETHOD A ELASTIC E. =0.5 B FINITE ELEFENT R A ONE-DIMENSIONAL A CLAWE STRESS PATH (1957) A CLAWE STRESS PATH Resoured wert. strain C 1957)	STRESS STRESS S S STRESS S S STRESS FETHOD U A ELASTIC E = -0.5 B FINITE ELEMENT IN MEMBATCHY L (1967) A MEMBATCHY IN MEMBATCHY L (1967) A MEMBATCHY LETERIN C (1967) A MEMBATCHY L (1967) A MEMBATCHY LETERIN C (1967) A MEMBATCHY LETERIN C (1968 INTERESTRESS PATH MEMBATCHY LETERIN C (1967) A MEMBATCHY L (1967) A MEMATCHY L (1967) A MEMBATCHY L (1967) A MEMBATCHY L (1967) A MEM	STRESS S REFECTIVE STRESS RETHOD A ELASTIC B FINITE ELERENT N N N N N N N N N N N N	RETHER THE ELEMENT OF THE STREES STREES STREES WETHON U A ELASTIC E — -0.5 B FINITE ELEMENT IN SILVA STREES PATH "Membured vert. strain C (1954, 1957) A CLAMPE STREES PATH "Membured vert. strain C (1954, 1957) A TERZAGNI 1-0 FINITE ELEMENT S E, 14 U B FINITE ELEMENT S E, 14 U C LUMPE STREES PATH "Membured vert. strain C (1954, 1957) FINITE ELEMENT S C C U B FINITE ELEMENT S C C U	RETRECTIVE SIRESS WETHOD A ELASTIC ELEMENT ELEMENT CLAVEE STRESS PATH CLAVEE STRESS PATH (1957) PERMITE ELEMENT A FINITE CLEMENT	RETHER THE ELEMENT OF	REFECTIVE SIRESS WETHOD A ELASTIC CLAWE SIRESS PATH CLAWITE ELEMENT & C., P. D. FINITE ELEMENT & C., P. FINIT	RETHER THE ELEMENT STRESS STRESS STRESS SETHON U A ELASTIC E. MOR. DIMENSIONAL IN METERORY LINE STRESS PATH MEMBARED WHIT. SETAIN C (1984, 1967) A CLANTE STRESS PATH MEMBARED WHIT. SETAIN C (1984, 1967) A TERZAGHILD C C LU C C LU STRITE ELEMENT & E. M. O. S. W. S. (H) SE STRITE ELEMENT & E. M. O. S. W. S. (H) SE STRITE ELEMENT & E. M. O. S. S. (H) SE STRITE ELEMENT & E. M. O. S. W. S. (H) SE STRITE ELEMENT & E. M. O. S. S. (H) SE STRITE ELEMENT & E. M. O. S. S. (H) SE STRITE ELEMENT & E. M. O. S. S. (H) SE STRITE ELEMENT & E. M. O. S. S. (H) SE STRITE ELEMENT & E. M. O. S. S. (H) SE STRITE ELEMENT & E. M. O. S. S. (H) SE STRITE ELEMENT & E. M. O. S. S. (H) SE STRITE ELEMENT & E. M. O. S. S. (H) SE STRITE ELEMENT & E. M. O. S. S. (H) SE STRITE ELEMENT & E. M. O. S. S. S. (H) SE STRITE ELEMENT & E. M. O. S. S. S. (H) SE STRITE ELEMENT & E. M. O. S.	

2.12.0 I. Design of retaining Walls :-

2.12.1 Masonry retaining walls :-

- Termed as (i) low upto 10m (30') height, top width (2') 0.6m
 (ii) High, exceeding 10m (30') height, top width 0.9m (3')
 Note: For walls up to 6m (20') height-top width 0.45m.
- Back fill on earth face adds to the weight of the wall. By keeping the entire batter on earth face stresses in the section will increase, so it is not economical proposal.
- Front-outer face (exposed face) batter 1/6 to 1/12 or 1/4- 1/6 base width 1/3 H
- Rear face (earth face) batter as per Rankines theory : 1/3 - 1/6 or 1/12 or 1/6 - 1/4
- e) The earth pressure is horizontal and acts as 1/3 H from base
- II Retaining wall TVA procedure (based on Coloumbs):

 Dr. Kerl Terzaghi's classified experiments on "high retaining walls "detailed in Engineering News Record (1934) have indicated that the pressure behind the retaining walls, closely approximates to that given by Coloumb's wedge theory and that it acts at 0.4 H from the base and in a direction inclined to the back of the wall.

For no tension at foundations, a back batter of 1 in 3 (earthern force) may be admissible. For greater batter the over turning ratio should not exceed 1.75. Back batter as minimum as possible (earth face) say 1 in 12 ($a = 4^{\circ} 46^{\circ}$)

<u>Hydraulic structures</u>:- Saturated fills:- i) Hydraulic pressures below the point of saturation is determined as though no fill were present.

ii) The earth pressure resulting from the buoyant weight of the fill (65 lbs/cft) about 1.08 t/m 3 = is calculated using the *same values of and *as would be used if the fill were dry (no reduction in value due to saturation is allowed.

These two forces are combined in quantity to find the moment to produce a resultant earth pressure on the walls (abutments of U.T.S, Aqueducts, syphons etc.,)

Note: Water pressure of the saturated fill acts at 0.33 h

Course grained and without anything of their built particles. Transaction over

(o - a) P = ----- Cos { ------} (1+n) cos a $cos(\alpha + \delta)$

The resolved components or P = Kwh2, where are Ph and Pv which act at 0.4 h from base.

alpha =α

 $delta = \delta$ beeta = B

in designs.

1 Cos (φ- α) Where K : - ----- x ------

- 2 (1+ν) Cos α

 $Cos(\alpha + \delta)$

 $Sin(\phi + \delta) Sin(\phi - \beta)$ $Cos(\alpha + d) Cos(\alpha - \beta)$

Soil Mechanics

w = (105 ib/eft) for sand or gravel 1680 kg/m3 1920 kg/m3 (120 ib/cft) for finer materials like loams 2240 kg/m3 (140 lbs/cft) for clays PH = KH wh², = K cos ($\alpha + \delta$) wh², to 2.100 T/m³ are adopted. Pv = kv wh²,= K Sin ($\alpha + \delta$) wh²

Where P = pressure in kg/metre h = height of wall in metres w= weight of fill in kg/m3

Note: The general practice is to give stepped back for better grip on earth face and assume $\alpha = 0$ for design purposes.

Types of back fills for retaining walls:

Coarse grained soil without admixture of fine soil particles - permeable (clear sand and gravel)

- Coarse grained soil of low permeability due to a mixture of particles of silt size
- Residual soil with soil stones, fine silty sand and granular material with conspicuous 3. clay content.
- Very soft clay organic silts or silty clays (3:1 Max. Slopes)
- Medium or stiff clay deposited in hunks and protected in such a way that a negligible amount of water enters if the conditions cannot be satisfied, the clay should not be used as back fill material as with increasing stiffness of clays, danger to the wall due to filtration of water increases rapidly (2:1 max. slopes) ...

Design Parameters (As adopted Nagarjuna Sagar Canal)

 $\phi = 32^{\circ}, \delta = 32/2 = 16^{\circ}, \alpha = 0$ W: Unit weight of earth 2100 in kg/m3, masonry concrete 2240/m3 vertical components PV. Horizontal components PH.

i) Level surcharge (No fill above wall) 0.0384 wh2 0.1338 wh2 ii) Surcharge Slope

1H:1V 0.1031 wh2 0.3596 wh2 11/2H: 1V 0.1031 wh2 0.3596 wh2 2H:1V 0.0623 wh2 0.2174 wh2 21/2 H: 1V 0.05375 wh2 0.1875 wh2

12 0 225

Note: Allowable tension in CRS Masonry in CM (1:5) 0.70 kg/cm2 (10 psi) -No Tension in RR Masonry is allowed - Table Retaining wall with 1 in 12 face better :- Level surcharge :- No Tension in Masonry/foundations - (Sagar Canals Practice)

H in meters	onry/foundations - B in meters	Comprehen	sive stress in t/m2	
		Masonry	Soil	
1.00	0.52	3.323	3.339	
1.20	0.55	5.257	3.982	
1.40	0.65	6.110	4.617	
1.60	0.75	6.899	5.292	
1.80	0.85	7.690	5 977	e e
2.00	0.95	8.452	6.696	
2.20	1.05	9.240	7.375	
2.40	1.15	10.010	8.084	
2.60	1.25	10.792	8.800	
2.80	1.35	11.600	9.520	
3.00	1.45	12.377	10.274	
3.20	1.55	13.148	10.978	
3.40	1.60	14.576	12.168	
3.60	1.70	15.233	12.797	
3.80/	1.80	15.990	13.539	
4.00	1.90	16.856	14.369	
4.20	2.00	17.566	15.064	
4.40	2.10	18.351	15.825	
4.60	2.15	19.633	16.936	ķ
4.80	2.25	20.475	17.713	
5.00	2.35	21.367	18.576	
5.20	2.45	22.023	19.248	
5.40	2.55	22.810	20.028	
5.60	2.65	23.596	20.807	
5.80	2.75	24.388	21.592	
6.00	2.80	25.762	22.769	
	47			

Table Retaining walls with front face vertical - (Sagar Canal Practice) level surcharge

H in meters	B in meters	Comprehens	ive stress in	Vm²	
	V-1112/200	Masonry	Soil		
1.00	0.50	4.60	3.46		
1.20	0.60	5.58	4.14		
1.40	0.70	6.52	4.85		
1.60	0.80	7.433	5.64		
1.80	0.90	5.380	6.38		
2.00	1.00	9.280	7.16		
2.20	1.10	10.23	7.90		
2.40	1.20	11.145	8.79		
2.60	1.30	12.08	9.61		
2.80	1.40	13.00	10.46		
3.00	1.50	13.945	11.296		
3.20	1.60	14.86	12.157		
3.40	1.70	15.77	13.02		
3.60	1.80	40.70	13.87		
3.80	1.90	17.62	14.76		
4.00	2.00	10 57	15.62		

Table Front face vertical 1 1/2: 1 surcharge - NSP Practice (Sluice - U.T. Head walls)

H in meters	B in meters	Comprehensive stress in t/m²
		Masonry
0.70	0.55	3.20
1.00	0.85	0.20
	- Tel 7 (5)	4.03
1.20	1.00	OLO OLO
1.50	1.20	6.34
1.80	1.40	8.02
2.00	1.55	9.78
37357.77)		10.80
2.20	1.70	
2.50		11.83
2.80		13.13
3.00	2.15	14.87
5.00	2.30	15.86
3.20	0.45	
	2.45	16.87
3.50	2.70	18.19
3.70	2.85	19.19
4.00	3.05	20.89

Table walls front face vertical - 1 1/2: 1 surcharge - NSP (Practice)

1.00 0.83 5.32 5.87 1.20 1.00 6.58 6.97 1.40 1.25 7.34 7.69 1.60 1.35 9.05 9.23 1.80 1.50 10.47 10.55	n t/m³
1.20 1.00 6.58 6.97 1.40 1.25 7.34 7.69 1.60 1.35 9.05 9.23	
1.40 1.25 7.34 7.69 1.60 1.35 9.05 9.23	
1.60 1.35 9.05 9.23	
1.80 1.50 10.47 10.55	
2.00 1.68 11.58 11.71	
AND AND AND THE PARTY OF THE PA	
2.20 1.82 13.14 13.09	
2.40 2.00 14.41 14.28	
2.60 2.20 15.45 15.97	
2.80 2.35 16.90 15.92	
3.00 2.50 18.35 16.10	

Front face vertical - Leval surcharge

Retaining walls front face vertical / batter level surcharge - SRSP Practice

Design parameters top width a = 6 m,

stepped back, 0 = 32 °
Weight of saturated earth :

2080 kg/m³ 2240 kg/m³

Weight of masonry Weight of concrete

Table

2400 kg/m³

Pv = 0.073 wh 2, PH = 0.1175H 2, Y = 0.4H

Note: Back face (earth force) as stepped.

H in meters	B in meters	Compreh Masonry	ensive stress	in t/m² Soil	
(4')	1.22	0.61 0.81	5.58 2.80	5.36	
(6')	1.83	0.76 0.91	8.97 5.68	9.73	Note : Sections
(8')	2.44	0.99 1.01	12.36 7.66	13.02	with front force -vertfcal are economical upto
(9')	2.74	1.14 1.14	13.56 9.52	14.11	(9' 2.74m height
(10')	3.05	1.22 1.14	15.64 12.45	16.21	
(12')	3,66	1.52 1.37	18.05 14.87	18.59	
(14')	4.27	1.75 1.60	21.44 17.50	21.90	
(15')	4.57	1.83 1.68	23.73 19.47	24.20	

Table:	Retaining wall-front face ball	ter 1 in 8 stepped back	c - level surcharge
Thence			

Design parameters : φ = 32 °, δ = 16 °

Masonry - PV = 0.0384 wh, 2, PH = 0.1338 wh 2 = 0.4 h

Soil - PV: 0.065 wh 2

PH = 0.121 wh 2

Hin meters B in me		Compress	sive stress in Vm2
		Masonry	Soil
1.22	0.74	3.74	6.27
1.83	0.82	7.60	9.38
2.44	1.07	8.75	9.85
3.05	1.14	13.46	14.90
3.66	1.37	16.16	17.63
4.27	1.60	18.86	20.36
4.88	1.83	21.54	23.14
5.49	2.06	24.23	25.92
6.10	2.29	26.89	28.70
	1.22 1.83 2.44 3.05 3.66 4.27 4.88 5.49	1.22 0.74 1.83 0.82 2.44 1.07 3.05 1.14 3.66 1.37 4.27 1.60 4.88 1.83 5.49 2.06	1.22 0.74 3.74 1.83 0.82 7.60 2.44 1.07 8.75 3.05 1.14 13.46 3.66 1.37 16.16 4.27 1.60 18.86 4.88 1.83 21.54 5.49 2.06 24.23

Table: Retaining wall front face vertical and 2:1 surcharge - SRSP Practice -

Design parameters : top width 0.6m (2') stepped back

Masonry PV = 0.1261 wh ² PH = 0.2017 wh ²

Soils PV = 0.1093 wh ² PH = 0.2057 wh ²

H in meters	B in meters	Compress	sive stress i	n t/m²
LIMITION OF THE PARTY OF THE PA	S III MCICIS	Masonry	Soil	in a fire
(4') 1.22	0.76	5.44	8.16	
(6') 1.83	1.07	9.76	12.62	
(8') 2.44	1.52	12.97	15.96	
(10') 3.05	1.91	17.14	19.98	

lable: Retaining walls front ba	atter 1 in 10 - level sureb
- SRSP Practice-	atter 1 in 10 - level surcharge (Returns - wings

Design pa	rameters : top width ().6m, stepped back	2:1_
Unit weigh Unit weigh	t of saturated earth t of masonry t of concrete	: 2.10 t/m ³ : 2.25 t/m ³ : 2.40 t/m ²	EARTH FILL

H in meters	B in meters	Comprehen Masonry	sive stress in t/m² Soil
1.00	0.685	6.902	5.021
1.25	0.710		6.426
1.50	0.835		6.035
1.75	0.860		7.416
2.00	0.885		9.021
2.25	1.910	9.502	10.845
2.50	1.00	10.704	12.029
2.75	1.10	11.758	13.088
3.00	1.15	13.589	14.835
3.25	1.25	14.731	16.015
3.50	1.35	15.689	16.985

Table: Retaining walls- front batter 1 in 5. level surcharge stepped back (wings and returns) top width 0.6m - SRSP Practice

H in meters	B in meters	Comprehens	sive stress in t/m²
1.00 1.25 1.50 1.75	0.77 0.82 0.87 0.92	Masonry 2.509 3.392 4.464 5.720	Soil 4.148 5.420 6.567 7.850
		2-73	

				Son Weenanies
Hin meters	B in meters		ive stress in t/m²	
D. W. Sandara		Masonry	Soil	
2.00	1.10	4.778	6.672	
2.25	1,15	5.777	7.736	
2.50	1.20	6.883	8.896	
2.75	1.25	8.103	10.147	
* 00	1.30	9.425	11.493	
3.00 3.25	1.35	10.845	12.918	
3.50	1.40	12.361	14.417	
3.75	1.45	13.965	16.018	
4.00	1.50	15.642	17.674	
4.25	1.60	16.503	18.584	
4.50	1.65	18.282	20.331	
4.75	1.75	19.151	21.250	
5.00	1,85	20.019	22.171	
5.25	1.95	20.893	23.089	
5.50	2.05	21.764	24.000	
5,75	2.15	22.641	24.933	
6.00	2.20	24.403	23.932	
6.25	2.30	25.269	24.891	
5.50	2.40	26.137	25.766	
6.75	2.50	26.435	26.329	
7.00	2.60	27.876	27.605	
7.25	2.70	28.740	28.526	
7.50	2.80	29.617	29.447	
7.75	2.90	30.490	30.369	
8.00	2.95	32.248	32.057	

2.12.2 Design of Cantilever wall - RCC Retaining Walls

The first step is to evaluate the soil parameters. Next the trial section may be selected using Fig2.7 as a guideline. It is the usual practice to use Rankine's analysis for active earth pressure calculation when the height of the wall is 7m and taking $\delta=0$. For wall over 7m in height, the Coulomb's equation may prove to be more economical.

Fig.2.7

The base slab dimension should be such that the resultant of the vertical loads falls within the middle one-third. If it falls outside the middle third, the toe pressurbecomes large and only a part of retaining wall will be effective. Figure 2.8 may be use as guide to select the toe dimension a and heal dimension b so that the resultant fall approximately with in middle one third. The use of Fig2.8 for selecting a and b is indicate therein. The forces acting on the cantilever retaining wall are shown in the Fig. 2.9 and 2.10. Based on trial dimensions, the stability of the wall must be checked for a factor safety of 1.5. The forces involved in the stability analysis are shown in Fig2.11 and 2.12 If the factor of safety is inadequate for the trial section, the heel part may be increased. a heel key may be used.

Fig. 2.13 enables to estimate the depth of the heel key. The allowable bearing pressure next computed. Since the load is eccentric, the concept of effective width (B' = B-2) should be applied when evaluating the bearing pressure. The toe and heel pressure a then calculated.

Shear check is made for stem and heel moments are calculated using differential equation presented in fig 2.10. Finally knowing moments, the steel requirements may be calculated

Notes:

Numerals on curves indicate soil types as described in Table

For materials of Type 5 computations of pressure may be based on value of H four feet less than actual Value

CHART FOR ESTIMATING PRESSURE OF BACKFILL AGAINT RETAINING WALLS SUPORTING BACKFILLS WITH PLANE SURFACE.

Fig. 2.5

CHART FOR ESTIMATING PRESSURE OF BACKFILL AGAINT
RETAINING WALLS SUPPORTING BACKFILLS WITH SURFACE WHICH
SLO PES UPWARD FROM CREST OF WALL FOR LIMITED DISTANCE
AND THEN BECOMES HORIZONTAL

Chapter - 3

IRRIGATION

3.1	Discharge calculations	3.1
3.2	Types of Weirs	3-5
3.3	Canal Regulators	
3.4	Design of Horizantal stilling basin	3-7
3.5	Sluices	
3.6	Open Channels	
3.7	Composite roughness for canal sections	3-8
3.8	World Bank Projects	
3.9	Canal Drop	3-10
3,10	Afflux	3-11
3.11	Scour Depth	3-12
3.12	Channel in earth - Design aspects	3-13
3.13	Loss of head	3-15
3.14	Spillways	3-16
3.15	Hydro-power evaluation	3-19
3.16	Vertical lift gates - sluices	3-19
3.17	Location of sills in Off-take sluices	3-20
3.18	Relations between different expressions for duty of water	3-21
3.19	Standards for Minor Irrigation Projects	
3.20	Crop Water requirements	
3,21	Unlined canals in Alluvial soils	
3.22	Data for Important crops in India	3-27
3.23	Standards of canal cross - sections	3-29
3.24	CBIP Technical Report - 12, Sept. 1974	3-34
3.25	Canal Lining	3-35
3.26	International Commission on Irrigation & Drainage (ICID)	

3.27	Design Practices of Irrigation Canals (ICID 1972)	3-37
3.28	Side slopes of channels	3-38
3.29		3-40
3.30	Maximum Water Velocity	3-40
3.31	CBIP - Design of Unlined Canals	
3.32	Unlined canal Curves	3-42
3.33	Permissible canal Velocities	3-43
3.34	Seepage losses in Canals	
3.35	Evaporation Losses in Reservoirs	
3.36	Channel Losses	3-46
3.37	Structured safety on shallow foundations	3-48
3.38	Loss of Head for Hydraulic structures on Main canals	
3.39	Design of Cross drainage works	
3.40	Dam Safety	3-54
3.41	Nagarjun Sagar : Design Practices	3-56
3.42	Requirements of Labour, Material and Machinery in	3-62

3.1 DISCHARGE CALCULATIONS

3.1.1 (1) Weirs: (Clear over fall)

Where Q = Discharge over weir in cumecs.

L = Length of weir in metres.

H = Head over weir in metres.

C = 1.84 for sharp crest (for glacis fall)

1.71 for broad crest (for notch type regulator)

1.40 for broad crest (for flush escape)

3.1.1 (2) (a) Discharge for a drowned weir General Formula

$$(2/3).C_1.L\sqrt{2g}$$
 [$(h+ha)^{3/2}-(ha)^{3/2}$] + L. $C_2.2d\sqrt{2g(h+ha)}$ (FPS)

OF

or

Where 'h' represents the known difference of water level between front and rear of th weir, 'ha' = head due to velocity of approach either gauged or otherwise known, d = depth of tail water over crest. Different values of C are given in C.E.I's No.2973/57C., dated 4th October, 1971 for various depths of tail water and a diagram is included therein in Malikpur Graph of I.R.I. (Punjab)

C1 = 0.577 FPS in the above formula.

254				
The state of the s		p		
		۲.	- 6	-
	-	_	æ	-
1000	-	~	~	_

Donth	s of tail water in mts	Value	of C2	
Depar	3 Of tail Mater in the	FPS	MKS	
upto	1.50 m	0.60	0.331	
upw	1.80 m	0.62	0.342	
	2.10 m	0.66	0.364	
	2.40 m	0.75	0.414	
	2.70 m	0.84	0.464	
	3.00 m	0.90	0.497	
	3.30 m	0.93	0.513	
	3.60 m	0.95	0.524	
3.1.1	(2) (b)	C (FF	S/MKS)	
	100	1.9	0 1.050	
	95	2.4	16 1.358	
	90	2.7	70 1.490	
	85	2.8		
	80	2.5	98 1.645	
	55	3.	12 1.723	
	25	3.	14 1.733	

Note: C, FPS X √0.3048 = C, FPS X 0.5521 = C, MKS

C (MKS) = C (FPS) X 0.5521

Discharge Formula Q = C X Bt X D 3/2

Bt = Clear Throat width ; D = U/S TEL - crest level

Drowing Ratio (%) =

D/S TEL - crest level

U/S TEL - crest level

C = Coefficient depending upon drowning ratio.

For intermediate values, read the Malikpur graph and convert into MKS system.

3-2

4. Ekseh geones

5. Standavid High Coefficien

(U/s form 40 ° etaps sets)

FIG.1 DROWNING RATIO Vs COEFFICIENT OF DISCHARGE CURVE(IN MKS UNITS) (BASED ON MALIKPUR CURVE) APPLICABLE IN BROAD CRESTED BARRAGES

Q=CLH^{3/2}

WHERE

Q= DISCHARGE IN CUMECS

C= COEFFICIENT OF DISCHARGE IN FREE CONDITION

L= CLEAR WATER WAY IN METER

H= HEAD OF WATER OVER CREST IN METER

DROWNING RATIO =

D/S WATER LEVEL - CREST LEVEL

U/S WATER LEVEL - CREST LEVEL

3,1.1 (2)	(c)	Alternately,

Q = r C L h 3/2 for Drowning Ratio Method

d = depth of (rear) tail water over crest

h = depth of (U/S) front water over crest

Valu	es of Submersion ratio d/h	Value of r	HELLING TO THE STATE OF THE STA
From	0.00 to 0.720	1.000	Ogen-Warr or High Codification and Where 'n' is the not of deal contract
	0.74	0.985	Sample March St. San San St.
	0.76	0.975	
	0.78	0.965	Canal Regulators
	0.80	0.950	
	0.82	0.940	Q = Cd x√2 (5 (n)(69)
	0.84	0.960	
	0.86	0.980	Cd = 0.75, N = Difference in 1
	0.87	0.880	
	0.88	0.850	Linear without a view har 50 v
	0.90	0.815	
	0.92	0.780	ER Pipe Dumara d'Artel S south
	0.94	0.720	
	0.96	0.640	DI = (0.00104 + (0.000 BS
	0.98	0.520	and the same of th
	0.995	0.340	D w restor velocity of wither it

3.2 Types of Wiers

1. Clear over fall with crest width upto 3'

General

Q = 2/3 Cuestos dicion MC L Discharge Formulae C in MKS Q = C L H 3/2

Q = 10/3 LH 3/2 (FPS) 1.840

Libert of grangent (PF) improved box stollaring PF, S.E.E.

Where Q = Max flood discharge in cusecs

L = Length of weir in ft.

H = Spillag in ft.

PO HAD - D

258

2. Broad crested weir with crest width above 3' Q = 9/3 LH 3/2 1.66

3. Sloping apron Q = 8/3 LH 3/2 1.47 to 1.10

let Drowning Femile Westvace

4. Flush escape Q = 7/3 LH 3/2 1.47 to 1.10

 Standard High Coefficient weir Q=3.75(L-O.1 nH) H^{1/2} 2.07 (U/s face 40 ° slope etc.)

Ogee-Weir or High Coefficient waeir Q=3.98(L-O.1 nH) H^{1/2} 2.20
 Where 'n' is the no. of end contractions which is usually 2

3.3 Canal Regulators

$$Q = Cd \times \sqrt{2gh}$$
 (MKS)

Cd = 0.75, h = Difference in Water levels

Linear waterway may be 50 to 60% of canal to prevent excessive afflux.

3.3.1 Pipe Outlets: d.Arch's equation for internal dia (Di) of pipe.

D = mean velocity of water through pipe

3.3.2. Regulators and barrages (Ruhlmann's formula):

Q = 2/3 CLe [2g (h+ha) $^{3/2}$ - ha $^{3/2}$) + CLe H $\sqrt{2g}$ (h+ha) for submerged weirs.

Le = effective width of regulator

= number of spans X span width (N.S)

H = d/s depth of water over crest

C = Coefficient = 0.95 for sharp pointed piers = 0.90 for piers with square edges 3.4 Design of stilling basins of hydraulic jump type: C.B.I.P. publication January 1984.

The curves for direct evaluation of H _L / Dc versus Dc/D1 or D2/Dc are furnished below to avoid approximation in evaluating EF2 in horizontal floors. Curve for determining length of stilling basin is also furnished below — (See curves in the figure)

NEAD LOSS FACTOR VERSUS JUMP LENGTH FACTOR

HEAD LOSS FACTOR YERSUS DEPTH PACTORS

SLUICES:-

Q = CAH 0.5

Q = Discharge through sluices in currecs.

A = Waterway of sluices in Sqm

H = Difference in water level between upstream and down stream in mts

= 2.50 for small regulator opening with shallow water depth

= 2.80 for regulator opening upto 2.m width with recesses in the piers.

= 3.20 for regulator opening between 2m and 4m width

= 3.70 for regulator openings above 4m width

OPEN CHANNELS:-

Q = A.V.

Where Q= Discharge in cumecs.

A = Area of flow in channel

V = Velocity in channels in m/Sec.

V = (1/n), R (2/3) S 1/2 (Manning's formula)

Where R = Hydraulic mean depth (m) = A/P

P = Wetted perimeter (m)

S = Water surface-longitudinal slope (not bed slope) if it is non uniform flow) n = Rugosity Coefficient

3.7 Composite roughness for canal sections (n)

For determining the equivalent roughness, the wetted area is divided in 'N' parts of which the wetted perimeters P1, P2 Pn and the coefficients of roughness n, n, --- n are known. Horton and Einstein assumed that each part of the area has the same mean velocity, which at the same time is equal to the mean velocity of the whole section; i.e., v1=v2= vn=V On the basis of this assumption, the equivalent coefficient of roughness may be obtained by the following equation.

$$n = \left[\frac{\prod_{i=1}^{\infty} (P_n n_n^{-1.5})}{P} \right]^{2/3}$$

BRIDGE PACKET FOR SHIP SELL CAME

Irrigation Engineering

For World Bank Projects 3.8

> Q = Discharge in lit/sec Q = (0.7 + 0.50 P) X CCAP = % Ara of Paddy under irrigation CCA = Total Cultivable command area

Channels are designed for day irrigation only where CCA is less than 200 Note: hectares (i.e., 12 hours watering per day)

Distribution Channels: The max - size of field channels under an outlet should not exceed 25 to 30 lit/sec.

Types	Allowable Velocity in mt/Sec
In main Canals	1.05
In Branch Canals	0.9
Large Distributeries	0.75
Small Distributeries	0.6
Minor Distributeries	45 L III MINNE - 1
Water courses field channels	0.45

Values of n for unlined channels in ordinary soils for various minimum discharges.

0.0250 for discharge upto 3 cusecs

0.0225 for discharge more than 3 cusecs and upto 15C/s

0.0200 for discharge beyond 15 cusecs

Chezy's formula

Where C = a coefficient,

alumnot a year.

n = Rugosity Coefficient

3.9 Canal Drop

- a) Dropwall top width, a = (0.5d + 0.1524) to (0.5 d + 0.3048) d = depth of water over sill of notch in metres, a = top width in metres
- b) Dropwall bottom width $b = (H + d) / \sqrt{\rho}$ d = depth of water over sill

ρ = Specific gravity of the wall material

H = height of wall in metres

b = bottom width in metres

d = depth of water over sill of notch and pier has a top width of 3/4 the normal

d) Length of apron L = 2d + 2√dh or 1.22 +2√dh which ever is greater d = depth over sill of notch in metres

L = length of apron in metres

h = difference between U/S & D/S water level in metres

e) Down stream side apron width

W = L + 0.5d or bed width of canal D/S water level in metres W,L & d are in metres

f) Thickness of apron Minimum $t = \sqrt{(d+h)/1.811}$

t,d & h are in metres

g) Bed pitching U/S L1 = 1.5 d, D/S L2 = 2d d = depth of water cushion in metres h) Revetment U/S L3 = 3d or 3.13 m whichever is greater
D/S L4 = 4(d+h) or 6.1 m whichever is greater
d = depth of water over sill in metres.

i) Depth of water cushion (dw + d1) = 0.905 dc h

dw = depth of water cushion in metres
d1 = depth of D/S apron in metres
h = difference between U/S and D/S levels of water in metres
dc = depth of water over sill of notch in metres.

3.10 (a) AFFLUX "MOLE'S WORTH" FORMULA

$$h = \begin{bmatrix} v2 \\ ----- + 0.01525 \end{bmatrix} [(A/a)^2 - 1]$$
17.86

h = Afflux in meters.

v = Velocity in meters per Sec. (in the rescricted water way).

A = Unrestricted waterway in sq. meters.

a = Restricted waterway in sq. meters.

3.10 (b) Afflux Calculations (Gauthay and Du Buat)

$$h = \frac{v^2}{2g} = \frac{a}{\mu A}$$
 (MKS)

Q =
$$\mu$$
 H Le $\sqrt{2g(h + ha)}$
A = H.Le, but effectively μ A

Where

A = area below regulator (restricted water way)

a = area u/s of regulator

 $\mu = 0.85 + 0.014\sqrt{s}$, for sharp edged piers

s = Clear span

= 0.76 + 0.029 s, for semi circular cut waters

= 0.70 + 0.029 s, for square edged piers

or for a/A = 2.40, μ = 0.696 (Fourrey) 1.70, μ = 0.771 1.40, μ = 0.800 < 1.4 or 1.00, μ = 1.00

3.11 SCOUR DEPTH

DOMESTIC DISTRICTS

(a) Lacey's formula

R = 1.346 (q² / f)^{1/3} (MKS)

R = Probable normal scour depth in meters
q = intensify of discharge per meter run
f = Lacey's silt factor = 1.76 √md

md =mean diameter of spheres = equivalent to oblate spheroidal Particles of bed materials in m.m.

for Values of 'f', See 3.1.4 (d)

Scour factor generally adopted for design of aprens

	DELT 1 (299)	Range	Mean
2. 3. 4.	Upstream pucca floor Down stream of pucca floor Nose of guide banks Transition from nose to straight reach Straight reaches of guide banks	1.25 R to 1.75 R	2.0 R 2.25 R 1.50 R

(b) Lacey's formulae (MKS)

 $R = 0.473 (Q/I)^{0.33}$ $R = 2.50 V^2 / f.$ for channels.

Where R = Hydraulic mean depth (m)
Q = Total discharge in cumecs f = Lacey's silt factor as in previous case

3.12. Channels in Earth - DESIGN ASPECTS

3.12. (a) Approximate hydraulic mean depth (S.A.Girshan) F.P.S.

 $d = AQ^{0.25}$ to $AQ^{0.33}$, A varying between 0.68 to 1.02, generally $d = 0.70 \ Q^{0.33}$

Q = Total discharge in c/s

3.12. (b) Lacey's regime formulae:- (MKS)

V = 10.864 R 2/3 S 1/3 for river discharges

 $P = 4.75 Q^{1/2}$, $V = (Qf / 140)^{1/6}$ for channels, or $Q^2f = 140V^6$.

A = 2.28f -1/3 Q 5/6

V = 0.44 f 1/3 Q.1/6

S = 0.00030 (5/3 / Q 1/6

V = Velocity of flow (m/s)

A = Area of flow (sqm)

F = Lacey's Silt factor. See table given 3.1.4(d)

P = Wetted perimeter (m)

S = Water surface slope, (not bed slope)

R = Hydraulic mean depth (m)

3.12 (c) Modified equation on both Lecey and Kennedy theories:-

Wetted perimeter formula	P = 2.67 Q 1/2	Become of Case of a
Regime test formula	V = 16√R ² S	2
Slope formula	S = 0.000542 1 5/2 / Q 1/6	3
Fundamental formula	V = 1.151 Q√fR	4

3.12. (d) (i) VALUES OF LACEY'S 'I' SUITABLE FOR DIFFERENT SOILS (FROM CRI PUBLICATION NO 20)

(FROM CBI PUBLICATION NO.20)	Earth Vite Story	Diamonts in
Type of silt		
Very fine silt	0.40	ATTOMATICAL IN
Fine silt, Godavari western delta type	0.50	
Fine silt, Jamuna canals	0.60	OB 01, 400 0
Fine silt, Krishna western delta type	0.70	
Medium silt	0.85	сприетова чит
Standard silt	1.00	
Medium sand	1.25	COLUMN TO SERVICE TO
Coarse sand	1.50	
Fine bajri and sand	1.75	OF STREET
Heavy sand	2.00	
Coarse bajri and sand	2.75	나를 보고 되고 있었다.
Coarse gravel	4.75	
Gravel and bajri	9.00	AND DIVERS
Boulder and gravel	12.50	
Boulder and shingle	15.00	
Large boulders and shingle	24.15	
(ii) VALUES OF COEFFICIENT OF RUGOSITY n IN	KUTTER'S FO	RMULA
$V_0 = m. D^n$		
	<u>n</u>	dy versil in vytraciii
Badly maintained field channels	0.030	DE HIGH NO ATE
Well maintained field channels	0.025	
Earthen channel upto 500 cusecs of Q	0.0225	
Earthen channels above 500 cusecs discharge	0.020	
angerenere une carrer di l'inite della la l'altra della della la	to the company of the control of the	

(V_o = 0.84 D ^{0.64} F.P.S)

Region and type of silt	Value Value	e of m	Valu	ue of n
	FPS	MKS	FPS	MKS
Punjab: sandy silt (silt on which	5-11-0			BHO: EH
kennedy made experiments)	0.84	18.6	0.64	₽ IIIIvo
Sind: loamy silt	0.63	-	0.64	
Godavari: western delta fine silt	0.67	0.49	0.55	0.55
Krishna: western delta fine silt	0.93	0.55	0.52	0.52

(iii) VALUES OF KENNEDY'S CONSTANTS FOR DIFFERENT REGIONS OF INDIA

Cvr = 1.10 V_o to 0.90 V_o , 1.10 V_o towards head reach and 0.90 V_o towards tail reach, y f \geqslant 1.00 and above and 0.9 V_o to 0.80 V_o if f < 1.00 and below.

(iv)The Critical velocity (Vo) for Godavari and Krishna Delta system (C.O.E.Manual Irrigation by Col.W.H.Ellis) M.K.S.

SNO	. Description	Critical Velo		
0	AND AND THE PARTY OF THE PARTY	FPS	MKS	
	V _o = CD ^m	0.0	פֿלֶל הווויתו מפועט פֿלֶל הווויתו מפועט	
1.	Godavari Delta Krishna Delta	0.67 d ^{0.55} 0.93 d ^{0.52}	0.489 d ^{0.55} 0.546 d ^{0.52}	

V, mean = V, allowable = 1.1 to 0.9 Vo, keeping higher values towards head reaches and lower ones towards D/S.

Values of C (FPS)	depending on bed grade
For Fine Silt	0.63
Light Sandy Silt	0.82
Fine Sandy Silt, Standar Silt	0.84
Light Coarse Sandy Silt	0.90
Sandy Loam, Standard Silt	1.00
Coarse Silt, Coarse Sand	1.07
Sand and Bajri Small	1.2 - 1.5
Bajri and gravel	1.3 - 3.0
Gravel & Boulders	3.0 - 3.50

3.13 LOSS OF HEAD.

SYPHONS unwin's formula (MKS)

 $h = (1 + f_1 + f_2 + L/R) V^2/2g$

L = Length of barrel; R = Hydraulic mean depth of barrel

V = Maximum velocity through barrel

f₁ = 0.505 for unshaped mouth, (CS of barrel and C.S. of mouth are same), for bell mouth,

 $f_1 = 0.08$

Irrigation Engineering

 $f_2 = a (1+b/R) = Coefficient for head loss through barrel, while <math>f_1$ is for entry loss.

	a	b
For smooth cement plaster or planed wood	0.00316	0.0305
Ashlar or brick work	0.00401	0.070
Smooth iron pipe	0.00497	0.025
for encrusted iron pipe	0.00906	0.02506
Rubble masory or stone pitching	0.00507	0.250
RCC Hume pipes	0.003	0.010

3.14 SPILLWAYS:

(a) Ogee weir or High co-efficient weir :

Q = 3.98 (L- 0.1 n H) n = No.of end contractions (generally 2)

Coordinates for Unit head on crest - (Standard Creager Profile)

	U/s face vertical		U/s face inclned at 45 °	
	Lower Nappe	Upper Nappe	Lower Nappe	Upper Nappe
0.00	0.126	-0.831	0.043	-0.781
0.10 0.036		-0.803	0.010	-0,756
0.20	0.007	-0.772	0.000	-0.724
0.30	0.000	-0.740	0.005	-0.689
0.40	0.007	-0.702	0.023	-0.648
0.60	0.063	-0.620	0.090	-0.552
0.80	0.153	-0.511	0.193	-0.435
1.00	0.267	-0.380	0.333	-0.293
1.20	0.410	-0.219	0.500	-0.120
1.40	0.590	-0.030	0.700	+0.075
1.70	0.920	+0.305	1.050	+0.438
2.00	1.310	+0.693	1.470	+0.860
2.50 2.100		+1.500	2.340	+1.710
3.00 3.110		+2.500	3.390	+2.760
3.50	4.260	+3.660	4.610	+4.000
4.00	5.610	+5.000	6.040	+5.420
4.50	7.150	+6.540	7.610	+7.070

Note: 1. Multiply the quantity in the table by the head on the crest.

Origin of coordinates is intersection of u/s face and horizontal through top of crest.

(b) Elementary triangular profile of a Dam/weir

a = Top width of weir = 3d / 2p min;

or
$$a = (H^{0.5} + d^{0.5})/1.811$$

Where d is spillage in ft./m

ρ = Specific gravity of masonry

H = Height of the body wall in ft/m

 $b = bottom \ width = (H + d)/\rho^{0.5}$

(c) STANDARDS REGARDING THE DEPTH OF FLOOD (FREE BOARD IN TANKS) Spillage and height of free board are as follows: (F.P.S/M.K.S)

Catchments	Depth of flow over weir (spillage)		free board	
	FPS		FPS -	MKS
1. 0 to 25 Sq.Miles	3'	0.90	4'	1.20
2. 25 to 75 Sq.Miles	4'	1.20	5'	1.50
3. above 75 Sq.Miles	5'	1.50	6'	1.80

(d) Sub-structure - allowable stresses in soils:

B.C. Soils	0.5 to 1.0 ton/sft	5 to 10 t/m ²	
HG soils	0.5 to 3.0 ton/sft	25 to 30 t/m ²	
SDR	3.0 to 3.5 ton/sft	30 to 35 t/m ²	
HDR	3.5 to 4.0 ton/sft	35 to 40 t/m ²	
FR	4 to 6 ton/sft	40 to 60 t/m ²	
HR	6 to 10 ton/sft	60 to 100 t/m ²	

In case of oder war, C will be conflictent of discharge for the damped hand.

C - Iran mettles weit positioned

(e) Coefficient of discharge 'C' for standard Creager profile - Ogee spillway

Q = C L (H) 3/2 H in m, Q = cumecs

H/Hd	C	H/Hd	C	H/Hd	C
0.1	1.67	0.8	2.12	1.5	2.35
0.2	1.77	0.9	2.16	1.6	2.38
0.3	1.85	1.0	2.20	1.7	2.40
0.4	1.94	1.1	2.23	1.8	2.42
0.5	1.98	1.2	2.26	1.9	2.44
0.6	2.03	1.3	2.29	2.0	2.46
0.7	2.08	1.4	2.33		

Note: 1. Velocity of approach, ignored

2. Nappe adheres to d/s face

3. No end contractions

4. H = total head on crest in m, Hd = design head

For actual heads considerably higher than the design heads, the nappe adheres to d/s face tas per Model studies.

(f) Reduction in coefficient of discharge of ogee weir due to submergence

Q = C' L H 3/2 in cumecs

H/D	C'/C	H/D	C'/C	Remarks
0.1	1.0			H = u/s water depth over crest
0.2	1.0	0.7	0.93	
0.3	0.99	0.8	0.85	D = d/s water depth over crest
0.4	0.98	0.9	0.67	THE PART AND DESCRIPTIONS
0.5	0.97	0.95	0.47	
0.6	0.96	1.00	0.00	

Note: H/D = Degree of submergence

C' = submerged weir coefficient of ogee profile

C = free overfall weir coefficient

In case of ogee weir, C will be coefficient of discharge for the designed head.

3.15 HYDRO POWER EVALUATION

Theoretical output - maximum available,

P, = P QH /75 metric horse power

Where P, = Theoretical output in metric horse power

P = Unit weight of water in Kgs/Cum

Q = flow through turbine/Curr/Sec

H = Head available in metres

Effective output (in metric horse power)

Where e = efficiency, for estimate purposes, assumed as 75%

Pt = 10 QH = metric horse power (1 metric horse power = 0.7355 kw)

Available Hydro Power = 7,355 QH Kilowatts.

3.16 VERTICAL LIFT GATES - SLUICES:

Discharge Coefficient for Vertical Sluice gate, Q = C L by 2 gy1

Where Q = Discharge

= Coefficient of Discharge

= Length of gate

= Height of gate opening when it makes background a Strumenter

= U/s Depth of flow

Fo = Froude number of the flow through the gate opening

Note: The form of this equation is the same for both free and submerged flow. y1 should be replaced by the effective Head or the difference between U/s and D/s depths.

LOCATION OF SILLS IN OFF TAKE SLUICES:

The height of the sills of the sluices above the bed level of respective parent Canals are to be fixed from the table given below:

Percentage of off-take discharge to parent canal Discharge	Height of S parent can parent can	Sills above th al when the al is	REMARKS	
2 Nothing 8	above 2.13m	2.13 to 1.22m	below 1.22m	DISCHARGE COM
15% and above 10% to 15% 5% to 10% 2% to 5% 1% to 2% 0.5% to 1% Less than 0.5%	0.07m 0.15m 0.30m 0.46m 0.61m 0.76m 0.91m	0.07m 0.07m 0.15m 0.30m 0.46m 0.61m 0.76m	0.07m 0.07m 0.07m 0.15m 0.30m 0.46m 0.61m	The sills of the sluices should also be fixed such that they get lower and lower as the location goes towards the end of the distributories and minors.

Driving head should not be less than 15 cm. for O.T's 7.5 cm. for direct pipes. The height of the sill is to be reduced suitably to arrive at the minimum driving head.

3.18 (a) RELATIONS BETWEEN DIFFERENT EXPRESSIONS FOR DUTY OF WATER

One Cusec flowing one day 0.0864 Million cubic feet

2 acre feet (1.98 exactly) 24 acre inches (23.79 exactly)

One Million cubic feet 11.574 cusecs flowing for one day

23 acre feet (22.96 exactly)

One acre foot or 2 acre inches = 1/2 cusec flowing for 24 hours nearly

One acre per Million cubic feet is equivalent (approximately) to a duty of 12 acres per cusec for a crop period (base) of 140 days.

One acrefoot (one toot depth of water on one acre area) = 4840 X 9 X 1 = 43,560 cft, One cusec day = 1 x 24 x 60 x 60 = 86,400 cft. = 1.98 acre ft. Say = 2.00 acre ft. One hectare-metre (one metre depth on one hectare area) = 10,000 cu.m.

Q, cusecs discharge flowing to fill C, TMcft capacity reservoir, the period required R, = C, X (11,575 / Q,) days.

(b) Duty of Water:-

Relation between base period, duty and delta is:

Where D = Duty in over hectares / cumec; B = Base period in days $\Delta = d = Depth over irrigated area (m)$

$$\Delta = d = 24 B/D$$
 (FPS

Where D = Duty in acres / Cusec; $\Delta = d = Equivalent depth in inches$ B = Base period in days

(c) FLOW OF WATER "CONVERSION TABLE"

One Cusec Equivalent to	Cubic Foot	Cubic Yard	Cubic Meters	Gallons
Per Second Per Minute Per Hour Per Day Per Week Per 28 days Per 30 days Per 31 days Per 365 days	1	0.3703	0.2832	6.25
	60	2.222	1.6999	3.75
	3600	133.33	101.95	22500
	86400	3200	2446	540000
	604800	22400	17125	3780000
	2419200	89600	68500	15720000
	2592000	95000	73392	16800000
	2678400	99200	75838	17340000
	31.536 Million	116800	892958	197.1 Million

3.19 Standards for Minor Irrigation Projects

1. YIELD CALCULATION:

Yield at a tank site is calculated using Strange's tables. Based on the topography and slopes, the catchments are classified as good, average or bad. Only 90% of the average rainfal (which is called the Monsoon rainfall) is considered for computation of the yields.

2. STORAGE PLANNING: (No. of fillings of the tank):

- (i) (a) Two filling where the average rainfall is more than 35"
 - (b) One and half where the average rainfall is between 25" and 35"
 - (c) One where the average rainfall is less than 25".
- (ii) In case where irrigation water is used mainly after the Monsoon for maturing the monsoon crop, the entire requirement of water including losses in the monsoon period has to be stored.

3. DEAD STORAGE:

Usually 10% of the Live Storage is allowed.

5. AREA IRRIGATED PER M.cft. OF WATER:

For the areas where the monsoon rainfall is upto 30":

(a) Wet crops - 6 acres per Mcft (1 st Crop) and 3 acres per Mcft for 2 nd crop.

(b) Irrigated dry crops - Kharif (Summer Crops) - 20 acres/M. cft. (June to October) Rabi (Winter Crop) - 10 acres/M. cft. (November to March)

For the areas where the monsoon rainfall exceeds 30", irrigation demand will have to be worked out considering the total demand of 66 for the paddy crops inclusive of rainfall, to be distributed equally over each month of the crop period. Additional 6" should be added for 1st month for trans plantation purposes.

Capacity of the tank is determined by using the formula

C = (I/6)
$$\Sigma$$
 (A1 + A2 + $\sqrt{$ A1 A2) Cubic Units

Where C - Capacity of the tank in units,

A1 & A2 are the areas of two successive contours in acres and I is the contour interval in feet.

3.19 (a) Utilisable yield for Minor Storage works;

Mullin's equation $(1.25 - X)^2 + (0.25 + y)^2 = 1.625$

X = ratio of reservoir capacity to yield;

Y = ratio of utilisable yield to total yield

Minor storage work is to have an ayacut of 200 ha.

(b) Tank duties for Minor Irrigation works:

Crop	Rain fall in cms.	Duty in M ³ /Ha.
a. Rice - (Rabi)	35 cms	17500
(Kharif)	35 - 70 cms	14000
	70 - 100 cms	12000
	> 100 cms	10000
b. Rice Rabi (Tabi)		12000
c.Sugar cane - Perennial (Dofasia)		30000

(c) The following Duties may be had as general guidance

Crop	Duty in	M.Cft/acre	Mcum/Ha
Kharif Paddy	***	0.20	0.01399
Rabi Paddy	***	0.39	0.027289
Sugarcane	***	0.49	0.034286
Garden Crops	V440	0.087	0.006088
Kharif	***	0.03	0.002099
Rabi	994	0.066	0.004618
Cotton	***	0.098	0.006857
Green Manure (Winter)	***	0.025	0.001749
Green Manure (Summer)	222	0.040	0.002799

(d) Utilisable yield for "Diversion works"

Total Yield million cum	Below 1	1 to 5	5 to 15	15 to 50
Probable utilisable Yield	10%	20%	30%	40%

3.20 (a) Crop water requirements in Tungabhadra lowlevelcanal command area (G.O.Ms.No.21/CAD II Dt.16-02-1976) (FPS)

Crop	Month Acres/Cusec	Duty (Rabi I.D)
Ground nut	February	120
Ground nut	March & April	100
Hybrid millets	February	150
Hybrid millets	March & April	120
Cotton	November & February	150

(b)Crop water requirements - WALAMTARI, A.P.

Name of crop	Days for maturity	Water requirement in inch/cm					
		Dai Inches	ly Cms	Total Inches	al Cms		
Sugar cane	365	0.26	0.66	95.00	241.30		
Cotton	202	0.21	0.53	42.2	107.19		
Rice	98	0.43	1.09	41.7	105,92		
Tobacco	132	0.30	0.76	39.2	99.57		
Chillies	202	0.19	0.48	38.8	98.55		
Ragi	127	0.23	0.58	29.8	75.69		
Potato	88	0,30	0.76	26.7	67.82		
Gnut	124	0.21	0.53	26.1	66.29		
Jower	154	0.23	0.58	25.7	65.28		
Maize	100	0.18	0.46	17.8	45.21		
Wheat	88	0.17	0.43	14.8	37.59		
Mustard	88	0.12	0.30	10.6	26.92		

3.21 I.S.7112 - 1973 : Unlined canals in alluvial soils

a) free board 0.5 m for Q less than 10 cumecs 0.75 m for Q greater than 10 cumecs

b) Top width of banks

Discharge in cumecs	Minimum top	width of bank in m
	Inspection bank	Non-Inspection bank
0.15 - 7.5	5	1.5
7.5 - 10.0	5	2.5
10 - 15.0	6	2.5
15 - 30.0	7	3.5
30 and above	8	5.0

- c) Hydraulic gradient: minimum 4 H to 1 V with 0.30m cover, minimum
- d) Dowel bank height and top width 0.5m, side slopes 11/2:1
- e) Regime type fitted equations for design of unlined canals (All India canals)

S=	slope	=	0.000315 / Q 0.1651
P =	Wetted Perimeter	=	4.30 Q 0.5231
B -	HMD	==	0.515 Q 0.3406

3,22 DATA FOR IMPORTANT CROPS IN INDIA

Crop	Sowing Time	Harvesting Time	Seed required per hectare in kg	Average yield per hectare in tonnes	Total water depth in cms (including rainfall)	Irrigation requirements
			KHARIF			
Maize	June	Sept-Oct	13.5	1,1 to 1.7	45	Usually nil except for 'paleo'
Early rice	June	October	90	0.9 to 1.10 of 'dhan (husk about 25%)	190-145	when rains have a long gap
Transplanted rice	July	November	90	1.35 to 1.60 of dhan	125-150	when rains have a gap and in October
New varieties of rice	July	End of October	90	3.00 to 4.00	125	Continuous submergence to a depth of about 5 cms., gives best results
Spiked millets (Bajra)	July Aug	End of Oct	1.5 to 2.0	0.55 to 0.70	'25-50	Seldom Irrigated
Great millets (Juer)	July	Usually sown for fodder and cut green more than once	5	0.7 if allowed to ripen	30	After a cutting
Arhar	July August	March-April	15	0.7	30	Not irrigated usually
Urd, Moong	Late Aug	Nov	15	0.55	25-30	Not irrigated usually for urd there is an early variety also
Groundnut	May - June	Continued from Nov. to Jan.	10 to 15	0,35 to 0.45	165-80	For sowing, normali not required afterwards
TH	July - Aug.	Nov. to January	10 to 15	0.35		Seldom Irrigated

DATA FOR IMPORTANT CROPS IN INDIA

Сгор	Sowing Time	Harvesting Time	Seed required per hectare in kg	Average yield per hectare in tonnes	Total water depth in cms (Including rainfall)	Irrigation requirements
			RABI CROP	S		
Wheat	October	Oct - Nov	90 to 130	1.35	37.5	Three waterings or less depending on rainfall,
Wheat (New varieties)	November	March - April	90 to 130	3.5 to 4.00	40	Four waterings, less effective rainfall
Barley	October	March - April	90 to 130	1.35	45	Not usually Irrigated
Gram	September	March	40 to 50	1.1	30	Seldom Irrigated
Peas	Oct - Nov	March	40 to 50	1.2	35	Usually Irrigated
Potatoes Mustard	October	Feb	185	15 to 25	60 to 90	to be watered every to 10 days
	Oct.	Feb march	10 to 15	0.7	45	Generally sown mixe with wheat and irrigated with it.
Tobacco	Seedlings planted out in Oct - Feb	Feb or May		1	60 to 70	To be irrigated frequently
			PERENNIAL			- VA 11
Sugarcane	Feb - March	Dec March Next year	2750 kg, of cut pieces	25 to 30	270	Irrigation essential during summer later it tains break

3.23 STANDARDS OF CANAL CROSS SE. 'ONS (MKS)

Items	Main and Can	175071 L-1750.	Major Dis	tributories	Minor Dis	tributories
in metres	150 to 30 curnecs	30 to 10 curnecs	10 to 5 currecs	5 to 1 currecs	1 to 0.3 curnecs	Below 0.3 curnecs
Maximum crest width of bank	3	25	2.25	2	1.5	1
Free board	0.9	0.75	0.6	0.5	0.4	0.3
Width of berms Min	6 + 1/4th of the combined side slopes of cutting and embankment					
Max	0.6 + 1/2 the width of combined slopes					
Width of Roadway	6	5	5	3.5	3.5	NB
Depth of each cover over saturation gradient	á	0.8	0.5	0.5	0.5	0.5
Width of land to be acquired clear of banks when canal is in cutting deeper than balancing depth of cutting	5				neight of the t ubject to mini	
Width of land to be acquired clear of bank when canal is in less than balancing depth of cutting	Full height of bank+5			Full height of bank above ground, minimum.		

Berm width may also be adopted as under:-

Upto 4.25 curnecs. discharge = 0.6 + 1/2 F.S.depth.

4.25 to 28 curnecs = 1.25 + 1/2 F.S.depth

28 curnecs and above = 1.25 + F.S. discharge/28 + 1/2 F.S. depth

Duala or Dowel in the form of a small earthen ridge is provided to prevent vehicles from falling into the channel. It is provided on the inner edge of the service road. The top width of daula is about 30 to 60 cm and height 40 cm. If the bed of the channel is kept at such a depth below ground level that the earth obtained from excavation is exactly equal to the amount of the earth required for making the banks, such a section is called economical section as it entails minimum earthwork and that depth of canal is known as the balancing depth.

3.23.1 Formula for balancing depth of cutting, (para 427, Ellis manual, F.P.S).

$$D^2 - (3h + B + 2 b) D = -h (B + 3/2 h).$$

Where,

h = vertical height of top of bank above bed of the channel.

b = bed width of channel

B = Top width of bank

D = balancing depth of cutting in feet

Slope in cutting 1:1 and slopes of the two equal banks are 1 1/2:1.

3.23.2 Values of Rugosity coefficient : (n) for unlined canals (Clause D1.1.2)

s.N.	Type of canal	Medium	n Normal	maximum
i.	Earth straight and uniform	V	7575/152	0.020
a.	Clean, recently completed	0.016	0.018	Service Service Service
b.	Clean, after weathering	0.018	0.022	0.025
	Gravel, uniform section clean	0.022	0.025	0.030
c. d.	With short grass, few weeds	0.022	0.027	0.033
II.	Earth winding and slugish	0.000	0.025	0.030
a.	Novegetation	0.023	0.030	0.033
6.	Grass, some weeds	0.025	0.000	9,000
C.	Dense, weeds or aquatic	0.000	0.035	0.035
	plants in deep channels	0.030	0.035	0.040
d.	Earth bottom and rubble sides	0.030	0.035	0.040
8.	Stony bottom and weedy banks	0.025	V-7-10-02-7-5	0.050
f.	Cobble bottom and clean sides	0.030	0.040	0.000
III.	Drag line excavated or dredged	0.005	0.028	0.033
a.	No vegetation	0.025	46.4 (45.45.51	0.060
b.	Light brush on banks	0.035	0.050	0.000
iv.	Channels' not maintained			
0.5610	(weeds and brush uncut)		0.080	0.120
a.	Dense weeds, high as flow depth	0.050	120 100 100 100	0.080
b.	Clean bottom, bush on sides	0.040	0.050	0.110
C.	Same, highest stage of flow	0.043	0.070	
d.	Dense bush, high stage	0.080	0.100	0.140

 For normal alluvial soils, it is usual in India to assume a value of n = 0.02 for bigger canals Q > 15 cumecs and n = 0.0225 for smaller canals Q < 15 cumecs.

A suitable value of n should be adopted keeping in view the local conditions and the above values as a guide.

3.23.3 I.S. 4745 - 1968 LINED CANALS:

 Transmission loss may generally be assumed to be 0.60 m³/s/million m² of wetted area for lined canals.

Note: Transmission loss of 0.60 m³ /s/million m² of wetted area of lined canal is an assumed value although the actual value may be much less and different for different lining specifications. For the canals of Bhakra Nangal Project for estimating the seepage loss, the following formula was used.

K = 1.25 Q 0.056

(FPS)

K = 0.4654 Q 0.056

(MKS)

Where K = the loss in cusecs/million sq.feet of wetted area Q = Discharge in cusecs

loss in cusecs/s/million m² of wetted area and Q = Discharge in cumecs.

- b) Side slopes: Lining is usually made to rest on slopes corresponding to the angle of repose of the natural soil so that the slopes shall be such that no earth pressure is exerted on the back of the lining.
- Free board: 0.75m above FSL upto top of lining.
- d) Bank width:
 - a. 8m for cutting and filling reaches of main canals
 - b. 6.5m for cutting reaches for branch canals
 - c. 6.5m on left side and 5m on right side for filling reaches of branch canals.
- Velocity: About 2m/s. for lined canals is recommended.

CV Ratios are not applicable to lined canals but the possibility of silting cannot be neglected and hence the CVR should be aimed at higher than unity.

f) Velocity (mean) = R ^{2/3} S ^{1/2} / n R = Hydraulic mean depth

n = rugosity coefficient as in 6.2.18 (3) (b)

Amendment I September, 1970: The figures specified in this standard will require to be revised after the value of rugosity coefficients of various types of lining are investigated

by the CBIP. See Technical Report 12 of CBIP on Determination of Rugosity coefficient for lined and unlined channels - September, 1974.

- Catchwater drains: Effective system of catch water drains shall be provided to protect damage due to rain.
- h) Under drainage: For a lined canal where the ground water level is higher or likely to be higher than water level in side the canal so as to cause damaging differential pressures on the lining, or where the sub grade is sufficiently impermeable to prevent free drainage of the under side of lining in case of rapid draw down, pressure relief arrangements for under drainage shall be provided in accordance with IS 4558 - 1968.

3.23.4 VALUES OF RUGOSITY COEFFICIENT (n) FOR LINED CHANNEL WITH STRAIGHT ALIGNMENT : (5.2)

Surface characteristics

Value of n

Concrete with surface as indicated below:

a) Formed, no finish	0.013		0.017
b) Trovel finish	0.012	2	0.014
c) Float finish			0.015
d) Float finish some gravel on bottom	0.015		0.017
e) Gunite, good section		-	0.019
f) Gunite, wayy section			0.022

2. Concrete bottom float finished sides as indivated below:

a) Dressed stone in mortar	0.015		0.017	
b) Random stone in mortar			0.020	
			0.025	
d) Cement rubble masonry plastered		*	0.020	

3. Gravel bottom sides as indicated below:

a) Formed concrete	0.017	0.020
b) Fandom stone in mortar	0.020	0.023
c) Dry rubble (rip rap)	0.023	0.033

4. Brick	0.014	 0.017	
5. Asphalt			
a) Smooth	0.013		110
- b) Rough	0.016		

6. Wood planed clean 0.011 - 0.013

Note: With channels of alignment other than straight, loss of head by resistance forces will be increased. A small increase to the value of n may be made to allow for additional loss of energy.

3.24 CBIP Technical Report No.12 september 1974

(a) Unlined Canals : Factors affecting 'n'

(i) Surface roughness (ii) Channel irregularity (iii) Vegetation (iv) Channel alignment (v) Silting & Scouring (vi) Stage and discharge (vii) Suspended material and bed load

(b) Recommendations values of 'n'

Lined canals

Boulder lined canals = 0.025

Tile lined canals = 0.019

Concrete line canals = 0.015 - 0.017

Masonry = 0.018 - 0.020

Dry rough stone = 0.023 - 0.030 .

(c) Unlined canals

Unlined earthern canals not in regime and showing silting	=	0.025
Unlined Canals	#	0.025 - 0.030
Unlined surface with projections	- 12	0.030 - 0.050

3.25 Canal Lining:

(a) Insitu concrete lining:

The minimum thickness of concrete lining based on canal capacity shall be as follows:

Canal Capacity	Thickness of M15 concrete		Thickness of M	10 concrete	
m³/sec	Controlled cm	Ordinary cm	Controlled cm	Ordinary cm	
0 to 5	5.0	6.5	7.5	7.5	
5 to 15	6.5	6.5	7.5	7.5	
15 to 50	8.0	1.0	10.0	10.0	
50 to 100	9	10	12.5	12.5	
1000 & above	10	10	12.5	15.0	

Note: The above thicknesses do not take care of uplift of floor and overturning of sides.

(b) Precast Concrete Slab lining :

The face of the slab shall be either square or rectangular. Nominal dimensions of the slab shall be as specified below.

Length mm	Breadth mm	Thickness mm
500	250	60
500	250	50
250	250	50

3.26 International Commission on Irrigation and Drainage

Il Congress - C.7 India - Design of channels:

Critical Velocity:-

a) Non silting and non scouring velocity

b) i) Lindley's formulae

ii) Gerald Lacey:- Regime channels -

 $Vo = 0.95 D^{0.51}$

S = 0.0005469 .f 5/3 / Q 1/6 (FPS)

 $Vo = 0.51 B^{0.355}$

S = 0.0003759 . f 3/2 /R 1/2 (FPS)

B = 3.80 D 1.61

c) Limitations of Lacey's formula:-

Minimum f (silt factor)	Minimum Value of discharge in cusecs (FPS) in Trapezoidal sections with side slopes			
	1½:1	1:1		
0.50	13.80	18.80		
0.75	6.14	8.37		
1.00	3.45	4.70		
2.00	0.86	1.18		

No attempt need be made to design channels of smaller discharge than the above with Lacey's formulae.

d) Berms top widths and free boards - (1 ½:1 to 3:1 slopes) (FPS):-Main canal - Branch Canal Distributories and Minors

	5000 to 1000 c/s	1000 to 300c/s	300 150c/s	150 10c/s	less than 10c/s
i) Berm width in feet	4 + Q/1000+D/2	4+D/2	4+D/2	2+D/2	2+D/2 occasionally no berm
ii) Top width in feet	15	6	6	4	3
iii) Free board in feet	3	3	3	2 to 11/2	1 to 1/2

Note: More the top width, less the free board.

e) Dowel banks: 1' (0.3m) height, 11/2: 1 side slopes.

227 Design practices of irrigation canals (I.C.I.D. 1972) :-

A.P. Practice:

1 Design procedure : Trial design (M.K.S)

Y = C Q 1/3 Y = 'epth of water in canal

Q. Cum/sec	С	n value	Remarks
upto 14.16 (500 c/s)	0.70	0.025	In rock cuts
14.66 - 28.32 (500 - 1000 c/s)	0.69	0.0225	n = 0.035
28.32 - 56.64 (1000 - 2000 c/s)	0.66		
56.64 - 84.96 (2000 - 3000 c/s)	0.64		

- CC (1:4:8) of 45 to 60 cm. thickness for bed protection of drainage way with C.C. cut offs at either end.
- Flares provided in transitions of vent ways: (minimum)
 u/s 1.5:1 and above d/s 2:1 and above
- 4. Batters provided in abutments, wings, piers & returns: (Masonry)

Water faces Vertical:

1/6 or 1/5 to 1/3 depending on moments due to earth pressure and height.

Earthen faces :

1/3 to 1/2 depending on earth pressure, moments top widths 45 cm to 1.20 m.

No tension is allowed but IRC section II suggests 1 Kg/cm² for CR stone masonry in CM (1:3) and 0.7 kg/cm for CRS in CM (1:4)

- Hydrostatic pressures: 50% in Rocks. Pressure relief valves in regulator floors, energy dissipation buckets are provided. Weep holes in retaining walls are provided.
- Masonry walls: RR masonry in CM (1:6) or (1:5) and pointed in CM (1:4) and with water face of front 45 cm built in CRS in CM (1:5).

- Fluming ratio in canal regulators/drops etc., : Limited to 0.60 (60%) in order to facilitate smooth transistions and reduce afflux, u/s of the structure.
- a. Thickness of regulator piers: 0.21 (2H-S) X S (FPS) (Bligh)
 S = clear span, H = depth of water in vents.
 - b. Thickness of piers as per Leliavisky : (FPS / MKS)

Span of opening in ft.	Depth of water in (ft)/ m	15' / 4.5m	20'/6m	25'/7.5m	30'/9m
10' / 3m	pier thickness	2.5/0.76	2.7/0.82	2.9/0.88	3.1/0.94
15'/4.5m	ft / m	3.6/1.1	3.9/1.19	4.2/1.28	4.5/1.37
20'/6m		4.6/1.40	5.0/1.52	5.4/1.65	5.8/1.77
25'/7.5m		5.5/1.68	6/1.83	6.5/1.78	6.7/2.04

9. Fill materials behind abutments:

 $\phi=28^{o}\;;\;\delta=16^{o}$ (wall frictions generally not considered)

Y = 2100 kg/m3, K = permeability not more than 3m / year.

The earthen faces of walls are given stepped offsets instead of clean sloping surface to provide grip in the earthen banks.

3.28 (a) Suitable side slopes for channels built in various kinds of material (VEN TE CHOW)

S.No.	Material	Side slope
1	Rock	nearly vertical
2	Muck and peat soils	1/4:1
3	Stiff clay or earth with concrete lining	
4	Earth with stone lining or earth for large channels	1:1
5	Foam clay or earth for small ditches	1 1/2 : 1
6	Loose sandy earth	
7	Sandy loam or porous clay	3:1

(b) Recommended side slopes in Canals - C.W.P.R.S. Pune

Type of soil	Embankment	Cutting
a) Ordinary	. 2:1 to 3:1	. 1.5 : 1 to 2 : 1
Light loose sand average sandy soil	. 2:1 to 3:1	. 1.5 to 1
c) Sandy loams, B.C.	. 2 : 1	. 1.5 : 1 to 1 : 1
d) Sandy soil - Gravel	. 2:1	.1:1
e) Muram - hard soil	. 1.5 : 1	. 0.75 : 1
f) Rock		. 0.25 : 1 to 0.75 : 1

(c) Top width of Banks (CE/Irrigation, Circular, dated 09-02-82)

	i Hillian	Щ	Minimum Top width of bank					
S.no	Discharge m3/sec	Free board m	Inspection bank in m	Non-inspection bank in m	Disty System			
1.	0.30 and below	0.30	1.00	1.00	0.9/0.9			
2.	0.30 to 1.50	0.35	2.00	1.25	1.8/1.2			
3.	1.50 to 7.50	0.45	5.00	1.50	3.6/1.8			
4.	7.50 to 10.00	0.60	5.00	2.50	4.5/1.8			
5.	10.00 to 15.00	0.60	6.00	2.50	4.5/1.8			
6.	15.00 to 30.00	0.75	7.00	3.50	4.5/1.8			
7.	30.00 and above	0.75-0.90	8.00	5.00	4.5/5.6			

For ridge canals, small distributories and minors carrying less than 1.5 cumecs, it is generally not economical to construct a service road on top of banks as this usually requires more material than excavation provides. In such cases service road may be provvided on natural ground surface adjacent to the bank towards ground surface, or adjacent to the bank towards the command area side.

3.29 C.W.C. Bed width to depth ratios as per draft manual on Irrigation channels, C.W.C. Water-wing, New Delhi, 1960.

S.No.	Discharge in Cum/second	B/D	S.No.	Discharge in Cum/second	B/D
1	0.283	2.9	13	11.327	0.57
2	0.425	3.0	14	14.158	6.0
3	0.566	3.2	15	28.317	7.4
4	0.850	3.4	16	33.980	7.9
5	1.133	3.6	17	39.644	8.2
6	1.416	3.7	18	45.307	8.6
7	2.124	4.0	19	50.634	9.0
8	2.832	4.2	20	56.634	9.5
9	3.540	4.4	21	70.792	10.1
10	4.247	4.6	22	84.950	11.0
11	5.663	4.8	23	283.170	19.2
12	8.495	5.1			

3.30 (a) (i) Maximum water velocities (m/sec) in earth canals

	337.00									
			With a discharge in m3/s							
1	Nature of Canal bed	0.5	1.0	2.0	3.0	4.0	10	15	20	30
1.	Silt, fine sand, light sandy loam	0.37	0.39	0.41	0.43	0.45	0.47	0.49	0.50	0.52
2.	Medium Sandy ground	0.46	0.49	0.52	0.54	0.56	0.59	0.61	0.63	0.65
3.	Light loam	0.53	0.56	0.59	0.61	0.64	0.68	0.70	0.72	0.74
4.	Medium loam Medium loess, Coarse Sand	0.59	0.63	0.67	0.69	0.72	0.75	0.79	0.81	0.84

5.	Heavy Loam, Light Clay, Close grain										
	Loess, Very Coarse sand	0.67	0.71	0.75	0.78	0.81	0.86	0.89	0.90	0.94	
6.	Fine Shingle or gravel	0.73	0.77	0.82	0.84	0.88	0.93	0.96	0.98	1.02	
7.	Thick Medium Clay medium gravel	0.82	0.87	0.92	0.95	0.99	1.05	1.09	1.11	1,16	
8.	Heavy Clay (tertiary) cparse shingle or grave	el1.26	1.34	1.42	1.47	1.53	1.62			1,79	

Source : FOOD & AGRICULTURAL ORGANIZATION OF UNITED NATIONS, ROME, 1971 MANUAL

(b) Maximum non-erosive water velocities in earthen Canals:

Fine sand under quick sand condition	0.2 to 0.3 mps
2. Sandy soil	0.3 to 0.75
3. Sandy loam	0.75 - 0.90
4. Loam to clay loam	0.85 - 1.10
5. Stiff clay	. 1.1 - 1.5 mps
S. Cuit S.C.	

Source : Same as above.

3.31 C.B.I.P.: Design of unlined incised canals; Technical Report No.7 June, 1976,

Maximum and Minimum permissible velocities

CWC & CWPRS Recommendation	ons ; all over India :
Type of Soils	Maximum Values m/sec
Ordinary soils	0.60 to 0.91
Sandy soils	0.30 to 0.60
B.C. sandy loam, Kankar	
Muram and hard soils	0.91 to 1.06
Gravel	1.21
Disintagrated rock	1.52
Disintegrated rock	

Minimum value of V = 0.8 V max.

Width to depth ratios : to minimise adsorption and evaporation and for more economical design.

b/d = 1.25 to 5.0 are beneficial

b/d ratio curve or Table for 0.28 to 263 currecs - See 6.2.18. (b).

3.32 Radii of Curves in Unlined Channels

Curves in unlined channels should be as gentle as polssible, as there is a tendency to silt on the inside and to scour on the outside of the Curve.

Minimum radii of Curves in unlined channels (I.S.I.)

Capacity of Channel		Minimum I	adius of the Curve
Cusecs	Cumecs	Feet	Metres
Over 3000	Over 85	5000	1500
3000 to 1000	85 to 30	3000	900
1000 to 500	30 to 15	2000	600
500 to 100	15 to 3	1000	300
100 to 10	3 to 0.3	500	150
Less than 10	Less than 0.3	300	100

Note: Generally R = 20 B where B is water surface width may be the minimum allowable.

3,33 Permissible Canal Velocities (Etchevery) FPS

Original material excavated for canal	Clear water no delitus	Water transporting colloidal silts	Water transporting non-colloidal silts, sand gravel etc.	Non-Erodible velocities
Very light loose sand		4	*	. 0.75 - 1.50
Very light loose sand Fine sand (non colloida	d) 1.50	2 50	1.50	2.00 - 2.50
Sandy Loam	1 75	2 50	2.00	2.50 - 2.75
Sandy Loam	2.00	3.00	2.00	2.50 - 2.75
Silt Loam	2.00			
Alluvial silts when non colloidal	0.00	2 50	2.00	2.75 - 3.00
non colloidal	2.00	3.30	2.25	3.00 - 3.75
ordinary firm loam	2.50	3.50	2.75	4.00 - 5.00
Fine gravel	2.50	5.00	3.73	40-50
Stiff clay (very colloida	l) 3.75	5.00	3.00	4.0
Alluvial Soils when colloidal	3.75	5,00	3.00	4.0 - 5.0
Graded silt	4.00	5.50	5.00	4.0 - 5.0
and the second section is				
i thatdall	4.00	6.00	6.50	5.00 - 6.00
Shingle (non colloidal	5.00	6.50	6.50	5.0 - 6.0
the second second Soft	ciata			
the adalmentant roo	k			6.0 - 7.00
tta sal sanole			*****	
Concrete				15.0 - 20.0
Concrete			ACCOUNT OF COLORS AND ACCOUNT OF THE PERSON	

These figures are for depths of 3 feet and less: To get M.K.S. values, multiply by 0.3048

3.34.1 Assessment of seepage losses in canals - Recent thesis and literature

a) USBR : Moritz's formula - S = 0.2 c√Q/V.

seepage loss in c/s per mile length of canal S =

depth on feet lost from canal prism in 24 hours, varying between 0.34 to 2.20 from Cemented gravel to sands.

Minimum value of V = 0.8 V max.

Width to depth ratios: to minimise adsorption and evaporation and for more economical design.

b/d = 1.25 to 5.0 are beneficial

b/d ratio curve or Table for 0.28 to 283 cumecs - See 6.2.18. (b)

3.32 Radii of Curves in Unlined Channels

Curves in unlined channels should be as gentle as polssible, as there is a tendency to silt on the inside and to scour on the outside of the Curve.

Minimum radii of Curves in unlined channels (I.S.I.)

Capacity of Channe		Minimum	radius of the Curve
Cusecs	Cumecs	Feet	Metres
Over 3000	Over 85	5000	1500
3000 to 1000	85 to 30	3000	900
1000 to 500	30 to 15	2000	600
500 to 100	15 to 3	1000	300
100 to 10	3 to 0.3	500	150
Less than 10	Less than 0.3	300	100

Note: Generally R = 20 B where B is water surface width may be the minimum allowable.

3.33 Permissible Canal Velocities (Etchevery) FPS

Original material excavated for canal	Clear water no delitus	Water transporting colloidal silts	Water transporting non-colloidal silts, sand gravel etc.	
very light loose sand		A OX.		. 0.75 - 1.50
I (mon colloidal)	- PAI 9		I and the consequences	. 4.00
A STATE OF THE STA	1 / 1	2.50	CARL	. 6.00 6.10
Sandy Loam	2.00	3.00	2.00	2.50 - 2.75
0.346	2 00	3.50	2.00	2.75 - 3.00
w Green Johnson	2 50	3 50	6.23	0.00 - 0.10
	2.50	5.00	J. / D	4.00 - 5.00
Stiff clay (very colloidal)	3.75	5.00	3.00	4.0 - 5.0
" 1-1 Coile whon				
colloidal	3.75	5.00	3.00	4.0 - 5.0
Graded silt	4.00	5.50	5.00	4.0 - 5.0
a arayal				
Coarse gravel (non colloidal)	4 00	6.00	6.50	5.00 - 6.00
Shingle (non colloidal	5.00	6.50	6.50	5.0 - 6.0
Cemented gravel Soft sla	le	MINTS TOTAL DOLLARS AND A		
soft sedeimentary rock				6.0 - 7.00
Hard rock			******************	10.0 - 15.0
Concrete			*	15.0 - 20.0
Concrete				

These figures are for depths of 3 feet and less: To get M.K.S. values, multiply by 0.3048

3.34.1 Assessment of seepage losses in canals - Recent thesis and literature

a) USBR : Moritz's formula - S = 0.2 c√Q/V. (FPS)

S = seepage loss in c/s per mile length of canal

C = depth on feet lost from canal prism in 24 hours, varying between 0.34 to 2.20 from Cemented gravel to sands.

b) Vedirnikov's Method (USSR)

$$q = K (B + (A + 2m) . H)$$
 = K (Bs + AH)

Where, Bs = surface width of canal

H = depth of water in canal

 $m = \cos (\alpha)$, $\alpha = \text{side slope angle}$

A = a function depending on B/H to be read from graph

c) U.P.Practice:

Q1: 1/200 (B+D) 2/3 (MKS)

Q1: Seepage loss in cumecs/kilometer length of canal

d) Punjab & Haryana:

 $K1 = 1.9 Q^{1/6} (MKS)$

K1 = Seepage loss in cumecs/million square meter of wetted area

e) Bhakra Nangal

Lined K1 = 1.25 Q 0.056 (FPS)

Unlined q1 = 0.00928 L (Q) 0.5625 (MKS),

L in kms

f) Dyces formula:

P + c .d^{0.5} (FPS)

P = seepage loss per million square feet of wetted area

C = 3.0 adopted

g) Irgan's formula:

P = Cd . { WL / 10,00,000 }

P = S.L.in cusecs in a reach of length L in miles

W = width of water surface in feet

C = 3.5 adopted.

h) Practice in A.P.Projects:

Canals - lined 0.6 cumecs/million square metres of wetted surface

Canals - unlined : 1.85 to 2.40 crimecs/million square metres of wetted surface

20% extra for Disty systems.

(i)	I.R	S.	Pu	n	a	b	
	mile in the			4.5			

S = Cad S = SL in m³ /sec/10 ⁶ m² $= <math>C (B+D)^{2/3}/8 = CL P R^{1/2}$

lined canals:

1)	Mortar lining	SL =	0.061
ii)	Brick lining	1000	0.051
iii)	Cement pointing in brick		0.188
iv)	Precast c.c.slabs		0.13
v)	B.W.in clay and cement plaster		0.30

i) C.B.IOP. 49th Meeting 1979 - Publication 133 -

S.L in Main canals 7% of head discharge

S.L in distributories & monors 8% of head discharge

S.L in water courses 20%

3.34.2 Estimated seepage loss in canals/km (in % of discharge allowed)

Discharge through canal (m3 / sec)				
Type of soils/banks	upto 1	1 to 10	11 to 100	over 100
Gravelley soils	20%	6%	2%	1%
Semi Pervious soils	10%	3	1	0.5
Clayey soils	6%	2	0.6	0.3
Rock cuts	2%	0.6	0.2	0.1
Lined concrete	0.2%	0.60%	0.62%	0.01%

Loss in old canals is 20 - 30% less than in new canals.

3.35 Loss of water from reservoirs due to evaporation in mm.

Jan, Feb	100 mm, each	June 1,75 mm, each
	175 mm. each	July, Aug, Sept 150 cm. each
April	225 mm. each	Oct 125 cm. each
May	250 mm. each	Nov, Dec 100 cm each
	I Loss = 1800 cm = 1	1.80 m

3.36.1 Channel Losses Conveyance losses According to Etcheverry and Harding

CI	naracter of material	Cft/Sft of wetted peri- meter in 24hrs	Cusecs/Million sft of wetted perimeter (to nearest cusec)	Cumecs/million sq.m of wetted perimeter
1.	Impervious clay loam	0.25 to 0.35	3 to 4	0.92 to 1.2
2.	Medium clay loam under laid with hard pan at depth of not over 2 to		illicate grafijamini planti grafi 1973i – Public	
3.	3 ft. below bed Ordinary clay loam silty soil, or lava ash loam			AMOS III. I II
4.	Gravely or sandy clay loam, Cemented gravel, sand & clay			
5.	Loose sandy soils	1.5 to 1.00	17 to 20	5.2 to 6.1
6.	Sandy loam	1 to 1.5	12 to 17	3.6 to 5.2
7.	Gravelly sandy soils	2 to 2.5	23 to 29	7.0 to 8.8
8.	Porous gravelly soils	2.5 to 3.0	29 to 35	8.8 to 10.6
9.	Very gravelly soils	3.2 to 6.00	35 to 70	10.6 to 21.2

3.36.2 Canal losses ; Serge Leliavsky - Design of Canals & barrages

a) Strange's approximation of canal losses: transmission losses in canals (FPS)

Q in canal in cfs	% of discharge which is lost per mile length of canal
> 100	0.25%
50 - 100	0.50%
25 - 50	1%
10 - 25	2%
< 10	4%

3.36.3 Bucklay : for each 100 cft issued at Head regulator;

15 cft/sec is lost in main canal
7 cft/sec is lost in distributories

22 cft/sec is lost in village water causes

Out of 56 cft, 27 is wasted by excessive irrigation or so and 29 cft is profitably used in irrigation purposes.

c) Moles worth formula : QL = CLP m 0.5 (MKS)

m = H MD, C = coefficient, 0.0015 for stiff clay and 0.003 for sandy soils or K = C m 0.5

3.36.4 Comparative Water Tightness of different types of linings (FPS/MKS) (I.C.I.D. PP. 306 - 307)

		Thick	ness	Seepage loss cusecs/million sft of wetted perime					meter
SN	Type of lining	FPS	MKS	Initial		Minimum		Final after cracking	
		III TISS	0.00115-2	FPS	MKS	FPS	MKS	FPS	MKS
1	Unlined	- 4	- 24	22.4	6.71	4	1.2	78	
2	Two tayers of brick tiles with 1 1/3" of 1:5:12 concrete sandwiched in between	5 1/8	13 Q	0.63	0,192	0.12	0,037	2.10	0 64
3	As above with 1/2" of 1:5 cement mortar in place of 1:5:12 concrete	5 1/8	13	0.27	0.082	0.02	0,006	2.30	0.7
4	Concrete 1:3:6	4,00	10.00	0.22	0.267	0.01	0.003	0.42	0.128
5	Concrete 1:5:12	4.00	10.00	1,3	0.396	0.26	0.008	0.47	0.146
6	CC 1:4:8	4.00	10.00	- 5	*	- 3	(e.	*	0.135

3.37 I.S.1905 -1978/1983 (Code of practice) Structural Safety on shallow foundations:-

Pier foundations: (such as in CM-CD works etc.,)
Plain concrete pier - Height shall not be more than 12 times the least horozontal dimension.

- a) Stresses allowable are as per those specified in IS 456 of 1979 provided the height of pier does not exceed six times the least horizontal dimension.
- b) If height exceeds six times the least horizontal dimension, the maximum allowable stresses shall be determined by

fc' = fc (1.3 - H/20D) where

fc' = Maximum allowable stress

fc = allowable stress speficied in IS 456 - 1979.

H = Height of pier and

D = least horizontal dimension

Note: The above provision shall not apply for piers where the least horizontal dimension is 1.8m or more.

RCC piers: RCC piers shall be treated as axially loaded short columns and permissible loads calculated as per IS 456 - 1979 subject to:

i) Where the height of pier exceeds 18 times the least dimension, the max. load shall not exceed:

P' = P (1.5 - H/36D)

Where P' = permissible load on axially loaded short column

H = height of pier measured from top of bell if any, to the level of cut off pier, and

D = least dimension of pier

3.38 HEAD LOSS usually allowable in metres for hydraulic structures on Main Canals (while approving hydraulic particulars of canals)

3)	C.M.works:		
) i) ii)	SL bridges D.L.bridges Cross regulators	The state of the second state of the state o	Normal section of canal retained. HL due to piers etc.,
v)	with or without offtake Trough Aqueducts	0.10 - 0.15	depending on fluming ratio depending on length of trough, velocity allowed and transitions
0)	C.D.works:		
)	Syphon aqueduts :	HL: as per Unwir	n's formula Afflux as per Moles-worths

Urainage syphons : If canal is flumed as (non pressure flow) in transitions and ba

formula

If canal is flumed as in type II or III U.Is HL as per Manning's

in transitions and barrel by TEL Method.

Restricted to 0.000 but actually it may go upto 0.03 depending on its length and fluming in canal.

iii) Super passages

Generally, normal section of canal is retained.

a) with Headway

C M markey

HL is 0.00 but if canal is flumed for economic consider-

ations HL in canal may go upto 0.02

b) Superpassages

without headway

In major projects like N.S.P., S.R.B.C. etc., drainage bed comes below FSL of canal. The canal section is thus partially syphoned. HL is to be minimised in such cases. HL about 0.10m.

Methods:

a) Provide inlet-outlet arrangements if feasible, maintaining normal section of canal

b) Widen the canal at the crossing with necessary transitions

- Depress the canal bed slightly below the barrel and give lift wall or reverse slope later to minimise regrading & losses.
- d) Adopt both (b) and (c) above, if HL is still high

302

- e) Compute HL in approaches with Mannings formula and under the partial syphon with Unwins formula and sum up.
- f) Compare with afflux calculations by Moles worth formula
- g) Adopt higher of (e) or (f) and prodive free board for trough of S.P. so that canal water does not escape into drain by spilling into it.
- iv) Inlets\Outlets: Nil generally silt traps must be arranged and silty water let down into natural drain below.
- Surplus escapes: Nil generally Silt traps must be arranged, for, the parent canal section gets reduced in course of time, resulting in heading up and lesser discharging capacity.
- Note: During actual design, the HL is to be calculated by any retional method/model studies and restricted to a minimum by suitable design practices. If it is not reducable or restricted to that provided in the approved HPs, it has to be adjusted elsewhere with the consent of the sanctioning authority for the satisfactory performance of the canal with its structure.

3.39 CODE OF PRACTICE FOR DESGIN OF CROSS DRAINAGE WORKS IS: 7784 - 1983

Aquduct is defined as a cross drainage work in which the carrier channel is carried over the drainage channel and the bottom of the canal trough or the covering over the drainage openings is above the high flood level in the drainage channel.

3.39.1 TYPES OF AQUEDUCTS

- (a) Depending on the shape of canal passing over the drainage, an aqueduct may be classified into the following three types.
- (b) Type 1-In this type the canal continues over the drainage in its normal earthen section including the banks and earthen slopes. In this case the length of the culverts through which the drainage water is passed under the canal shall be sufficient not only to carry the water section but also to carry the earthen bank of the canal with their slopes.
- (c) Type 2-In this type also the canal continues in its earthen section over the drain-

- age, but the outer slopes of banks are replaced by retaining walls, thereby reducing the length of drainage culvert by that extent.
- (d) Type 3-In this type the earthen banks are discontinued over the drainage and the canal water is carried in masonry or concrete trough, box, barrel, pipe or any other suitable section. The sides of the trough are connected on either side of the work to earthen banks of the canal by means of wing walls. Generally the canal is flumed to effect economy in this type.
- 3.39.2The choice of the type of aqueduct would depend on considerations of economy which in turn would depend mainly upon the size of the drainage to be passed in relation to the size of the canal and the foundation strata.
- a) Over a small drainage, aqueduct of Type 1 may be suitable as nominal wings would more than compensate the increased cost due to the length of drainage culverts which have maximum length (across the canal) in this type.
- (b) Over a large river an aqueduct of Type 3 may be more economical as the length of drainage culverts across the canal is minimum and the savvings made in cost of drainage culverts would be greater than the increased cost of canal and drainage wing walls.
- (c) For intermediate conditions, Type 2 may work out economical in comparison to Type 1 and 3.

3.39.3 Discharge through the aqueduct

Q = cb 2g[(2/3). {he+(
$$v_1^2/2g$$
)^3/2 - ($v_1^2/2g$)^3/2} + d { he + $v_2^2/2g$ }^{1/2}]

he = c
$$[v^2-v_1^2/2g]$$
, v = allowable velocity in the duct
= 2 v_1 or 1.5m/s whichever is min

Q = Discharge

d = depth of water

v, = velocity in canal

he = head lost at entry

b= mean width of aqueduct

c = co-efficient of discharge which varies from 0.9 to 0.95

The co-efficient C will be

0.5 for sharp cornered entrance

0.25 for round cornered entrance

0.1 for ordinary design

0.05 for bell mouth flumed entrance

3.39.4

Design of syphons:

A = Area of barrel

V = Mean velocity in the barrel

H = Fall in meters

f1 = Co-efficient for loss of head due to triction at entrance = 0.088 for bell mouth;

0.505 for cylindrical mouth

f2 = Co-efficient for loss of head in overcoming surface friction in the barrel.

3.39.5 LAYOUT

- The layout of aqueduct shall be so fixed that it shall preferably be in a straight reach of drain/stream, which crosses the channel at right angles as far as possible.
- Bank connections to canal and drain/stream should be provided depending upon the properties of the soil available in the area.
- Transitions for canal should preferably be provided with 2:1 and 3:1 on upstream and downstream side but not flatter than 3:1 and 5:1 respectively. (c)
- Wing walls of drainage should be suitably connected to high ground. But facing walls should be so located that height should be comparatively lower to reduce cost. Wing walls of drainage in Type 1 and 2 should be higher than high flood level, H.F.L.
- The drain/stream should be directed towards the structure by suitable training work like training walls, guide banks spurs, etc. The canal banks adjacent to work should (e) be protected by suitable protective measures such as turfing, pitching, and launching apron whenever necessary.

3.39.6 CANAL SECTION AND ITS FLUMING

The canal embankment adjoining the aqueduct should have adequate provisions to avoid possibility of any breach and to minimise seepage. The outer slope of

bank should have a clear cover of 600 to 900 mm over the designed phreatic line (often referred to as hydraulic gradient, see IS: 7894 -1975 for details). High bank (say, of more than 6m height above ground level) should be checked for slope stability (see IS: 7894-1975) and normal provisions of filter and rock toe should be made. In cases where difference between the canal full supply level and HFL is small, canal bank should be checked for the condition when drain is in high floods and the canal is dry.

Note 1 - Free board should be provided for trough as per ISI Code

Note 2 - Road way width should be provided as per I.R.C.Code.

Note 3 - Central wall of trough may be omitted by providing R.C.C. colms on each pier based on techno economic studies.

- The canal may not be flumed to less than 75 percent of bed width. However, where the velocity and loss of head permit, greater fluming may be allowed ensuring subcritical flow condition.
- The flumed portion of the trough shall be joined with the normal section with proper transitions to minimize head loss at entry and exit. The transition should correspond to a minimum splay of 3:1 on the upstream side and 5:1 on the down stream side. It should be ensured that the flow follows the boundaries of the wings.
- The vertical slope approaches may not be steeper than 1 in 3 on the entry side and about 1 in 4 on the exit side. The minimum permissible velocity allowed in the barrel depending upon the size of the bed meterials in the drain may be derived from Tables 1 and 2 in IS: 7784 (Part 2/Sec.5) - 1980. For Type 1 and 2 a water seal of 1.5 times the change in velocity head with a minimum of 100mm is allowed over the tope of the barrels at start to prevent air entering the barrel.
- In exceptional cases, the limiting velocity may exceed 3m/s provided this does not cause excessive loss of head and the structure can withstand the higher velocity and abrasion.
- The head loss through the barrels shall be calculated in accordance with IS: 7784 (Part1) - 1975. The waterway shall be so adjusted that the afflux does not exceed the limits of submergence tolerances of the environments.
- In drainages when the course is undefined, as sometimes it happens in bouldery

or alluvial regions, fluming from 60 to 90 percent of the Lacey's waterway may be tried.

3.39.7 Joints.

- (a) Joints shall be provided across and along the barrel length. The maximum spacing of these joints in either direction shall be limited to 20m. A gap of 10 to 15mm with water stops at all the joints accross and along the barrel should be provided to accommodate the movements. The position and details of joints shall be in accordance with 10 of IS: 7784 (Part 1) 1975.
- (b) In the case of barrels resting on compressible soils, collars encircling the plain joint should be provided. This will protect the waterstop from vertical shear due to excessive settlement. In the case of syphons of multiple barrels more than one unit, the collars may be designed to be flexible.
- (c) In case of multibarrels, units of three or four barrels can be adopted side by side with longitudinal joints having water stops all around. Water stops shall also be provided at the junction of RCC barrels with transition walls.

3.40 Dam Safety: (Small dams) (Engineering Foundation conference - ASCE (1852) Jan. 1975 - England)

3.40.1 Phase. Field inspection - evaluate - design and performance data

Give particular attention to:

- a. Evidence of distress
- b. Excess leakage and seepage
- c. slope instability
- d. excessive settlement
- e. tilting and cracking of concrete structures and
- f. other physical features indicating instability.
- g. Review of design and adequacy of design parameters
- h. Construction quality etc.,
- i. Loads Experienced vs designed
- j. Evaluation of geological and foundation conditions
- k. Changes in technology since original design

Seismology - check w.r.t. seismic considerations

phase.II Investigation - Field sampling - Lab testing - stability analysis.

Give attention to:

Adversely oriented joints

Slicken sides or fissured material, faults, seams or soft materials - week layers - excess pore water pressures - clay shales etc.,

Dam can be unsafe by failure due to:

Overturning, foundation failure, Uncontrolled seepage, shear failure etc.,

Case	Recommended factors of safety : E Leading condition	Factor of safety	shear strength
1	Sudden dwawdown from spillway crest or top of gates to MDDL	1.2	minimum composite of R & S shear factors
If	Partial pool with assumed horizontal steady seepage saturation	1.5	R + S/2 for R < S
111	Steady seepage from spillway crest or top of gates with KH/KV = 9 assumed	1.5	S for R < S
IV	E.Q (cases II and III with seismic loading)	1.0	same as case. II

3.40.3 Failure of Dams ; Due to ;

- Seepage failure : about 1/3 to 1/2 of the dams (analysed) studied have failed due to Seepage.
- b) Structural failure : about 30% of the cases (less in dams below 50' height)
- c) Construction inadequancies (more in dams below 50')
- d) Maintenance inadequate -
- f) Inspection improper or insufficient.

3.41. NAGARJUNASAGAR DESIGN PRACTICES

3.41.1 Earthwork - Banking - partial banking - side slopes standards - 11/2:1 both faces

Soil groups	Height above GL
a) GC, GM, SM, CL, CH	5 m
b) GC, SC, CL, CH	
c) GC and SC	

If foundation soil is weaker than fill material, provide flatter slopes of 1 3/4:1 to 2:1 in cutting and banking, on water face or berms at GL.

3.41.2 Duties - under offtakes:-

Area under offtakes hectare Acre	ID cum wet crops Ha cumec	Ha/cumec Acre/cusec	Wet crops only Ha/cumec Acre/cusec
12000	850	850	110
30000	60	60	50
12000 to 4000	900	925	760
30000 to 10000	62	65	53
4000 to 40	1000	1000	800
10000 to 100	62	70	56
40 and below	1400	1075	850
100 and less	100	75	60

The requirements of I.D (khariff) is about 2½" per irrigation at an interval of 10 to 12 days which is equivalent to 100 Ac / cusecs at field or 60 acres/cusec at the head of distributory.

The requirements for khariff paddy (wet) is about 4" in a 10 day period which worksout 60 acres / cusec at field which corresponds to 50 acres / cusec at the head of distributory.

3 - 56

3.41.3 Design of channel section: Due to reservoir fed channels, the limiting velocity is non scouring rather than not silting in upland areas.

Kennedy's $V_o = Cd^{0.50}$ (USBR) (FPS) S.R.S.P. also adopted the same.

- C: 0.84 for BC, silty or softer soils 0.47 in MKS
- C: 1.10 for muram, gravelly and harder soils 0.60 in MKS

Note: C = 0.50 for canals where Q is less than 2.83 cumecs (100 c/s) for all soils uniformly.

3.41.4 Direct pipes for discharges of 3 cumecs and below for better control over irrigation water utilisation:

3.41.5 Assumptions under safe bearing capacities of soils:-

a.	B.C. soils	8 tonnes/m ²
	HG lime kankar	
·C.	SDR	35 tonnes/m ²
	HDR	
8.	F & F rock	60 tonnes/m ²
	HR and sheet rock	

3.41.6 Tension in CRS masonry in CM (1:5) - upto 0.70 kg/cm² (7 t/m²) or 10 lbs/sq. inch. and for CRS masonry in CM (1:6) tension upto 5 to 8 psi may be allowed for abutments, wings and returns.

3.41.7 Structural design constants : using HYSD Tor 40 bars

M20 (1: 11/2: 3) mix,

on both faces of thin members and on tension face of (thin or thick) slabs in contact with water=1300 kg/cm²

M15 (1:2:4) mix.

stress in steel for road bridges=1900 kg/cm² for other structures bars above 20mm=2100 kg/cm² upto 20mm = 2300 kg/cm² b. On face away from liquid face of thick member = 1790 kg/cm² Stress in concrete=50 kg/cm² Shear stress = 5 kg/cm² local bond stress = 14.5 kg/cm² Modular ratio m = 18 kg/cm²

Stress in concrete = 65 kg/cm² shear stress = 6.5 kg/cm² Local bond stress = 16.50 kg/cm² Modular ration m = 14

Cracking stress in concrete = 16.5 kg/cm²

3.41.8 Replacement of cement by fly ash:

a. CC (1:4:8) or (1:3:6) to the extent of 25% by weight

b. CM (1:5) to the extent of 20% by weight

3.41.9 Foundation concrete CC (1:4:8):

For cut offs or foundations etc., 40% of 40 mm size and 60% of 75 mm size aggregate shall be used.

3.41.10 Wearing coats:

a. Plain - M 15 grade 75 mm thick using 20 mm size aggregate in barrel floors and transition floors monolithic with foundation concrete.

b. M 15 grade - 150 mm thick using 10 mm nominal steel @ 30 cm c/c both ways in cross regulator floors - monolithic with floor concrete.

c. M 20 grade 40 mm thick in trough slabs

d. M 20 grade 'Tell-tale' coloured CC cones in wearing coat over deck slabs of bridges.

3.4111 Bearing surface: Bearing surfaces of piers and abutments over which ACC slabs are laid shall be rendered perfectly smooth in CM (1:3) and thick kraft paper shall be laid over them.

3.41.12 Weep holes: 75 X 150 mm spaced at 1500 mm c/c staggered both horozontally and vertically shall be provided.

3.41.13 Expansion joints: 12 mm thick with pvc or rubber water stops shall be provided in RCC deck slabs over abutments and piers and filled with mastic filler.

3.41.14 Holding down bolts: May be spaced at 900 mm c/c to anchor RCC slab under water trough to piers and abutments, where the slab is continuous. The spacing may be increased to 1800 mm c/c in the case of piers and abutments supporting free ends of the slab.

3.41.15 <u>Drainage spouts:</u> 50 mm dia and 100 mm dia. drainage spouts shall be provided for single and double lane bridges respectively at the centre of span on both sides of bridge decking.

3.41.16 Approach slab for road bridges: M 15 grade, 15 cm. thick slab on well consolidated muram of 225 mm thickness with 12 mm bars @ 15 cm c/c both ways at top and bottom resting on the dwarf wall of the abutment and extending for a length of not less than 3.66m into the approach may be provided as stipulated in clause 217-3 of IRC bridge code sec.ll. in which case live load surcharge need not be considered in the design of bridge abutment.

3.41.17 Guard stones: 20 X 15 X 125 cm long guard stones shall be provided either side of road approaches at 300 cm c/c for the portion of the road where the height of embankment is more than 1.80m.

3.41.18 Pressure relief holes: Pressure relief pipes of 50 mm dia. shall be provided in the floor of cross regulators and aqueducts at 3m c/c staggered with 60 X 60 X 60 cm filters in no fines concrete below.

3.41.19 Radii of curvature: Minimum radius of curvature be adopted is 20 times the width of water at FSL, as the relevant parameter is the water width rather than bed width of canal.

3.41.20 Normal canal section in full cutting reaches:

a. Width of inspection paths 4 m with side drain

b. side drain 30 cm. bottom width and 60 cm depth

c. clear distance between edge of drain and the spoil bank may be kept as one metre.

d. Inspection path shall not be more than 9 m higher than canal bed. If a deep cut, inspection path may be located at FSD + 1 to 1 1/2m.

3.41.21 Eddylosses at structures: Coefficients of losses:

Transitions - splays in wings 2 1/2:1 to 3:1 at water surface. Curved wings for the inlet transition of offtake to ensure smooth flows. Warped transitions with face vertical at the beginning and same batter as slope of canal at d/s transition for the outlets.

Type of transition	Coefficier	49.140	osses in ba	rrel
	Inlet	Outlet	Extrance	Exit
1. Smooth transition	0.10	0.20	.050	1.00
a. O.T.sluices	0.10	0.20	0.10	0.20
b. U,Ts	0.10	0.20	0.25	0.25
c. Aqueducts d. Square ended type	0.30	0.75		
2. For earth transition				
connecting a canal section to a pipe and pipe	0.50	1.00	1/23	-
structure without concrete transitions for submerged condition				
Sudden expansion and contraction	0.25	0.25		o mil

Note: All coefficients are to be applied to the differential velocity heads before and after transitions.

3.41.22 Drops on distributories - (Core wall type drops have failed badly)

(a). In Muram, SDR, HDR, etc corewall type for Q less than 3 cumecs and height of drop less than 1.5 m core walls be kept 0.50 m above FSL and keyed 1 m into firm ground.

(b). Silty/clayey soils:

wing and returns be invariably provided
wings and returns

iii) Drops less than 1.5 m and Q < 1 cumec core wall type

3.41.23 Specifications for consolidation of banks and key trenches

SLNo	۵	FSL of branch or distributory	Type of consolidation	Specification of key trenches
1	> 5000 c/s	FSL above GL	P.Fl. consolidation upto 1' above FSL	One main trench of 6'x2' with 1/4 to 1 side slopes in centre of banks slightly towatds the water side and key trenches of 2'x2' with 1/4 : 1 side slopes at 10' c/c on either side of main trench
2	Between 5000 c/s to 1500 c/s	i) FSL above GL or upto 1' above GL	SS 20A	Normal key trench of 3'x2' with 1/4: 1 side slopes at centre of bank and 2'x2' key trenches with 1/4: 1 side slopes on either side at 10' c/c.
		ii) If FSL is 1' to 10' above GL	Stone Roller upto 1' above FSt.	K.T. is in (1)
		iii) If FSL is more than 10' above GL	Power Roller upto 1' above FSL	Same as in (1)
3	Below 1500 c/s	FSL 4' above GL FSL 4' to 10' above GL FSL beyond 10' above GL	SS 20A S.R. P.R.	Same as in 2(1) Same as in (1) Same as in (1)

Key trenches need not be provided within 3' from the toe of the bank. Proctor's density of 95% for consolidation with PR and 90% with SR.Extra quantity for consolidation by the PR and SR is 10%.

3.42 Requirements of labour, material and machinery in project execution : CANALS -

Structures of value Rs.1. lakh	Earthwork of value Rs.1 lakh	
Personnel work charged	100	100
Skilled	600	10
Semi-skilled	2000	8000
Unskilled	2000	, 100
b. Principal materials -		
Gelatine	200 kgs	1400 kgs
Detonators	2000 nos	14000 nos
Drill rods	4 nos	26 nos
Cement	60 MT	
Steel	7 MT	
c. Machinery -		
Jack hammer	50 Hrs	900 Hrs
Compressor 7 cum/minute (250 cfm capacity)	25 Hrs	450 Hrs
d. Proportionate costs -		
Labour : Materials : Machinery	33:66:1	60 : 20 : 20
e. Cost of structures Vs E/W -		DOM:
Main canal	40%	60%
Branch canal	45%	55%
Major disty.	50%	50%
Minor disty.	60%	40%

Note: The rates are as per 1976. Necessary cost escalation may be added.

INDEX

Chapter IV

HYDROLOGY

4.1.0	Water	availability studies: Data required	4-1
34.45	4.1.1	Step by Step procedure	4-1
	4.1.2	Rainfall-runoff relationship	4-1
	4.1.3	Multivariate	4-2
	4.1.4	Example	4-2
4.2.0	Estima	ation of Flood	4-3
4,2.0	4.2.1	Unit Hydrograph Method for Gauged Catchment	4-3
	4.2.2	synthetic Unit Hydrograph	4-5
	4.2.3	Triangular Unit Hydrograph	4-5
	4.2.4	Estimation of Design flood by small catchment	
	1,65	method as per CWC reports	4-1
	4.2.5	Example	4-

4.1.0 WATER AVAILABILITY STUDIES : DATA REQUIRED :

- 1. Catchment Area Plan.
- 2. Location of raingauge stations.
- Theissen Polygon of influencing stations in and around catchment. With this influencing areas of each Raingauge Stations are arrived.
- 4. Monthly rainfalls for the influencing stations.
- 5. Gauged flows at Project site.
- Up stream utilisation month wise.

4.1.1 STEP BY STEP PROCEDURE:

- 1. From the above data monthly or monsoon weighted average rainfalls are arrived.
- By adding upstream utilisations to gauged flows gross yields are arrived. From
 gross flows and weighted average rainfall relationship is arrived. The same relationship is used to arrive at gross flows where weighted average rainfall is available
 and gauged flows or upstream utilisations or both not available.
- Net yields are arrived by deducting upstream utilisation in proportion to dependable yield that is whenever the yield is more than dependable yield complete upstream utilisation is deducted and where it is less prorate deduction may be resorted to.
- In the case where observed yields are available observed yields may be implemented.

In case if no particulars are available, a parallel catchment rainfall runoff relationship is used to estimate the yields for the catchment under consideration.

The annual yields from the catchment both generated and observed are arranged in descending order the 75% dependable yield may be arrived which will be considered as representative yield for that catchment.

4.1.2 RAINFALL - RUNOFF RELATION SHIPS:

- Bivariate.
- 2. Multivariate.
- BIVARIATE:

Monthly rainfall of the same month Vs discharge.

(i) Linear relation ship

Y = ax + b

a & b are constants.

- X = Rainfall in inches/Cm., Y = Discharge in inches/Cm.
- (ii) Quadratic relationship:

 $Y = ax^2 + bx + c$

316

a, b, and c are constants.

(iii) Exponential relation ship:

 $Y = ax^b$

and bare constants.

$$Log Y = Log a + b log x$$

PA

P = A + bQ

Now this is reduced to linear relationship and may be solved as above.

4.1.3 MULTIVARIATE:

In this the current month rainfall and previous month rainfall is used.

$$Z = ax + by + c$$

X = current month rainfall. Y = previous month rainfall. Z = runoff.

a, b and c are constants.

By solving the above values of a, b, c are obtained and expected values of Z are calculated.

An example on rainfall Runoff linear relationship is here with given. By substituting representative rainfall of catchment in the linear equation Runoff for the Period can be arrived.

Year	Rain fall	Runoff		
	x	Y	X ²	XY
1967	23.89	2.90	570.73	69.28
1968	37.15	15.18	1380.12	563.94
1969	38.82	13.40	1506.99	520.19
1970	26.26	3.90	689.59	102.41
1971	27.25	4.77	742.56	129.98
1972	46.66	16.88	2177,16	787.62
1973	31.42	6.88	987.22	216.17
1974	41,69	13.35	1738.06	556.56
	Σx=273.14	Σy=77.26	Σx²=9793.43	Σxy=2,946.15

Y = aX + b

 $\Sigma Y = a \Sigma X + nb$

 $\Sigma XY = a \Sigma X^2 + b \Sigma X$

Substituting the values of ΣX , ΣY , ΣX^2 and ΣXY

77.26 = 273.14a + 8b; (1)

2946.15 = 9793.43a + 273.14b(2)

Solving the above equations,

a = 0.6591, and b = -12.8464

The equation is given by

Y = 0.6591X - 12.8464

Regression coefficient is given by

ΣXY - n XY

 $E(X) = \frac{\sum (X^2 - nX^2)(\sum Y^2 - nY^2)}{\sum (X^2 - nY^2)}$

substituting the values Rxy = 0.96 for the above example.

4.2.0 ESTIMATION OF DESIGN FLOOD

Estimating design flood for spill ways may be Probable Maximum Flood (PMF) based on Probable Maximum Precipitation (PMP) or Standard Project Flood (SPF) based on standard Maximum Precipitation (SMP). PMP is an estimate of the Physical upper limit to storm rainfall over a basin. It is generally determined by studying the rainfall of past sever Storms tin the region and increasing this rainfall in accordance with meteorologically possible increases in the atmospheric factors contributing to storm rainfall. Standard Project Precipitation is the largest precipitation characteristic of the region in which the reasonably basin lies or the largest storm which has occurred in the region of the basin during the period of rainfall records. In case of gauged catchment the PMF at the Project site is worked out where the maximum capacity of the reservoir is more than 50,000 ac.ft (2.178 TMC or 61.673 M cum).

UNIT HYDROGHAPH METHOD FOR GAUGED CATCHMENTS.

The Unit Hydrograph Principle is defined as a hydrograph of direct runoff resulting from 1 Cm. (or 1") of effective rainfall of a specified duration generated uniformly over the basin at the uniform rate. The basic data required for Unit hydrograph method of flood estimation is the hourly / daily data of 2 or 3 flood events occurred in the catchment and the corresponding rainfall data of the all stations influencing the catchment. It is also necessary to have the hourly rainfall data from SRRG station available in the catchment or in the neighboring catchment for the concurrent flow events periods selected: If adequate data are not available for the river in question, the data available for a number of sites on stream in the hydrometeriological region can be utilised for this purpose.

From the observed flood event a trial unit Hydrograph (UG) is derived with the following parameters:

- Unit Duration
- 2. Peak of UG

Note: The volume of the Unit Hydrograph is equal to

4. Time to peak

The hourly rainfall increments are calculated and the ordinates of DSROH (Direct Surface Run-off Hydrograph) are computed and these are to be adjusted so that the volume hydrograph is equal to 1 cm runoff. The Unit Hydrograph is finalised.

The storm in the catchment is selected either from the past rainfall records as collected from IMD, for which the hourly distribution is adopted based on the SRRG station available nearby, preferably in the catchment. A clock hour correctness of 13% may be applied for one day storm. The maximisation factor of 15% to 20% may also be applied to storm depth values. The infiltration losses @ 0.05"/hour may be deducted from the rainfall increments which are worked out based on storm distribution. Depth duration curve is to be drawn and the rainfall increments for the required unit time duration are to be read from depth duration curve. The rainfall increments are to be arranged in the critical sequence by arranging the peak rainfall increment against the peak ordinates of Unit Hydrograph and so on. The order of increment are to be reversed such that the same are to be multiplied with the UG ordinates to workout the flood storm hydrograph. The quantum of 5 c/s persq.mile are to be added to the maximum out flow as base flow and hence

320

the PMF is worked out. The limitation of this study is when the CA of project in question does not exceed 5000 sq.km. In case if the CA is large it is to be divided into different region for which the flood storm hydrograph is to be calculated separately. Allowing the lag time, the above flood storm hydrograph ordinates are to be compounded and the PMF is to be worked out as per the procedure worked out above.

In case of ungauged catchments the design flood is worked out as per the methods indicated below:

4.2.2 SYNTHTIC U.G.: The Synthtic UG is developed based on known physical characteristics of the basis. A reference UG is to be selected either from the catchment or near by catchment having the same hydrometeorological characteristics. The synders constant Cp, Ct are to be calculated from reference UG

$$t_p = Ct (LLc / s^{0.5})^{0.38}$$

 $t_{PH} = t_p + (t_H - t_r)/4$
 $q_{pr} = 640cp / t_{PH}$

Generally, the values of Ct

= 1.2 for mountains drainage area

= 0.72 for foot hill areas

= 0.35 for valley region

The synthetic UG is to be derived with the following parameters

- Unit duration, t
- Peak of UG
- Base period
- Time to peak tp

The ordinates as read from the above UG are to be multiplied with the net rainfall increments as explained above on the flood storm hydrograph are to be worked out from which the PMF for the unguaged catchment can be assessed.

4.2.3 TRIANGULAR UNIT HYDROGRAPH: This method is applicable for the unguaged catchment having the area upto 200 sq.miles where the observed data for the flood period is available. The empirical formula is as follows: Tb = 2.67 tp

$$tp = D/2 + 0.6 tc$$

where, to = $[11.9 L^3/H]^{0.385}$, qp = 484 Aq/tp

D = Unit duration, tp = time is in hours from starting to peak

tb = time base of triangular UG

With the above parameters triangular UG is derived with the selected storm and as distribution as explained in PMF method the flood storm hydrograph is to be derived from which the Maximum flood can be worked out.

42.4 ESTIMATION OF DESIGN FLOOD BY SMALL CATCHMENT METHOD AS PER CWC REPORTS:

The estimation of design flood for small catchment and medium catchment having the size from 25 to 2000 sq.km based on synthetic UG is explained in detail in the flood estimation reports for small catchments for sub basins. By Directorate of Hydrology small catchment) CWC. The report nos. 3g, 3l, 4a, 4b, 3h, 3e covers A.P. state and these reports may be referred to in estimating the design flood for small catchment. The physiographic parameters that are considered in the above study are

L. Lc, s = (Statistical slope) Ap. Am, qp, TB etc. With the UG is drawn and the UG ordinates are read from the unit Hydrograph base flow is added to the UG Ordinate. The storm can be selected from the isopluvial maps published in the report. The procedure for obtaining the rainfall increments is also appended in the report.

A typical example of flood calculation by

(1) flood estimation for small catchments method as per CWC reports and (2) Triangular unit Hydrograph method for Maddileru Project are appended.

Example

Report accompanying designflood calculation of Maddileru reservoir at Adavibrahmannapalli Ananthapur district.

Maddileru river originates from somraju Hills situated at Thangedukunta and Allepalli village limits and flows towards north easterly direction up to kadiri and takes a turn to northerly direction until it join chitravathi river. The length of the river up to the proposed reservoir at ADAVIBRAHMANPALLY (v) IS 69.33 km. This catchment area upto the reservoir is 529.04 SQ.MILES OR 1371.32 SQ.KM. The centre of gravity of the catchment is determined graphically and it is project to the river and the length of the river from this point to the reservoir site (LC) is measured as 40.65km. The statistical slope of the reservoir (S) is arrived from S.I. sheets as 13.53 (Table 1- Design flood is calculated based on the design office report of C.W.C.No., K/6/1982of the sub zone 3-h of Krishna and Permur basin. The various parameters of synthetic unit hydrograph is arrived as per form, i.e. given in the report and the unit hydrograph is drawn. (Fig.2). Table-2 show the synthetic unit hydrograph ordinates. The maximum rainfall of the catchment is determined from the isopluvial maps of 50 years return period for 1 hr. 3 hour, 6hr., 9hr., 12, 15hr., 18 hour and 24 hour duration passing through the catchment area and the value for TD=7 hour duration is read as 143,3 mm. or 14,33cm. This point rainfall is converted to areal rainfall by multiplying with a reduction factor of 0.77 based on the report which is 14.33 x 0.77.

11.03cm. These calculations are shown in table-3. Table-4 shows the time distribution in put storm. A design loss rate of 0.5 cm./hr. assumed as suggested in the report. The rainfall excess unit are shown in col.4 of table-5. Computation of peak flood is shown in table-6. Computation of design flood hydrograph is shown in table-7. Thus the design flood is arrived as 3,940.75 curnecs or 1.40 laks cusecs.

M.F.D.Calculations of Maddileru:-

1) Basic Data

a) Sub Zone :- Krishna & Penna basins (sub zone -3 h)

b) Name of site

 Meddileru reservoir scheme across Maddileru near Adivibrahamana palli, H/o Dorigallu) in Kadiri (Tq.)

Anantapur district.

c) Name of the river

:- Maddileru river

d) Topography

:- Moderate

e) Shape of C.A.

:- Triangular

2) Collection of Information from contour plans :-

L = 69.33 KM Lc = 40.65 KM

C.A. = 1371.32 sq. Km Latitude = 14° - 21' - 25" North

Latitude = 14° - 21' - 25' North Longitude = 78° - 3' 13" East.

2.1 Calculation of statistical slope :-

Refer table - I for calculation of statistical

slope S = 13.53

3) Calculation of synthetic unit hydrograph :-

LLC/13 = 69.33*40.65/13.53 = 766.25.

Draw Unit hydrograph on a graph paper with the above known values of tp, tm, qp, w50,

TABLE - 1 COMPUTATION OF STATISTICAL SLOPES(S)

722

No	Distance from the site to the bed level of stream measured along the main stream in KM	The level at the point of intersection in the RL which the bed level represented in M	The length of the segment difference between consecutive length in KM (Li)	The difference between PLs of preceeding and succeeding levels in Col.2 M Si	Siope of the Segment (Si) Cot.5/Cot4 M/ KM	LI SI
1	2	3	4	5	6	7
1	0	1159		es STeam	DESTRUCTION	200
2	2.1	1200	2.1	41	19.52	0.475
3	2.73	1250	0.63	50	79,37	0.071
- 4	4.53	1300	1.8	50	27.73	0.342
5	5.93	1350	1.4	50	35.71	0.234
6	7,23	1400	1.3	50	38.46	0.21
7	10.73	1450	3.5	50	14.29	0.926
В	12.13	1500	1.4	50	35.71	0.234
9	20.53	1550	8.4	50	5.95	3,444
10	25.93	1600	5	50	10	1.581
11	28.03	1650	2.5	50	20	0.559
12	36.23	1750	8.2	100	12,19	2.349
12	39.23	1800	3	50	16 67	0.735
14	44.43	1900	5.2	100	19.23	1.186
- 2.75	49.93	1950	5.5	50	9,09	1,824
15	54.33	2000	4.4	50	11.36	1,306
16	55.33	2050	1	50	50	0.141
17	59.33	2100	4	50	12.5	1,131
18	59,53 61,63	2150	2.3	50	21.74	0.493
19		2200	4	57	12.5	1,131
20	65.63	2250	1.6	50	31.25	0.286
21	67.23	2500	2.1	250	119.05	0.192
55	69.33 TOTAL	153157	69.33			18.85

wR50 w75 and TB, to get the surface runoff 1.00 cm. fig. 2 shows the synthetic U.G.H. Theordinates are noted in table -2 columns.

$$S = \frac{L^2}{2} = (69.33/18.85)^2 = (3.678)^2 = 13.53$$

(Li/Si)

$$t_p = 6.683 \text{ or say } 6.5 \text{ hrs.}$$

 $t_m = 6.5 + 0.5 = 7.00 \text{ hrs.}$
 $q_0 = 1.017 \text{ (tp)}^{-0.52}$

$$q_{e} = \frac{1.017}{6.683^{0.52}} = \frac{1.017}{2.685} = 0.38$$

$$Qp = q_p \times A$$

 $Qp = 0.38 \times 1371.32 = 521.01 \text{ or } 521.00 \text{ cum.}$
 $Qp = 521 \text{ cumecs.}$
 $W50 = 2.396 (q_p)^{-1.08}$

$$W50 = \frac{2.396}{(0.38)^{1.08}} = \frac{2.396}{0.352} = 6.619$$

W75 = 1.427 (qp)^{-1.08} =
$$\frac{1.427}{(0.38)^{1.08}}$$
 = 4.054

W75 = 4.054
WR 50 = 0.750
$$(q_p)^{-1.25}$$

= $\frac{0.750}{(0.38)^{1.25}}$ = 2.51

$$WR 50 = 2.51$$

W50 = 6.81

WR 75 = 0.557 (q_p) -1.12 =
$$\frac{0.557}{(0.38)^{1.12}} = 1.648$$
WR 75 = 1.648

$$T_{\rm R} = 7.193 \text{ (tp)}^{0.53}$$

$$T_{\rm p} = 7.193 \times (6.683)^{0.53} = 7.193 \times 2.737 = 19.687$$

$$T_{\rm p} = 19.687 \text{ or say 20 hrs.}$$

3. Calculation of Synthetic Unit Hydrograph

Draw Unit hydrograph on a graph paper with the above known values of t_p, Q_p, W₅₀ WR₇₅, T_b to get the surface runoff 1.00cm. Fig 2 shows the synthetic UGH. The ordinates are noted in Table-2 columns.

4) Computation of Design storm input :-

TD = Design storm duration

 $TD = 1.1 \times tp = 1.1 \times 6.683 = 7.35 \text{ hrs. or } 7.00 \text{ hrs.}$

TD = 7.00 hours.

R KING

BASE FLOW: The average baseflow of 0.5 cumecs/sq.km.

Base Flow: C.A. x 0.05 = is recommended for adoption in the subzone

= 1371.32 x 0.05

Base Flow = 68.57 cumecs.

FLOOD HYDROGRAPH

1 50 years Td - hour point rainfall :-

Locate the catchment, under study in plates 8a to 8 h of the C.W.C booklet for subzone 3 h and read the point rainfall values for difference durations. Enter the point rainfall values in col.2 against the various duration in col.1. Inter polate point rainfall value for 7 hour and enter in col.3 (Table.3)

TABLE - 2 SYNTHETIC UNIT HYDROGRAPH ORDINATES

SI.No	Time in Hrs	Synthetic U.G. Ordinate	Representative U.G. Ordinate
31,140	0	0	
2	1	40	
3	2	86	
4	3	140	
5	4	200	
6		320	
7	5 6 7 8	460	
g	7	521	
8	8	498	
10	9	420	
11	10	320	
12	11	260	
13	12	224	
14	13	186	
15	14	146	
16	15	120	
17	16	86	
18	17	64	
19	18	40	
20	19	20	
21	20	0	
3=			
		4151	

Run off = 4151x0.36/1371.32 = 1.09

TABLE - 3

DEPTH DURATION

n Depth tion
0.143 m
cm.
TOWN TOWN

i.e 7 hours duration storm rainfall = 143.3mm or 14.33 cm.

Storm Areal rainfall :-

Areal to point rainfall ratio for 7 hours duration corresponding to C.A. of 1371.32 sq.km. is 77%

Areal rainfall = 14.33 x 0.77 = 11.03 cm.

Time distribution in put storms :-

The design storm rainfall duration (TD) is 7 hours,

Therefore mean average time distribution curve of storm rainfall for storm duration 7 to 12 hours. In fig.9 of C.W.C. booklet subzone - 3h for the design storm rain fall d = 11.03 cm for the design storm duration TD = 7 hours calculated in table -4

TABLE-4 TIME DISTRIBUTION OF IN PUT STORM

SI. No.	Time in hours.	Percentage of storm duration Col. 2x100/TD	Cumulative % age to total rainfall	Cumulative rainfall depth D x col.4/100	Rainfall increments.
1	2	3	4	5	6
0	0	0 14	0 45	0 4.96	0 4.96
	2	28.57	68 78	7.50 8.60	1.10
	4	42.86 57.14	88	9.71	1,11
	5 6	71.43 85.71	92 96	10.15 10.56	0.44
	7	100.00	100	11.03	0.47
					11.03

Time at 1 hour interval upto TD = 7 hours was entered in col.1

Cumulative percentage in storm duration corresponding to time in hours in Col.1 was calculated was entered in col.2.

The cumulative percentage of total rainfall corresponding to cumulative percentage of storm duration in col.2 was read from Fig.9 of C.W.C booklet for subzone - 3 h and entered in col.3. cumulative rainfall depth corresponding to cumulative % of total rainfall in Col.3 was calculated and entered in Col.4 Hourly rainfall increments were calculated by subtracting the two successive rainfall values from one another at 1 hour interval and entered in Col.5.

V) Design loss rate: The C.A. under study is more than 75 sq.km. The design loss rate of 0.5 cm/hr as suggested in CWC booklet was adopted.

VI) Rainfall Excess Hydrograph: A constant loss rate of 0.5 cm/hr was deducted from hourly rainfall increment is col.4 of Table - 5 to obtain rainfall excess units in Col.6 of Table - 6 were arranged in critical order by placing maximum rainfall excess unit against maxi-

Hydrology

mum discharge ordinate of synthetic unit hygrograph. The current maximum rainfall excess unit was placed against the next lower discharge of unit hydrograph.. Likewise the remaining rainfall excess unit were arranged in similar manner (col.3 and Col.7 of Table-5). The hourly rainfall excess sequence so obtained in Col.7 was reversed and shown in col.8 starting from 1 to 20 hours.

Computation of design flood U.G.H.

Refer Table-7 for the computation of design flood hydrograph. SUH ordinates are entered in col.2 against time in Col.1 critical rainfall excess sequences from Col.8 of Table-5 was entered from col.4 to 10 (table-7). Direct surface runoff ordinates were calculated corresponding to hourly rainfall excess units with a successive lag of 1 hour. Enter the horizontal total in col.8. Base flow at a rate of 0.05 cumecs/sq.km for 1371.32 sq.km works out to 68.57 cumecs col.9.

The base flow added to the total surface runoff ordinates in col.11 to get the design flood flow in col.10. The maximum value of col10 is 3940.75 currecs which is 50 years peak discharge.

For calculation of 50 years peak discharge only, the rainfall excess units in Col.7 of Tab-6 are multiplied with corresponding unit hydrograph ordinates of Col.3 of tab-5 are shown in Tab-6. Thus col.4 of Tab-6 at the end shows the 50 years peak discharge for the basin as 3940.75 curnecs or 1,39,167.58 c/s or 1.4 lakhs.

Table - 5 Computation of Critical Sequences of Rainfall Excess

SI.No.	Time in Hrs	Synthetic Unit Hydrograph Ordinates (Cumecs)	Gross Rainfall increm- ents (Cms)	Constant Loss rate (cm/hr)	Rain fall excess Units Col(4-5) (Cms)	Sequence rainfall excess Units (cms)	Reverse sequence of Cal
1	2	3	4	5	6	7	8
1	0	0	0.00	0.0	0.00	0.00	0.00
2	1	40	4.96	0.5	4.46		0.60
1 2 3	2	86	2.54	0.5	2.04		2.04
4	3	140	1.10	0.5	0.60		4.46
5	3 4 5	200	1.11	0.5	0.61		0.61
6	5	320	0.44	0.5	0		
7	6	460	0.41	0.5	200	0.61	
8	7	521	0.47	0.5	0	4.46	
9	8	498				2.04	
10	9	420				0.60	
11	10	320					
12	11	260					
13	12	224					
14	13	186					
15	14	146					
16	15	120					
17	16	86					
18	17	64					
19	18	40					
20	19	20					
21	20	0					

SI.No	Time in Hours	U.G. Ordinates in Cumecs	Effective rainfall (cms)	Direct runoff cumecs
1	2	3	4	5
1	0	0		
	1	40		
3	2	86		
4		140		
	3 4 5 6	200		
5 6 7 8 9	5	320		12:20:20:20:20
7	6	460	0.61	280.60
8	7	521	4.46	2323.66
9	8	498	2.04	1015,92
10	9	420	0.60	252.00
11	10	320	F	
12	11	260	CONTRACTOR	3872.18
13	12	224	Add base flow	68.57
14	13	186	78 NAMES INTERPRETATIONS	3940.75
15	14	146	or 1,39,167.58 c/s	E
16	15	120	or 1.40 lakh.c/s.	
17	16	86		
18	17	64		
19	18	40		
20	19	20		
21	20	0		

Table -7 Computation of Design Flood Hydrograph of Maddileru

SI.No	Time in	One Hour Synthetic Hydrograph ordinate	= }	lainfall excer	s Increment	Total Surface	Base flow	Design flood Hyderograph	
		Curnecs	0.6	2:04	4.46	0.61	flow		
1	2	3	4	5	6	7	8	9	10
1	0	0	0		1-0-1		0		
2	1	40	24	0	-		24	68.57	92.57
3	2	88	51,6	81.6	0		133,2	68.57	201.77
4	3	140	84	175.44	178.4	0	437.84	68.57	506.41
5	- 4	200	120	285.6	383.56	24,4	813.56	68.57	882.13
6	5	320	192	408	624.4	52.46	1276.86	68.57	1345.43
7	6	460	276	652.8	392	85.4	1906.2	66.57	1974.77
6	7	521	312.6	938.4	1427.2	122	2800.2	68.57	2868.77
9	8	498	298.8	1062.84	2051.6	195.2	3608.44	68.57	3677.01
10	9	420	252	1015,92	2333.66	280.6	3872.18	68.57	3940.75
11	10	320	192	856.8	2221,08	317.81	3587.69	68.57	3656.26
12	11	260	156	652.8	1873.2	303.78	2985.78	68,57	3054.35
13	12	224	134.4	530.4	1427.2	256.2	2348.2	68.57	2416.77
14	13	186	111.6	456.96	1159.6	195.2	1923,35	68,57	1991.93
15	14	146	87.6	370.44	999.04	158.6	1624.68	68.57	1693.25
16	15	120	72	297.84	629,56	136.64	1336,04	68.57	1404.61
17	16	86	51.6	244.8	651.16	113.46	1061.02	68.57	1129.56
18	17	64	38.4	175.44	535.2	89.06	838.1	68.57	906.67
19	18	40	24	130.56	383,56	73.2	611.32	68,57	679.89
20	19	20	12	81.6	285,44	52.46	431.5	68.57	500.07
21	20	0	0	40,8	178,44	39,04	258.24	68.57	326.81
22	21			0	89.2	24.4	113.6	68.57	182.17
23	22				0	12.2	18.8	68.57	80.77
24	23					0	0	68.57	68.57

Design flood = 3940.76 cumecs or 1.40 lakh cusecs

Triangular Unit Hydrograph Method

Maddileru Reservoir Project

Capacity of Reservoir: 1.1593 TMC

Since it is less than 2 TMC, Maximisation factor is not considered.

Clock hour correction: 13% is considered.

Maximum Rainfall = 6.05 inches at Bukkapatnam Rain gauges station for arriving at MFD. (Chitravati Balancing Reservoir) 277.18641

After clock hour correction M.F. storm = 6.05 x 1.13 = 6.837 inches

C.A. = 529.04 Sq. miles

Length of Vagu = 42.8 miles

H = 3620 - 1177.34 = 2442.66 ft.

Lag Time i.e. from centre of rainfall excess to the time of peak, L = 0.6xTc

= 0.6x9.865

= 5.919 Hrs

= or 6 Hrs.

Units duration (or) rainfall excess period = D

Generally D = (1/3 or 1/4 Tc)

Considering D = 1/4 Tc = 1/4 x 9.865 = 2.466 or Say 2 hrs.

Now we have the following characteristics

A = 519.68 Sq. miles; Tc = 9.865; D = 2 Hrs; d = 1 unit

Tp = D/2 + 0.6xTc = 2/2 + 5.919 = 6.919 Hours or 7 Hours

Tb = 2.67Tp = 2.67x7 = 18.69 or 19 Hrs.

	484xAxQ	484x519.68 x 1	
Qp =		=	= 36579 Cusecs.
200	Тр	7	Q
On -	36570 Cuence		

Op = 36579 Cusecs

Tp = 7 Hrs.

Tb = 19 Hrs

D = 2 Hrs

	Storm Distrib	Nellore SRRG			
Hours	Hourly percentage	2 Hrs	3.0333		
0	0	0	0		
1	10		10		
2	9.5	19.5			
3	8.00		17.5		
4	8.00	16.00	Dealer)	35.5	
5	7.50	T. M. S. Charles	15.50	0.0.7-0.0	
6	7.00	14.50			
6 7 8 9	6.00		13.00		
8	4.50	10.50		25.00	
9	4.00		8.50		
10	3.50	7.50			
-11	3.00		6.50		
12	3.00	6.00		13.5	
13	2.50		5.50		
14	2.50	5.00			
15	2.50		5.00		
16	2.50	5.00		10.00	
17	2.50		5.00		
18	2.50	5.00	2,000		
19	2.00		4.50		
20	2.00	4.00		9.00	
21	2.00		4.00		
22	2.00	4.00			
23	2.00		4.00		
24	1.00	3.00	1.00	7.00	
25	0.00	100.00	100.00	CONTRACT.	

Note: Infiltration losses at 0.05" / Hour.

Statement showing the Cumulative Percentage vide Depth Duration Curve

64.50	Cumulative Reading % 0 10 27.5 43.00 56.00	2 Hours Discharge % 0 10 17.50 15.50 13.00	2hr Storm Rainfall increment 6.837 in 0 0.684 1.196 1.060 0.889 0.582	deducting 0.05in/ Hour towards infiltration loss 0 0.584 1.096 0.960 0.789 0.482	
100.00 6.837	Reading % 0 10 27.5 43.00 56.00 64.50 71.00 76.50 81.50 86.50 91.00 95.00	Discharge % 0 10 17.50 15.50 13.00 8.50 6.50 5.50 5.00 4.50 4.00 4.00	6.837 in 0 0.684 1.196 1.060 0.889 0.582 0.445 0.376 0.342 0.342 0.342 0.307 0.273 0.273 0.068 0	towards infiltration loss 0 0.584 1.096 0.960 0.789 0.482 0.345 0.276 0.242 0.242 0.242 0.173 0.173 0.1000	

Compounding of Hydrograph

Comp	ounding of rivulogian	Devented	
Composition 1000 Cusecs of 1000 Cusecs of 15.677 26.130 28.450 36.579 24.386 18.290 12.190 6.100 0	Increments peak to peak 0.207 0.242 0.345 0.789 0.960 1.096 0.584 0.482 0.276 0.242 0.173	Order 0 0.173 0.173 0.242 0.276 0.482 0.584 1.096 0.960 0.789 0.345 0.242	
	0	0.207	
	TUHG Ordinates in 1000 Cusecs 0 5.226 15.677 26.130 28.450 36.579 24.386 18.290 12.190 6.100	TUHG Ordinates in 1000 Cusecs peak to peak 0.207 5.226 0.242 15.677 0.345 26.130 0.789 28.450 0.960 36.579 1.096 24.386 0.584 18.290 0.584 18.290 0.276 6.100 0.242 0 0.173	TUHG Ordinates in 1000 Cusecs peak to peak 0 0 0.207 0 0.207 0.173 0.242 0.173 15.677 0.789 0.242 0.276 0.960 0.960 0.482 0.584 0.584 0.584 0.482 0.276 0.242 0.276 0.276 0.242 0.276 0.27

Flood Hydrograph Ordinates of Triangular Unit Hydrograph Compounding for the Catchment of Monneru - Storm Distribution

					Rainfall I	nommer	Vas. in Fie	versili o	rder.					- 1	Total	Base Flow	Grand Total
0	0,173	0.173	0.2	49 1	0.27£	0.462	0.584	1.096	0.90	0.789	g 345	0.242	0.	207	1000 Cussects	1000 cuseos @ 5 cuseovygn	Cusiecs
0	-			1											0	2.598	2598
0	0						7								0	2.590	2598
0.	0.904	0											T		0.904	2.598	3502
0	2.717	0.904		۵									T		3.616	2.598	6214
0	4.52	2.712	1	265	0								Т		6.497	7.500	11095
0	4,922	4.52	3	794	1.442	0							Ţ		14.578	2.558	17276
0	6.028	1	2 18	323	4.327	2.519	0								24,419	2.598	27017
0	421	-	-	865	7.212	7.556	3.052	0					1		35.252	2.598	37850
0	3.16	-	-	1.857	7.852	12.595	9.15	5.728	٥				1		51.565	2.598	54163
-	210	-	-	1.901	10.099	13.71	152	17.18	5.017	0		T	T		72.442	2.598	75049
H	1.05	-	-	4.420	0.731	17.63	1 18.6	25.63	15.06	4.123	0	1	1		96.376	2.59ff	98976
-	0	-	+	2.95	5,048	11,75	4 213	6 31.11	25.08	12,06	1.80	3. 0			112.60	2.598	115205
F	-	-	, 1	1,478	3,364	8.81	8 145	40.00	27.3	20.61	5.40	9 1.2	65	0	122,5	2,598	125181
-		-	-	0	1.584	5.87	6 10	6 26.7t	2 35.1	1 22.44	10.0	5 3.7	94	1,082	116.42	2.598	119020
H	+	-			0	2.9	2.1	9 20.0	23.4	1 28 H	0.61	5 6.3	23	3.245	101.76	2.598	104365
H	-	-				0	3.5	52 12.0	6 17.5	5 19.2	122	12 0.8	85	5,409	78.635	2.598	81233
H	-	-		-			1.50	0.68	11/2	0 14.4	3 6.4	10 8.	552	5.888	55.973	2,598	58571
H	-	-						1 0	5.88	6 9.61	8 6.5	H 5.	101	7.572	35.25	2.598	37955
+	-	-							0	4.81	3 42	06 4.	(26	5.04	16.49	2.598	2100
+	-	-								0	21	05 2	95	3.786	6.841	2.598	1143
1	-	-		\vdash								1	476	2.52	3.999	2.598	6597
+	+	-	_	1	-								0	1.26	3 1.263	2.598	3661
1	-	-	_	1	+									0		2.596	2596

Maximum Flood Discharge = 1,25,189.00 Cusecs or Say 1,25,200 Cusecs

Statement showing the Cumulative Percentage vide Depth Duration Curve

Cumulative	2 Hours	2hr Storm Rainfall	Rainfall excess after
Reading	Discharge	increment	deducting 0.05in/ Hour
%	%	6.837 in	towards infiltration loss
0	0	0	0
10	10	0.684	0.584
27.5	17.50	1,196	1.096
43.00	15.50	1.060	0.960
56.00	13.00	0.889	0.789
64.50	8.50	0.582	0.482
71.00	6.50	0.445	0.345
76.50	5.50	0.376	0.276
81.50	5.00	0.342	0.242
86.50	5.00	0.342	0.242
91.00	4.50	0.307	0.207
95,00	4.00	0.273	0.173
99.00	4.00	0.273	0.173
100.00	1.00	0.068	0.000
100.00	0	0	0.000
		6.837	27272

Compounding of Hydrograph

		cananing or riyarogi	California .
Hours	TUHG Ordinates	Increments	Reverse
	in 1000 Cusecs	peak to peak	Order
0	0	0.207	0
1	5.226	0.242	0.173
3 5	15.677	0.345	0.173
	26.130	0.789	0.242
7	28.450	0.960	0.276
9	36.579	1.096	0.482
11	24.386	0.584	0.584
13	18.290	0.482	1.096
15	12.190	0.276	0.960
17	6.100	0.242	0.789
19	0	0.173	0.345
		0.173	0.242
		0	0.207

Flood Hydrograph Ordinates of Triangular Unit Hydrograph Compounding for the Catchment of Monneru - Storm Distribution

				Rainta	ă încrerte	ents in Fi	evental	order			117		Total	Base Flow	Grand Total
0	0.173	0.173	0.247	0.276	0.482	0.584	1,094	0.66	0.789	0.345	0.242	0.201	1000 Cueeza	1000 cusecs & 5 cusecs/sgm	Cusecs
6												11	0	2.598	2588
0	0					-							0	2.590	2558
ō	0.904	0											0.904	2.508	3502
0	2.712	0.504	0										3.616	2.598	6214
9	4.52	2,712	1,265	0									BA97	2,596	11095
0	4.922	4.52	3.794	1.442	0								14.579	2.596	17276
0	6.328	4.922	6.323	1.327	2.519	0							24.413	2.596	27017
0	4.219	6.328	6.005	7.212	7,556	3.052	0						35.252	2,598	37850
0	3,164	4219	8.852	7,852	12,595	9,155	£728	0					51,565	2.596	54167
	2,109	0.184	5,901	10.096	12.713	15,26	17.18	5.017	.0				72,442	7.596	75040
	1,055	Z.100	4.426	0.731	17,631	16.61	28,63	15.05	4,123	0			96.378	2.598	98976
П	0	1.055	2.95	3.048	11,754	21.30	21.18	25.08	12:30	1.800	0		112.60	2.596	115295
		0	1,476	3.364	a.816	14.24	40.09	27.31	20.61	5.409	1.265	b	122.5	2.568	125189
П			0	1.684	6.876	10.68	26.72	35.11	22.44	E 015	3.794	1.082	116.42	2.598	119020
				0	2.94	7.119	10.01	23.41	28.86	0.815	6.323	3245	101.76	2.596	104385
					0	3.562	13.36	17.55	19.24	12.62	6.885	5,400	78.635	2.598	81233
						0	0.686	11.70	14.43	8.413	8.852	5.899	55.973	2.598	58571
							0	5.856	2.616	6.31	5,901	7.572	35.257	2.598	37955
			-					6	4.613	4.206	4.426	5,048	18,493	2.598	51091
									0	2 105	2,95	1.786	8.841	2.596	11439
										0	1,476	2.523	3.999	2.596	6597
		- 7									0	1,263	1.263	2.596	3861
												0		2,596	2596

Maximum Flood Discharge = 1,25,189.00 Cusecs or Say 1,25,200 Cusecs

_

Solving the above equations, a = 0.6591, and b = -12.8464The equation is given by Y = 0.6591X - 12.8464Regression coefficient is given by

$$\Sigma_{XY}$$
 -n XY

 $Rxy = \frac{1}{(\sum X^2 - nX^2)(\sum Y^2 - nY^2)}$

substituting the values Rxy.= 0.96 for the above example.

INDEX

Chapter V

Design of Channels

5.1.1	Flow through open channels	5-1
5.1.2	Formula for flow in Open Channel	5-1
5.1.3	Trapezoidal section	5-2
5.1.4	Economical Trapezoidal Section	5-2
5.1.5	Cross section of least absorption	5-2
5.1.6	Prop ortioning of Bedwidth to depth	5-3
5.1.7	Side slopes	
5.1.8	Free board	5-4
5.1.9	Bank top width	
5,1.10	Berms	5-4
5.1.11	Full cutting reaches	
5.1.12	Hydraulic gradient line	5-5
5.1.13	Classification of channels	
5,1.14	Irrigation canals	5-6
5.1.15	Water requirements	5-6
5.1.1,6	Duty	
5.1.17	Design capacity of channel	5-7
5.1.18	Channel capacity on average duty approach	

5.1.20

5.1.21

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5.2.8

5.2.9

5.2.10

5.2.13

5.2.14

5.2.2

5.3.0

Channel capacity on peak duty approach...... 5-8

Arriving at capacity of channel 5-9

Classification of canals based on Generation...... 5-9

Design of channel on Principle of Regime flow...... 5-11

Kennedy's Equation 5-11

Limits of allowable velocity 5-12

Depth of flow 5-13

Bed width to depth ratio 5-13

Inner side slopes for design 5-14

Side slopes for construction...... 5-14

Rugocity coefficient , n...... 5-14

Bed fall 5-15

Berms(Water side) 5-15

Width of berms (water side) 5-16

Design of Open channels on the basis of Maximum

SECTION 5.1.0

Flow through Open Channels

The term "open channel" applies to any passage through which water is flowing when the free surface of water is in contact with the atmosphere throughout.

i) Water flowing through an open channel is subjected to frictional resistance of wetted surface of the channel. In channels of regular cross section the velocity of flow is constant.

ii) The velocity of flow will vary at different points of the cross section of the channel, being smaller towards the sides. All calculations on the flow through channels are based on the mean velocity of flow at any cross section.

5.1.2 Formula for flow in Open Channel

i) The hydraulic gradient is equal to the slope of the channel if the latter is uniform. The head due to the slope of the channel is assumed to be lost in overcoming frictional resistance of bed and sides. Following equation for flow of water in channels has been proposed by Chezy in 1769.

 $V = C (RS)^{0.5}$

where, V = mean velocity of flow in m/sec

C = a coefficient

R = Hydraulic mean depth (area over perimeter)

S = Slope of channel.

ii) value of coefficient 'C' depends upon the shape and surface of the channel. Statistical analysis has been made from time to time by various authors to determine the value of Chezy's 'C' out of which the values expressed by Ganguillet and Kutter and later Manning, Manning's "C " has become popular and can be safely adopted in design of channels.

According to Manning C = R 1/8 / n

substituting value of C in Chezys equation

V = 1/n B 2/3 S 1/2

Manning's formula.

Where 'n' is roughness coefficient. The value of 'n' varies according to physical roughness of the sides and bottom of the channel and influenced by such factors as i)

channel curvature ii) changes in size and shape of cross section iii) obstruction such as debris, roots iv) vegetation etc.

iii) In design of channels the value of 'n' to be adopted also depends upon the channel condition expected in future. The channel condition is governed by the weeds, silt or scouring problems and standards of maintenance.

vi) Values of 'n' observed for a few channels in Uttar Pradesh are found to be between 0.025 to 0.03. It is desirable to adopt 'n' equal to 0.025 in design of irrigation channels in general and a higher value (0,0275) for smaller channels. Generally n equal to 0.018 is being adopted for channels lined with Concrete.

v) The values of coefficient of rugosity recommended for use in Manning formula in varying situations is presented in table B-4

5.1. 3 Trapezoidal Section:

Practical considerations necessitate making a channel of Trapezoidal section. The corners are rounded off in lined canals.

5.1 4 Economical Trapezoidal Section:

i) The most economical section for a trapezoidal channel will be when the discharge is maximum for a given excavation. The condition for this can be found by assuming the area to be constant.

Bed width (b) to depth (d) ratio corresponding to inner side slopes of section are as follows:

where inner side slopes are 0.5 H to 1 V;	b/d	= 1.2
where inner side slopes are 1 H to 1 V	b/d	= 0.8
where inner side slopes are 1.5 H to 1 V	b/d	= 0.6

5.1.5 Cross Section of least absorption.

i) In unlined channels absorption losses are significant. The absorption per unit of time in any channel of uniform cross sectional area becomes smaller as b/d increases. For channels of equal cross sectional areas (with 0.5 H to 1 V side slopes) the cross section giving least absorption has a proportion of bed width to depth of four.

5.1.6 Proportioning of bed width to depth :

General problem is to design a channel which will carry the fixed discharge and with smallest absorption losses commensurate with economy of construction. Evaporation losses are small and may be neglected. As for absorption is concerned any value of b/d between 1 and 5 may be adopted.

in When aligning a channel in very flat country it may be necessary to make it wider and shallower than would, otherwise be economical (or desirable).

Where reservoirs are the source of supply there is no problem of silting; Channels are designed for velocities subject to non-scouring limits. In such situations it is desirable to make channels deep in proportion to their width.

w) bed width to depth ratios cannot be rigidly fixed because these will depend upon various factors namely:

- a) the cost of excavation (rocky strata etc)
- b) the cost of acquisition of lands.
- c) whether the canal will be lined
- d) seepage characteristics of the canal prism

B/d ratios recommended by C.W.P.C are presented in Table B-3 and U.S.B.R. practice is in Table - C 3 section .

Where other considerations permit, channels may be designed with a proportion . bed width to depth between 1 to 5.

5.1. 7 Side slopes :

i) The side slopes depend on the local soil characteristics

a) Inner side slopes.

The inner side slopes are to be designed to with stand, the sudden draw down condition during operation of canal. In case of alluvial canals for purpose of design, 0.5 H to 1.V inner side slopes are adopted assuming that the canal attains a slope of 0.5 H to 1, after running in regime. Inner, side slopes proposed generally for canals in cutting are 1 to 1 to, 1.5 to 1.

b) bank side slopes.

The bank side slopes are to be designed for the condition, that, the canal is running full, and banks are saturated due to rain fall. Canals in filling are generally proposed with inner side slopes 1.5 H to 1 and with outer side slopes ranging 1.5 H to 1; 2 H to 1.

5.1.8 Free Board:

Sufficient free board is to be provided taking into consideration canal size and location, rain water inflow, water surface fluctuations caused by regulators, wind action soil characteristics service road requirement etc. A minimum free board of 0.5 m for discharges of less than 10 cumecs and 0.75 m for discharges greater than 10 cumecs is recommended. The free board is to be measured from the full supply level to top of the bank.

5.1.9 Bank Top Width:

The minimum values recommended for top width of banks are presented in table A.1. For canals carrying less than 1.5 curnecs it is generally not economical to construct a service road on top of bank as this requires more materials than the excavation provides. In such cases service road may be provided on natural ground surface adjacent to the bank.

Table A.1. Top width of banks.

Discharge range in	Minimum bank top width	n in metres
Cumecs	Inspection bank	Non inspection bank
0.15 - 7.5	5.0	1.5
7.5 - 10.0	5.0	2.5
10.0 - 15.0	6.0	2.5
15.0 - 30.0	7.0	3.5
30.0 and above	8.0	5.0

5.1.10 berms

Berms along earthern channels are provided to reduce the bank loads which may cause sloughing off earth in to the canal section.

Berms may help, to limit the height of rise of water level at a time of fluctuations and to protect the bank from the direct attack of canal water. However berms provided below full supply level make it difficult to maintain desired water levels.

Berms are omitted:

i) In small distributary channels.

- ii) Channels running wholly are almost wholly, in banking
- iii) In partial cutting reaches where cutting slope confirms with inner slope of banks.

Wherever berms are proposed the width of berms is arrived at adopting the following formula.

Width of berm =
$$C + (r_2 - r_1) d$$

Where G is constant, D the actual depth of cutting at each place and r_2 and r_1 the horizontal components of the slopes of bank and cutting respectively in one metre vertical.

Where the inside slope of cutting and bank are 1 H to 1 V and 1.5 H to 1 V respectively berm width is equal to :

Depending upon the carrying capacity of channel and local situations, C values ranging from 0.6 to 2 m are being adopted in partial cutting reaches if the inner side slope of bank and side slope adopted for cutting are different invariably berms are to be provided so as to keep the central line of bank and centre line of channel parallel. (Even when value of C is nill)

In some projects same side slopes are adopted in cutting portion and to inner side slopes of bank, thus confirming the entire canal section to a uniform side slope and berms are avoided.

5.1.11 Full cutting reaches (more than FSD + FB) and position of berms.

Where depth of cutting is less than 9. m the berms (inspection path)my be provided at ground level. Where depth of cutting is more than 9 metres the berms (inspection path) to be provided at F. S.D + 1to 1.5 metre depth of cutting.

BERNS ON REAR SLOPE OF BANKS:

Berms have to be provided on the rearside of bank to provide sufficient cover over hydraulic gradient line where ever found necessary

5.1.12 HYDRAULIC GRADIENT LINE:

The gradient depends mainly on the characteristics and relative placement of the different type of material in the embankment. Following empirical values may be used for banks of less than 5 m high.

4:1 For silty soils

5:1 For silty sands

For silty soils

6:1 For embankments of more than 5 m high the true position of Hydraulic gradient line is to be worked out by laboratory tests.

5.1.13 CLASSIFICATION OF CHANNELS:

For purpose of design, irrigation canals can be broadly classified in to following three categories.

Unlined canals in alluvial soil. (Regime flow).

Unlined canals in non-erodible strata . (Permissible velocity)

Lined canals.

Silting problem arise in channels taking off from diversion works and also in channels in alluvial soil. These channels are to be designed on the principle of minium permissible or the non-silting velocity. Design procedure presented in section B.

Channels taking off from storage works usually carry silt free water. These are to be designed on principle of maximum permissible velocity, the velocity that will not cause erosion of the channel body . Design procedure is presented in section C.

Lined canals are designed for a velocity of about 2 metres per second . Transmission losses are assumed to be about 0.6m3 per million square metre of wet terrain lined canals,

5.1.14 IRRIGATION CANALS:

An irrigation channel is to be designed so as to supply water to the crops effectively and economically.

Channel capacity at any point is to be fixed so as to meet the water requirements of crops as well as the transmission losses below the point, taking in to account the proposed mode of delivery.

5.1.15 WATER REQUIREMENTS:

water requirements of crops are not uniform, they vary widely in accordance with variations in climate, in particular rain fall and also soil characteristics. Further crops at their various stages of growth require different quantities of water and the requirements are maximum during growth and flowering periods. Water requirements of crops include evapotranspiration requirements, application losses, and any other special needs.

5.1.16 DUTY

The relation between the quantity of water, the area of crop irrigated is denoted by duty of water and it is expressed in any of the following units.

i)Depth of water over cropped area (depth in centi metres or metres)

ii)Volume of water per unit of cropped area (Cubic metres per hectare area)

iii) Cropped area for a unit discharge during crop period. (A in hectares per cumec)

It is necessary to specify the point at which duty is expressed and also the crop period. Duty expressed at a field out let shall take in to account the net water requirement of crops and field application losses. Duty expressed at any other point (distributary head, Major head etc) shall take in to account , the water requirements of crops, the field application losses and transmission losses below the point up to field outlet.

5.1.17 DESIGN CAPACITY OF CHANNEL:

Information on following forms the basis for arriving at the design capacity of irrigation channel.

Estimated 10 day peak water requirements of crops during a crop season. Alternatively guidance in scheduling of irrigation (depth and frequency) for different crops from the agricultural research farms on similar soil and agroclimatic conditions.

Mode of delivery of water, that is continuous, rotational or delivery on demand.

Estimated seepage losses in the canal system or observed data on similar soil condi-

Until sufficient reliable observed data on water requirements of crops and seepage losses is available, the design discharge is to be arrived at on the basis of past experience.

5.1.18 Channel capacity on average duty approach

In some of the earlier projects average duties have been adopted for arriving at the canal capacity based on the past experience in similar soil and climatological conditions . In the upper reaches of command area of N.S. Left canals following average duties have been adopted.

i) Wet crops (paddy) 914 hectares per cumec (64 acres per cusec)

ii) Irrigated Dry 2071 hectares per cumec (145 acres per cusec)

The above duties include transmission losses in distributaries below 15 curnecs carrying capacity. Allowances towards conveyance losses was made at 1.83 cumecs per million square metres of wetted area in canals of more than 15 cumecs carrying capacity only (transmission losses at 6 cusecs per million square feet of wetted area).

Peak requirements were proposed to be met by encroaching in to free board of canal temporarily and by staggering the crops.

While in the case of paddy the peak demand for 10 days period and an average demand for the season may not differ materially, there will be large variation in the case of I.D. Crops between the average seasonal demand and 10 days peak demand particularly in the Kharif season. Transmission losses in the majors, minors and subminor distributaries are observed to be about 20 per cent or more depending upon the length of canals. In the lower reaches of N.S. left canal ayacut sliding scale duties have been adopted considering the following

 Canals commanding bigger areas of land involving larger lengths of distributaries, system to be based on lower duty

ii) canals commanding smaller area required smaller lengths of distributaries to be based on higher duties

Sliding scale of duties in lower reaches of N.S. left canal (Continuous flow)

Area under offtakes in Hectares	Duty for I.D. or I.D. cum wet Crops Hectar per cumec	Duty for wet areas Hectarcs Per cumec
Below 40 hectares	1075 (75 acres/cusec)	850 (60 acres/cusec)
40 to 4000 hectares	1000 (70 acres/cusec)	(56 acres/cusec)
4000 to 12000 hectares	925 (65 acres/cusec)	760 (53 acres/cusec)
Above 12000 hectares	850 (60 acres/cusec)	(50 acres/cusec)

5.1.19 Channel Capacity on Peak Duty approach :

In Srirama Sagar Project following peak duties were adopted for arriving at the capacity of a channel. (continuous flow)

i) Paddy 571 Hectares per cumec (40 acres per cusec)

ii) Irrigated Dry 1428 Hectares per cumec

(100 acres per cusec)

iii) Paddy and Irrigated Dry.

Where a canal serves both wet and I.D. areas maximum discharge requirements during overlap period are estimated with duties 714 Hect/cumec for paddy and 1643 Hectare per cumec for I.D.

5.1.20 Arriving at the capacity of channel

The proposed system layout and position of offtakes, the area proposed for irrigation under each offtake in each distributary is plotted on irrigation map. Discharge required in each length of distributary to keep the system fully supplied at the time of greatest demand is worked out commencing from tail end. Where regulation is effected by turns the carrying capacity of channel is suitably increased to provide for non-supply during periods of closure. Canal capacity to be as per approved design operation plan.

5.1.21 Classification of canals based on generation

Present classification of canals is on the basis of their generation

- Canals taking off from the point of diversion from left and right flanks of river are called as left main canal and right main canal respectively.
- ii) Canals taking off from main canal having a capacity of 15 cumecs or more (500 cuseus in older system) and upto the point of 15 cumecs limit are called as branch canals.
- iii) Canals taking off from main or branch canal with a head discharge of more than 0.04 cumecs are termed as major distributaries
- iv) Carials taking off from major distributaries and serving more than 40 hectares are termed as minor distributaries.
- v) Canals serving less than 40 hectares ayacut are called field channels and denoted by numbering left or right side pipes.

Branch canals, majors and minors are named after a prominent place (or village) near about their tail end.

For clarity and convenience, for standardization and facility of communication, classification of canals on the basis of their capacity is desirable. Classification recommended by Commission for Irrigation Utilization on the basis of suggestion made by C.W.C. are as follows.

- i) main canal, Contour canal taking off from the point of diversion.
- ii) Branch canal. A distributary canal with a capacity of more than 15 cumecs and generally though not necessarily aligned along a ridge.
- iii) Major distributary. Generally a ridge canal taking off from main canal or branch canal with carrying capacity of more than 3 cumecs and less than 15 cumecs.
- iv) minor distributary, generally a ridge canal, with a carrying capacity of more than cumecs and less than 3 cumecs.
- v) Sub-distributary. Generally a ridge canal with a carrying capacity not exceeding one cumec.
- vi) Field channel. Canal serving less than 40 hectares of Irrigated area.

SECTION - 5.2.0

Design of Channels on principles of Regime flow

5.2.1. A regime channel may be defined as a channel which will get neither silted up nor scoured, but will maintain its shape and section for a specified discharge.

In practice, the concept applies only in a limited sense.

In case where a canal is proposed to take off from a diversion work, the nature of transported silt carried from the parent river defines the channel shape.

In case where canal is proposed to take off from a reservoir (with clear water), the soil through which the channel traverses will define its shape. (Provided it is incoherent alluvial soil). If the soil is clayey, the channel will retain the original shape to which it is excavated.

It is desirable to fix the shape of channel to suit the nature of boundary materials so that the channel is stable. However, to avoid certain drawbacks, the channel section is proportioned by simple rules and the longitudinal slope of channel is adjusted accordingly. (Draw backs. a) low hydraulic efficiency due to wider channel and less depth, b) excessive seepage and evaporation losses).

5.2 2. K.G. Kennedy deduced from his observations that for non-slitting and non-scouring channels in steady regime, there is always one velocity which is called the 'Critical velocity', Vo . The general form of kennedy's equation of critical velocity is

Vo = Cd m

Where Vo = Critical velocity in m/sec (at which, the channel will neither silt nor scour)
C and m vary according to slit grade. Recommended values of C and m for Krishna delta,
Godavari delta and Punjab silts are as under

	C	m
Krishna delta	0.53	0.52
Godavari delta	0.39	0.55
Puniab silt	0.55	0.64

In table B-1 values of critical velocities corresponding to depth of flow in a channel are presented.

Table B-1
Critical velocity Vo = Cd^m
Vo in meters per second

Depth of flow d in metres	Krishna delta	Godavary delta	Panjub Silt
0.2	0.23	0.16	0.20
0.3	0.28	0.20	0.25
0.4	0.33	0.24	0.31
0.5	0.37	0.27	0.35
0.6	0.41	0.29	0.40
0.7	0.44	0.32	1470000
8.0	0.47	0.35	0.44
0.9	0.50	0.37	0.48
1.0	0.53	0.39	0.51
1.1	0.56	0.41	0.55
1.2	0.58	0.43	0.59
1.3	0.61		0.62
1.4	0.63	0.45	0.65
1.5	0.65	0.47	0.68
2.0		0.49	0.71
2.5	0.76	0.57	0.86
3.0	0.85	0.64	0.99
	0.94	0.71	
4.0		0.84	
5.0		0,95	

5.2.3 Limits of the allowable velocity

The channel sections are to be designed for velocities not exceeding 1.1Vo and not less than 0.9 Vo

In channels where navigation is proposed the velocity should be about 0.8 meters and less.

Maximum permissible velocities

In B.C. soils 0.5m/Second

In hard soils 1.0 m/Second.

52.4 Depth of flow

pepth of flow 'd' in a channel is a function of discharge (Q) and the formula suggested to arrive at the 1st approximation of 'd' is

 $d = kQ^{1/3}$

where d = depth of flow in meters

K = 0.7 (Constant)

Q = discharge in cumecs.

352

The depth arrived at by adopting above formula is for guidance and values can be varied according to individual situations.

In table B-2 depths of flow corresponding to discharge in the channel are presented for first approximation.

Table B-2
Depth of flow corresponding to discharge:

Q	d	Q	d
Litres/second	in Cetimeters	in Curnecs	in meters
20	20	4	1.1
80	30	5	1.2
200	40	6	1.3
400	50	8	1.4
600	60	10	1.5
1000	70	23	2.0
1500	80	80	3.0
2100	90	190	4.0
3000	100	400	5.0

5.2.5 Bedwidth to depth ratios

Cross sections which are stable and in regime appear to have certain relationship between bed width to depth of flow.

To avoid the necessity of making assumptions, best fitted equations of regime channels based on data of stable channels for every region are important from practical considerations. Bed width to depth ratios generally adopted are presented in table B-3 for design of channels

until best fitted equations are developed for each region. The values may vary depending upon individual needs.

Table B-3

Q in Litres/Second	b/d	Q in Cumecs	b/d	
300	2.9	2	4.0	
400	3.0	4	4.9	
600	3.2	10	5.4	
900	3.4	15	6.0	
1000	3.5	30	7.4	

5.2.6 Inner side slopes for design.

Slit transporting channels have tendency to assume semi elliptical sections. The finer the silt, more does the section approximate to semicircle. Therefore for purpose of design the practice is to assume 0.5H to 1V side slopes.

5.2.7 Side slopes for construction

Side slopes to be adopted for construction depend upon the soil characteristics. The side slopes are to be designed to with stand the following conditions.

- i) Sudden draw down condition for inner slopes
- ii) Channel running full with banks saturated due to rainfall.
- 5.2.8. Channels are usually excavated in 1H to !V side slopes, it being assumed that after silting they will have side slopes, of approximately 0.5 H to 1V. However in sandy soils the side slopes in cutting may be 1.5H to 1V or flatter.

Canals in filling in general are proposed with 1.5 H to 1V but in loose sand they shall be 2H to 1V are flatter.

5.2.9 Rugosity Coefficient n.

Foe normal alluvial soils, it is usual in India to assume following values of n depending upon the carrying capacity of canals.

opon the carrying capacity of carials.		
Fer canals of carrying capacity more than 15 Cumecs n		0.02
For canals of carrying capacity less than 15 Cumecs n	***************************************	0.0225
In some projects values of n adopted are as follows		

anals of 1.5 to 100 Cumecs,	n 0.0225	
anals carrying less than 1.5 Cumec,	n 0.025	
ary small channels (below 0.3 cumecs capacity)	n 0.0275	

Basically the value of n depends upon the physical roughness of the canal and standards of maintenance during its operation. (Table B4)

Assuming average standards of maintenance it is better that canals are designed with n = 0.025.

52.10 Bed fall

The average slope of the ground is to be determined from the longitudinal section of the ground. This would be the maximum slope which can be provided on the canal. Flatter slopes have to be adopted if the velocity generated is higher than permissible one due to adoption of average slope of the ground.

52.11 Flow formula. Manning's formula which is derived from Chezy's fundamental equation is being adopted in design of open channels.

where V = Mean velocity of flow in meters per second
n = Rugosity coefficient
R = Hydraulic mean depth (Area over perimeter, A/P)
S = Bed fall, 1 in S

Discharge Q = A X V in Curnecs.

5.2.12 Berms (Water side)

berms are provided along the earthen channels to reduce the bank loads.

- a) Berms are provided at full supply level
- i) when the canal is in full cutting, that is ground level is above F.S.L.
- ii) When the canal is in full embankment that is the bed level and F.S.L. are above the uround level.
- b) Berms are provided at ground level when the F.S.L. of canal is above ground level and bed level below ground level.

In some projects berms are proposed at bed level of canal when the ground level is at or below the bed level.

Berms provided below full supply level of canal interfere with the regime of flow and make 5 - 15

the maintenance of designed water levels difficult without resorting to some other temporary measures. This will happen untill natural silt berms, are formed.

5.2.13 Width of berms (Water Side)

general practice is to provide minimum width of (r₂-r₁) D to ensure the central line of canal and its banks are parallel.

r₂ and r₁ are horizontal components of the slopes of the bank and cutting respectively and D the depth of cutting at the point of reference.

However berms widths equal to

C+(ra-r,) D are usually proposed.

C is a constant (and in different projects) and depending upon the carrying capacity, values have been assigned to C.

5.2. 14 No Berms in small distributaries (Water side)

Berms may be omitted in small channels running wholly or almost wholly in banking unless the irrigation water is so heavily charged with silt so s to give prospect of rapid formation of silt berms.

In small channels with out berms (C = nil) it is desirable to make r_2 and r_1 equal.

5.2.15. Design Example:

design of channel of one currec carrying capacity proposed through alluvial soil (or canal carrying silt laden water).

Refer tables as indicated - If necessary adopt interpolation

1st Step Depth of flow from table B-2.

1 at approximation corresponding

to Q, d = 70 cm.

2 nd step permissible velocity from table B-1 corresponding d.

d = 70 cm. V (Krishna) = 44 cm/sec.

V (Godavari) = 32 cm/sec.

d = 80 cm. V (Krishna) = 47 cm/sec.

V (Godavari) = 35 cm/sec.

3 rd Step Bed width from table B-3

Ratio correspo	inding to Q
b = ratio X d	say $b = 280$ cms.

Inner side slopes for purpose of design, (para B6)

Value of rugosity coefficient, n, (para B9) n = 0.025

356

6th Step Sections suitable, picked up from tables, B4 to B10

d = 72 cm. b = 240 cm. b/d = 3.3 S = 1 in 2500 v = 50.1 cm/s Q = 995 L/Sec

d = 74 cm. b = 240 cm. b/d = 3.2 S = 1 in 2500 v = 50.8 cm/s Q = 1041 L/Sec.

ii) d = 75 cm. b = 250 cm. b/d = 3.3 S = 1 in 3000 v = 47.0 cm/s Q = 1012 L/sec

W) d = 80 cm b = 300 cm b/d = 3.8 S = 1 in 5000 v = 38.8 cm. Q = 1055 L/sec

v) d = 82 cm. b = 280 cm. b/d = 3.4 S = 1 in 5000 v = 38.8 cm/s Q = 1021 L/sec

vi) d = 84 cm. b = 280 cm. b/d = 3.3 S = 1 in 5000 v = 39.3cm/s Q = 1063 L/sec

Sections with lesser depth may be adopted where sufficient driving head is not available in the parent channel.

DISTRIBUTARIES - STANDARDS - N.S. LEFT CANALS LATER REACHES

5 - 17

1. Side Slopes in cutting

- a) Full cutting
- i) In all softer soils 1.5 H to 1 V
- ii) In harder soils below F & F when depth of cut in harder strata is F.S.D. OR Two times the difference in bed width of sections with 1:1 and 1.5:1 side slopes which ever is higher, 1 H to 1 V.
- iii) In F&F and H.R. when depth of cut in harder strata is F.S.D. or difference in bed width of sections with 0.5 H to 1 and 1.5 H to 1 side slopes which ever is higher 0.5 H to 1 V.
- iv) Deep cut in H.R. Catch drains of size 0.3m X 0.3m with 1:1 side slopes at G.L at the toe of spoil bank for discharges above 3 Cumecs.
- b) Partial cutting in all soils bank 1.5H to 1V.

Any change in slope should be effected in full bay lengths.

2. Slopes in Banking

Inner slopes 1.5 H to 1 V.

Rear slopes up to 5 metre height 1.5 H to 1 V

Beyond 5 metre height depending upon nature of soil.

3. Top width of banks		Free Boards
o, rop width of ballics	775	rice boards

Q range	LB - RB	Q Range	F.B.
15 to 5	3.0 - 1.8m	15 to 4	1.0m
5 to 0.3	3.0 - 1.2m	4 to 0.3	0.6m
Below 0.3	1.0 - 1.0m	Below 0.3	0.45m

- 4. Height of point bank, Limited to 3 meters.
- 5. Borrow pit Depth 1.0m, Side slopes 0.5 to 1, Distance between rear toe of bank and inner edge of borrow pit to be height of bank plus 1.5m.

Table B4

Table 4 . Values of Rugosity Coefficient (n) for

		Type of Canal Val	ue of n in normal Condition	Ñ
	linad	Canals		
A. UI	For	th, straight and uniform		
1-		Clean after weathering	0.022	
	a)	Gravel, uniform section, clean	0.025	
	b)	With about gross four woods	0.027	
	c)	With short grass, few weeds		
2-		th winding and sluggish	0.025	
	a)	No vegetation	0.030	
	b)	Grass, some weeds Dense weeds or aquatic plants in deep cha	annels 0.035	
	c)	Dense weeds of aquatic plants in our	0.035	
	d)	Stony bottom and weedy banks	0.028	
3.	Dra	igline excavated and no vegetation annels not maintained, weeds and bush uncu	at .	
4.	der	annels not maintained, weeds and bearingse weeds, high as flow depth	0.080	
		Carlotte Car		
9500		anals		
5.	1000000	ncrete surface	0.013 to 0.017	
	a)	Formed, no finish	0.013 to 0.015	
	b)	Float finish	0.018 to 0.022	
	c)	Gunite wavy section	MIN 12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
6.		ncrete bottom float finished and sides as		
		icated below	0.015 to 0.017	
	a)	Dressed stone in Mortor	0.017 to 0.020	
	b)	Random stone in mortor	0.016 to 0.020	
	c)	Cement Rubble masonry plastered	0.020 to 0.030	
	d)	Dry rubble (Rip-rap)	0.014 to 0.017	
7.	Bri		0.013 to 0.016	
8.	As	phalt smooth to rough		
9.		ncrete lined excavated rock with	0.017 to 0.020	
	a)	Good section	0.022 to 0.027	
	b)	Irregular Section	of alignment other than stra	ight

TABLE - B5 Trapezoidal Canal Section

Side Slope = 0.5 H to 1V;	n = 0.025
Bed Slope : 1 in S;	V = cm/second
	Q = litres / sec

ď	b cm	b/d										******
		h. Lef				5.0	S = 1	in 1000	S = 1 in	2000	S =1 in 30	000
COO.	cm	DVd	A	Р	R	R2/3	٧	Q	٧	Q	V Q	
cm	200		sqm	m								
20	20	1.0	0.06	0.65	0.09	0.20	25.9	15.5	18.3	11.0	15.0	9.0
20	30	1.5	0.08	0.75	0.11	0.23	28.5	22.8	20.2	16.1	16.5	13.2
20	40	2.0	0.10	0.85	0.12	0.24	30.4	30.4	21.5	21.5	17.6	17.6
20	50	2.5	0.12	0.95	0.13	0.25	31.9	38.3	22.6	27.1	18.4	22.1
20	60	3.0	0.14	1.05	0.13	0.26	33.1	46.3	23.4	32.7	19.1	26.7
20	70	3.5	0.16	1.15	0.14	0.27	34.0	54.4	24.1	38.5	19.6	31.4
22	50	2.3	0.13	0.99	0.14	0.26	33.3	44.7	23.6	31.6	19.2	25.8
22	60	2.7	0.16	1.09	0.14	0.27	34.6	54.0	24.5	38.2	20.0	31.2
24	50	2.1	0.15	1.04	0.14	0.27	34.7	51.6	24.5	36.5	20.0	29.8
24	60	2.5	0.17	1.14	0.15	0.28	36.0	62.3	25.5	44.0	20.8	35.9
25	25	1.0	0.09	0.81	0.12	0.24	30.1	28.2	21.3	19.9	17.4	16.3
25	30	1.2	0.11	0.86	0.12	0.25	31.4	33.4	22.2	23.6	18.1	19.3
25	40	1.6	0.13	0.96	0.14	0.27	33.6	44.1	23.8	31.2	19.4	25.5
25	50	2.0	0.16	1.06	0.15	0.28	35.3	55.2	25.0	39.0	20.4	31.9
25	60	2.4	0.18	1.16	0.16	0.29	36.7	66.5	26.0	47.1	21.2	38.4
25	70	2.8	0.21	1.26	0.16	0.30	37.9	78.1	26.8	55.2	21.9	45.1
26	60	2.3	0.19	1.18	0.16	0.30	37.4	71.0	26.4	50.2	21.6	41.0
26	70	2.7	0.22	1.28	0.17	0.30	38.6	83.2	27.3	58.9	22.3	48.1
28	60	2.1	0.21	1.23	0.17	0.31	38.7	80.1	27.3	56.6	22.3	46.3
28	70	2.5	0.24	1.33	0.18	0.32	39.9	93.9	28.2	66.4	23.1	54.2
30	30	1.0	0.14	0.97	0.14	0.27	34.0	45.8	24.0	32.4	19.6	26.5
30	40	1.3	0.17	1.07	0.15	0.29	36.4	60.0	25.7	42.4	21.0	34.6
30	50	1.7	0.20	1.17	0.17	0.30	38.3	74.7	27.1	52.8	22.1	43.1
30	60	2.0	0.23	1.27	0.18	0.32	39.9	89.7	28.2	63,5	23.0	51.8
30	70	2.3	0.26	1.37	0.19	0.33	41.2	105.1	29.1	74.3	23.8	60.7
30	80	2.7	0.29	1.47	0.19	0.33	42.4	120.7	30.0	85.4	24.5	69.7
32	70	2.2	0.28	1.42	0.19	0.34	42.4	116.8	30.0	82.6	24.5	67.4

								west day	ANT PER LIFE	1011	THOOHUNG	relucity
32	80	2.5	0.31	1.52	0.20	0.35	43.6	134.1	30.9	94.8	25.2	77.4
34	70	2.1	0.30	1.46	0.20	0.34	43.6	129.1	30.9	91.3	25.2	74.5
34	80	2.4	0.33	1.56	0.21	0.35	44.9	148.0	31.7	104.7	25.9	85.5
35	50	1.4	0.24	1.28	0.18	0.32	40.9	96.7	29.0	68.4	23.6	55.9
35	60	1.7	0.27	1.38	0.20	0.34	42.7	115.8	30.2	81.9	24.7	66.9
35	70	2.0	0.31	1.48	0.21	0.35	44.2	135.4	31.3	95.7	25.5	78.2
35	80	2.3	0.34	1.58	0.22	0.36	45.5	155.2	32.2	109.8	26.3	89.6
35	90	2.6	0.38	1.68	0.22	0.37	46.6	175.3	33.0	124.0	26.9	101.2
35	100	2.9	0.41	1.78	0.23	0.38	47.6	195.7	33.6	138.4	27.5	113.0
36	90	2.5	0.39	1.70	0.23	0.37	47.2	183.6	33.4	129.8	27.3	106.0
36	100	2.8	0.42	1.80	0.24	0.38	48.2	204.8	34.1	144.8	27.8	118.3
38	90	2.4	0.41	1.75	0.24	0.38	48.4	200.5	34.2	141.8	27.9	115.8
38	100	2.6	0.45	1.85	0.24	0.39	49.5	223.6	35.0	158.1	28.6	129.1

TABLE - B6 Trapezoidal Canal Section

Side Slope = 0.5 H to 1V;	n = 0.025
Bed Slope : 1 in S;	V = cm/second
	Q = litres / sec

							S=11	n 2000	S=1	in 3000	S=1 in	4000
d	b	b/d	A	P	R	R(2/3)	٧	Q	٧	Q	٧	Q
cm	cm		sqm	m					1.00			~
40	70	1.8	0.36	1.59	0.23	0.37	33.2	119.4	27.1	97.5	23.5	84.4
40	80	2.0	0.40	1.69	0.24	0.38	34.2	136.7	27.9	111.6	24.2	96.6
40	90	2.3	0.44	1,79	0.25	0.39	35.0	154.2	28.6	125.9	24.8	109.0
40	100	2.5	0.48	1.89	0.25	0.40	35.8	171.9	29.2	140.4	25.3	121.6
40	110	2.8	0.52	1.99	0.26	0.41	36.5	189.8	29.8	155.0	25.8	134.2
40	120	3.0	0.56	2.09	0.27	0.42	37.1	207.9	30.3	169.7	26.2	147.0
42	110	2.6	0.55	2.04	0.27	0.42	37.3	205.5	30.5	167.8	26.4	145.3
42	120	2.9	0.59	2.14	0.28	0.42	38.0	225.0	31.0	183.7	26.9	159.1
44	110	2.5	0.58	2.08	0.28	0.43	38.2	221.7	31.2	181.0	27.0	156.7
44	120	2.7	0.62	2.18	0.29	0.43	38.8	242.6	31.7	198.1	27.5	171.6
45	90	2.0	0.51	1.91	0.27	0.41	37.0	187.1	30.2	152.8	26.1	132.3
45	100	2.2	0.55	2.01	0.27	0.42	37.8	208.4	30.9	170.1	26.7	147.4
45	110	2.4	0.60	2.11	0.28	0.43	38.6	229.9	31.5	187.7	27.3	162.6

_							L	Design of	Channe	als - Per	missible	velocity velocity
45	120	2.7	0.64	2.21	0.29	0.44	39.2	251,7	32.0	205.5	27.8	178.0
45	130	2.9	0.69	2.31	0.30	0.45	39.9	273.6	32.6	223,4	28.2	193.4
45	140	3.1	0.73	2.41	0.30	0.45	40.4	295.6	33.0	241.4	28.6	209.0
46	120	2.6	0.66	2.23	0.30	0.44	39.7	260.8	32.4	213.0	28.0	184.4
46	130	2.8	0.70	2.33	0.30	0.45	40.3	283.5	32.9	231.5	28.5	200.5
48	120	2.5	0.69	2.27	0.30	0.45	40.4	279.5	33.0	228.2	28.6	197.7
48	130	2.7	0.74	2.37	0.31	0.46	41.1	303.8	33.6	248.0	29.1	214.8
50	110	2.2	0.68	2.22	0.30	0.45	40.5	273.2	33.0	223.0	28.6	193.1
50	120	2.4	0.73	2.32	0.31	0.46	41,2	298.8	33.6	244.0	29.1	211,3
50	130	2.6	0.78	2.42	0.32	0.47	41.9	324.6	34.2	265.1	29.6	229.6
50	140	2.8	0.83	2.52	0.33	0.48	42.5	350.7	34.7	286.3	30.1	248.0
50	150	3.0	0.88	2.62	0.33	0.48	43.1	376.9	35.2	307.7	30.5	266.5
50	160	3.2	0.93	2.72	0.34	0.49	43.6	403.3	35.6	329.3	30.8	285.2
52	130	2.5	0.81	2.46	0.33	0.48	42.7	346.1	34.8	282.6	30.2	244.7
52	140	2.7	0.86	2.56	0.34	0.48	43.3	373.8	35.4	305.2	30.6	264.3
54	130	2.4	0.85	2.51	0.34	0.49	43.4	368.0	35.4	300.5	30.7	260.2
54	140	2.6	0.90	2.61	0.35	0.49	44.1	397.4	36.0	324.5	31.2	281.0
55	120	2.2	0.81	2.43	0.33	0.48	43.0	349.2	35.1	285.1	30.4	246.9
55	130	2.4	0.87	2.53	0.34	0.49	43.8	379.2	35.7	309.6	31.0	268.1
55	140	2.5	0.92	2.63	0.35	0.50	44.4	409.5	36.3	334.3	31.4	289.5
55	150	2.7	0.98	2.73	0.36	0.50	45.1	439.9	36.8	359.2	31.9	311.1
55	160	2.9	1.03	2.83	0.36	0.51	45.6	470.6	37.3	384.2	32.3	332.8
55	170	3.1	1.09	2.93	0.37	0.52	46.2	501.4	37.7	409.4	32.6	354.6
56	150	2.7	1.00	2.75	0.36	0.51	45.4	453.0	37.1	369.9	32.1	320.3
56	160	2.9	1.05	2.85	0.37	0.51	46.0	484.5	37.6	395.6	32.5	342.6
58	150	2.6	1.04	2.80	0.37	0.52	46.2	479.6	37.7	391.6	32.7	339.1
58	160	2.8	1.10	2.90	0.38	0.52	46.8	512.9	38.2	418.8	33.1	362.7

TABLE - B7 Trapezoidal Canal Section

Side Slope = 0.5 H to 1V; Bed Slope : 1 in S; n = 0.025 V = cm/second Q = litres / sec

							S = 1 in	2500	S=1ir	3000	S =1 in	4000
d	b	b/d	A	Р	R	R(2/3)	٧	Q	٧	Q	٧	Q
cm	cm	-	sqm	m						70.72520	Mendraci	and a contract
60	150	2.5	1.08	2.84	0.38	0.52	42.0	453.3	38.3	413.8	33.2	358.4
60	160	2.7	1.14	2.94	0.39	0.53	42.5	484.8	38.8	442.5	33.6	383.2
60	170	2.8	1.20	3.04	0.39	0.54	43.0	516.4	39.3	471.4	34.0	408.3
60	180	3.0	1.26	3.14	0.40	0.54	43.5	548.2	39.7	500.4	34.4	433.4
60	190	3.2	1.32	3.24	0.41	0.55	44.0	580.1	40.1	529.6	34.7	458.6
60	200	3.3	1.38	3.34	0.41	0.55	44.4	612.2	40.5	558.9	35,1	484.0
62	180	2.9	1.31	3.19	0.41	0.55	44.2	578.1	40.3	527.7	34.9	457.0
62	190	3.1	1.37	3.29	0.42	0.56	44.6	611.8	40.8	558.5	35.3	483.6
64	180	2.8	1.36	3.23	0.42	0.56	44.9	608.7	41.0	555.6	35.5	481.2
64	190	3.0	1.42	3.33	0.43	0.57	45.3	644.1	41.4	587.9	35.8	509.2
65	170	2.6	1.32	3.15	0.42	0.56	44.7	588.1	40.8	536.9	35.3	464.9
65	180	2.8	1.38	3.25	0.42	0.56	45.2	624.2	41.3	569.8	35.7	493.5
	190	2.9	1.45	3.35	0.43	0.57	45.7	660.4	41.7	602.9	36.1	522.1
65	200	3.1	1,51	3.45	0.44	0.58	46.1	696.9	42.1	636.1	36.5	550.9
65	210	3.2	1.58	3.55	0.44	0.58	46.5	733.4	42.5	669.5	36.8	579.8
65	220	3.4	1.64	3.65	0.45	0.59	46.9	770.2	42.8	703.1	37.1	608.9
65		2.9	1.47	3.38	0.44	0.57	46.0	677.0	42.0	618.0	36.4	535.2
66	190		1.54	3.48	0.44	0.58	46.5	714.3	42.4	652.1	36.7	564.7
66	200	3.0	1.52	3.42	0.45	0.58	46.7	710.6	42.6	648.7	36.9	561.8
68	190	2.8	1.59	3.52	0.45	0.59	47.1	749.7	43.0	684.4	37.2	592.7
68	200	2.9	1.65	3.57	0.46	0.60	47.8	785.8	43.6	717.3	37.8	621.2
70	200		1.72	3.67	0.47	0.60	48.2	826.9	44.0	754.9	38.1	653.7
70	210	3.0			0.47	0.61	48.6	868.2	44.4	792.6	38.5	686.4
70	220	3.1	1.79	3.77	0.48	0.61	49.0	909.7	44.8	830.4	38.8	719.1
70	230	3.3	1.86	3.87	0.49	0.62	49.4	951.2	45.1	868.4	39.1	752.0
70	240	3.4	1.93	3.97		0.62	49.8	993.0	45.4	906.5	39.3	785.0
70	250	3.6	2.00	4.07	0.49		49.3	908.7	45.0	829.5	39.0	718.
72	220	3.1	1.84	3.81	0.48	0.62		995.6	45.7	908.8	39.6	787
72	240	3.3	1.99	4.01	0.50	0.63	50.1	333.0	40.7	200.0	04.0	

-						L	Design of Channels - Permissible velocity							
74	220	3.0	1.90	3.85	0.49	0.62	50.0	950.0	456	967.2	20.0	751.0		
74	240													
177	540	3.4	2.05	4.05	0.51	0.63	50.8	1040.6	46.3	950.0	40.1	822.7		

TABLE - B8 Trapezoidal Canal Section

Side Slope = 0.5 H to 1V: Bed Slope : 1 in S;

n = 0.025

V = cm/second

Q = litres / sec

					***			1105 / 56				
d	b	b/d	А	D		n/2/21	S = 1 ir			in 4000	S=1 in	5000
cm	cm	D/U		P	R	R(2/3)	V	Q	٧	Q	V	Q
75	220	2.9	sqm 1.93	m 3.88	0.50	0.00	2000	000.0	222		VECT	4.000
75	240	3.2	2.08	4.08		0.63	45.9	886.3	39,7	767.5	35.5	686.
75	250	3.3	2.16		0.51	0.64	46.6	970.8	40.4	840.8	36.1	752.0
75	260	3.5	2.23	4.18	0.52	0.64	47.0	1013.3	40.7	877.6	36.4	784.9
75	270	3.6	2.31	4.28	0.52	0.65	47.3	1056.0	41.0	914.5	36.7	817.5
75	280	3.7		4.38	0.53	0.65	47.6	1098.7	41.3	951.5	36.9	851.1
76	240	3.2	2.38	4.48	0.53	0.66	47.9	1141.6	41.5	988.7	37.1	884.3
76			2.11	4.10	0.52	0.64	46.9	991.9	40.7	859.0	36.4	768.3
78	250	3.3	2,19	4.20	0.52	0.65	47.3	1035.3	41.0	896.6	36.6	801.9
	250	3.2	2.25	4.24	0.53	0.66	47.9	1079.7	41.5	935.0	37.1	836.3
78	260	3.3	2.33	4.34	0.54	0.66	48.2	1125.1	41.8	974.3	37.4	871.5
80	280	3.5	2.56	4.59	0.56	0.68	49.5	1267.0	42.9	1097.2	38.3	981.4
80	300	3.8	2.72	4.79	0.57	0.69	50.1	1362.4	43.4	1179.8	38.8	1055.
80	320	4.0	2.88	4.99	0.58	0.69	50.6	1458.2	43.8	1262.8	39.2	1129.
80	340	4.3	3.04	5.19	0.59	0.70	51.1	1554.4	44.3	1346.2	39.6	1204.
80	368	4.6	3,26	5.47	0.60	0.71	51.8	1689.7	44.8	1463.4	40.1	1308.
80	38	0.5	0.62	2.17	0.29	0.44	31.8	198.6	27.6	172.0	24.7	153.8
82	280	3.4	2.63	4.63	0.57	0.69	50.1	1318.5	43.4	1141.9	38.8	1021.3
82	300	3.7	2,80	4.83	0.58	0.69	50.7	1417.8	43.9	1227.8	39.3	1098.2
84	280	3.3	2.70	4.68	0.58	0.69	50.7	1370.9	43.9	1187.2	39.3	1061.9
84	300	3.6	2.87	4.88	0.59	0.70	51.3	1474.0	44.4	1276.5	39.7	1141.8
85	280	3.3	2.74	4.70	0.58	0.70	51.0	1397.4	44.1	1210.1	39.5	1082.4
85	300	3.5	2.91	4.90	0.59	0.71	51.6	1502.4	44.7	1301.1	40.0	1163.8
85	320	3.8	3.08	5.10	0.60	0.71	52.2	1608.0	45.2	1392.6	40.4	
35	340	4.0	3.25	5.30	0.61	0.72	52.7	1714.1	45.7	1484.4		1245.6
35	360	4.2	3,42	5.50	0.62	0.73	53.2	1820.5	46.1	1576.6	40.8	1327.7 1410.2

		3.59				D	esign of C	nanne	is - Pern	issible	Velo
380	4.5		5.70	0.63	0.73	53.7	1927.3	46.5	1669.1	41.6	149
10000		20162	000		0.71	51.9	1531.1	45.0	1326.0	40.2	118
0.700.00				F2 C 10 TV	0.72	52.5	1638.7	45.5	1419.1	40.7	12€
3-20-247	100000000000000000000000000000000000000	500.000	200	-	0.74	54.0	1964.0	46.8	1700,9	41.8	15%
500000		100000	(0.000)	2227	0.72	52.5	1589.0	45.5	1376.1	40.7	12:
	220 L	(2.16) 7.17	122300	10,400	777	53.1	1700.6	46.0	1472.8	41.1	131
	380 300 320 380 300 320	300 3.5 320 3.7 380 4.4 300 3.4	300 3.5 2.95 320 3.7 3.12 380 4.4 3.64 300 3.4 3.03	300 3.5 2.95 4.92 320 3.7 3.12 5.12 380 4.4 3.64 5.72 300 3.4 3.03 4.97	300 3.5 2.95 4.92 0.60 320 3.7 3.12 5.12 0.61 380 4.4 3.64 5.72 0.64 300 3.4 3.03 4.97 0.61	300 3.5 2.95 4.92 0.60 0.71 320 3.7 3.12 5.12 0.61 0.72 380 4.4 3.64 5.72 0.64 0.74 300 3.4 3.03 4.97 0.61 0.72	380 4.5 3.59 5.70 0.63 0.73 53.7 300 3.5 2.95 4.92 0.60 0.71 51.9 320 3.7 3.12 5.12 0.61 0.72 52.5 380 4.4 3.64 5.72 0.64 0.74 54.0 300 3.4 3.03 4.97 0.61 0.72 52.5	380 4.5 3.59 5.70 0.63 0.73 53.7 1927.3 300 3.5 2.95 4.92 0.60 0.71 51.9 1531.1 320 3.7 3.12 5.12 0.61 0.72 52.5 1638.7 380 4.4 3.64 5.72 0.64 0.74 54.0 1964.0 300 3.4 3.03 4.97 0.61 0.72 52.5 1589.0	380 4.5 3.59 5.70 0.63 0.73 53.7 1927.3 46.5 300 3.5 2.95 4.92 0.60 0.71 51.9 1531.1 45.0 320 3.7 3.12 5.12 0.61 0.72 52.5 1638.7 45.5 380 4.4 3.64 5.72 0.64 0.74 54.0 1964.0 46.8 300 3.4 3.03 4.97 0.61 0.72 52.5 1589.0 45.5	380 4.5 3.59 5.70 0.63 0.73 53.7 1927.3 46.5 1669.1 300 3.5 2.95 4.92 0.60 0.71 51.9 1531.1 45.0 1326.0 320 3.7 3.12 5.12 0.61 0.72 52.5 1638.7 45.5 1419.1 380 4.4 3.64 5.72 0.64 0.74 54.0 1964.0 46.8 1700.9 300 3.4 3.03 4.97 0.61 0.72 52.5 1589.0 45.5 1376.1	300 3.5 2.95 4.92 0.60 0.71 51.9 1531.1 45.0 1326.0 40.2 320 3.7 3.12 5.12 0.61 0.72 52.5 1638.7 45.5 1419.1 40.7 380 4.4 3.64 5.72 0.64 0.74 54.0 1964.0 46.8 1700.9 41.8 300 3.4 3.03 4.97 0.61 0.72 52.5 1589.0 45.5 1376.1 40.7

TABLE - B9 Trapezoidal Canal Section

Side Slope = 0.5 H to 1V; Bed Slope : 1 in S;

n = 0.025V = cm/second

Q = litres / sec

R(2/3) b/d sami m cm cm 37.1 1187.2 1327.4 45.4 4.81 0.61 0.72 3.1 2.93 280 90 1427.0 41.1 46.0 3.11 0.62 0.73 3.3 5.01 300 90 38.0 1366.0 41.6 46.5 1527.2 3.29 0.63 0.74 5.21 3.6 90 320 38.4 1456.0 47.0 1627.8 42.0 0.74 0.64 3,47 5.41 90 340 3.8 38.7 1546.3 47.4 1728.8 42.4 0.75 0.65 3.65 5.61 90 360 4.0 1830.2 42.8 1637.0 39.1 0.66 0.76 47.8 3.83 5.81 380 4.2 90 1322.5 37.9 41.5 1478.6 0.63 0.73 46.5 5.06 3.3 3.18 300 92 38.8 1508.5 42.5 0.65 47.5 1686.6 0.75 5.46 3.7 3.55 92 340 1561.8 39.2 42.9 1746.2 48.0 5.50 0.66 0.76 3.6 3.64 94 340 39.6 48.5 1854.5 43.4 1658.7 0.77 5,70 0.67 3.8 3.83 360 94 1393.0 38.5 1557.4 42.2 0.75 47.2 3.30 5.12 0.64 300 95 3.2 1490.6 39.0 42.7 47.7 1666.6 3.49 5.32 0.66 0.75 95 3.4 320 1588.7 39.4 43.2 48.3 1776.3 0.67 0.76 5.52 3.6 3.68 95 340 1687.3 39.8 48.7 1886.4 43.6 5.72 0.68 0.77 3.87 95 360 3.8 1786.2 40.1 44.0 1997.0 0.78 49.2 4.06 5.92 0.69 95 380 4.0 1885.4 40.5 44.3 49.6 2107.9 4.25 6.12 0.69 0.78 400 4.2 95 40.0 43.8 1716.0 0.77 49.0 1918.6 5.75 0.68 360 3.8 3.92 96 1816.6 0.78 49.4 2031.0 0.69 5.95 96 380 4.0 4.11 49.5 1983.5 1774.1 0.69 0.78 5.79 360 4.01 98 3.7 1878.0 40.8 2099.7 0.70 0.79 49.9 5.99 380 4.20 3.9

TABLE - B10 Trapezoidal Canal Section

Side Slope	= 0.5	H to	1V:
Bed Slope			cer!

n = 0.025 V = m/second

							Q =	Q = Cubic metre per second						
		E.C. Talvala			1000000	77.77 apres	S=	S = 1 in 4000		S = 1 in 5000		l in 6000		
ď	b	b/d	Α	Р	R	H(50)	V	Q	٧	Q	٧	Q		
1	3.4	3.4	3.90	5.64	0.69	0.78	0.5	1.9	0.4	1.7	0.4			
1	3.6	3.6	4.10	5.84	0.70	1 2 2 3 3 3 7	0.5	2.0	0.4	1.8	0.4	1.6		
1	3.8	3.8	4.30	6.04	0.71	0.80	0.5	2.2	0.5	1.9	0.4	1.7		
1	4.0	4.0	4.50	6.24	0.72	0.80	0.5	2.3	0.5	2.0	0.4	1.8		
1	4.2	4.2	4.70		0.73	0.81	0.5	2.4	0.5	2.2	0.4	1.9		
1	4.4	4.4	4.90	6.64	0.74	0.82	0.5	2.5	0.5		0.4	2.0		
1.1	4.0	3.6	5.01	6.46	0.77	0.84	0.5	2.7	0.5	2.3	0.4	2.1		
1.1	4.2	3.8	5.23	6.66	0.78	0.85	0.5	2.8	0.5		0.4	2.2		
1.1	4.4	4.0	5.45	6.86	0.79	0.86	0.5	3.0	0.5	2.5	0.4	2.3		
1.1	4.6	4.2	5.67	7.06	0.80	0.86	0.5	3.1	0.5	2.6	0.4	2.4		
1.1	4.8	4.4	5.89	7.26	0.81	0.87	0.5	3.2	0.5	2.8	0.4	2.5		
1.1	5.0	4.5	6.11	7.46	0.82	0.87	0.6	3.4	0.5	2.9	0.4	2.6		
1.2	4.8	4.0	6.48	7.48	0.87	0.91	0.6	3.7	0.5	3.0	0.5	2.8		
12	5.0	4.2	6.72	7.68	0.87	0.91	0.6	3.9	0.5	3.3	0.5	3.0		
1.2	5.2	4.3	6.96	7.88	0.88	0.92	0.6	4.1	0.5	3.5	0.5	3.2		
1.2	5.4	4.5	7.20	8.08	0.89	0.93	0.6	4.2	0.5	3.6	0.5	3.3		
1.2	5.6	4.7	7.44	8.28	0.90	0.93	0.6	4.4	0.5	3.8	0.5	3.4		
1.2	5.8	4.8	7.68	8.48	0.91	0.94	0.6	4.5	0.5		0,5	3.6		
1.3	5.5	4.2	8.00	8.41	0.95	0.97	0.6	4.9	0.5	4.1	0.5	3.7		
1.3	6.0	4.6	8.65	8.91	0.97	0.98	0.6	5.4		4.4	0.5	4.0		
1.3	6.2	4.8	8.91	9.11	0.98	0.99	0.6	5.5	0.6	4.8	0.5	4.4		
1.3	6.4	4.9	9.17	9.31	0.98	0.99	0.6	5.7	0.6	5.0	0.5	4.5		
1.3	6.8	5.2	9.69	9.71	1.00	1.00	0.6	6.1	0.6	5.1	0.5	4.7		
.3	7.0	5.4	9.95	9.91	1.00	1.00	0.6	6.3	0.6	5.5	0.5	5.0		
.4	6.0	4.3	9.38	9.13	1.03	1.02	0.6	6.0	0.6	5.6	0.5	5.1		
.4	6.5	4.6	10.08	9.63		1.03	0.7		0.6	5.4	0.5	4.9		
.4	7.0	5.0	10.78	10.13	1.06	1.04	0.7	6.6 7.1	0.6	5.9 6.4	0.5	5.4 5.8		

			3	66								
							L	esign of	Channe	els - Pe	rmissible	e velocity
1.4	7.2	5.1	11.06	10.33	1.07	1.05	0,7	7.3	0.6	6.5	0.5	6.0
1.4	7.4	5.3	11.34	10.53	1.08	1.05	0.7	7.5	0.6	6.7	0.5	6.2
1.4	8.0	5.7	12.18	11.13	1.09	1.06	0.7	8.2	0.6	7.3	0.5	6.7
1.5	6.0	4.0	10,13	9.35	1.08	1.05	0.7	6.8	0.6	6.0	0.5	5.5
1.5	6.5	4.3	10.88	9.85	1.10	1.07	0.7	7.3	0.6	6.6	0.6	6.0
1.5	7.0	4.7	11.63	10.35	1.12	1.08	0.7	7.9	0.6	7.1	0.6	6.5
1.5	7.5	5.0	12.38	10.85	1.14	1.09	0.7	8.5	0.6	7.6	0.6	7.0
1.5	8.0	5.3	13.13	11,35	1.16	1.10	0.7	9.1	0.6	8.2	0.6	7.5
1.5	8.5	5.7	13.88	11.85	1.17	1.11	0.7	9.7	0.6	8.7	0.6	8.0

TABLE - B 11 Trapezoidal Canal Section

	pozoriadi odiridi ocotioni
Side Slope = 0.5 H to 1V;	n = 0.025
Bed Slope : 1 in S;	V = m/second
	Q = Cubic metre per second

							S = 1 in	6000	S = 1 in	8000	S =1 in	10000
d	b	b/d	A	P	R	R(2/3)	٧	Q	٧	Q	٧	Q
m	m		sqm	m								
2.0	10.0	5.0	22.00	14.47	1,52	1.32	0.7	15.0	0.6	13.0	0.5	11.6
2.0	15.0	7.5	32.00	19,47	1.64	1.39	0.7	23.0	0.6	19.9	0.6	17.8
2.0	20.0	10.0	42.00	24,47	1.72	1.43	0.7	31.1	0.6	26.9	0.6	24.1
2.5	15.0	6.0	40.63	20.59	1.97	1.57	0.8	33.0	0.7	28.6	0.6	25.6
2.5	20.0	8.0	53.13	25.59	2.08	1.63	0.8	44.6	0.7	38.7	0.7	34.6
2.5	25.0	10.0	65.63	30.59	2.15	1.66	0.9	56.4	0.7	48.8	0.7	43.7
3.0	20.0	6.7	64.50	26.71	2.41	1.80	0.9	60.0	0.8	51.9	0.7	46.4
3.0	25.0	8.3	79.50	31.71	2.51	1.85	1.0	75.8	0.8	65.6	0.7	58.7
3.0	30.0	10.0	94.50	36.71	2.57	1.88	1.0	91.7	0.8	79.4	0.8	71.0
3.5	25.0	7.1	93.63	32.83	2.85	2.01	1.0	97.2	0.9	84.2	0.8	75.3
3.5	30.0	8.6	111.13	37.83	2.94	2.05	1.1	117.7	0.9	101.9	0.8	91.2
3.5	40.0	11.4	146,13	47.83	3.06	2.11	1.1	158.9	0.9	137.6	0.8	123.1
4.0	30.0	7.5	128.00	38.94	3.29	2.21	1.1	146.1	1.0	126.5	0.9	113.2
4.0	40.0	10.0	168.00	48.94	3.43	2.28	1.2	197.4	1.0	171.0	0.9	152.9
4.0	50.0	12.5	208.00	58.94	3.53	2.32	1.2	249.0	1.0	215.6	0.9	192.8
5.0	40.0	8.0	212.50	51.18	4.15	2.58	1.3	283.5	1.2	245.5	1.0	219.6
5.0	50.0	10.0	262,50	61.18	4.29	2.64	1.4	357.9	1.2	310.0	1.1	277.2
5.0	60.0	12.0	312,50	71.18	4.39	2.68	1.4	432.7	1.2	374.7	1.1	335.1

Table - C -1

Design of Channels - Permissible velocity

08.0 0.85

0.95

1.04

1.12

Allowable Velocity V = Cd 0.5 Depth 'd' in metres Velocity in meters per second

a minosios.	Tanada jan ana ana ana ana ana ana ana ana an						
	In BC and soft soil C = 0.47	In hard soil C = 0.6					
0.2	0.21	0.27					
0.4	48. Add 11	0.38					
0.6	0.33	0.42					
0.8	0.42	0.54					
1.0	0.47	0.60					
1.2	0.51	0.66					
3.4		0.71					

5.3.4 Depth of flow d.

Depth of flow d in a channel is a function of discharge. The formula suggested to arrive at the first approximation of 'd' is

 $d = K Q^{1/3}$

d = depth of flow in meters

K = Constant, 0.7

Q = Discharge in cumecs

The depth arrived at is for general guidance and values can be varied according to field conditions.

5 - 29

SECTION - C

5.3.0 Design of Open channels on the basis of maximum permissible velocity

5.3.1. Open channels which don't present silting problems are designed on principles of maximum permissible velocity:

maximum permissible velocity is the maximum velocity that will not cause erosion of the

Maximum permissible velocity depends on the depth of flow in the channel and soil characteristics.

5.3.2 The limiting velocity (upper limit) corresponding to depth of flow in the channel is arrived at adopting kennedy's expression.

V = Cd 0.5 (for clear water)

where, V = velocity in meter per second

C = 0.47 for B.C; siltyand softer soils.

C = 0.60 for murram, gravelly and hard soils.

d = depth of flow in the channel in meters.

5.3.3. Maximum allowable velocity.

Under normal conditions velocities may be limited as under.

In large earthen channels, 1.1 meter per second.

In small earthern channels., 0.75 metre per second.

However in B.C soils the maximum velocity may be limited to 0.5 meters per second.

2 (4) 30)

11023 (43)

Table C-2 (d = KQ 1/3)

Q in Litres per second	d in d Centimeters	Q in Cumecs	d in meters
20	20	4	1.1
80	30	5	1.2
200	40	6	13
400	50	8	1.4
600	60	10	1.5
1000	70	23	2.0
1500	80	80	3.0
2100	90	190	4.0
2900	100	370	5.0

5.3.5 Bed width to Depth ratios

Bed width to depth ratio in a channel depends upon many factors like cost of excavation, seepage characteristics of canal prism etc. Therefore bed width to depth ratios cannot be fixed rigidly in the unlined channels. Following b and d ratios are suggested for general guidance. These values are approximate and can be varied according to individual needs.

Bed width b may be arrived at taking into consideration the depth of flow d assumed and b to d ratio corresponding to the discharge of the channel.

Table - C-3

	Table - U-3	
Bed width to depth of flow ratios Discharge range		b/d
Upto 50 litres per second (0.0	5 cumes)	1 to 1.5
50 to 500 litres per second (0	.05 to 0.5 cumes)	1.5 to 2.0
500 to 5000 litres per second	(0.5 to 5 curnecs)	2 to 3.5
5 to 50 curnecs		35 to 6
50 to 200 cumecs		6 to 8
200 to 280 cumecs		8 to 10

5.3.6 Side Slopes of Canal The side slopes of a canal depend upon the stability of materials with which they are formed.

5.3.7 Water Side slope (Inner side slope/Upstream slope) If the bed filling is proposed, wherever required, 1.5 H to 1 V side slopes on waterside are adequate for all soil groups upto full supply depth of 0.5 meters.

In the channels where most of the reaches are either in partial cut and fill or bed filling the complication in mark out arising out of the adoption of different slopes in cutting and embankment will be avoided by confirming the entire canal section to a uniform inner side slope of 1.5 to 1. The slope need not be altered due to change in classification of soils, if the depth of cut is 3 meters or less. However in deep cutting reaches the inside slopes should be decided depending upon the strata met with.

5.3.8 Outer side slopes (Away from water side slope / Down - stream slope)
1.5 H to IV side slope is adequate for soil groups for the heights as indicated below.

- i) 5 metre height in GM, SM, CL, and CH of soils.
- ii) 9 metre height in SC type
- iii) 12 metre height in GC type

5.3.9 Rugosity Coefficient n

The value of rugosity coefficient varies according to physical roughness of the sides and bottom of the channel.

The value of n to be adopted in design depends upon the channel condition expected in future and the channel condition depends upon the standards of maintenance. Keeping this aspect in view it-is desirable that earthen channels are designed for n value of not less than 0.025.

Smaller channels (less than 0.3 cumec) may be designed with 'n' value equal to 0.0275.

5.3.10 Bed fall in the channel

If the general lay of the country is flat, the bed fall in the channel may be adopted equal to the fall of the country.

If the country has steep fall suitable bed slope may be adopted such that the velocity generated should be less than the allowable velocity.

5.3.11 Flow formula

Where

Manning's formula which is derived from Chezy's fundamental equation is generally used in design of open channels.

V = 1/n, R 2/3 , S 0.5

V = Mean velocity of flow in metres per second

R = Hydraulic mean depth (area over perimetre A/P)

S = Bed fall I in S

Discharge Q = A X V Cumecs.

5.3.12 Design example

Design of a channel of one currec carrying capacity having no silting problems. in BC Soils/Murrum soils.

(refer tables indicated - if necessary adopt interpolation)

1 st Step : Depth of flow from table 2 corresponding to Q

1 st approximation d = 0.7 metre.

2 nd Step : Allowable velocity from table 1 corresponding to 0.7m depth.

V = 39 Cm/sec BC soils

3 rd Step : Bed width from table 3

(0.7 X ratio corresponding to 1 curnec)

say b = 2.0 metres

4 th step: Inner side slopes as per para 7.

1.5 H to IV

5 th step : Rugosity Coefficient n as per para 9

n = 0.025

6 th Step: Choose typical sections from tables which are capable of carrying

one curnec flow

a) section suitable in B.C., soils

i) d = 70 cm.
 b = 280 cm.

S 1 in 4000

V = 40.2 cm./Second

Q = 1082 litres/Sec.

Section st	uitable in Hard soils		
2.	ii) $d = 70$ cm. b = 220 cm.		S 1 in 3000
			V = 44.9 cm./Second
			Q = 1021 litres/Sec.
	iii) d = 72 cm.		S 1 in 4000
	b = 200 cm.		2 1
	D = 200 01111	-	V = 44.9 cm./Second
			Q = 996 litres/Sec.
1		= 77	
	iv)d = 74 cm.		S 1 in 3000
	b = 200 cm.		V = 45.6 cm./Second
			Q = 1048 litres/Sec.
	v) d = 75 cm.		S 1 in 4000
	b = 220 cm.		
	PEARSTERNAMENT)		V = 40.0 cm./Second
			Q = 1005 litres/Sec.

Section with lesser depth may be adopted where sufficient driving head is not available in the parent canal.

Standards adopted in Sriram Sagar Project for distributaries

a) Velocity V = 1/n R ^{2/3} S ^{0.5}

b) Velocity limitation V = C d 0.5

C = 0.8 for BC soil and maximum limit of V is 0.45 m/s

C = 1.1 for murrum soils and maximum limit of V is 0.76 m/s

Rugosity coefficient 'n'

Channels of above 0.28 currecs n = 0.025

Channels of below 0.28 currecs n = 0.0275

Inner side slopes for design and construction.

In B.C. soils 2H to 1 side slopes in cutting and embankment In all other soils:

in cutting 1.5 H to 1 V in embankment 2 H to 1 V In all soils 2 H to 1 V

Outer side slopes in all soils 2 H to 1 V

Berms (in side). No berms are proposed in side the canal prism upto a depth of F.S.D + F.B.

Free Board

Above 4.25 cumec canals 0.90 metres 4.25 to 0.7 cumec canals 0.60 metres 0.70 to 0.03 curnec canals 0.45 metres

Top width of Banks.

Above 28.3 curnec canals 4.5/3.6 metres 8.5 to 28.3 cumec canals 4.5/1.8 metres 2.8 to 8.5 currec canals 3.6/1.8 metres 1.4 to 2.8 cumec canals 2.7/1.8 metres 0.28 to 1.4 cumec canals 1.8/1.2 metres below 0.28 cumec canals 0.9/0.9 metres (larger width to be on the ayacut side of canal)

Bed width to depth ratios, proposed in accordance with U.S.B.R. practice.

discharge	depth in metres	b/d
1 cumec	0.7	•1.8
2 cumec	0.9	2.2
10 cumec	1.6	3.1
50 cumec	2.8	5.8

Depth of dry cover saturated gradient. Saturated gradient assumed 4:1 in clayey soils

5:1 in murrum soils Cover 1.2 metres Above 8.5 cumecs canals cover 0.6 metres 4.3 to 8.5 cumecs canals Cover 0.3 metres Less than 4.3 cumecs canals

Width of Land Acquisition clear of banks.

 a) When the canal is in more than balancing depth of cutting. Half the height of bank subject to a minimum of 1.5 m and total width rounded to nearest multiples of 3.3 m (11 ft)

b) When the canal is in less than B.D.C.

Full height of bank plus 1.5 m and the total width rounded to the nearest multiple of 3.3 (11 ft).

Duty. 11.

Distributary to be designed for following peak duties

(40 acres per cusec) i) Paddy 571 Hectares/cumec (100 acres per cusec) ii) Irrigated dry 1429 Hectares/cumec

iii) Paddy and Irrigated dry

Determine the maximum discharge requirements during the over lap period from

1/11 to 10/11 taking paddy duty at

(50 acres/cusec) and 714 Hectares/cumec (115 acres/cusec) I.D. crop at 1643 Hectares/currec

The highest of the above three governs the design of channels depending upon the localised area.

Seepage losses:

- i) 2.44 cumecs per millions square metre of welted area in gravelly soils (8 cusecs per million sq.feet).
- ii) 1.52 curecs per million sq. metres (5 cusecs per million sq. feet) of wetted area in clay, clay loam light clay and clay looms.

The carrying capacity to be computed working from the tailend of each channel upwards to the head duly making allowances for seepage loss so as to ensure required water at each offtake.

- Supply condition in parent canal.
 a) Field channel sluices
 - (00 4 curneca or 1.5 cusecs & less)

b) In all other cases

Full supply condition in parent canal

Half supply condition in parent canal

14. Height of sill of Sluices

The driving head should not be less than 0.15 metre and 0.075 metre in case of distributaries and direct pipes respectively. If in any case it is not possible to get the driving head prescribed, the height of the sill should be reduced suitably to arrive at the minimum driving head.

TABLE - C4

	Slope =	1.5		d and		cms		P	in	metres		
n =	0.025			A in	Sq.m	ATTICO DE	173/200000000	٧	in	cm/sec	Q in	Lit/sec.
- 20	00						S = 1 in	1000	S=1i	n 2000	S=1 in	3000
ď	Ь	b/d	Α	Р	R	R(2/3)	٧	Q	٧	Q	٧	Q
20	20	1.0	0.10	0.92	0.11	0.23	28.8	28.8	20.4	20.4	16.6	16.6
20	30	1.5	0.12	1.02	0.12	0.24	30.3	36.4	21.5	25.8	17.5	21.0
20	40	2.0	0.14	1.12	0.12	0.25	31.6	44.2	22.3	31.3	18.2	25.5
20	50	2,5	0.16	1.22	0.13	0.26	32.6	52.2	23.1	36.9	18.8	30.1
20	60	3.0	0.18	1.32	0.14	0.26	33.5	60.3	23.7	42.6	19.3	34.8
20	70	3.5	0.20	1.42	0.14	0.27	34.2	68.4	24.2	48.4	19.8	39.5
22	30	1.4	0.14	1.09	0.13	0.25	31.9	44.2	22.6	31.3	18.4	25.5
22	40	1.8	0.16	1.19	0.13	0.26	33.2	53.4	23.5	37.7	19.2	30.8
24	40	1.7	0.18	1.27	0.14	0.27	34.8	63.4	24.6	44.9	20.1	36.6
24	50	2.1	0.21	1.37	0.15	0.28	35.9	74.1	25.4	52.4	20.7	42.8
25	40	1.6	0.19	1.30	0.15	0.28	35.5	68.8	25.1	48.7	20.5	39.7
25	50	2.0	0.22	1.40	0.16	0.29	36.7	80.2	25.8	56.7	21.2	46.3

25	60	2.4	0.24	1.50	0.16	0.30	37.6	91.8	26.6	64.9	21.7	53.0
25	70	2.8	0.27	1.60	0.17	0.30	38.5	103.4	27.2	73.1	22.2	59.7
25	80	3.2	0.29	1.70	0.17	0.31	39.2	115.2	27.7	81.5	22.6	66.5
25	90	3.6	0.32	1.80	0.18	0.32	39.9	127.1	28.2	89.9	23.0	73.4
26	40	1.5	0.21	1.34	0.15	0.29	36.3	74.5	25.7	52.7	20.9	43.0
26	50	1.9	0.23	1.44	0.16	0.30	37.4	86.6	26.5	61.2	21.6	50.0
28	50	1.7.2	0.26	1.51	0.17	0.31	38.9	100.2	27.5	70.9	22.5	57.9
28	60	1217	0.29	1.61	0.18	0.32	39.9	114.1	28.2	80.7	23.1	65.9
30	50	1.7	0.29	1.58	0.18	0.32	40.4	115.0	28.5	81.3	23.3	66.4
30	60	2.0	0.32	1.68	0.19	0.33	41.4	130.4	29.3	92.2	23.9	75.3
30	70	2.3	0.35	1.78	0.19	0.33	42.3	146.1	29.9	103.3	24.4	84.3
30	80	2.7	0.38	1.88	0.20	0.34	43.2	161.8	30.5	114.4	24.9	93.4
30	90	3.0	0.41	1.98	0.20	0.35	43.9	177.7	31.0	125.7	25.3	102.6
30	100	3.3	0.44	2.08	0.21	0.35	44.5	193.8	31.5	137.0	25.7	111.9
32	50	1.6	0.31	1.65	0.19	0.33	41.8	130.9	29.5	92.6	24.1	75.6
32	60	1.9	0.35	1,75	0.20	0.34	42.8	148.0	30.3	104.7	24.7	85.5
34	60	1.8	0.38	1.83	0.21	0.35	44.2	166.9	31.3	118.0	25.5	96.4
34	70	2.1	0.41	1.93	0.21	0.36	45.2	186.0	32.0	131.5	26.1	107.4
35	60	1.7	0.39	1.86	0.21	0.35	44.9	176.8	31.7	125.0	25.9	102.1
35	70	2.0	0.43	1.96	0.22	0.36	45.9	196.8	32.5	139.1	26.5	113.6
35	80	2.3	0.46	2.06	0.22	0.37	46.8	216.9	33.1	153.4	27.0	125.3
35	90	2.6	0.50	2.16	0.23	0.38	47.6	237.3	33.6	167.8	27.5	137.0
35	100	2.9	0.53	2.26	0.24	0.38	48.3	257.8	34.2	182.3	27.9	148.8
35	110	3.1	0.57	2.36	0.24	0.39	49.0	278.5	34.6	196.9	28.3	160.8
36	60	1.7	0.41	1.90	0.22	0,36	45.6	187.0	32.2	132.2	26.3	108.0
36	70	1.9	0.45	2.00	0.22	0.37	46.6	207.9	32.9	147.0	26.9	120.0
38	60	1.6	0.44	1.97	0.23	0.37	46.9	208.5	33.2	147.4	27.1	120.4
38	70	1.8	0.48	2.07	0.23	0.38	47.9	231.2	33.9	163.5	27.7	133.5
40	70	1.8	0.52	2.14	0.24	0.39	49.2	256.0	34.8	181.0	28.4	147.8
40	80	2.0	0.56	2.24	0.25	0.40	50.2	280.9	35.5	198.6	29,0	162.2
40	90	2.3	0.60	2.34	0.26	0.40	51.0	306.1	36.1	216.5	29.5	176.7
40	100	2.5	0.64	2.44	0.26	0.41	51.8	331.5	36.6	234.4	29.9	191.4
40	110	2.8	83.0	2.54	0.27	0.42	52.5	357.1	37.1	252.5	30.3	206.2
40	120	3.0	0.72	2.64	0.27	0.42	53.2	382.8	37.6	270.7	30.7	221.0
42	70	1.7	0.56	2.21	0.25	0.40	50.5	282.1	35.7	199.5	29.2	162.9
42	80	1.9	0.60	2.31	0.26	0.41	51.5	309.1	36,4	218.6	29.7	178,5
44	70	1.6	0.60	2.29	0.26	0.41	51.8	309.7	36.6	219,0	29.9	178.8
44	80	1.8	0.64	2.39	0.27	0.42	52.7	338.8	37,3	239.5	30.4	195.6

and the same	-	-
-1	الإنت	X.
J	0.00	u.

2.3

3.81

1.57

0.41

2.32 0.27

2.72 0.29

0.27

0.28

0.29

0.30

0.28

0.29

0.29

2.42

2.52

2.62

2.82

2.46

2.56

2.53

2.63

0.41

0.42

0.43

0.44

0.44

0.45

0.43

0.43

52.4

53.4

54.3

55.1

55.8

56.6

54.0

54.9

55.2

0.62

0.66

0.71

0.75

0.80

0.84

0.69

0.73

0.73

0.78

1.6

1.8

2.2

2.7

1.7

2.0

1.7

110

120

80

45

			7-21	2			D	esign of (Channe	ls - Perr	nissible	velocity
58	120	2.1	1.20	3.29	0.36	0.51	45.7	548.2	37.3	447.6	32.3	387.7
58	140	2.4	1.32	3.49	0.38	0.52	46.7	614.7	38.1	501.9	33.0	434.6
60	120	2.0	1.26	3.36	0.37	0.52	46.5	585.7	38.0	478.2	32.9	414.1
60	140	2.3	1.38	3.56	0.39	0.53	47.5	655.8	38.8	535.5	33.6	463.7
60	150	2.5	1.44	3.66	0.39	0.54	48.0	691.1	39.2	564.3	33.9	488.7
60	160	2.7	1.50	3.76	0.40	0.54	48.4	726.6	39.6	593.3	34.3	513.8
60	180	3.0	1.62	3.96	0.41	0.55	49.3	798.0	40.2	651.6	34.8	564.3
60	200	3.3	1.74	4.16	0.42	0.56	50.0	870.0	40.8	710,3	35.4	615.2
62	130	2.1	1.38	3.54	0.39	0.53	47.8	661.3	39.1	540.0	33.8	467.6
62	140	2.3	1_44	3.64	0.40	0.54	48.3	698.4	39.5	570.2	34.2	493.8

TABLE - C5

Design of Channels - Permissible velocity

229.1 30.2

250.4 30.8

271.9 31.3

293.6 31.8

315.4 32.2

337.4 32.7

261.6 31.2

283.9 31.7

187.1

204.5

222.0

239.7

257.6

275.5

213.6

231.8

232.5

252.0

324.1 37.0

37.7

38.4

39.0

39.5

40.0

38.2

354.2

384.6

415.2

446.1

477.2

370.0

401.5

402.8

436.5

Side	Slope =	1.5		d and	b in	cms		P	in	metres		
n=	0.025			A in		Sq.m		V	in	cm/sec	Q in	Lit/sec
							S = 1 in	2000	S = 1	in 3000	S=1 in	4000
d	b	b/d	Α	Р	R	R(2/3)	٧	Q	٧	Q	٧	Q
50	90	1.8	0.83	2.70	0.31	0.45	40.5	334.5	33.1	273.1	28.7	236.5
50	100	2.0	0.88	2.80	0.31	0.46	41.2	360.2	33.6	294.1	29.1	254.7
50	120	2.4	0.98	3.00	0.32	0.47	42.3	412.0	34.5	336.4	29.9	291.3
50	140	2.8	1.08	3.20	0.34	0.48	43.2	464.4	35.3	379.2	30.5	328.4
50	150	3.0	1.13	3.30	0.34	0.49	43.6	490.8	35.6	400.7	30.8	347.0
50	160	3.2	1.18	3.40	0.35	0.49	44.0	517.3	35.9	422.4	31.1	365.8
52	100	1.9	0.93	2.87	0.32	0.47	42.0	388.9	34.3	317.5	29.7	275.0
52	120	2.3	1.03	3.07	0.33	0.48	43.1	444.1	35.2	362.6	30.5	314.0
54	100	1.9	0.98	2.95	0.33	0.48	42.9	418.9	35.0	342.0	30.3	296.2
54	120	2.2	1.09	3.15	0.34	0.49	44.0	477.5	35.9	389.8	31.1	337.6
55	100	1.8	1.00	2.98	0.34	0.48	43.3	434.3	35.3	354.6	30.6	307.1
55	120	2.2	1.11	3.18	0.35	0.50	44.4	494.6	36.3	403.9	31.4	349.8
55	140	2.5	1.22	3.38	0.36	0.51	45.4	555.7	37.1	453.7	32.1	392.9
55	150	2.7	1.28	3.48	0.37	0.51	45.9	586.4	37.4	478.8	32.4	414.7
55	160	2.9	1.33	3.58	0.37	0.52	46.3	617.3	37.8	504.0	32.7	436.5
55	180	3.3	1.44	.3.78	0.38	0.53	47.1	679.4	38.4	554.7	33.3	480.4
56	120	2.1	1.14	3.22	0.35	0.50	44.8	512.2	36.6	418.2	31.7	362.2
56	140	2.5	1.25	3.42	0.37	0.51	45.8	575,0	37.4	469.5	32.4	406.6

TABLE - C6

781.6

40.5

0.56

638.2

Side	Slope =	1.5		d and	b in	cms		P V	in	metres		
n =	0.025			A in	Sq.m			V =	in	cm/sec	Q in	Lit/sec.
							S=1 in	3000	S = 1	n 4000	S=1 in	5000
d	ь	b/d	Α	P	R	$R^{(2/3)}$	٧	Q	٧	Q	٧	Q
65	140	2.2	1.54	3.74	0.41	0.55	40.5	624.6	35.0	540.9	31.3	483.8
65	150	2.3	1.61	3.84	0.42	0.56	40.9	657.4	35.4	569.3	31.7	509.2
65	160	2.5	1.67	3.94	0.42	0.56	41.2	690.3	35.7	597.8	31.9	534.7
65	180	2.8	1.80	4.14	0.44	0.57	41.9	756.6	36.3	655.2	32.5	586.1
65	200	3.1	1.93	4.34	0.45	0.58	42.6	823.4	36.9	713.1	33.0	637.8
65	220	3.4	2.06	4.54	0.45	0.59	43.2	890.6	37.4	771.2	33.4	689,8
66	150	2.3	1.64	3.88	0.42	0.56	41.2	676.9	35.7	586.2	31.9	524.3
66	160	2.4	1.71	3.98	0.43	0.57	41.6	710.7	36.0	615.5	32.2	550.5
66	180	2.7	1.84	4.18	0.44	0.58	42.3	778.6	36.6	674.3	32.8	603.1
66	200	3.0	1.97	4.38	0.45	0.59	42.9	847.0	37.2	733.5	33.2	656.1
66	220	3.3	2.11	4.58	0.46	0.60	43.5	915.9	37.7	793.2	33.7	709.4
66	240	3.6	2.24	4.78	0.47	0.60	44.0	985.1	38.1	853.1	34.1	763.0
68	150	2.2	1.71	3.95	0.43	0.57	41.8	716.9	36.2	620.9	32.4	555.3
68	160	2.4	1.78	4.05	0.44	0,58	42.2	752.3	36.6	651.6	32.7	582.8
68	180	2.6	1.92	4.25	0.45	0.59	42.9	823.6	37.2	713.3	33.3	638.0
68	200	2.9	2.05	4.45	0.46	0.60	43.6	895.4	37.8	775.4	33.8	693.6

730	2	20	-
	X	-58	0
	-	16,07	100

velocity	nissible	ls - Pern	hanne	esign of C	D	1	39					
749.5	34.2	838.0	38.3	967.3	44.2	0.61	0.47	4.65	2.19	3.2	220	68
805.7	34.6	900.9	38.7	1040.2	44.7	0.61	0.48	4.85	2.33	3.5	240	68
673.9	33.8	753.4	37.8	869.9	43.6	0.60	0.46	4.32	2.00	2.6	180	70
732.1	34.3	818.5	38.3	945.1	44.3	0.61	0.47	4.52	2.14	2.9	200	70
790.7	34.8	884.0	38.9	1020.8	44.9	0.61	0.48	4.72	2.28	3.1	220	70
849,6	35.2	949.9	39.3	1096.9	45.4	0.62	0.49	4.92	2.42	3.4	240	70
908.9	35.6	1016.1	39.8	1173.3	45.9	0.63	0.50	5.12	2.56	3.7	260	70
968.3	35.9	1082.6	40.2	1250.1	46.4	0.64	0.51	5.32	2.70	4.0	280	70
710.8	34.3	794.7	38.3	917.6	44.3	0.61	0.47	4.40	2.07	2.5	180	72
771.7	34.8	862.8	38.9	996.3	44.9	0.62	0.48	4.60	2.22	2,8	200	72
748.8	34.8	837.2	38.9	966.7	44.9	0.61	0.48	4.47	2.15	2.4	180	74
812.5	35.3	908.4	39.5	1048.9	45.6	0.62	0.49	4.67	2.30	2.7	200	74
768.2	35.0	858.9	39.2	991.7	45.2	0.62	0.49	4.50	2.19	2.4	180	75
833.2	35.6	931.6	39.7	1075.7	45.9	0.63	0.50	4.70	2.34	2.7	200	75
898.7	36.0	1004.8	40.3	1160.2	46.5	0.64	0.51	4.90	2.49	2.9	220	75
964.6	36.5	1078.4	40.8	1245.2	47.1	0.64	0.52	5.10	2.64	3.2	240	75
1030.7	36.9	1152.4	41.2	1330.7	47.6	0.65	0.53	5.30	2.79	3.5	260	75
1097.3	37.3	1226.7	41.7	1416.5	48.1	0.66	0.53	5.50	2.94	3.7	280	75
787.9	35.3	880.9	39.4	1017.1	45.5	0.62	0.49	4.54	2.23	2.4	180	76
854.3	35.8	955.1	40.0	1102.9	46.2	0.63	0.50	4.74	2.39	2.6	200	76
828.0	35.7	925.8	40.0	1069.0	46.1	0.63	0.50	4.61	2.32	2.3	180	78
897.3	36.3	1003.2	40.6	1158.4	46.8	0.64	0.51	4.81	2.47	2.6	200	78
941.4	36.8	1052.5	41.1	1215.3	47.5	0.65	0.52	4.88	2.56	2.5	200	80
1123.7	38.0	1256.3	42.4	1450.6	49.0	0.67	0.55	5.38	2.96	3.1	250	80
1160.4	38.2	1297.4	42.7	1498.1	49.3	0.67	0.55	5.48	3.04	3.3	260	80
1234.1	38.6	1379.8	43.1	1593.3	49.8	0.68	0.56	5.68	3.20	3.5	280	80
1308.2	38.9	1462.6	43.5	1688.9	50.3	0.69	0.57	5.88	3.36	3.8	300	80
1382.5	39.3	1545.7	43.9	1784.8	50.7	0.69	0.58	6.08	3.52	4.0	320	80
986.6	37.3	1103.1	41.6	1273.7	48.1	0.66	0.53	4.96	2.65	2.4	200	82
1176.3	38.5	1315.1	43.0	1518.5	49.6	0.68	0.56	5.46	3.06	3.0	250	82
1033.0	37.7	1154.9	42.2	1333.6	48.7	0.67	0.54	5.03	2.74	2.4	200	84
1230.1	38.9	1375.3	43.5	1588.1	50.3	0.69	0.57	5.53	3.16	3.0	250	84
1056.6	38.0	1181.3	42.4	1364.1	49.0	0.67	0.55	5.06	2.78	2.4	200	85
1257.5	39.2	1405.9	43.8	1623.4	50,6	0.69	0.58	5.56	3.21	2.9	250	85
1298.0	39.4	1451.2	44.1	1675.7	50.9	0.70	0.58	5.66	3.29	3.1	260	85
1379.3	39.8	1542.1	44.5	1780.7	51.4	0.70	0.59	5.86	3.46	3.3	280	85
1460.9	40.2	1633.4	44.9	1886.0	51.9	0.71	0.60	6.06	3.63	3.5	300	85
1542.9	40.6	1725.0	45.3	1991.8	52.4	0.72	0.61	6.26	3.80	3.8	320	85

86	200	2.3	2.83	5.10	0.55	0.68	49.3	1395.0	42.7	1208.1	38.2	1080.5
86	250	2.9	3.26	5.60	0.58	0.70	50.9	1659.2	44.1	1436.9	39.4	1285,2
88	200	2.3	2.92	5.17	0.56	0.68	49.9	1457.8	43.2	1262.5	38.7	1129.2
88	250	2.8	3.36	5.67	0.59	0.71	51.5	1732.0	14.6	1499.9	39.9	1341.6
90	240	2.7	3.38	5.64	0.60	0.71	51.8	1749.2	44.9	1514.9	40.1	1354,9
90	260	2.9	3.56	5.84	0.61	0.72	52.4	1863.7	45.4	1614.0	40.6	1443.6
90	280	3.1	3.74	6.04	0.62	0.73	53.0	1978.7	45.9	1713.6	41.0	1532.7
90	300	3.3	3.92	6.24	0.63	0.73	53.5	2094.3	46.3	1813.7	41.4	1622.2
90	320	3.6	4.10	6.44	0.64	0.74	54.0	2210.2	46.7	1914.1	41.8	1712.0
90	340	3.8	4.28	6.64	0.64	0.75	54.4	2326.6	47.1	2014.9	42.2	1802,2
92	240	2.6	3.48	5.72	0.61	0.72	52.4	1823.3	45.4	1579.0	40.6	1412.3
92	260	2.8	3.66	5.92	0.62	0.73	53.0	1941.8	45.9	1681.7	41.1	1504.1
94	240	2.6	3.58	5.79	0.62	0.73	53.0	1898.9	45,9	1644.5	41.1	1470.9
94	260	2.8	3.77	5.99	0.63	0.73	53.6	2021.7	46.4	1750.8	41.5	1566.0
95	260	2.7	3.82	6.03	0.63	0.74	53.9	2067.2	46.7	1785.9	41.8	1597.4
95	280	2.9	4.01	6.23	0.64	0.75	54.5	2187.6	47.2	1894.6	42.2	1694.5
95	300	3.2	4.20	6.43	0.65	0.75	55.0	2313.7	47.7	2003.7	42.6	1792.2
95	320	3.4	4.39	6.63	0.66	0.76	55.5	2440.2	48.1	2113.3	43.0	1890.2
95	340	3.6	4.58	6.83	0.67	0.77	56.0	2567.2	48.5	2223.2	43.4	1988.5
95	360	3.8	4.77	7.03	0.68	0.77	56.4	2694.6	48.9	2333.6	43.7	2087.2
96	260	2.7	3.88	6.06	0.64	0.74	54.2	2103.2	47.0	1821.4	42.0	1629.1
96	280	2.9	4.07	6,26	0.65	0.75	54.8	2230.7	47.5	1931.9	42.5	1727.9
98	260	2.7	3.99	6.13	0.65	0.75	54.8	2186.4	47.5	1893.5	42.5	1693.6
98	280	2.9	4.18	6.33	0.66	0.76	55.4	2318.3	48.0	2007.7	42.9	1795.7

TABLE - C6a

Slde	Slope =	1.5		d and	b in	m		Р	in	metres		
	0.025			A in	Sq.m			٧	in	m/sec	Q in Cu	mecs
							S = 1 in	3000	S=1	in 4000	S =1 in	5000
d	b	b/d	Α	P	R	P(2/3)	٧	Q	٧	Q	٧	Q
1	2.6	2.8	4.10	6.21	0.66	0.76	0.6	2.3	0.5	2.0	0.4	1.8
1	2.8	4.8	4.30	6.41	0.67	0.77	0.6	2.4	0.5	2.1	0.4	1.9
1	3.0	3.0	4.50	6.61	0.68	0.77	0.6	2.5	0.5	2.2	0.4	2.0
1	3.2	3.2	4.70	6.81	0.69	0.78	0.6	2.7	0.5	2.3	0.4	2.1
1	3.4	3.4	4.90	7.01	0.70	0.79	0.6	2.8	0.5	2.4	0.4	2.2

							ı	Jesign o	Chann	els - Pe	rmissibl	e velocity
1	3.6	3.6	5.10	7.21	0.71	0.79	0.6	3,0	0.5	2.6	0.4	2.3
1	3.8	3,8	5,30	7.41	0.72	0.80	0.6	3.1	0.5	2.7	0.5	2.4
1	4.0	4.0	5.50	7.61	0.72	0.81	0.6	3.2	0.5	2.8	0.5	2.5
1	4.2	4.2	5.70	7.81	0.73	0.81	0.6	3.4	0.5	2.9	0.5	2.6
1.1	2.8	2.5	4.90	6.77	0.72	0.81	0.6	2.9	0.5	2.5	0.5	2.2
1.1	3.0	2.7	5.12	6.97	0.73	0.81	0.6	3.0	0.5	2.6	0.5	2.4
1.1	3.2	2.9	5.34	7.17	0.74	0.82	0.6	3.2	0.5	2.8	0.5	2.5
1.1	3.4	3.1	5.56	7.37	0.75	0.83	0.6	3.4	0.5	2.9	0.5	2.6
1.1	3.6	3.3	5.78	7.57	0.76	0.84	0.6	3.5	0.5	3.1	0.5	2.7
1.1	3.8	3.5	6.00	7.77	0.77	0.84	0.6	3.7	0.5	3.2	0.5	2.9
1.1	4.0	3.6	6.22	7.97	0.78	0.85	0.6	3.8	0.5	3.3	0.5	3.0
1.1	4.2	3.8	6.44	8.17	0.79	0.85	0.6	4.0	0.5	3.5	0.5	3.1
1.1	4.4	4.0	6.66	8.37	0.80	0.86	0.6	4.2	0.5	3.6	0.5	3.2
1.2	3.0	2.5	5.76	7.33	0.79	0.85	0.6	3.6	0.5	3.1	0.5	2.8
1.2	3.6	3.0	6.48	7.93	0.82	0.87	0.6	4.1	0.6	3.6	0.5	3.2
1.2	4.0	3.3	6.96	8.33	0.84	0.89	0.6	4.5	0.6	3.9	0.5	3.5
1.2	4.2	3.5	7.20	8.53	0.84	0.89	0.7	4.7	0.6	4.1	0.5	3.6
1.2	4.4	3.7	7.44	8.73	0.85	0.90	0.7	4.9	0.6	4.2	0.5	3.8
1.2	4.6	3.8	7.68	8.93	0.86	0.90	0.7	5.1	0.6	4.4	0.5	3.9
1.2	4.8	4.0	7.92	9.13	0.87	0.91	0.7	5.3	0.6	4.6	0.5	4.1
1.2	5.0	4.2	8.16	9.33	0.87	0.91	0.7	5.5	0.6	4.7	0.5	4.2
1.2	5.2	4.3	8.40	9.53	0.88	0.92	0.7	5.6	0.6	4.9	0.5	4.4

TABLE - C7

Side	Slope =	1.5		d and	b in	m		Р	in	metrcs			
n=	0.025			A in	Sq.m			٧	in	m/sec	Q in Ca	imecs	
							S = 1 in	4000	S = 1	in 5000	S =1 in	6000	
d	ь	b/d	Α	P	A	R(2/3)	٧	Q	٧	Q	٧	Q	
1.3	3.5	2.7	7.09	8.19	0.87	0.91	0.57	4.07	0.51	3.64	0.47	3.32	
1.3	4.0	3.1	7.74	8.69	0.89	0.93	0.59	4.53	0.52	4.05	0.48	3.70	
1.3	4.5	3.5	8.39	9.19	0.91	0.94	0.60	4.99	0.53	4.46	0.49	4.07	
1.3	5.0	3.8	9.04	9.69	0.93	0.95	0.60	5.45	0.54	4.88	0.49	4.45	
1.3	5.5	4.2	9.69	10.19	0.95	0.97	0.61	5.92	0.55	5.30	0.50	4.84	
1.3	6.0	4.6	10.34	10.69	0.97	0.98	0.62	6.39	0.55	5.72	0.50	5.22	
1.4	4.0	2.9	8.54	9.05	0.94	0.96	0.61	5.20	0.54	4.65	0.50	4.24	

			1000	7			U	esign or i	SHAINIE	10 - 1 011	INSANDIE	velocity
1.4	4.5	3.2	9.24	9.55	0.97	0.98	0.62	5.72	0.55	5.11	0.51	4.67
1.4	5.0	3.6	9.94	10.05	0.99	0.99	0.63	6.24	0.56	5.58	0.51	5.10
1.4	5.5	3.9	10.64	10.55	1.01	1.01	0.64	6.77	0.57	6.05	0.52	5.53
1.4	6.0	4.3	11.34	11.05	1.03	1.02	0.64	7.30	0.58	6.53	0.53	5.96
1.4	6.5	4.6	12,04	11.55	1.04	1.03	0.65	7.83	0.58	7.00	0.53	6.39
1.5	4.0	2.7	9,38	9.41	1.00	1.00	0.63	5.92	0.56	5.29	0.52	4.83
1.5	4.5	3.0	10.13	9.91	1.02	1.01	0.64	6.50	0.57	5.81	0.52	5.30
1.5	5.0	3.3	10.88	10.41	1.04	1.03	0.65	7.08	0.58	6.33	0.53	5.78
1.5	5.5	3.7	11.63	10.91	1.07	1.04	0,66	7.67	0.59	6.86	0.54	6.26
1.5	6.0	4.0	12.38	11.41	1.08	1.06	0.67	8.26	0.60	7,39	0.55	6.75
1.5	7.0	4.7	13.88	12.41	1.12	1.08	0.68	9.45	0.61	8.46	0.56	7.72
1.6	4.0	2.5	10.24	9.77	1.05	1.03	0.65	6.68	0.58	5.98	0.53	5.46
1.6	6.0	3.8	13.44	11.77	1.14	1.09	0.69	9.29	0.62	8.31	0.56	7.58
1.6	8.0	5.0	16.64	13.77	1.21	1.13	0.72	11.94	0.64	10.68	0.59	9.75
1.7	6.0	3.5	14.54	12.13	1.20	1.13	0.71	10.37	0.64	9.28	0.58	8.47
1.7	8.0	4.7	17.94	14.13	1.27	1.17	0.74	13.30	0,66	11.89	0.61	10.86
1.7	10.0	5.9	21.34	16.13	1.32	1.20	0.76	16.26	0.68	14.54	0.62	13.28
1.8	6.0	3.3	15.66	12.49	1.25	1.16	0.74	11.52	0.66	10.30	0.60	9.40
1.8	8.0	4.4	19.26	14.49	1.33	1.21	0.76	14.73	0.68	13.17	0.62	12.02
1.8	10.0	5.6	22.86	16.49	1.39	1.24	0.79	17.98	0.70	16.08	0.64	14.68
1.9	6.0	3.2	16.82	12.85	1.31	1.20	0.76	12.72	0.68	11.38	0.62	10.39
1.9	8.0	4.2	20,62	14.85	1.39	1.24	0.79	16.22	0.70	14.51	0.64	13.25
1.9	10.0	5.3	24.42	16.85	1.45	1.28	0.81	19.77	0.72	17.68	93.0	16.14
2	8.0	4.0	22.00	15.21	1.45	1.28	0.81	17.79	0.72	15.92	0.66	14.53
2	10.0	5.0	26.00	17.21	1.51	1.32	0.83	21.65	0.74	19.36	0.68	17.68
2	12.0	6.0	30.00	19.21	1.56	1.35	0.85	25.54	0.76	22.84	0.70	20.85
2.5	10.0	4.0	34.38	19.01	1.81	1.48	0.94	32.26	0.84	28.86	0.77	26.34
2.5	12.0	4.8	39,38	21.01	1.87	1,52	0.96	37.85	0.86	33.85	0.78	30.90
2.5	14.0	5.6	44.38	23.01	1.93	1.55	0.98	43.48	0.88	38.89	0.80	35.50

Courtesy: "Guide to Design of Irrigation Channels" by Ch. Venkata Ramaiah.

Allowable velocites: As per C.B.I.P. Publication No. 171

STANDARDS FOR CANALS AS PER IS STANDARDS

- Canal Discharge:
- Crop water requirement by Modified Penman Method.
- Seepage Loses: Lines -0.6 Cumecs / Million sq.m. of wetted surface.

(Note in cl 2:1 (a) of IS: 10430 - 1982

Unlined - 1. 1.85 to 2.40 Curnescs / Million Sq.ms of wetted Surface. (20% Extra for Distributory System (Ci. 3.34.1 (h) of Civil Engineer's Hand Book).

2.44 Curnecs / Million Sq.ms of W.S. in gravelly soils

1.52 Cumecs / Million Sq.ms of W.S. in clay, clay loam;

(Cl. 12, 5-35 of Civil Engineer's Hand Book)

2. C.W.C. Bed width to depth ratios as per draft manual on irrigation channels, C.W.C. Water-wing, New Delhi, 1960

5.No.	Ratio, Discharge in Cum/second	B/D	S.No.	Discharge in Cum/second	B/D
1.	0.283	2.9	13.	11.327	5.7
2.	0.425	3.0	14.	14.158	6.0
3,	0.566	3.2	15.	28.317	7.4
4.	0.850	3.4	16.	33.980	7.9
5.	1.133	3.6	17.	39.644	8.2
6.	1.416	3.7	18.	45.307	
7.	2.124	4.0	19.	50.634	8.6
8.	2.832	4.2	20.	56.634	9.0
9.	3.540	4.4	21.	70.792	9.5
10.	4.247	4.6	22.	84.950	10.1
11.	5.663	4.8	23.	283.170	11.0
12.	8.495	5.1	24.	203.170	19.2

- Critical velocity ratio v/vo:
 - i) Diversions, silt carrying unlined canals 1.1 0.90 (Head Tail end)
 - fi) Lined canals, v / vo > 1 is preferable.

Vo = 0.39 d 0.55 For Godavari Delta System

Vo = 0.53 d 0.53 For Krishna Delta System

Coe, of Rugosity 'n':

Lined canal - 0.018 Normal alluvial soils - 0.0025

& Murum

Rocky strata

- 0.03 - 0.035

	1.	Unlined canals - Recommended Velocities		2.7
	1.	All Soils Hard clay or grit	0.6 to 1.1m/sec 1.0 to 1.5m/sec	1.
	3. 4. 5. 6.	Gravel and shingle Cemented gravel conglomite, hard pan Soft Rock Hard rock	1.5 to 1.8m/sec 1.8 m/sec 1.4 m/sec.	
	7. II.	Very Hard Rock Lined canals - For CC lining max permissible	2.4 m/sec. 4.5 m/sec. le velocity - 2.7 m/s	- 8
1)		e slopes :	317 1111 25	

	- CT. 1 T - A	-		_
e)	Side	slo	pes	

a) Canal in cutting . 1.5:1

b) Canal in banking - 2:1 (Inner / Outer)

- 0.5: 1 / 0.25: 1 (According to classification of Rocks) c) Canal in rock

Free Board: (vide IS 7112 - 1973 and IS 10436 - 2000) For unlined canal : > 10 cumes - 0.75 m. < 10 cumecs - 0.50 For lined canal : > 10 cumecs - 0.75 m + 0.15 m 3 to 10 cumecs - 0.60 + 0.15 m 1 to 3 cumecs - 0.50 + 0.15 m

BERMS:

1st berm FSL + FB

2nd, 3rd Berm - a) around 5m height

b) upto 7.5 m height at the Ground Level.

Minimum Berm width - 3.0 m

- Dowels : on both the banks (vide IS 7112 1973 and IS 10430 2000).
- Bank Top widths: (vide IS 10430 2000)

Unlined and Lined canals:

ischarge (m3/sec)	Minin	num Bank Top	Width (m)
	Inspection bank /		Inspection is

	Inspection bank / wider bank (including dowel)	Non Inspection bank / other bank	
0.15 to 3.0	4.0	2.5	
3.0 to 10.0	4.0+dowel	2.5	
10.0 to 30.0	5.0+dowel	4	
30.0 and above	6.0+dowel	5	

3. Radii of curvature : IS 5968 - 1987

RADII OF CURVES FOR CANALS

(Clause 6.4)

UNLINED CANA	1.5	LINED CA	NALS
Discharge	Radius, Min	Discharge	Radius, Min
(1)	(2)	(3)	(4)
m³/s	m	m³/s	m ···
80 and above	1500	280 and above	900
Less than 80 to 30	1000	Less than 280 to 200	750
Less than 30 to 15	600	Less than 200 to 200	600
Less than 15 to 3	300	Less than 140 to 200	450
Less than 3 to 0.3	150	Less than 70 to 200	300
Less than 0.3	90	Less than 40 to 200	200
		Less than 10 to 200	150
	10.5	Less than 3 to 200	100
		Less than 0.3	50

Note: 1. The above radii are not applicable to unlined canals located in hilly relies and highly permeable soils.

Note: 1. On lined canals where the above radii may not be provided proper super-elevation shall be provided.

and the second of the second o

<u>Chapter - 6</u> Guide Lines for Pump Selection for Lift Irrigation Schemes

	Introduction	6-1
*	Pump selection procedure for Horizontal centrifugal pumps	6-4
	Model pump selection for Horizontal centifugal pumps	6-10
	Pump selection procedure for Vertical Turbine pumps	6-14
4	Martin and coloring for VT pumps	6-16
	Model pump selection for V.T.pumps	
i i	Annexure - i : Sketch showing the approximate dimensions and location of Horizontal centrifugal pumps	6-20
	Annexure - II: Sketch showing the approximate dimensions	
	and location of V.T. Pumps	6-21
3.	Annexure - III : Permissible velocities in suction pipe	6-22
).	Annexure - IVA : Permissible velocities in delivery pipe	6-22
10.	Annexure - IV B : Permissible velocities in column assembly	
	and delivery pipes (For VT Pumps)	6-23
11.	Annexure - IVC : Permissible velocities in	
515.60	pressure mains	6-23
12.	Annexure - V : Equivalent length in feet of some	7 - 7 - 17 - 17 - 17 - 17 - 17 - 17 - 1
	common pipe fittings	6-24
13.	Annexure - VI : Efficiency of pumps and cushioning	6-25
14.	Annexure - VII : Suction Limit curves	6-26
15.	Annexure - VIII : Proforma of data sheet in which	
15.	field officers have to furnish for pump selection	6-27
16.	Annexure - IXA : Atmospheric pressure at	
10.	various altitudes	6-28
17.	Annexure - IXB : Properties of Water	6-29
18.	Annexure - IXC : Water equivalent colums of	
10.	atmospheric pressure	6-30
19.	Annexure - X : Schematic diagram of L.I. Scheme	
	with Horizontal centrifugal pumps	6-3
20.	Annexure - XI : Schematić diagram of L.I. Scheme with	
ZU.	vertical turbine pumps.	6-3
	vertical talente parties	

PLANNING & DESIGN OF MAJOR LIFT IRRIGATION SCHEMES

Introduction

Rain is decentralized and so is the demand, but the supply has not been decentralized resulting in under development and drought conditions in some pockets. The prevailing situation is causing widening of socio-economic conditions between regions causing imbalance in development.

In the absence of dams and barrages due to their inherent problems such as submersion, g &R, environmental, inter state problems etc., Lift Irrigation' Schemes (LIS) gained greater significance in the changed scenario. Further, there are regions situated at higher altitudes to which gravity is not possible or site conditions at source do not permit dam / barrage. Though LI Schemes are costly w.r.t. dams / barrages considering life period of project, the present orcumstances demand more & more LI Schemes as provision of conventional irrigation structures is exhausted.

Though concept of LIS is centuries old, with the magnitude of head, discharge and capacity of pumps, the design of Major LI Scheme has become science with advanced technology in pumps and pipes. It is noticed that there are guidelines & codes for design of pumps and pipes but not much attention is given on planning & design of major LIS. The LIS need due attention on optimization w.r.t. pump capacity, pressure mains design & laying along with Operation & Maintenance.

2. Objectives of LI Schemes

- · Diversion of flood water to upland areas which are starving for water
- · Supplying water to needy regions located far away from source
- · Feeding tanks for future needs
- Effective usage of water stored in reservoirs
- Optimum utilization of water by supplying designed quantity
- · Interlinking of rivers
- Transfer of surplus water from reservoirs to the required regions.

3. Planning & Design of Major LI Schemes

It comprises finalisation of various aspects at different stages as given below:

The second second second

- L. Hydrology
- II. Alignment
- III. Hydraulic Particulars

- IV. Pumps type, number & capacity
- V. Pressure mains / Water conductor system
- VI. Surge protection system
- VII. Design of Pump House
- VIII. Intake Sump / Surge pool / Fore bay
- IX. Delivery Cistern / Out fall structure
- X. SCADA Supervisory (Sequential) Control And Data Acquisition
- XI. Canal networking system

I. Hydrology

The design discharge for operation shall be arrived at based on crop water requirement, seepage & evaporation losses and drinking water requirement. Operation period of the pumps is also one of the governing factor in arriving design discharge of LIS. For major LIS, the operation period shall be 24 hours as they will be provided with dedicated power lines. However for minor LIS, the design discharge may be for 16 hrs or 20 hrs operation period depending upon the power availability.

The pumping hours for major LI Schemes shall be carefully decided as it has the bearing on the pump discharge and compounding impact on cost of the scheme by increase in pump capacity, pressure main dia with increased surge pressure and power consumption.

Fixing of low water level (LWL i.e., water level below which pumping is not required), is also an important factor for optimization as well as efficient functioning of LI Scheme. Hence it is desirable to keep LWL:

- Above bed level of source to avoid siltation in approach canal.
- Above MDDL of reservoirs at river intake to avoid unnecessary extra pumping head & pump capacity, other wise it encroaches into dead storage of reservoir which results in increased duration for its filling causing delay in supply to the already committed ayacut
- Whenever pump house is far away from the source, LWL in the sump shall be taken after deducting conveyance losses in approach canal / tunnel from MDDL of source
- For optimization of scheme, it is desirable to fix duty point of pump correspond to level 2.0m (or average water level for pumping from tank) above LWL, however pump operation zone shall correspond to LWL & FRL.

11. Alignment

The alignment finalisation consists of :

- Fixing of Pump house location in the foreshore of river / reservoir
- Approach and gravity canal lengths
- Length of Pressure mains
- Utilization of tanks enroute the alignment
- Number of Lifts / Pump houses

Fixing of Pump house location in the foreshore of river / reservoir

The pump house location shall be located in such a way that it needs smaller length of approach canal and smaller length of approach bridge from TBL to the pump house as former needs periodical maintenance and the later has bearing on the cost.

Approach canal and Gravity Canal

Whenever the source is river, it is desirable to design the approach canal capacity 50% more than design requirement to absorb siltation etc.. Off take point of the approach canal shall not be silt accumulation region since approach canal acts as gateway of the scheme.

As much as possible, possibility of greater length of gravity canals has to be explored to achieve considerable economy. The gravity canals should be lined otherwise the design discharge will not be realized at the terminal points.

Length of Pressure mains

It is desirable that shorter length of pipe line shall be provided as not only it is costly but also increases pump capacity & surge protection devices and has compounding impact on the scheme cost.

Utilization of tanks / Balancing Reservoirs (BR) enroute the alignment

Whenever any tank is present enroute the alignment or possibility of formation, it has to be examined as it has the following advantages :

- Design discharge of pumps can be reduced by preserving water in tanks to meet the peak requirement of the crop period, which reduces the pump capacity, pipe dia and canal sizes
- Usually LI Schemes are adopted to lift flood waters which can be stored in the balancing reservoirs for future needs to sult the cropping pattern

 LIS with multiple stages lifts need proper synchronization of all and failure of any single lift leads to grinding half of the system. Hence with the presence of Balancing Reservoir, the above problem minimizes.

Number of Lifts / Pump houses

The number of lifts / pump houses is dependent on the following parameters :

- · Length of the alignment
- · Total Pumping head required
- · Presence of ayacut enroute the alignment
- · Capacity and type of proposed pumps

III. Hydraulic Particulars

After freezing of the alignment with pump house locations, the length of canals, pressure mains are to be calculated. Hydraulic Particulars of the scheme shall be finalized w.r.t LWL and FRL of proposed sumps along with canal HPs and pipe alignment. The discharge at pump houses shall be worked out duly considering the water requirement at various locations of the alignment.

IV. Pumps - Number, Capacity and Type

Pumps act as heart of LI Scheme and play important role in the performance as well as efficiency of the LIS. A designer should have a comprehensive knowledge on availability of various types of pumps and their applications along with their limitations.

Any wrong judgement in selection of pumps may lead to procurement of unsuitable pump and the scheme always may face threat of repairs & maintenance along with non-functionality to the design requirement of the scheme. Higher capacity increases unnecessarily the capital cost as well as power consumption and on other hand lower capacity will not deliver design discharge.

Number of Pumps

The capacity and type of pumps not only decides number of pumps to be provided but also the number of pump houses to be adopted. It is desirable to provide minimum of 4 pumps to facilitate operational flexibility, since in major LIS, stand by pumps are not being provided. Single pump failure for schemes with less than 4 pumps reduces more than $1/3^{ro}$ design discharge thereby not serving fully the purpose of the scheme. In major LIS, it is not desirable to have higher degree of risk. However, number of pumps more than 4 may be provided considering cost economics with larger pump house since it is more advantageous in view of the lower degree of risk and better operation flexibility.

Capacity of Pumps

Pump capacity can be calculated by the formula:

Pump capacity in KW = $9.81 \text{ Q H / } \eta$ Pump capacity in HP = $9.81 \text{ Q H / } 0.746 \eta$

Where Q = Discharge in cumecs H = Hst + Hf + Hb = Total pumping head in m

And $\eta = Efficiency of pump$

Total pumping head (H) can be arrived at on summation of static head, frictional losses in pressure mains and exit & entry losses. The frictional losses in the pressure main may be calculated using Hazen-William's formula:

 $Hf = L(1.1778 V/CR^{0.65})^{1.852}$

Where V = Velocity in pipe (m/s) R = Hydraulic Radius in m = D/4

C = Hazen Williams Coeff = 130 for PSC pipes

= 130 + 0.17 d (dia in inch) for MS pipes

It is desirable to limit the C value to 130 only considering surface deterioration.

Pumps are to be designed for operation range w.r.t. LWL as well as FRL and the same shall be verified by studying the family curves and pump characteristics of the type of pump offered by the manufacturer. It is always preferable to keep the duty point of pump in between the above range.

Motor Capacity

Motor capacity shall be 10% to 20% more than pump capacity. LIS with small head fluctuations may require motor capacity of 10% to 15% more than pump capacity, whereas motor capacity in LIS with considerable head fluctuations may need 20% more than pump capacity.

Type of Pumps

Mainly four types of pumps are adopted in the major LIS and they are :

- Horizontal Centrifugal Pumps Applicable for medium heads and discharges. I t has the limitation of suction lift and hence may be better suited for LI schemes on canals or tanks with total suction lift less than 6.0m.
 - Vertical Turbine Pumps Applicable for schemes with high heads and discharges.

 Best suited for the schemes where the suction lift is more than 6.0m and more applicable to schemes on rivers.

 Concrete / Metallic Volute Pumps - Applicable for schemes with high heads and huge discharges.

 Francis turbine Pumps - Applicable for very high heads and very huge discharges.

V. Pressure mains / Water conductor system - type of material, dia & no. of rows

Pressure mains function as nerves of LI scheme and they consume lions share of the project cost whenever pipe lengths are in Km. Type and dia of pipe lines shall be judiciously adopted whenever lengthy pipes are proposed as length of pipe has direct bearing on pumping head thereby on pump capacity & surge protection system.

Generally, MS pipes and PSC pipes are under more usage in irrigation schemes. But GRP pipes also entered into the market recently performance of which is yet to be established. While designing the pipe dia, it is desirable to limit the velocity in MS pipes to 2.0 m/s and 1.5 m/s in PSC pipes. Velocity more than 2.0 m/s in MS pipes may be considered for the schemes with shorter length of pipes duly examining the impact of pump capacity.

The MS pipe thickness may be calculated based on :

Deflection Criteria

Stress Criteria - Compressive Stress & Tensile Stress

> Buckling

Minimum thickness of MS pipe may be as per recommendations given in IS: 1916. However, as a thumb rule, the D/t ratio may be provided 185 for pipes with shorter length & medium heads and D/t ratio upto 150 for high heads with lengthy pipes, subject to satisfying the surge conditions.

VI. Surge protection system

Whenever power failure occurs, rapid changes in velocity and associated change in pressure results in the pipe line causing surge pressure. Power failure leads to movement of upsurge and down surge waves along the rising main and the waves travel with high speed developing low & high pressures all along the pipe line.

Down Surge - Related to pressure drop or minimum pressure. Pressure drop immediately after power failure at peak locations causes negative pressure, which may even go down to vapour pressure.

Up Surge - Related to pressure rise or maximum pressure. When separated water column rejoins, sudden pressure rise occurs

Surge analysis is a very complicated phenomenon and needs thorough analysis of the pipe line profile w.r.t surge heads to assess type and number of surge protection devices at appropriate locations. Due attention shall be given to the surge analysis of pipe lines for schemes with high heads and lengthy pipes.

The surge generated can be controlled by providing surge protection devices.

Varrious Surge protection devices (in ascending order of probable cost):

Air Valves / Air Cushion Valve

Stand Pipe

Surge relief Valves

Zero velocity valves

One Way Surge Tanks

Air Vessels

VII. Design of Pump House

35 :

The pump house arrangement is not same for all the type of pumps. They can be classified

Wet Pit Pump House - The pump / impeller will be submerged in the water. Substructure
will be with water for full area. Ex: Pump house with Vertical
turbine pumps.

The dimensions of VT pump house / sump can be calculated based on the guide lines given in BHRA / HIS / IS: 15310.

Dry Pit Pump House - Access to all the components including pumps will be there.
 Substructure will be without water and in dry condition because of which maintenance is easy. Ex: Francis turbines and Volute Pumps

<u>Design of Stoplog</u>: The stoplog gates for VT pump house may be designed for LWL operation only, whereas stoplogs for dry pit pump houses shall be designed for FRL condition to facilitate maintenance of pumps above LWL also, as it cannot be waited for maintenance till the water in the source falls to LWL.

Motor Floor Level: Multiple lifts with lengthy approach canal preceding the pump house in the absence of Balancing Reservoir need proper drainage system / escape regulator to avoid inundation of successive pumping station during power failure. The motor floor level shall be kept above the possible inundation level.

VIII. Intake Sump / Surge pool / Fore bay

The objective of sump and approaches is to provide storage and good flow conditions to pumps. If the design is with poor geometric features, undesirable flow conditions develop in the sump which reduces the pump efficiency.

To develop uniform, steady and non-turbulent flow conditions in the sump, it is recommended to allow maximum velocity of 1.2 m/s at the entry of forebay and 0.30 m/s near the pumps. To achieve the above requirement, the forebay may be tapered with limiting enlargement angle in plan to 20 degrees and bed slope of forebay in elevation from entry limiting to 10 degrees. However, it is desirable to provide 15 degrees in plan and bed slope of 8 degrees.

It is desirable to have the sides of forebay on water side with vertical face only (atleast upto LWL) as slopes cause off sets near pump house resulting whirling effect generating vortices. Further, near the pump, jump formation shall be strictly avoided as it creates turbulence near pumps. Further, proposals of intake sump for major LIS shall be ascertained by physical sump model studies and satisfied for fine tuning of the flow conditions, before commencement of execution.

Intake sumps in the river foreshore shall be provided with controlling arrangement at entry of forebay also to facilitate maintenance of the sump, in addition to the gates provision in front of the pumps.

IX. Delivery Cistern / Out fall structure

Delivery cistern will be provided to dissipate the energy of water falling freely from the pressure mains and delivers into the canals. To have better energy dissipating arrangement, the bed level of the leading canal should always be kept above the bed level of the cistern. Measuring gauges may be provided in the cistern to assess the discharge and losses in the conveyance if any.

X. SCADA - Supervisory Control And Data Acquisition

Whenever Multiple pumping stations are involved in a LI Scheme, it needs proper monitoring and vigilance for better synchronization, for which SCADA installation is mandatory, which collects and detects data such as :

- · Non-functioning of pump / pumps in any of the pumping stations
- Non performance of any of the surge protection devices such as air vessels / One way surge tanks (OWST) etc.,.
- · Records data during operation of the scheme
- Monitoring the inflow and outflow discharges of pumping station as well as pumps discharges
- · Power requirements

SCADA will be controlled at one station and the total alignment can be monitored with it.

The origin of failure of any component of the system enroute the alignment can be detected using SCADA, with the help of which operation of other pumping stations can be controlled.

4. Important aspects in design of major LI schemes

A) Influence of Velocity and number of rows on LI Scheme

Influence of Velocity in Pressure main on Pump

For every 0.50 m/s rise in Velocity of pipe, frictional loss rises by 75% to 100% with reduction of dia by 11% to 13% only. Smaller dia is economical during initial stage of construction but power consumption will be high. Higher dia needs less power but with high initial cost.

Hence, it is desirable to allow higher velocities in shorter length of pipes and lower velocities in lengthy pipes (particularly when the length of pipe is in KM) owing to the recurring power consumption annually.

Advantages of minimum number of rows for the pipes

More number of pipes leads more frictional losses as well as enhanced pumping heads / pumping capacities and more quantity of steel. More pipes with smaller dia causes more frictional losses and initial cost as well as recurring power cost over lesser no. of pipes with bigger dia with same velocity. Further, more number of rows need more land acquisition and CM & CD works.

Hence, it is desirable to provide bigger dia with less number of rows of pipes, particularly for the schemes with lengthy pressure mains.

398

B) Precautions to be taken in laying and design of Pressure mains

Pipe lines in Soft Soils

- Care shall be taken in designing and laying of pipes in soft soils / BC soils etc., Either pipe shall be designed for the soil condition or the refilling has to be done with selected soils as the soil modulus is also one of the parameter in design pipe thickness.
- As the soil modulus is also one of the major property influencing the pipe thickness, it is mandatory to have the refilled soil gets compacted to achieve minimum of 90% Proctor's density.
- Water logged areas causes settlement of pipes or uplifting of pipes.

Hence the above field conditions shall be conveyed to the designer wherever the pipes pass through such areas.

Clear distance between Pipes

Clear distance between pipes shall be minimum of 3.0m for the schemes with pipes with more than two rows for bigger dia pipes for the following reasons:

- When multiple number of rows of pipes are laid and some of the pipes are only in operation, then pipes without water may create instability among the combined trench or when pipes are closely placed
- There will be scour sluices / washouts with projections to flushout the water in pipes and which get overlapped whenever pipes are closely placed.
- It is desirable to have independent thrust blocks to avoid problems during O & M in the vicinity blocks particularly for lengthy pipes.
- If adequate clearance is not provided in water logged areas, whenever any one of the pipe is empty, imbalance condition develops which results in settlement or uplifting of pipe
- Handling of heavy / bigger dia pipes need crane for erection & maintenance which needs
 3.0 m (min) clearance in between pipes
- Whenever next pipe is to be laid after first was already in operation, it needs excavation
 and disturbs existing pipe trench. Thus weakening the degree of compaction made to first
 one and resulting imbalance of earth pressure on existing pipe. If sufficient gap is provided,
 the effect can be minimized.

Connection of pump delivery pipe and pressure mains

- When multiple number of rows of delivery pipes are required to be connected to a pressure main, a manifold (cylindrical or WYE type) is required.
- Whenever stand by pump is provided, cylindrical manifold may be mandatory (twice the
 dia but not less than equivalent dia of pressure mains) as the rotation of stand by pump
 among the wye junctions is not possible to satisfy equal discharge in pressure mains.

5. Conclusions

As major L.L. schemes are going to play major role in coming days, due attention shall be given to the planning & design for better performance & efficiency of schemes.

The alignment shall be so chosen comprising shorter length of approach channel and the shorter length of pressure mains. As far as possible, greater length of gravity canal may be provided for economy in major LIS with lengthy alignment.

Pumps function as heart of LIS and hence attention shall be given in fixing the duty point of the pump. For optimization of the scheme, duty point shall be w.r.t water level above the LWL. Major LIS shall be designed for 24 hours pumping. Pumping discharge shall be designed for mean average of crop water requirement wherever intermediate balancing reservoirs are present with pumping stations.

Importance shall be given in planning of proposed sump dimensions and arrangement finalization as any undesirable flow condition leads to damage of pump impeller resulting in reduction of efficiency as well as pump break down.

As the pressure mains act as nerves of LIS, care shall be taken for pipes when they are to be laid in BC soils, water logged area and at crossing of vagus/drains. Low velocity in the pipe would be economical for the schemes with very lengthy pressure mains, however higher velocity may be permitted for the schemes with shorter length. Larger dia with less number of rows may be economical w.r.t. installation cost as well running cost. Adequate clearance shall be maintained between pipes for stability as well as maintenance purpose. Due attention shall be given to surge parameters which are vital aspects for proper functioning of the pipe line.

LI Scheme comprising multiple pump houses shall be provided with SCADA for observing / monitoring system behavior as well as to take precautions against surge.

USAGE OF MILD STEEL PIPES FOR LIFT IRRIGATION PROJECTS

GUIDELINES FOR FABRICATION, LINING, COATTING, LOADING, TRANS-PORTATION, UNLOADING, TRENCHING, LAYING, ALIGNMENT, FULL WELDING, TESTING AND BACK FILLING

PREAMBLE:

- 1. The state government of Andhra Pradesh has taken up large number of lift irrigation schemes to provide irrigation to drought prone and upland areas in order to give boost to agriculture sector and rural economy. In many of these schemes mild steel pipes with inner lining and outer coating are being utilized due to higher lift and other technical paramenters. These are capital-intensive schemes due to high cost of steel pipes and need very stringent quality control measures to be enforced during project implementation stage. The quality aspect has to be ensured at all stages starting from procurement of raw meterials mainly mild steel / steel plates, cement, welding electrodes and during processes of manufacture, transport, handling, laying and testing at various stages. This needs to be enforced to minimize subsequent maintenace problems, related to quality of pipes and their laying, over decades long life span of these projects.
- 2. There are various I.S. Codes prescribing the quality standards for aforementioned activities. However, during inspections of Guthpa L.I. Scheme and GLIS in Nizamabad and Warangal districts respectively, it has been observed that many of these codal provisions are not being adhered to with a view to educate and refresh the knowledge of the departmental engineers these guidelines consolidating various I.S. Code provisions are being issued for strict compliance to ensure quality in these projects.
- These guidelines are only illustrative and engineers shall read all the relevant IS codes for ensuring the quality at their level of functioning and supervision.

I. FABRICATION OF PIPES: I.S. 800:1962

a) RAW MATERIALS:

i) Steel:

- The pipes shall be manufactured from steel plates conforming either to I.S. 226:1975 or to I.S. 2062: 1984.
- Manuracturer shall test steel plates for quality. Test certificates shall be obtained from the manufacturer / steel producers along with the steel procurement.
- Test piece from steel plates shall be sent for testing for mechanical properties and chemical composition to engineering / metallurgical laboratory (ies)

ii) Welding Electrodes:

- Welding electrodes used for welding steel plates shall conform to I.S. 814 (Part 2)
 IS 814 (Part2) 1974.
- For welding, Bureau of Indian standards approved welding electrodes of very reputed companies like, Advani-Orlikan, D&H, ESAB, IOL, Modi, L&T and Rock weld may be used.
- iii) Portland cement: The cement used in the lining and coating of steel pipes shall conform to I.S. 8112-1989 (43 Grade).
- Sand: Sand shall consist of inert materials having hard, strong, durable uncoated grains conforming to the requirement of I.S. 2116.
- Reinforcement : Reinforcement shall be with 50 X 100 mm. welded wire fabric.
 The wire shall conform to the requirements of I.S. 1566

b) PIPE MANUFACTURING PROCESS:

- i) Cutting of steel plates :
 - Trimming: If the steel plates received from Manufacturer are untrimmed, the untrimmed edge shall be cut. The steel plate cut shall be a true rectangle.
 - Longirudinal Joint: The length of plate shall be selected in such a manner, that
 only one longitudinal joint is formed.
 - Edge preparation: Straight edge preparation shall be done for steel plate for longitudinal and circumferential butt joints to be welded at the factory by submerged arc welding. Bevel (single 'V'-grove) edge preparation shall be done for circumferential butt joints to be welded at site manually, after laying of pipes.

ii) Welding of pipes:

- All welds shall be made down-hand by manual welding automatic shielded arc welding process.
- Prior to welding, the plates shall be fitted closely and during welding they shall be held firmly.
- Welding shall be done to ensure thorough fusion and complete penetration. The welding shall be as per I.S. 816: 1969.

and the second second second

C) TESTING OF BUTT WELDING :

a) Radiography & Ultrasound :

- The butt welds of longitudinal and circumferential joints at the factory done by submerged arc welding shall be tested at the rate of 5% by radiography and balance 95% by ultrasound testing or as per terms of agreement.
- The circumferential butt-welding done manually in the trench at site shall be tested at the rate of 100% by ultrasound testing.
- The radiography films and ultrasound print records of quality check at site or manufacture shall be presented by contractor to the site in-charge engineer and / Quality Control Staff before dispatch of these to the field.

Pressure testing of pipe (Hydro static pressure test):

Each pipe shall be hydraulically tested at 2 times the working pressure at the
manufacturing site before the pipe is lined and coated. The pipe shall be kept
under pressure by pumping water for a period of not less than one minute. While
under pressure, the pipe shall be moderately hammered with 1 kg., hammer
throughout its length. The pipe shall withstand the pressure test without showing
any leakage.

d) IDENTIFICATION NUMBER OF PIPE AND MAINTENANCE OF RECORDS:

 Each pipe shall be given an identification number and painted on each pipe. It shall be recorded for all quality tests like radiography / ultrasound, pressure testing etc and records shall be maintained.

II. LINING AND COATING OF PIPE - I.S. 3589:2001

- Lining: For lining of pipe, the cement mortar shall be composed of cement, sand and water well mixed and of proper consistency to obtain a dense, homogenous lining that will adhere firmly to the pipe surface. It's prportion shall be 2 parts sand to 1 part cement by weight. Lining shall be done by spinning machine specifically designed and built for the purpose of rotating the pipe section and centrifugally applying cement mortar lining to the interior of steel pipe. Lining shall always be done at the manufacturing site.
- ii) Coating: Cement mortar shall consist of not more than 3 parts sand to 1 part cement by weight. The water in the mixture shall be carefully controlled so that the mortar will not run, sag or segregate. Reinforcement shall be with 50 X 100 mm welded wire fabric. The outside pipe shall receive a reinforced cement mortar coating applied by mechanical placement or pneumatic placement. The coating shall always be done at the manufacturing site.
- (iii) Curing: Immediately after lining and coating pipe sections may be moved to curing area and water sprinkled by sprinklers. The curring should be done till lining and coating attains required strength.

III. LOADING, TRANSPORTATION, UN -LOADING AND STACKING OF PIPES -I.A.5822: 1994

a) Loading and unloading:

- The Pipes shall be handled in such a manner as not to distort their circularity or cause any damage to their outer coating.
- Slings of canvas or equally non abrasive material of suitable width or special attachment shaped to fit the pipe ends shall be used to lift and lower coated pipes, so as to eliminate the risk of damage to the coating.

b) Transportation and Stacking:

- The Pipe shall be transported to the site of laying and stacked along the route on timber skids. Padding shall be provided between coated pipes and timber skids to avoid damage to the coating.
- Suitable gaps in the pipes stacked should be left at intervals to permit access from one side to the other.

IV. TRENCHING - I.A. 5822; 1994

- For pipes larger than 1200 mm dia, in earth and murrum the curvature of the bottom of the trench should match the curvature of the pipe as far as possible, subtending an angle of about 12 degrees at the centre of the pipe.
- Where rock or boulders are encountered, the trench shall be trimmed to a depth
 of at least 100 mm below the level at which the bottom of the barrel of the pipe is
 to be laid and filled to a like depth with lean cement concrete or with noncompressible material like sand of adequate depth to give the curved seating.
- There shall be adequate space at bottom of the pipe for entry and sufficient movement of person doing welding task.

V. LAYING, ALLIGNING AND FULL WELDING OF PIPES - I.S. 5822:1994

a) Laying:

 Slings of canvas or equally non-abrasive material of suitable width or special a ttachment shaped to fit the pipe ends shall be used to lower pipes into the excavated trench;

b) Aligning of pipes:

- While assembling, the pipes shall be brought close to have a uniform gap not exceeding 3 mm. The pipe faces shall be matched perfectly without any offset.
 - The spiders from inside and tightening rings from outside or other suitable equipment should be used to keep the two faces in shape and position till at least one run of welding is carried out.

c) Full welding :

- The pipe faces shall first be tack-welded alternatively at one or more diametrically
 opposite paris of points. After completing out in welding, full welding shall be
 carried out in suitable runs following sequence of welding positions of segments
 diametrically opposite.
- For welding Bureau of Indian Standards approved welding electrodes (IS 814 (Part2): 1974 of very required companies like Advani - Orlikan, D &H, ESAb< Io.
 Modi, L &T and Rock weld may be used.

VI. Back Filling - I.S 5822: 1994

- While back filling the tranch under the weld Joint of two Pipes shall be filled first and consolidated.
- Back filling should covery follow the welding of Joints of the pipe, so that the
 protective coating should not be subsequently damaged.
- Material harmful to the pipeline shall not be used for back filling Refilling shall be done in layers not exceeding 300 mm.
- Each layer shall be consolidated by watering and ramming, care being taken to prevent damage to the pipeline.
- The filling on the two sides of the pipeline should be carried out simul taneously.

VII. Testing of pipe Line - I.S. 5822: 1994

- The welded pipeline shall be tested both for its strength and leakage.
- Each section of the pipe shall be slowly filled with clean water and all air shall be expelled from the pipeline and specified test pressure shall be applied by means of pump connected to the pipeline. Under the test pressure, no leak or sweating shall be visible at all section pipes and welded joints.
- Any defective pipes discovered in consequence of this pressure test shall be removed and replaced by sound material and the test shall be repeated untill satisfactory results are obtained.

VIII. PIPES WHICH SHALL BE CONSIDERED SUB-STANDARD ON VISUAL INSPECTION AND REJECTED.

- Lamination of MS Plate.
- Inner lining having cracks exceeding 1.5 mm.
- Pipes having two longitum nal joints.

6 - p

PUMPS

GUIDELINES FOR PUMP SELECTION FOR LIFT IRRIGATION SCHEMES

roduction

e following aspects are covered

Planning of an L.I. Scheme consists of the following steps after identifying the ayacut that is to be provided with irrigation facility under the Scheme;

Selection of suitable site at source of water for locating the head work, Intake structure and delivery Cistern.

Assessment of water requirement for the proposed crops in the identified ayacut.

Determination of type of pumps and estimation of total HP of motors to be installed.

Fixing of dimensions of Civil works like; Sumpwell, Pump house, Cistern etc.,

Selection of diameter and the type of pipe required for pressure main.

Irrigation is practised in India from ancient times and experience and expertise is available on all items of works in irrigation system except the Pump Selection. Though certain good Books are available for Pump Selection, all the required information is not available in one compact Book to serve the needs. This booklet is prepared keeping that in view and after going through the Literature available on this subject and after collecting the required information from the different Books written by the renowned Authors. It deals in sufficient detail how to proceed with the selection of the Suction and Delivery Pipes, type of Pump and Motor suitable to the scheme and also the dimensions of Civil works like; Sump well, Pump House, Cistern etc.,

In addition to making use of the works done by different authorities on this subject, the following standards are referred to for laying down the procedure of pump selection and hydraulic design of intake (sump).

grading and Appressing Communities of

- Indian Standard Specifications.
- Standards of American Hydraulic Institute for Horizontal Centrifugal pumps.
- Standards of American Water Works Association (AWWA) for vertical turbine pumps.
- Standards of British Hydraulic Research Association (BHRA) for Hydraulic design of Intake (Sump).

Since specifications and standards used, are of different countries, the units used are also different viz., metric, f.p.s. and American units in the following pages and Annexures

In Annexures I to XI the following are presented.

- Guide lines of permissible velocities in suction pipe, delivery pipe, column assembly and pressure main.
- b. Schematic diagrams for two typical layouts.
- c. Drawing indicating the relative positions of pumps and motors.
- d. Efficiency and cushion to be adopted.
- e. Graph for reading permissible suction lifts,
- f. Field information required for selection of pumps and motors.
- The following Data should be invariably made available for finalising the pump selection for a lift irrigation scheme;
 - Schematic Diagram of the LI scheme giving the layout, location of pump house, suction, delivery, Pressure Mains and Delivery Cisterns.
 - b. Hydraulic particulars in the Proforma given in Annexure-VIII
 - c. Longitudinal section (LS) of the Pressure main to indicate whether it is in cutting or banking and whether there is any sudden drop or rise in the pressure main. In such cases, bends are to be provided for which friction losses are to be computed and added.
 - d. A plan showing the alignment of the pressure main for the same purpose i.e. for providing 90 ° or 120 ° bends where ever there is a change in bearing of the pressure main.

Specimen, Schematic diagrams of LI schemes with Horizontal and V.T.Pumps am given in Annexure X, XI respectively.

The pump selection is done broadly as per the guidelines given below:

 If the total suction lift including losses is less than 7.50 Mts., Horizontal centrilugal Pumps are generally suitable. Hence, in such cases, pump selections are to be worked out for Horizontal shaft pumps initially. If the total suction lift including losses is more than 7.50 Metres, We must go in for V.T.Pumps only. Horizontal shaft pumps are not suitable. Hence, pump selection is to be worked out for V.T.Pumps.

However in certain cases where even though the total suction lift is less than 7.50 Metres, we may have to go in for V.T.Pumps because of high specific speed.

Exact suction lift is determined on the graphs of IS standards or standards of American Hydraulic Institute after working out the specific speed of the pump and reading it against the total head of the pump. Except in cases of very low powered pumps of the range upto 15 HP, suction lift will generally be less than 7.5 Mts.

Initially (2+1) Nos. i.e. 2 Nos. working and one stand bye is worked out. Sometimes with this arrangements, it may so happen that there is little margin between total suction lift and permissible suction lift as per the Graph (Annexure-VII). This situation arises when the discharge of each pump is high which, when combined with the other parameters like; total head and speed and gives a very high specific speed. To reduce the specific speed, we will have to first try to reduce the speed from 1460 rpm (nominal) to 960 rpm (nominal). Since total head of the scheme is constant, in order to bring down the specific speed to the manageable limits either discharge is to be reduced by increasing the No. of pumps or the speed of the prime mover may be reduced. Since specific speed varies directly with Q, reduction will not be so significant as it is incase of reducing speed of the motor, say from 1460 to 960 (nominal). This will however increase the size of pump and motor and also the cost of the equipment. Even then, if it is not suitable, then we will have to increase the number of pumps to reduce the discharge and thereby reduce the specific speed i.e. pump selection is to be tried with (3+1) Nos. or (4+1) Nos.

System Resistance losses: when 2 or more pumps are run in parallel to feed a common pressure main, there will be a certain amount of reduction in total discharge. This is called system resistance loss. To take care of this, each pump has to be designed for a slightly higher discharge after taking into account the percentage losses as given below:

The exact quantity of reduction in discharge can be computed by drawing the system-Head curve, since it is not possible before fixing the supplying agency and the make and model of pump, the percentages given below are applied which give a lairly correct assessment of the loss of discharge from each pump. However in a major scheme say for an ayacut of 10,000 acres or so, the tenderers may be asked to furnish the system-head curves of parallel operation, along with their offer.

4.69

a.	When there is no pressure main		Nil	10.5
b.	For (1+1) system of pumps		Nil	
C.	For (2+1) system of pumps	44	5%	
d.	for (3+1) system of pumps		7.5%	
e.	For (4+1) system of pumps		10%	

Pump Selection Procedure for horizontal centrifugal pumps

Discharge through each pump is to be arrived after considering system resistance losses.

Suction side

Pump axis - LWL in sump well Static suction lift=

Pump axis level

Platform level of pump + 0.3m to 0.5m

The dia, of suction pipe is to be arrived for the discharge, keeping the velocity through the suction pipe within the permissible velocities given in enclosed Annexure-III

Entrance Losses

0.5 Where, K is constant

Velocity in suction pipe

Gravitational force i.e. 32.2 tt/sec2

Frictional Losses in suction pipe & fitting,

25' to 30' approx. or the actual length. Approx length of suction pipe =

Equivalent 90° bend

Equivalent length of 1 No. of Bell mouth or Foot valve with strainer.

Total equivalent length= 25' + Equivalent length of 90° bend + Bell mouth or Foot valve. Frictional losses in suction pipe can be obtained from the William and Hazen Formula or

IS Standards.

Losses as per the Formula = ---- x (Q/C) 1.85 x L D 4.87

Dia of suction pipe in ft. where, D

Discharge through each suction pipe in Cusecs.

Equivalent length of suction pipe and fittings

120 for MS. or ERW pipe (Old or New)

Static suction lift + Entrance losses fotal suction lift including losses =

+ Frictional losses in Suction pipe & fittings .. A

Delivery side:

Delivery level at Cistern - Pump axis level. Static delivery head

The dia. of delivery pipe is to be arrived for the discharge, keeping the velocity through the delivery pipe within the permissible limits given in enclosed Annexure - IV (A).

Frictional losses in delivery pipe and fittings:

25' approx. or as per actuals Approx length of delivery pipe

1 No. Equivalent length of Reflux valve

1 No. Equivalent length of Sluice Valve

2 Nos. Equivalent length of 90° Bends

Total equivalent length

Loss of head in delivery pipes and fittings can be obtained from the Formula;

Losses as per the Formula = ---- x (Q/C) 1.85 x L

Delivery pipe dia. in ft. Where D

Q = Discharge through delivery pipe in Cusecs

L = equivalent length on delivery side

C = 120 for MS, or ERW pipe (New or Old)

Loss of head in the Manifold being small, it is ignored.

d. Loss of head in Pressure Main:

The dia.of pressure main is to be arrived for the discharge, keeping in view the maximum permissible velocities given in enclosed Annexure - IV (C). To arrive at the most economical dia. of pressure main, alternates may be worked out changing the dia of pressure main, calculating HP, of each pump set and the cost, water rates etc..

Equivalent length of pressure main = Length of pressure main in ft. +

equivalent length of 3 Nos. of 90° bends (minimum)

Total length can be arrived:

The loss of head in pressure main can be obtained from the

Losses as per the Formula = ----- x (Q/C) 1.85 x L D 4.87

Where D = Dia of pressure main in ft.

Q = Discharge in cusecs

C = 110 for pressure main of cc pipes or 130 for PVC pipes

L = Total length of pressure main in ft.

e. Exit losses = V² / 2g

Where, V= Velocity in pressure main and g = 32.2 ft/sec2.

Total delivery head including losses = Static delivery head + losses in delivery pipe and fittings + loss of head in pressure main + Exit losses(B)

Total pumping head of each pump = Total suction lift including losses + Total Delivery head including losses + ½ Dia. of pressure main in ft.

i.e. the pipe should never come under submerged conditions.

The above total pumping head is used for finding the Ns (specific speed)h

Add 10% on losses for aging of pipes

this total pumping head is adopted for the purpose of finding out HP of the pump...H

specific speed at 1460 RPM (nom)
$$N_s = \frac{3.65 \times 1460 \times \sqrt{Q}}{(h)^{\frac{14}{3}}}$$

where Q = Discharge in Cum/Sec

h = Total head including losses, in Metres

Note: For a Double suction pump Q/2 may be taken instead of Q or specific speed may be divided by 2

Exact suitability of the pump can be obtained from the Graphs as per IS-5120/1977 i.e. as per enclosed Annexure -VII. Alternatively if the graphs of American Hydraulic Institute are referred to, the formula is

$$N_s = \frac{N \times \sqrt{Q}}{(h)^{34}}$$

Where N = speed in rpm

Discharge in American gallons per minute

h = Total head in ft.

The advantages are

- Classification with respect to impeller design of the pump is done more precisely.
- Suction lift for a double suction pump can be read directly.

The suction lift line on the Graph for the duty conditions (i.e. discharge and head) should be more than the total suction lift including losses. There must be minimum difference of 0.50 Metres.

251

If there is no such safe margin, the number of pumps may be increased. Even then if it is not within the limits, V.T. pumps have to be necessarily proposed.

H.P. Calculations

Where Q = Discharge of each pump in Cusecs

H = Total pumping head in feet.

n = Overall efficiency of the pump as given in the enclosed Annexure-vi

Cushioning is to be added as per enclosed Annexure-VI.

The HP is to be rounded off to the nearest range of HP.

Sizes of Sump-well, Pump house

Based on the sizes of pump, motor and as per the dimensions given in the drawing (i.e. Annexure-I) the sizes of sumpwell, pump house can be arrived.

Hydraulic Design of Approach channel and Intake

For obtaining the maximum degree of steamline flow, flow to the intake or sump is trained right from the point of entry in to the channel. Ideal conditions for the most satisfactory working of the pump is when it runs in still water. Since it is not possible to allow the condition, certain standards based on the model studies are adopted.

- i) Velocity in the approach channel should be restricted to 1 to 1½ ft/sec or 0.3 to 0.45 m/sec.
- ii) Angle of approach should be kept within the range of 45° to 75° with reference to the chord on which the pumps are located i.e. on the axis normal to the flow of water in the intake. The angle of approach should vary directly with the quantity of flow.
- Portion of the intake or sump from the location of pump upto the length of longitudinal separators should have zero slope i.e. it should be perfectly levelled.
- To minimise the effect of interference when two adjacent pumps are working, separators of specified lengths may be provided and raised to the height of max, or atleast

normal level of water in the sump.

v) Backing wall may be provided.

Punto

- If trash rack is provided in a major LI scheme, it should be located at the entry of water into the separate compartments.
- vii) Enough margin in-depth may be kept for providing minimum submergence which depends on the cavitation, characteristic of the pump and which is furnished by the manufacturers.

Net positive suction Head calculations

Available NPSH at LWL = Pr - P - A

Where Pr = Atmospheric pressure - As shown in IX A or IX C

P = Vapour pressure As shown in IX B

A = Total suction lift including losses.

Max. Water Level = Platform level - 1.00 Metre.

Available NPSH at Max. WL = Available NPSH at Lwl + (Max. W.L.- LWL)

The manufacturer of the pump should be asked to specify the NPSH required for the pump he is offering. There should be a clear margin of 0.6 metres between NPSH available at LWL and NPSH required. The NPSH available should be more by at least 0.6 metres than the NPSH required. When this is not the case, cavitation will occur during running of the pumps and so the particular pump is not suitable. We will have to go in only for such of the pumps whose NPSH required is less than NPSH available at LWL by the prescribed margin.

Selection of type of impeller

Whereas in centrifugal pumps, reading the graph itself will indicate the type of impeller which is required for the duty conditions as it is directly related to the suction lift, it will not be the case in vertical turbine pumps as there is no question of suction lift. Hence it is absolutely necessary in selecting vertical turbine pump to check the specific speed and the duty condition with reference to the configuration of the impeller design.

In American units, the specific speeds for different types of impellers are given in the following tables.

Type I	Centrifugal Double-suction	Mixed Flow Double-suction	Mixed Flow propeller	Axial Flow propeller
N _s	1250	2200	6500	13500
gpm	2400	2400	2400	2400
Head (ft) 70	48	33	20
rpm	870	1160	1750	2600
D ₂ (in)	19	12	10	7
D,/D,	0.5	0.7	_0.9	1.0

These specific speeds may be compared with the total pumping head and it may be seen whether they are matching. If they donot, change the speed of the prime mover according to the requirements.

Model pump selection for horizontal centrifugal pumps

Hydraulic particulars		
Discharge	**	10 Cusecs
Lwl in sump well	77	88.545 Metres
Bottom finished level or sill level of sumpwell	2440	86.395 Metres
Platform level of pumps	2860	+ 93.50 Meters
Pressure main dia.	1.00	To be arrived
Length of pressure main	100	149.00 Ft. or 45.50 Metres
No. of Rows of pressure main		One
Delivery level at cistern	249	+ 101.80 Metres
Static suction lift	3000	93.50 + 0.30 - 88.54 =5.255 Mts. or 17.24 feet

Static	delivery	head
		14 Acres 22 Acres

101.80-(93.5+0.30) = 8 Metres or

26.25 feet

Since the static suction lift is less than 7.50 Metres, the suitability of Horizontal shaft pumps is checked hereunder:

No. of pumps proposed = (2+1) = 3 Nos. Discharge = 10.00 Cusecs

System resistance losses for (2+1) system at 5% = 0.50 Cusecs

10.50 Cusecs

Discharge of each pump = 10.5 / 2

= 5.25 cusecs or 0.1487 Curn or

148.68 Lps or 2357 Usgpm or 1964 Igpm

Selection of suction pipe, assuming 14" dia. suction pipe

5.25

Vs = ---- = 4.91 ft/ sec

(m/4)x (14/12)2

The velocity in 12" dia. suction pipe is 6.68 ft/sec. against the permissible limit of 4.5 ft/sec. Hence, 12" dia. suction pipe is not suitable. The velocity in 14" dia. suction pipe is 4.91 ft/sec. which is within the permissible limit of 5.0 ft/sec. Hence, 14" dia. (350 mm dia.) suction pipe is recommended.

Entrance losses = 0.5 x (4.91) 2 / (2x32.2) = 0.19 ft

Frictional losses in 14° dia. suction pipe & fittings;

Total length = 25+36+30 = 91 ft

Loss of head (as per Table) = (7.2/100) x 91 = 0.66 ft. ... (b)

24" dia (600 mm dia) pressure main is recommended.

Pumps

4.69 or _____ x (5.25/120)^{1.85} x 91 = 0.62 ft. (14/12)^{4.87}

Total suction lift including loses = 17.24 + 0.19 + 0.62 = 18.05 ft. or 5.50 Metre. ...(A) Selection of Delivery Pipe, assuming 12" dia (300mm dia) delivery pipe

The velocity in 10" dia delivery pipe is 9.62 ft/sec. against the permissible limit of 6.5ft/sec. Hence, 10" dia delivery pipe is not suitable. The velocity in 12" dia (300mm dia) delivery pipe is 6.68 ft/sec. which is within the permissible limit of 8.50 ft/sec. Hence, 12" dia (300 mm dia) delivery pipe is proposed.

Frictional losses in 12* dia delivery pipe & Fittings

or $4.69/(12/12)^{4.87}$ x $(5.25/120)^{1.85}$ x 135.5 = 1.95 ft. Loss of head in the manifold being small, it is ignored.

Loss of head in pressure main, assuming 24" dia (600mm)

The velocity in 20" dia pressure main is 4.58 ft/sec. against the permissible limit of 4 ft/sec. Hence, 20" dia pressure main is not suitable. The velocity in 24" dia (600mm dia) pressure main is 3.18 ft/sec. which is within the permissible limit of 4 ft/sec. Hence,

Loss of Head (as per Table) = 1.93 x 338 / 1000 = 0.65 ft.....(d)

or 4.69/ (12/12)4.87 x (10/110)1.85 x 338 = 0.63 lt.

Exit losses = 3.18 2 / (2x13.2) = 0.16 ft. (e)

Total delivery head including losses = 26.25 + 2.07 + 0.65 + 0.16 = 29.13 ft or 8.88 metres.

Total pumping head of each pump = 18.05 + 29.13 + 1.00 = 48.18 ft or 14.68m for Ns.

Add 10% for ageing on losses =48.18

Total length = 149 + 3x63 = 338 feet

0.29 CHARLESON HAM BOOK IN MINISTER WITH THE

48.47 ft or 14.77 m per HP.

3.65 x 1460 x (0.1487) 0.5

Specific speed at 1460 rpm Ns = ---- = 274 (14.68) 3/4

As per IS-5120/1977, the suction lift limit for single stage, double suction, radial flow pumps is about 6:20 Metres against our requirement of 5:50 Metres. Hence, Horizontal Shaft, single stage, double suction, radial flow pumps running at 1460 rpm. are recommended.

HP Calculations

62.45 x 5.25 x 48.47

HP=----= = 38.52

550 x 0.75

Add 10% towards Cushioning = 3.85

Next range is 50 HP 42.37

6-13

Hence, (2+1) Nos, 50 HP, 1460 rpm (nominal) motors are recommended.

NPSH Calculations

Available NPSH at LWL = 33.9 - 3.0 -18.05 = 12.85 ft. or 3.92 m

(As shown in Annexure IXa, IXb and IXc)

Max. Water level = 93.5 - 1.00 = 92.5 m

LWL = 88.545 m

Difference = 3.955m or 12.98 ft.

Available NPSH at Max. W.L. = 12.85 + 12.98 = 25.83 or 7.87 m.

Pump Selection procedure for Vertical Turbine Pumpsets

If the static suction lift is more than 7.50 Metres, V.T. Pumpsets are to be proposed.

Discharge of each pump is to be arrived after considering system resistance losses.

Selection of delivery pipe & Column assembly;

The delivery pipe dia. can be arrived from V = Q/A and keeping in view the permissible velocities for delivery pipes and column pipe given in the enclosed Annexure : IV (B).

Losses in delivery pipe & fittings.

Approx. length = 25

Reflux valve = 1 No.

90° Bends = 3 Nos.

Sluice valve = 1 No.

Total equivalent length =

The losses can be arrived either by Table or from Formula as explained in case of Horizontal pump selection.

Selection of Column assembly, Line shaft;

Approximate HP = (62.45 x discharge x Static pumping head) x (130/100)

Dia, of line shaft in inches = 3 TO00 x 1460

where 1460 is speed of the Prime mover.

- The losses in column assembly can be arrived from the Tables of Johnston Pump Company
- b. Entry losses = $0.5 \,\mathrm{V}^2/2g$
- c. Losses in Strainer = 0.05x V2 / 2g
- Loss of head in pressure main may be worked out as explained in the case of Horizontal pump selection.
- IV. Exit losses = V2 / 2g

Static pumping head = Delivery level at cistern - LWL in Jack well

h = Total pumping head of each pump =

Static pumping head + losses in delivery pipe + losses in column assembly + Entry losses + losses in Strainer + loss of head in pressure main + Exit losses + ½ dia.. of Pressure main.

This h is for Ns purpose.

Total pumping head, H = h + 10% on losses towards ageing of pipe

H for HP purpose

Ns Specific Speed @ 1460 rpm (Nom.) = 3.65 x 1460 √Q (h) %

HP calculation = $62.45 \times Q \times H / (550 \times n)$

Add cushioning as per Annexure - VI

Minimum Clearance in between the Main Girders= = 2d + 150 mm (Approx)

Where d= dia. of column assembly in mm.

The inner dia: of Jack well-cum-pump house, length of chord etc., are to be calculated as per the standards, details shown in the enclosed Annexure - II.

Model pump selection for V.T. pumpsets

Dydraulic Particulars:	
Discourse	

Discharge		15.20 cusecs.
	Server in the first transfer	The state of the same at a challenger

Bottom finished level or

Since the static suction lift is more than 7.50 Metres, Horizontal centrifugal pumpsets are not suitable. Hence, V.T. pumps are proposed.

Or 0.2260 cum/sec. or 226 LPS or 3582 USGPM or 2985 IGPM.

cutic pumping Head 158.735 - 145.285 = 13.45 Metres or 44.13 ft.... I conction of delivery pipe, and column pipe assuming 12" delivery pipe.

$$\eta d = \frac{7.98}{\Pi/4 \times (12/12)^2} = 10.16 \text{ ft/sec}$$

the velocity in 10" dia delivery pipe is 14.63 ft/sec. against the permissible limit of 11 ft/ Hence, 10" dia delivery pipe is not suitable. The velocity in 12" dia delivery pipe is 16 ft/sec. which is within the permissible.limit of 11.50 ft/sec. Hence, 12" dia delivery and column pipe are recommended.

asses in delivery pipe of 300 mm dia and Pipe fittings.

extrange is 75 HP.

la of line shaft =
$$\sqrt[3]{\frac{75 \times 321000}{7000 \times 1460}} = 1.331^{\circ}$$

suming 1460 rpm speed

he losses for 3600 US GPM with 12" dia column assembly and with line shaft dia of 11/2" to 1 11/16 dia is 4 feet for every 100 feet length.

asses in column assembly, assuming length of column assembly as 40 feet.

intry Losses =
$$0.5 \times (10.16)^2 / (2x32.2) = 0.8 \text{ ft}$$
 ...

Losses in column assembly and delivery pipe upto pressure main =

Losses in pressure main, assuming 26" pressure main

$$V_{Pr} = \frac{15.20}{\Pi/4 \times (26/12)^2} = 4.12 \text{ ft/sec}$$

The velocity in 24" dia pressure main is 4.84 ft/sec. against the permissible limit of 4.5% sec. Hence 24° dia pressure main is not suitable. The velocity in 26° dia pressure main is 4.12 ft/sec which is within the permissible limit of 4.5 ft/sec. Hence 26* dia pressure main is recommended.

Total length = 1608 + 3x68 = 1812 ft

Loss of head =
$$\frac{4.69}{(26/12)^{4.87}}$$
 x $(15.2/110)^{1.85}$ x $1812 = 4.98$ ft ...III.

Losses in manifold are negligible and hence taken as 'nil'.

add 10% on losses towards ageing of pipes=58.39+1.32=59.71 ft.= or 18.20 m for HP. Specific Sped @ 1460 rpm (Nominal)

Ns =
$$\frac{3.65 \times 1460 \times (0.226)^{0.5}}{(17.80)^{3/4}}$$
 = 292.34 or say 292.

Specific speed in US Units =
$$\frac{1460 \times \sqrt{3582}}{(58.39)^{3/4}} = 4137 \text{ Francis / Mixed flow}$$

Hence (2+1) Nos., V.T. Pumps with Francis / mixed flow Impellers running @ 1460 rpm (Nominal) are proposed.

HP Calculations:

$$HP = 62.45 \times 7.98 \times 59.71 / (550 \times 0.78) = 69.36$$

76.30 or say 80 HP

Hence, (2+1) Nos 80 HP, VHS motors are recommended.

Minimum clearance between the Girders = 2x12" + 6" = 30" or 750 mm.

ANNOXUME-1

AND LOCATION OF HORIZONTAL SHAFT PUMPS.

Approx size of pump - morter - To be drived from the chart enclosed vide annexure VIII & IX-

Length of chord = 3(450+ Length of pump&motor).

Inner do at sumpwett= 2.1213 x Length of chordInner length of pumphouse = 3(Length of pump & motor)+300+450+450+900
Inner width of pumphouse = 1350-900+ (width of pump) +450

Diameter of pressuremain = From pumpselection

Diameter of borrel type manifold= 2 x dia of pressuremain.

6-20

ANNEXURE-II

SKETCH SHOWING THE Approx. DIMENSIONS AND LOCATION OF V.T. PUMPS.

DETAILS OF JACKWELL CUM PUMP HOUSE, BAFFLE WALL, BACK WALL #K

the Oio of column assembly

D = 15018d-

a .. 05 to0.750

b = 0.75 0 to 10

Bottom secrance = 060 to 0-750

Length of boffle wall - 50 to 90-

Length of chord = 3(20+0)+225 x 4+ (450 to 600 mm) x 2.

tinner dia of jack well cum pump house = $\frac{2 \cdot 1213}{2}$ x. Length of chord-Length of bocking wall = 3(20+0)+225 x 4.

ANNEXURE - III

Permissible Velocities in Suction Pipe

SI.No	Size	Permissible Velocity
1	1" (25mm)	1.5 ft/sec
2.	2* (50mm)	1,6 ft/sec
3.	3" (75mm)	1.7 ft/sec
4.	4"(100mm)	1.8 ft/sec
5.	6* (150mm)	2.0 ft/sec
6.	8" (200mm)	2.5 ft/sec
7.	10* (250mm)	3.0 ft/sec
8.	12* (300 mm)	4.5 ft/sec
9.	14" (350mm) above	5.0 ft/sec

ANNEXURE - IV A

Permissible Velocities in Delivery pipe (for horizontal shaft pumps)

SI.no.	Size	Permissible velocity
1.	1" (25 mm dia)	3.5 ft/sec
2.	2" ("50 mm dia)	3.6 ft/sec
3.	3*(75 mm dia)	3.8 ft/sec
4.	4"(100 mm dia)	4.0 ft/sec
5,	6" (150 mm dia)	4.7 ft/sec
6.	8"(200 mm dia)	5.5 ft/sec
7.	10"(250 mm dia)	6.5 ft/sec
8.	12"(300 mm dia)	8.5 ft/sec
9. 14	(350 mm dia) and above	10 ft/sec,

ANNEXURE -IV B

Permissible Velocities in column assembly & delivery pipe (For V.T. Pumps)

SI No.	Size	Permissible velocity
1.	1" (25 mm dia)	3.5 ft/sec
2.	2*(50 mmdia)	6.0ft/sec
3.	3*(75 mm dia)	7.0 ft/sec.
4.	4"(100 mm dia)	8.0 ft/sec
5.	6" (150 mm dia)	9.0 ft/sec
6.	8"(200 mm dia)	10.0 ft/sec
7.	10*(250 mm dia)	11 ft/sec.
8.	12*(300 mm dia)	11.50 ft/sec
9.	14"(350 mm dia)	11.75 ft/sec
10.	Above 14"(350 mm dia)	12 ft/sec.

ANNEXURE-IV C

Permissible Velocities in pressuremain (For both Horizontal and V.T.pumps)

SI No.	Discharge in each row	Permissible velocity
1	Upto 5 cusecs	3.5 ft/sec
2	Above 5 cusecs upto 15 cusecs	4.0 ft/sec
3.	Above 15 cusecs to 25 cusecs	4.5 ft/sec
6.	Above 25 cusecs	5.0 ft/sec

Note: The velocities indicated are for general guidence. It is necessary to estimate the HP requirements at least for three alternative diametre of pressuremains for selecting the pumps and motors which give least annual cost.

ANNEXURE-V
Equivalent length in feet of some common pipe fittings

Taken from the Circular issued by Chief Engineer, Minor Irrigation.

Pipe size	Std.90 ⁰ Elbow	Medium Bend	Gate Valve (Sluice Valve)
3/4*	2	1.7	0.5
1"	2.6	2.2	0.6
114"	3.5	3	0.8
11/2"	4	3.5	1
2"	5	4.5	1,2
21/4"	6	5.5	1.4
3*	8	6.5	1.8
4"	11	9	2.4
5"	13	12	2.9
6"	16	14	3.5
8*	20	18	4.5
10*	26	22	5.6
12*	30	26	6.5
14	36	33	. 8
16*	41	36	9
18"	43	40	10
20"	52	44	11
24"	63	54	14
30"	77	67	16
36*	92	76	20
42"	115	96	23
48"	130	110	26
Foot Val	ve with Strainer	22.5	44 ft.
Reflux V			44 ft.
Bellmouth with Strainer		22	30 ft.

ANNEXURE-VI

Efficiency of Pump			
2 to 20 HP		60%	
21 to 35 Hp		70%	
36 to 75 HP	: #	75%	
76 to 200 HP		78%	
Above 200 HP	- 30	80%	
Cushioning			
Up to 2 Hp		50%	
2 to 5 HP		30%	
5 to 10HP		20%	
10 to 20 HP		15%	
Above 20 HP		10%	

Proforma of data sheet in which field Officer have to furnish details for Pumpselection : Name of the Scheme with stage No. :

I TECHNICAL DETAILS :

- 1. Total discharge :
- LWL in sumpwell / Jackwell cum Pump House
- Bottom finished level of Jackwell / Sump well
- Platform level of Pumps
- Length of pressure main in each row
- 5. Dia and material of pressure main :
- 7. No. of rows of pressure main
- a. Delivery level at each cistern / each tapping
 - b. Discharge required at each delivery cistern / each tapping :
- Number of working pumps and number of stand bye pumps proposed:

Note: Schematic diagram showing all the levels and all constructional features from source of water upto delivery cistern shall be enclosed.

General information required for procurement of Pumpsets etc.

- Location of site of scheme with reference to Sub-division Head quarters / Division Head Quarters.
- Complete postal address of consignee for receiving Pumps, Motors etc.
- Name of Bank and Name of Branch for sending the despatch documents to Executive Engineer concerned.
- Stage of procurement of pipes for pressure main.

SUCTION LIMIT CURVES FOR SINGLE STAGE, SINGLE AND DOUBLE SUCTION PUM

SUCTION LIMIT CURVES FOR SINGLE SUCTION MIXED FLOW PUMPS

Pumps

- Stage of completion of connected Civil works.
- 6. Programmed date of comissioning of the scheme.
- Size of sumpwell, Pump House / Jack well cum Pump House as per actual execution.

NOTE: The purchase proposals are to be sent atleast nine(9) months in advance of programmed date of commissioning.

ANNEXURE - IX A

ATMOSPHERIC PRESSURE AT VARIOUS ALTITUDES

Altitude in Feet	Baromete	er Reading	Atmospheric Pressur	
	in Hg	mm Hg	psia	ft. of wate
-1000	31.0	788	15.2	35.2
Sealevel	29.9	760	14.7	33.9
+ 1000	28.9	734	14.2	32.8
2000	27.8	706	13.7	31.5
3000	26.8	681	13.2	30.4
4000	25.8	655	12.7	29.2
5000	24.9	633	12.2	28.2
6000	24.0	610	11.8	27.2
7000	23.1	587	11.3	26.2
8000	22.2	564	10.9	25.2
9000	21.4	544	10.5	24.3
10000	20.6	523	10.1	23.4

ANNEXURE -IX B Properties of water

Temp.	Absolute \	apour Pressure	Specific	Specific	Absolute
٥F	pisa	ft. of water	Weight lb/cu.ft	Gravity*	Viscocity (Centipoises)
32	0.088	0.20	62.42	1.0016	1.79
40	0.122	0.28	62.43	1.0018	1.54
50	0.178	0.41	62.41	1.0015	1.31
60	0.256	0.59	62.37	1.0008	1.12
70	0.363	0.89	62.30	0.9998	0.98
80	0.507	1.2	62.22	0.9984	0.86
90	0.698	1.6	62.12	0.9968	0.81
100	0.949	2.2	62.00	0,9949	0.77
110	1.275	3.0	61.86	0.9927	0.62
120	1.693	3.9	61.71	0.9903	0.56
130	2.223	5.0	61.56	0.9878	0.51
140	2.889	6.8	61.38	0.9850	0.47
150	3.718	8.8	61.20	0.9821	0.43
160	4.741	11.2	61.01	0,9790	0.40
170	5.993	14.2	60.79	0.9755	0.37
180	7.511	17.8	60.57	0.9720	0.35
190	9.340	22.3	60.35	0.9684	0.32
200	11.526	27.6	60.13	0.9649	0.31
210	14.123	33.9	59.88	0.9609	0.29

^{*} Referes to water at 680F, weighing 62.318 lb/cu ft. and have specific gravity of 1.0

NAME OF REPORT OF THE PARTY OF

ANNEXURE - IX C

As per the above table the water equivalent Column of Atmosphere pressure is shown here under, district wise.

SI.No.	Name of the District	Pressure value in Feet
ac.	Srikakulam District	33.90
1.	Vizianagaram District	33.90
2.	Visakhapatnam District	33.90
3.	East Godavari District	33.90
4.	West Godavari District	33.90
5.	Krishna District	33.90
6.	Guntur District	33.90
7.	Prakasham District	33.50
8.	Nellore District	33.90
9.	Kurnool District	33.00
10.	Cuddapah District	33.00
11.	Ananthapur District	33.00
12.	Chittoor District	33.00
13.	Khamman District	33.90
15.	Warangal District	33.90
16.	Karimnagar District	33.00
17.	Adilabad District	33,00
18.	Nalgonda District	33.50
19.	Mahaboobnagar District	33.00
20.	Medak District	33.00
21.	Nizarnabad District	33.00
22.	Ranga Reddy District	33.00
23.	Hyderabad District	33.00

INDEX

Chapter - VII

A - Surveying

Correction	on to be applied to measured length	7-1
7.1.1	Correction for Slope	7-1
7.1.2	Correction for Temperature	7-2
7.1.3	Correction for Tension	7-2
7.1-4	Correction for Sag	7-2
Adjustm		7-3
7.2.1	Adjustment of the perpendicularity between	
	vertical axis and Level Tube Axis	7-3
7.2.2	Adjustment of the Line of Collimation or the Collimation adjustment	7-3
7.2.3	Sensitivity of level tube	7-4
Adjustm	A CONTRACT OF THE PARTY OF THE	7-5
7.3.1	Source of Errors in compass observation	7-5
7.3.2	Testing the Compass	7.5
Adjustm	ent of theodolite	7-6
7.4.1	Temporary Adjustment	7-6
7.4.2	Permanent adjustment of Theodolite	7-7
7.4.3	Adjustment of the line of sight, or collination adjustment	7-8
	B - SURVEYING TOTAL STATION & HIGHWAYS	
	Introduction	7-12
	Basic mapping terms in survey	7-12
	Disharan Managanast	7-13
	Advantages of Modern Surveying	7-14
	Instruments and Methods	
	Total Station	7-14
	Component of Total Station	7-15
	7.1.1 7.1.2 7.1.3 7.1-4 Adjustm 7.2.1 7.2.2 7.2.3 Adjustm 7.3.1 7.3.2 Adjustm 7.4.1 7.4.2	7.1.2 Correction for Temperature 7.1.3 Correction for Tension 7.1-4 Correction for Sag Adjustment Dumpy Level 7.2.1 Adjustment of the perpendicularity between vertical axis and Level Tube Axis 7.2.2 Adjustment of the Line of Collimation or the Collimation adjustment 7.2.3 Sensitivity of level tube Adjustment of Prismatic Compass 7.3.1 Source of Errors in compass observation 7.3.2 Testing the Compass Adjustment of theodolite 7.4.1 Temporary Adjustment 7.4.2 Permanent adjustment of Theodolite 7.4.3 Adjustment of the line of sight, or collination adjustment B - SURVEYING TOTAL STATION & HIGHWAYS Introduction Basic mapping terms in survey Distance Measurement Advantages of Modern Surveying Instruments and Methods Total Station

I Station
ns
Station
tation

C - HIGHWAYS

		C - HIGHWAID	
7.6.	Roads (II	RC Standards)	7-35
7.0.	7.6.1	Classes of Highways	7-35
	7.6.2	Design capacity and No. of Traffic Lanes	7-35
	7.6.3	Width of carriageway and Roadway	
	7.0.5	for various classes of roads	7-35
	7.6.4	Road camber or cross fall	7-36
	7.6.5	Gradient	
	7.6.6	Sight distance in metres	7-37
	7.6.7	Transition - Minimum length of transition	7-37
	7.6.8	Radii for horizontal curves in metres	7-37
	7.6.9	Extra width of carriage way in curves	7-38
79.77			7-38
7.7	Design Sp	beed	01.346
7.8	Hair-pin I	Bends	7-38
6336	A. A. S.		-2782
7.9	Horizonta	al curves	7-39
	7.9.1	Widening at curves	7-40
7.10	Vertical c	nirves	7-40
7.10	7.10.1	Minimum length of vertical curves	7-41
7.11	Pridons		7-41
7.11	Bridges 7.11.1	Loading	7-41
		Desing Principles	7-41
	7,11,2,	Desiring Frittiapies	
7.17	Transitio	n Curves	7-42
7.12	Halisido	n Curves	

				7A -	SURVEY	ING
.1.	Corre	ections t	o be ap	plied to	measured	length
1.1	Corre	ction for	slope;	C = L	(1- Cos α)
et	hi	#	height	of the i	nstrument	
	h2	#	height	of the t	arget	
	θ	=	measi	ured ver	tical angle	
	α	=	slope	of the m	easured lin	ne .
	L	#7				
	$a = \theta$	+δθ,	Sin 86	= (h1	- h2) Cos	e/L
	δθ =	206265 (h1 - h2) Cose /	L -	
	(1)	If h1 =	= h2		$\delta \theta = 0$	α =
				and	N. 24 19 12 12 12 12 12 12 12 12 12 12 12 12 12	and the second second
				(Barton April 1)		
	(0)	11 11 11 11	1144		THE RESERVE OF THE PARTY OF THE	
	(A)	If hit	- h2		THE RESERVE OF STREET	The Part of the Control of the Contr
	(3)	0.441	C I IE	dilli	o is ve,	00 15 -41
						8,
						9019
				-56		В,
	1.1	1.1 Corre et h1 h2 θ α L	1.1 Correction for 1.1 th $1 = 1.1$ th 1	1.1 Correction for slope; et h1 = height h2 = height θ = meast α = slope L = length a = θ + δ θ , Sin δθ δθ = 206265 (h1 - h2 (2) if h1 < h2 (3) if h1 > h2 (4) If h1 < h2	1.1 Corrections to be applied to 1.1 Correction for slope: C = L et h1 = height of the i h2 = height of the i h2 = measured ver α = slope of the m L = length of the r a = θ + δ θ , Sin δθ = (h1 δθ = 206265 (h1 - h2) Cosθ i (1) If h1 = h2 (2) If h1 < h2 and if α is	et h1 = height of the instrument h2 = height of the target θ = measured vertical angle α = slope of the measured lin L = length of the measured lin L = length of the measured lin L = θ

380

7.1.2 Correction for temperature

 $C = L. \alpha (tm - t_s)$

Where L = the measured length

Coefficient of linear expansion of the tape metal

= 10.60 to 12.2 (x 10⁻⁶) / °C for steel

t_m = field temperature of the tape

t = temperature at which measuring tape is standardised

7.1.3. Correction for Tension

$$C = \frac{L(T_m - T_s)}{A E}$$

Where L = The measured length

A = Cross sectional area of the tape

E = Young's modulus of Elasticity (N/mm²)

T_{...} = Tension applied in the field

T_s = Tension at which the tape is standardised

7.1.4. Correction for Sag

where, L = tape length recorded

m = mass of tape per unit length (Kg/m)

q = gravitational acceleration

T = applied tension (N)

12 Adjustment of Dumply Level

- 12.1 Adjustment of the Perpendicularity between Vertical Axis and Level Tube Axis:
- 1. Set up the instrument on firm ground, and level carefully in two positions at right angles to each other.
 - Swing the telescope through 180°. If the bubble remains central, the adjustment is correct:

Adjustment - 1

. If not bring the bubble halfway back by the adjusting screws, connecting the bubble tube to the telescope

Adjustment - 2

2. Level up, and repeat the test and adjustment until correct.

7.2.2. Adjustment of the Line of Collimation or the Collimation Adjustment

- Peg 2 points, A&B (see fig.) 90 to 120m apart on fairly level ground. Set the level between them at C, so that the eyepiece will almost touch the face of levelling staff held on A.
 - Level up carefully, and note the reading b of the staff held on B: then, by looking through the object glass, observe the reading 'a' of the staff on A.
 - 3. Transfer the instrument to D near B, level up, and read the staff on both pegs as before, obtaining the readings 'c' and 'd'. If the difference of level between A and B, as deduced from readings 'a' and 'b' equals that given by 'c' and 'd', the result is their true difference of level, and the adjustment must be correct, since such equality could be secured only by a horizontal line of collimation.

Adjustment -1.

If not, compute the true difference of level between A and B. This is given by the mean of the two erroneous differences. If D be the true difference, of level, and 'e' the error introduced in reading the far staff, then, for the case illustrated,

b-a = D+e and c-d = D-e

D = [(b-a) + (c-d)]/2

Adjustment-2

By applying D to the reading c, compute d, the reading on A at the same level as c. The instrument being still at D turn the top and bottom diaphragm adjusting screws until the line of collimation is directed to d, taking care that the bubble is in the centre of its run. The line of collimation is now horizontal.

781

Alternative Method

- Drive two pegs, A and B, as before. Set up the instrument at C, exactly midway between them, level up carefully, and read a staff on A and on B. The difference of the readings a and b is the true difference of level.
- Set the instrument near one of the pegs and preferably beyond it, at D, level up, 2. and note the readings c and d of the staff on the pegs. If the difference between c and d equals the true difference of levels, the adjustment is correct.

Adjustment: If not, by applying the true difference of level to the reading C, deduce d, the reading of A which would be observed by a horizontal sight from D, and by means of the diaphragm adjusting screws direct the line of collimation to d, taking care that the bubble is central.

7.2.3 Sensitiveness of a Level Tube

The sensitiveness or sensitivity of a level tube means its capability of showing small angular movements of the tube vertically. It depends upon the radius of curvature of the tube which may vary from 10 to 300m. The larger the radius of curvature, the greater the sensitiveness (or the longer the bubble, the more sen sitive it is). The sensitiveness is some times expressed in terms of the radius of curvature, but it is more usually expressed in terms of the angle through which the axis of the level tube must be tilted to cause the bubble to move through one division of the scale, (i.e., the angular value of one division), or in terms of the angle subtended at the centre by an arc of one division of the scale. When so expressed, the sensitiveness varies inversely as the number of seconds.

The angular value of one 2mm, division of the tube may vary from 8 to 45 seconds. depending upon the type of the instrument. For example, the sensitiveness of the spirit levels fitted to the levels varies from 20 to 30 seconds, that of the plate level from 40 to 45 seconds, and that of the altitude level from 8 to 20 seconds.

Adjustment of Prismatic compass

7.3.1 Source of Error in Compass Observations

The errors may be classified as (1) instrumental errors, (2) errors of manipulation and sighting, and (3) errors due to external influences.

- (1) Instrumental Errors: (a) The needle not being perfectly straight, (b) the pivot being bent, i.e. not being at the centre of the graduated circle, (c) the needle being sluggish, i.e. the needle having lost its magnetism, (d) the pivot point being dull, (e) the needle neither moving quite horizontally nor moving freely on the pivot due to the dip of the needle, (f) the plane of sights not being vertical, (g) the graduated circle not being horizontal, (h) the line of sight not passing through the centre of the graduated ring, and (i) the vertical hair being too thick or loose.
- (2) Errors of manipulation & sighting: (i) Inaccurate centering of the compass over the station occupied, (ii) Inaccurate levelling of the compass box (the compass box not being horizontal) when the instrument is set up. (iii) Imperfect bisection of the ranging rods at stations or other objects. (iv) Carelessness in reading the needle or in reading the graduated circle through the prism in a wrong direction. (v) Carelessness in recording the observed readings.
- (3) Errors due to external influences: (i) Magnetic changes in the atmosphere on cloudy or stormy day, (ii) Irregular variations due to magnetic storms, earthquakes, sun spots, lunar perturbations etc., (iii) Variations in declination viz., solar annual and biannual, (iv) Local attraction due to proximity of steel structures, electric lines etc.

7.3.2 Testing the Compass

The compass (surveyor's or prismatic) should be tested in the following manner to see if it is trustworthy (i.e. in good working order).

- 1. To see if the needle is horizontal when the compass is properly levelled. If not, slide the rider (small coil of brass wire) towards the high end so as to make it perfectly horizontal. In the case of the prismatic compass, the dial should be balanced by correctly setting the rider.
- To find if the needle is straight and the pivot is at the centre of the graduated circle. Read both ends of the needle. The difference in the readings pointed to by the North and South ends of the needle will be exactly 180 0., if the needle be straight and the pivot in the centre. If the difference is not equal to 180 ° it may be due to pivot not being in the centre or to a bent needle or to both. If the difference between the two end readings for

different positions of the compass is constant, it may be taken that the pivot is in the centre and the error is due to the needle not being straight. To correct it, bend the needle straight. If the difference in the readings is not constant the correction is made by bending the pivot and straightening the needle.

3. To ascertain if the needle is sluggish. It will not be exactly on the magnetic meridian when it comes to rest. Sluggishness of the needle may be caused by the loss of magnetism or by the bluntness of the supporting pivot, but it is more often due to the cultness of the pivot rather than to the loss of magnetism. To detect it, sight any object and take the reading. Turn the sights away and immediately bring them back and resight then same object and observe the reading. The two readings will be same, provided the needle is sensitive and the pivot point sharp.

Alternatively, after the first reading is taken, displace the needle by means of a piece of steel, say, a key and again take the reading. The reading will be the same as before, if there is no triction on the pivot and the needle is not sluggish.

- 4. To find if the sights are vertical and fixed diametrically opposite to each other. Suspend a plumb line in front of the compass. Level the compass and sight the string. If the sights are vertical, the eye vane, object vane, and the string will be parallel and in the same line.
- To see if the line of sight passes over the zeros on the circle. Stretch a line horse
 heir between the slits and see whether it passes over the N and S marks(zeros).
- To detect if there be any observational error or errors due to external influence. Take
 the fore and back bearings of a line. These will differ exactly by 180 ⁰, if the working is
 correct and there are no external influences.

Limits of precision: In the case of the prismatic compass the least value that can be estimated is 15 minutes and, therefore, the permissible error per bearing should never exceed this amount. The angular error or closure or summation error in minutes should not exceed 15. N where N is the number of stations or sides of a traverse.

The relative error of closure should between 1 in 300 to 1 in 600.

7.4 Adjustment of theodolite

- 7.4.1 Temporary adjustments
 - 1. Setting over the station
 - 2. Levelling up
 - 3. Elimination of parallax.

Levelling up:

- Turn the upper plate until one level tubes is parallel to any pair of screws. The
 other tube will be parallel to the line joining the third screw and the point midway
 between the first pair.
- Manipulate any pair of screws to bring the bubble to the centre of its run in the tube to which they are parallel, in turning the screws, the thumbs move towards or away from each other and the left thumb must be moved in the direction in which the bubble is required to travel.
- 3. Level the other tube with the remaining screw by using one hand only.

Elimination of parallax:

- Turn the focussing screw until no object can be distinguished in the field, or point the telescope to the sky. Adjust the eye-piece until the cross hairs appear in sharp focus.
- 2. Point the telescope towards the object, and keeping the eye on the cross-hair the focussing screw until the image appears in sharp focus. The image and hairs should then be in the same plane, but the eye should be moved about to test whether any relative movement between them can be observed. If necessary, adjust the focussing screw until the apparent movement is eliminated.

7.4.2 Permanent Adjustments of Theodolite

- Adjustment of the Plate Level: Object: To set the axis of the plate level tubes perpendicular to the vertical axis.
- Test- 1 Set up the instrument on firm ground. Fix the lower clamp, and level the plate bubble carefully.
 - Swing the upper plate through 180°. If the bubble remains central, the adjustment is correct.

386

Adjustment-1: If not, bring the altitude level, attached to the telescope or the index arm, parallel to a pair of levelling screws. If this tube is mounted on the telescope, set it approximately level by hand, clamp the vertical circle, and complete the levelling by the vertical tangent screw or the levelling screws, if it is mounted on the vernier frame, use the levelling screws. Turn through 90° and centre the bubble by the levelling screws. Repeat until the bubble is central in these two positions.

- 2. Swing through 180 0 the bubble will leave the centre of its run. Bring it half-way back by the levelling screws and the remainder by the vertical circle tangent screw or the clip screws. Repeat until the bubble remains central in any position.
- 3. The vertical axis is now truly vertical. By means of the adjusting screws of the plate levels bring the bubble of each to the centre of its run.

7.4.3 Adjustment of the line of sight, or the collimation adjustment

Object: To make the line of sight coincide with the optical axis of the telescope.

Horizontal Hair: Test

- 1. Set up and level the instrument carefully, with all the clamps fixed, take a reading on a levelling staff held upon a firm point few hundred feet away. Note the reading and the vertical angle.
- 2. Unclamp, transit the telescope and swing through 180 0 set the vertical circle to the same angle as before.
- 3. Again read the staff. If the previous reading is obtained, the adjustment is correct.

Adjustment:

- 1. If not, move the diaphragm by the top and bottom capstans until the staff reading is the mean of those previously obtained.
- Repeat until no error is perceptible on changing face.

Vertical Hair: Test:

- 1. Set the instrument on a fairly level stretch of ground and in such a position that a sight of about 90m may be obtained on either side. Level up.
- 2. Establish a point A at about 90m from the instrument by thrusting a chaining arrow into the ground, or otherwise, Sight A, and clamp the horizontal movement.
- 3. Transit, and mark B at about the same level as A and so that OB=OA approximately.

- 4. Unclamp, swing through 180 0, and again sight A and clamp.
- 5. If, on again transiting, the line of sight intersects B, it is perpendicular to the horizontal axis.

Adjustment:

- 1. If not, mark C in the line of sight. Measure out from C towards B a length CD= (1/4) CB, and mark D.
- 2. By means of the diaphragm side capstans bring the vertical hair to D.
- 3. Repeat until no error is perceptible on changing faces.

Adjustment of the Horizontal Axis:

Object: To make the horizontal axis perpendicular to the vertical axis, so that it is truly horizontal when the instrument is levelled up.

- Test: 1. Set the instrument in such a position that a highly inclined sight may be obtained to a well-defined point A,e.g. the final of a steeple. Level up very carefully, and sight A.
 - 2. With both clamps fixed, depress the telescope, and mark a point B on the ground in the line of sight.
 - 3. Unclamp, transit the telescope, and swing through 180 0. Sight on B and with the horizontal movements clamped, elevate the telescope. If the line of sight again cuts A, the horizontal axis is truly horizontal, and is therefore perpendicular to the vertical axis.
- Adjustments: 1. If not, let the hairs appear at C, opposite, A, by means of the adjusting screw at the trunnion support on one standard bring the line of sight from C to D. estimated midway towards A.
- Adjustments: 2. Again perform the Test, making a new point 'B' on the ground and repeat the test and adjustment until no error is detected on changing face.

Adjustment of the Telescope Level: Object: To place the axis of the level tube attached to the telescope parallel to the line of sight.

Test and adjustment: The procedure is exactly the same as in the "two peg" adjustment of the dumpy level the adjustment being made by means of the screws attaching the level tube to the telescope.

Adjustment of the Vertical Index Frame

Object: To make the vertical circle read zero when the line of collimation is horizontal.

- Test: 1. Level the instrument by plate levels and by means of the vertical circle clamp and tangent screw set the vertical circle to read zero.
 - Bring the bubble on the index arm exactly central by means of the clip screw at the standard. Observe a levelling staff held 60m or 90m away and note the reading.
 - 3. Release the vertical circle clamp, transit the telescope, and again set the vertical circle to read zero. Swing through 180 °, re-level if necessary, and again read the staff held on the same point. If the reading is unchanged, the adjustment is correct.
- Adjustment: 1. If the reading differ, bring the line of collimation on to the mean reading by turning by the clip screw.
 - Return the bubble of the altitude level to the central position by means of the adjusting screws attaching it to the index arm.
 - 3. Repeat until no error is discovered in the test.

Considering now the case of an instrument in which the clip and tangent screws operate on separate arms, the elimination of index error and the adjustment of the altitude level are performed as follows, whether the level is mounted on the vernier arm of the telescope.

- Test: As in the last case, if the level is on the vernier arm, but, if a telescope level only is fitted, set the bubble central by the levelling screws.
- Adjustment: 1. If the readings differ, bring the line of collimation on to the mean reading by turning the vertical circle tangent screw.
 - 2. Return the vernier index to zero by means of the clip screw.
 - Bring the bubble of the level central by means of the adjusting screws attaching it either to the vernier arm of the telescope.
 - 4. Repeat until no error is discovered in the test.

Surveying Total Station & Highways

7. B SURVEYING TOTAL STATION

INTRODUCTION:

Surveying is the process of determining the earthen features and transferring its relative position on to the paper. Surveying principles can be applied in a variety of ways to accomplish the aim of position finding. The preferred survey method for both two and three dimensional position finding has changed through the years in response to the advances in technology. Different methods considered in modern surveying include precise leveling & traversing, Astronomical surveying, Photogramentry, EDM, Remote sensing, GIS, GPS, DGPS etc.,

2.0 BASIC MAPPING TERMS IN SURVEYING:

To be able to map irrigation applications and to operate the total station and data collector effectively, it is necessary to know some basic mapping concepts related to how locations are designated. It is essential that one is familiar with how to use a compass and how to read topographic maps. In fact, it is recommended that one know how to map a site using a compass and measuring tape or pacing before learning how to use the total station. If the cardinal directions and distances are understood well, then one will be able to know if he or she is using the total station correctly. The cardinal directions refer to north, east, south, and west, which are essential reference points for site mapping. Depending on the mapping project it may be more appropriate to record locations relative to true rather than magnetic north. It is important to know about azimuths and bearings, and how either of these readings along with distance can be used to plot the location of a point. One needs to know how to read and determine UTM (universal Transverse Mercator) coordinates. The total station records points by translating the azimuth and distance between the site datum and the point being recorded into UTM a coordinates. Therefore, it is crucial that one should understand the relationship between azimuths/bearings and distances, and UTM coordinates.

2.1 An azimuth is any direction read on a 360° circle, which relates to the cardinal directions. North is read as both O° and 360°, east as 90° south as 180°, and west as 270°. When using a compass to map a site, points are plotted according to the azimuth between the site datum and the point, and the distance between them is recorded generally in meters (m).

- 2.2 Regardless, the site datum is the reference point for all locational data recorded at a site and, therefore, it is where all mapping activities must begin. The total station serves the same purpose as a compass in terms of keeping track of how azimuth designations relate to actual directions. However, it differs in that it can not determine true or magnetic north by itself; an external compass must be used to determine north, and then the direction is set on the total station.
- 2.3 When site mapping, engineers generally employ a combination of azimuths/beings and UTM (Universal Transverse Mercator) coordinates. Among various reasons, what map systems are used depends on the nature of the mapping project, the location on earth, and what cartographic conventions are used in that region.

3.0 EDMs And TOTAL STATION:

3.1 DISTANCE MEASUREMENT:

There are three methods of measuring distance between points 1) Direct distance measurement (DDM) such as the one by chaining or taping ii) Optical distance measurement (ODM) such as the one by tacheometry, horizontal subtense method or telemetric method using optical wedge attachments iii) Electromagnetic distance (EDM) such as the one by Geodimeter and, Distomat.

The method of direct distance measurement in unsuitable in difficult distance measurement is unsuitable in difficult terrain and sometimes impossible when obstructions occur. The problem was overcome after the development of optical distance measuring methods but in ODM method also the range is limited to 150 m and the accuracy obtained is 1 in 1000 to 1 in 10000. Electromagnetic Distance Measurement enables the accuracy up to 1 in 100000 over ranges up to 100 km.

3.2 ELECTRONIC DISTANCE MEASUREMENT:

Electromagnetic distance measurement (EDM) equipment consists of an aiming head/receiver unit set at one end of the line to be measured and pointed towards a reflective glass prism set up at the other end. An electromagnetic beam is emitted by aiming head, projected towards the prism, reflected back and analyzed to determine the distance.

3.2.1TYPE OF EDM INSTRUMENTS

Depending upon the type of carrier wave employed, EDM Instruments can be classified under the following three heads.

- i) Micro Wave Instruments
- ii) Visible light Instruments
- iii) Infra red Instruments

Distorat is a very small compact EDM particularly useful in building construction, Civil Engineering Construction, Cadastral and detail survey, particularly in populated areas where 99% of distance measurements are less than 500m.

4.0 ADVANTAGES OF MODERN SURVEYING INSTRUMENTS AND METHODS:

- i) Traditional survey methods are laborious and time consuming
- ii) Familiar manual procedures have been integrated and automated
- iii) Fully automatic electronic measurement
- iv) Digital display of staff reading and distance
- v) Single measurement or averaged repeal measurements.
- vi) Data storage in Instruments possible
- vii) Direct transfer to Personal computer of data stored in Instruments
- viii) Online operation through integrated interface to computer.

5.0 TOTAL STATION:

Instrument of choice for the modern surveyor integrates an electronic digital theodolite, a electronic distance measuring instrument and a computer in to single unit. The resulting hybrid instrument is called a 'Total Station' A total station automatically measures and displays distance and direction data (both horizontal and vertical angles) and results to its computer.

Hence the total station instrument is a combination of

- Distance measuring instrument (EDM)
- Angle measuring instrument (Theodolite)
- c. A simple micro processor

The total station emits a laser signal that bounces off the prism reflector at the op of the rod and then returns to the gun. The distance and slope at which the laser travels provides the basis on which the data collector calculates the azimuth to and elevation of the point on which the rod is placed.

The total station emits a laser signal that bounces off the prism reflector at the top of the rod and then returns to the gun. The distance and slope at which the laser travels provides the basis on which the data collector calculates the azimuth to and elevation of the point on which the rod is placed.

5.0 COMPONENTS OF TOTAL STATION:

4.1 GUN:

The total station is referred to generically as the gun. The process of sighting the rod with the gun, and then recording the locational data using the data collector, is referred to as "shooting" points.

6.1.1 OPTICAL PLUMB BOB:

There is the optical plummet telescope, or optical plumb bob that looks like another knob and is located immediately to the left of the data screen. The optical plumb bob can be viewed through to see the ground directly below the center of the gun. When using this plumb bob, the gun can not be screwed into the tripod, since it will obscure the view. The gun must be sitting on top of the tripod loosely, so that it can be shifted around until it is positioned directly over the marker. When looking through the knob, there are two black circles and one dot arranged in a "bulls-eye" fashion that allow the user to line up the gun precisely on a location.

6.1.2 EYEPIECE AND SIGHTING COLLIMATOR:

The easiest way to line up the crosshairs on the prism reflector is to rely on the aghting collimator, or sight, which is located on the top of the gun below the carrying landle. The sight can be used to get the gun into range with great accuracy without laving to look through the eyepiece. The key is to line up the triangle viewed in the light on the prism reflector. This should place the prism reflector close enough to the mosshairs such that the focus adjustment knobs can be locked down without having to look through the eyepiece. Once the knobs are locked down, the user can look through

the eyepiece and make fine-grained adjustments to line up the prism reflector on the crosshairs perfectly. However, it will take some practice using the sight and knowing how the sight works in order to do this accurately every time.

There are two ways to focus the eyepiece such that both the prism reflector and the crosshairs can be viewed clearly. First, if the prism reflector is blurry, rotate the gray ring, or objective focusing knob, that encircles the eyepiece until it is clear. Second, if the crosshairs are blurry, adjust the small black knob that is part of the eyepiece, which is known as the reticle focus know.

6.1.3 BATTERY:

Battery is attached to the gun on the right hand side when facing the eyeplece and data screen. The battery locks into place with a locking lever at the top of the battery. It is essential that the battery be re-charged daily when conducting fieldwork. There should always be at least one fully charged spare battery in case the one being used needs to be replaced.

6.1.4 ENVIRONMENTAL BOX:

The data collector is stored in an environmental box to prevent the elements from penetrating into the equipment. In particular, the environmental box prevents heavy misting and light rain from affecting the performance of the data collector. However, one note of caution is that condensation can build up inside the environmental box in humid and sunny conditions. In humid environments, it is recommended that the data collector should be taken out of the environmental box when not in use and allowed to "breathe." Furthermore, it may be necessary to clean the contacts on the data collector regularly, even nightly, to prevent potential problems. Too much humidity (more than 90% relative humidity) can corrode the contacts such that data collector can not read information from the gun, and therefore can not record points. In general, the data collector should be stored in moderately cool, shady, and dry conditions as much as possible when it is not being used.

6.1.5 HP-48CX CALCULATOR AND TDS-48GX SURVEY CARD:

The data collector is composed calculator with TDS-48GX survey card that is inserted into the back of the calculator. The data collector referes to the calculator when the survey program is enabled.

11.6 BATTERIES OF CALCULATOR AND RAM CARD:

There are two parts of the data collector that use batteries: the calculator and lie RAM card. It is essential that there are always spare batteries in the field. Whenever is preparing to go into the field to conduct site mapping, make sure that extra latteries of both kinds are included in the bag in which the data collector is stored.

The calculator is operated using three AAA alkaline batteries. To change the satteries, open the environmental box by unscrewing the two spring- loaded screws cated on the front of the box when viewing the calculator. Then, lift the calculator out arefully and turn it over. The batteries are located inside the calculator at the base of backside.

The RAM card is located immediately below the survey card in the back of the alculator. The card uses one 3-volt lithium battery (CR2016) that should be replaced about once a year. When the battery is low, it will be indicated by a symbol displayed in the data collector screen

6.1.7 LEVELING SCREWS:

There are three leveling screws located at the base of the gun, which allow the un to be leveled once it is secured to the tripod. When one of screws is turned to the ght, it lowers that side of the gun. When it is moved to the left, it will raise the gun on nat side. When adjusting the leveling screws, use the leveling bubble, or circular level, scated next to where the connector cable for the data collector is inserted. The rocess of using the circular level to adjust the leveling screws appropriately is referred that coarse-grained leveling.

When setting up the gun on the tripod, it is useful to have all of the leveling resists set at the same level. It is best to have them all rotated the same number of luns so that they are positioned at a middle height. This allows for the screws to be djusted up or down when leveling the gun.

1. NOMENCLATURE AND FUNCTIONS

1.1. Nomenclature

7 - 18

Surveying Total Station & Highways

12. BATTERY SYSTEM

1.1. Nomenclature

6.1.8 FOCUS ADJUSTMENT KNOBS:

398

There are two focus adjustment knobs located on the right-hand side of the gun when facing the data screen. These knobs allow the gun to be rotated 360 horizontally and vertically from its base on the tripod. As long as the prism reflector is visible, the knobs allow the user to line up the gun with the rod regardless of its relative horizontal or vertical location.

The lower knob that just out from the gun to the right is the knob that controls the horizontal orientation of the gun. There are two separate adjustments on the knob, of which one is closer to gun than the other. The closer part of the knob is referred to as the horizontal lock clamp and the further part is referred to as the horizontal tangent screw, when horizontal lock clamp is turned all the way to the left, or towards the gun, it is totally loose and the gun can be rotated in any horizontal direction. When it is turned all the way to the right the gun is locked in that position and can not be moved horizontally.

The second knob is located above the lower knob and just out in a forward direction from the gun. The upper know controls the vertical orientation of the gun, of which the parts are referred to as the vertical lock clamp and vertical tangent screw. In contrast to the horizontal lock clamp, when the vertical lock clamp is turned all the way to the right, it is loose and the eyepiece can be rotated up or down. The gun is locked in position when the vertical lock clamp is turned all the way to the left. Whenever a point is being shot, it is essential that the lock clamps be locked down in this manner.

The horizontal and vertical tangent screws control the fine-grained adjustment once the lock clamps are locked down. This means that the lock clamps can be locked down when the prism reflector is close to being centered on the crosshairs viewed in the eyepiece. Then, fine-grained adjustments can be made such that the prism reflector is lined up perfectly with the crosshairs.

6.1.9 DATA SCREENS:

6.2 PRISM REFLECTOR:

The Prism reflector is an updated version of the stadiarod that is used in conjunction with conventional optical transits. The Prism reflector itself is the small square. Shaped piece that contains a circular mirror. This piece is attached to the metal rod by screwing its base into the top of the rod.

The total station emits a laser signal that bounces off the prism reflector at the top of the rod and then returns to the gun. The distance and slope at which the laser beam travels provides the basis on which the data collector calculates the azimuth to and elevation of the point on which the rod is placed.

There are two black spring-loaded grips on the rod used to adjust the height. The rod can be extended or shortened when the grips are depressed by wrapping the palm of the hand around them. The rod measures 1.65 m in height at its shortest, and can be extended to a maximum of 3.78 m using both of the grips.

The most important aspect of holding the rod when recording points is to maintain as much accuracy as possible. First the base of the rod need to be placed precisely at the location that is to be recorded. If the rod can not be placed directly on the point, then position it as close as possible and record the difference in the field notes.

It is important that the rod is level to ensure that the elevation is recorded correctly. The rod has a built-in leveling bubble for this purpose. The person holding the rod should stand in a stable position (it is best to have your legs spread apart somewhat) and then firmly hold the rod near where the leveling bubble is located. Once the person is in position and the rod is leveled, the point is ready to be recorded. While the point is being shot, the person should keep his/her eyes on the leveling bubble to make sure that the rod doesn't move.

The taller the rod is, the more difficult it is to keep it level in windy and inhospitable conditions. Consequently, points should be recorded at the lowest rod height possible to make it earlier on the person holding the rod. The rod height can be changed at any time and as many times as necessary. However, it is critical that the person using the total station is notified each time the rod height is changed so that it can be adjusted on the data collector.

If the rod holder forgets to tell the person using the total station that the rod height has been changed, then the error can be written down in the field notes and corrected later.

6.3 TRIPOD:

Several types of tripods that can be used to support the gun, most of which being simple in their design and use. The primary differences between tripods include material, maximum height, and weight. Materials include wood aluminum, and wood/fiberglass, of which aluminum tripods are the lightest (13-14lbs.) and wood/fiberglass ones (16-18 lbs.) are the heaviest and most durable. The kind of tripod used depends on the circumstances of the mapping, including whether the tripod has to be carried for long distances, if conditions are windy, and other factors.

For complex mapping projects, such as ones with multiple mapping stations, more than one tripod is recommended. Having several tripods to work with will allow for more efficiency when occupying multiple mapping stations and using multiple back sight points. The tripods, along with tripod bracket (for leveling purposes), can be set up such that the location of the gun and prism are easily interchangeable.

6.4 MECHANICAL PLUMB BOB:

There is the mechanical plumb bob that can be used for the same purpose. The four components of the mechanical plumb bob are stored along with the gun. One, there is a small metal bar that is shaped like a V with a hook extending from the base of the V. which allows for the plumb bob to be attached to the tripod. The ends of the top of the V are inserted into the base of the tripod screw. Two there is the string that extends between the metal bar and the plumb bob. The string is attached to the hook at the base of the V. Three, there is a metal strip that has two holes in it and is curved on both ends. The string is threaded through the metal strip such that it can be used to adjust the length of the string. Four, there is the actual plumb bob that is attached to the other end of the string and should hang immediately above the marker.

7.0 OPERATIONS OF TOTAL STATION

Setting an Instrument over a Point and Leveling the Instrument

- 7.1 Roughly set the tripod over the point by holding two legs and set the third past the point. Move the two legs that you are holding until the top of the tripod is approximately over the point. Make sure that the top of the tripod is roughly level. Press the legs of the tripod firmly into the ground. Screw the instrument onto the tripod. Make sure that the leveling screws are even. If they are not even, screw each one of the screws so that it is in the middle of its leg.
- 7.2 The plumb bob can be used to position the instrument over the point. The optical plummet is quicker and, easier to use than a measured plumb bob. Look through the optical plummet and determine its location relative to the point (you sometimes have to place your foot next to the point to determine its location). Adjust the location of the tripod (if necessary) to find the point in the optical plummet by lifting two legs and pivoting he instrument on the third leg while looking through the optical plummet. Centre the optical plummet exactly on the point.
- 7.3 Level the tripod base. Carefully adjust the tripod legs (one at a time) up or down to centre the circular level on the instrument. Check that the optical plummet is still on the point.

13. PRISM SYSTEM

Arrangement according to your needs is possible.

It is possible to change the combination according prupose.

Use the above prism after setting them at the same height as the instruments. To adjust the height of prism set, change the position of 4 fixing screws.

- 7.4 Level the instrument plate bubble using the plate level.
- 7.4.1 Align the level so that its axis is parallel to the line between two of the leveling screws.
- 7.4.2 observe the location of the bubble. Move both leveling screws with your thumbs equal amounts in opposite directions. Centre the level exactly between the two large lines.*Left Thumb Rule: Both thumbs move in or both thumbs move out. The level follows the direction of the left thumb.
- 7.4.3 Rotate the instrument 90 degrees so that the bubble is aligned over the third screw. Use that screw only to centre the bubble exactly.
- 7.4.4 Turn the instrument to its original position 9as in a.). Level again if necessary. Continue this process until the bubble stays centered as the instrument is rotated.
- 7.4.5 Check the optical plummet. If it is slightly off of the point, loosen the instrument's attachment screw on the tripod. Carefully slide the instrument exactly over the point while looking through the optical plummet. Do not rotate the instrument. Tighten the clamp. Then re-level the plate level.
- 7.5 Assembling and Holding the Prism (Prism Boy)
- 7.5.1 Attach the prism onto the top of the rod.
- 7.5.2 Place the tip of the rod's base on the centre of the point that is to be measured.
- 7.5.3 Usually the height of the rod should stay at 1.5 m. This is the distance from the tip of the rod that is on the point to the centre of the prism. The lower the rod is, the more accurate the measurement. If the person running the instrument cannot see the prism, then you should raise the rod. Tell the person running the instrument the height of the rod or target (HT). the person running the instrument will use the HOT key to change the height of the target.
- 7.5.4 Position the prism so that it is facing the Instrument. Hold the rod so that the circle bubble is centered.

7.5.5 Keep the prism in position until the person running the instrument says "Okay" or "Good."

Sighting a Point

Unlock the vertical and upper clamps. Sight in the reflector so that the crosshairs on the telescope are in the centre of the prism. To do this, use the optical sight(Finder). Align the optical sight arrow with the prism rod or prism. Lock the upper clamp. Look through the telescope and find the prism. Lock the vertical clamp. Use the fine-tuning knobs on the ends of the clamps to centre the crosshairs on the centre of the prism.

7.6 Using the Total Station

The following is a step-by step procedure of how to use the total station after the instrument is leveled.

- 7.6.1 Turn on the Total station. Press the [power] button. The person assigned to instrument setup will perform this step.
- 7.6.2 Create the Job. Press the [menu] key. Press [1] Job. Press the [menu] key. Press [1] create. Input Job name (for example: wal-group =5409). Press the [enter] key.
- 7.6.3 Set the Horizontal Angle to 0.sight in a point along the N-S baseline looking north. Sight the crosshairs on the bottom of the rod. Lock the horizontal angle (use the upper clamp0. Press the [ANG] KEY. Press [1] key for Horizontal Angle 0-set. The horizontal angle is now 0.
- 7.6.4.Instrument Station Setup From a known Point. A point is assigned at the site that the total station will be set. The coordinates of this point will be known in relation to the site datum. The site datum's coordinates are x:1000 m, Y:1000 m, Z:100 m. The instrument station must be set up before any data points (shots) can be recorded.

Press the [STN] key to display the menu screen.

Press the [1] key for "known" coordinates. A screen is displayed for input of the

station point information (ST:). The station point is the point that the instrument is over. Input "1"for the station name and the coordinates of the point. If the point number/name has already been recorded its coordinates are displayed. If the input point is new, the screen waits for the input of coordinates of the point that the instrument station is set on in relation to the site datum. We will know these coordinates. Input the height of the instrument (HI:). Measure (in m) the height of the instrument from the ground to the center of the eyepiece. Input the code (CD:) "ST" for the station point. Press the [ENT] key. The screen changes to the menu display for methods of setting the back sight point.

The screen menu still displays methods of setting the back sight point. Press the [1] key to select "coordinates." Input the back sight point name (PT:). The back sight point name for the point that we use for the excavation's back sight point will always be the next point after the station point (or 2). Input the height of the target (HT). The height of the target is usually 1.5 m, but this might change. Input the code (CD:). The code is always "BS" for back sight. Enter the coordinates of the back sight point. Press the [ENT] key. Set the prism on the back sight point and sight in the prism. Press the [ENT] key.

The station is recorded and the HA (horizontal azimuth) is calculated between the two points from the input coordinates. The BMS(Basic Measurement Screen) is displayed but no coordinates are displayed. Now all of the points measured will be referenced to the site datum.

- 7.7 Perform the Back sight Check. To make sure that the total station is on the grid system, take a measurement of a known point (see#7 for measurements). If the measurement is correct then record the shot as the next consecutive point number after the back sight and the code BAC. If the measurement is wrong then the total station should be re-set up.
- **7.8** Shoot the Laser Level. The laser level will be tied to the site datum (we will calculate the distance below the datum) The X, Y, Z will be recorded relative to the datum. The total station setup will measure and record the laser level before any of the measurements (or shots) are taken and before the laser level is turned on. The Z

of the laser level is set to 1001.13. This is the height of ;the laser level relative to the height of the site datum. The Prism Boy places the center of the prism exactly on the location what the laser is emitted. The height of the target is now O, so the person running the instrument will use the HOT key to change the height of the target. The laser level must be set to 1001.13, so the Prism Boy must move the laser level up or down then wait for the person running the instrument to measure and read the Z coordinates. The rod person adjusts the laser level, and the person running the instrument will measure the elevation (Z) unit it is 1001.13. The coordinates of the laser level are then recorded. The person assigned to the total station setup performs this task. The code for the laser level is LL. The total station is now ready to take measurements.

7.9 Taking Measurements (Shooting a point, taking a shot, recording a shot/ point)

Take the Measurement: Make sure that the X,Y,Z are displayed on the BMS menu. If they are not displayed then press the (DSP) key until they are displayed. Have the Prism Boy position the prism on the point. Sight in the center of the prism on the crosshairs. If the height of the target is not 1.5m, press the (HOT) key. Select HT and input the height of the target that the rod person reads to you from the prism rod. Press the (MSR) key.

Record the Measurement: Write the X,Y,Z coordinates on the EDM form. Press the (REC) key to record the measurement into the specified job's database. Raw and coordinate (XYZ) data are recorded. The point name input screen is displayed. Enter the point information for the point name (PT), such as "8" Enter the height of the target (HT:) (a.k.a. height of the rod that the prism is on, usually 1.5m). Enter the code (CD:). Use the code list to identify what the point item is. Enter the code for that item this information onto the EDM form. Write any comments about the shot on the EDM form that might help you when mapping. Be sure to press ENTER.

7.10 Putting the Instrument to Sleep or Turning the Instrument Off

Sleep: After taking a measurement, and if no one is waiting to use the instrument, put the instrument to sleep. Press the PWR) key, then press the (4) key to put the

station point information (ST:). The station point is the point that the instrument is over. Input "1" for the station name and the coordinates of the point. If the point number/ name has already been recorded its coordinates are displayed. If the input—point is new, the screen waits for the input of coordinates of the point that the instrument station is set on in relation to the site datum. We will know these—coordinates. Input the height of the instrument (HI:). Measure (in m.) the height of the instrument from the ground to the center of the eyepiece. Input the code (CD:) "ST" for the station point. Press the [ENT] key. The screen changes to the menu display—for methods of setting the back sight point.

The screen menu still displays methods of setting the back sight point. Press the [1] key to select "coordinates." Input the back sight point name (PT:). The back sight point name for the point that we use for the excavation's back sight point will always be the next point after the station point (or 2). Input the height of the target (HT). The height of the target is usually 1.5 m, but this might change. Input the code (CD:). The code is always "BS" for back sight. Enter the coordinates of the back sight point. Press the [ENT] key. Set the prism on the back sight point and sight in the prism. Press the [ENT] key.

The station is recorded and the HA (horizontal azimuth) is calculated between the two points from the input coordinates. The BMS(Basic Measurement Screen) is displayed but no coordinates are displayed. Now all of the points measured will be referenced to the site datum.

- 7.7 Perform the Back sight Check. To make sure that the total station is on the grid system, take a measurement of a known point (see #7 for measurements). If the measurement is correct then record the shot as the next consecutive point number after the back sight and the code BAC. If the measurement is wrong then the total station should be re-set up.
- 7.8 Shoot the Laser Level. The laser level will be tied to the site datum (we will calculate the distance below the datum) The X, Y, Z will be recorded relative to the datum. The total station setup will measure and record the laser level before any of the measurements (or shots) are taken and before the laser level is turned on. The Z

of the laser level is set to 1001.13. This is the height of ;the laser level relative to the height of the site datum. The Prism Boy places the center of the prism exactly on the location what the laser is emitted. The height of the target is now O, so the person running the instrument will use the HOT key to change the height of the target. The laser level must be set to 1001.13, so the Prism Boy must move the laser level up or down then wait for the person running the instrument to measure and read the Z coordinates. The rod person adjusts the laser level, and the person running the instrument will measure the elevation (Z) unit it is 1001.13. The coordinates of the laser level are then recorded. The person assigned to the total station setup performs this task. The code for the laser level is LL. The total station is now ready to take measurements.

7.9 Taking Measurements (Shooting a point, taking a shot, recording a shot/ point)

Take the Measurement: Make sure that the X,Y,Z are displayed on the BMS menu. If they are not displayed then press the (DSP) key until they are displayed. Have the Prism Boy position the prism on the point. Sight in the center of the prism on the crosshairs. If the height of the target is not 1.5m, press the (HOT) key. Select HT and input the height of the target that the rod person reads to you from the prism rod. Press the (MSR) key.

Record the Measurement: Write the X,Y,Z coordinates on the EDM form. Press the (REC) key to record the measurement into the specified job's database. Raw and coordinate (XYZ) data are recorded. The point name input screen is displayed. Enter the point information for the point name (PT), such as "8" Enter the height of the target (HT:) (a.k.a. height of the rod that the prism is on, usually 1.5m). Enter the code (CD:). Use the code list to identify what the point item is. Enter the code for that item this information onto the EDM form. Write any comments about the shot on the EDM form that might help you when mapping. Be sure to press ENTER.

7.10 Putting the Instrument to Sleep or Turning the Instrument Off

Sleep: After taking a measurement, and if no one is waiting to use the instrument, put the instrument to sleep. Press the PWR) key, then press the (4) key to put the

station to sleep. Make sure that the upper and vertical clamps are unlocked and the lens cap is on the eyepiece.

Off: To turn the instrument off, press the (PWR) key, then press the (ENT) key. This will same all of the instrument settings.

8.0 FUNCTIONS OF TOTAL STATION:

- a. It simultaneously measures the angle, distance and record with the help of EDM, Theodolite, and micro processor respectively. Recording facility saves lot of time and creates facility to store the data for long time.
- Correcting distances with the following factors instantaneously:
- Prism constant: It is the distance between the centre of prism rod on vertical axis
 and the point of reflection of laser beam on the cubiodal prism. Most of the
 prisms having prism constant from 1cm to 1.3cms and depends on the
 manufactures.
- ii. Atmospheric and temperature constant: The atmospheric pressure and temperature at the instrument and at the place of prism may not be same when the survey is at hill ranges. In case, both are fed to total station before shooting the point, it will automatically correct forth coming distances with the help of pre programme fed to micro processor. Similarly, correction required due to curvature of earth and refraction.
- Computing the point elevation: With the help of the trigonometrical equations and data collected through EDM, Total Station can find elevation of any point (in the same vertical plane) like towers, pillars, building heights etc.,
- d) computing the coordinates at every point: Total Station can generate Northing, Easting and elevation of every point where the prism reflector is placed with reference to the known point coordinates and datum.
- e) Remote Elevation Measurement (REM): The prism reflector is set directly below the place to be measured and by measuring the prism height, the height of the target can be found out. This makes us easy to determine the height of electrical power lines, suspension bridge cables and other large items used in construction.

- Remote Distance Measurement (RDM): Horizontal distance, slope distance, difference in height and percentage of slope between the reference point and the observations point are measured. In a particular traverse, a missing line measurement can also the made with this function.
- g) It has the Data transfer facility from the total station instrument to the computer software (compatible) and vise versa. The point whose coordinates are known but the location at field is not know, then this **stakeout** technology in Total Station will be useful to identify the point location at field. This will help the irrigation Engineers to set a curve in canal alignment within reasonable time. By way of traditional procedure it takes longertime.
- Conversion of units: With the help of micro processor, the units can be changed (from MKS to FPS or from EPS to MKS) without much effort.
- Recection: when the coordinates of occupied point is not know and occasionally there are two points whose coordinates are available near by, then Total Station can give coordinates of such occupied point.

9.0 ACCURACY AND RANGE TOTAL STATION:

Angular accuracy of Total Station =0.5 sec to 7 sec (for the recent instrument models) otherwise it is 1 to 20 sec.

Linear accuracy of Total Station varies from 1mm to 10mm per kms.

Range of total station with

Single Prism is upto 2.50 kms

Two Prisms – up to 5 to 7 kms

Three prisms – up to 10 to 12 kms

Nine Prisms – up to 100 km

10.0 COMPUTER PACKAGES:

The following post processing computer software packages are in use for various ingineering applications

Arc Pad 2. Arc view 3.Arc info 4. Micro station, 5 Erdas 6. Surfer Auto plotter 8. Civil CAD 3D 9. Phrhagutas 10. Survey aid etc.,

11.0 LIMITATIONS OF TOTAL STATION:

- It is not a Rugged instrument: It is a sensitive electronics operated machine and it shall be handled carefully and it is to be calibrated at every six months.
- b. Prism verticality is questionable: The attitude of the prism boy plays a major role in surveying with Total station. Enough training shall be given and an awareness shall be created about the importance of prism verticality.
- c. Visibility is must: There are so many apprehensions prevailing in the market that Total Station can do any thing. It can not measure the distance from the occupied point to an invisible point.
- d. More expensive: The cost of the instrument varies from Rs.5.0 Lakhs to Rs.30.0 Lakhs. As the cost of instrument is r ore when compared to the salary of departmental Engineers, They have the fear of handling.
- f. Amount of error is greater at short distances: Keeping in view of the constrains of timer placed in the total station, amount of error is greater at short distances. Experienced surveyors says that it is not advisable to measure the distance below 30m.
- g. Height of instrument and height of prism is to fed manually: This one of the disadvantage with Total Station. It may lead to malpractices or wrong entries.
- Awareness on battery maintenance shall be known to the persons handling the total station.

12.0 GENERAL HANDING PRECAUTIONS OF TOTAL STATION:

- Before starting work or operation, be sure to check that the instrument is functioning correctly with normal performance.
- b. Do not aim the instrument directly into the sun: Aiming the instrument directly into the sun can result in serious damage to the eyes. Damage to the instrument could also result from exposing the instrument's objective lens to direct sunlight. The use of a solar filter is suggested to alleviate this problem.

- Setting the instrument on a tripod: When mounting the instrument on a tripod, use a wooden tripod when possible. The vibrations that may occur when using a metallic tripod can affect the measuring precision.
- d. Installing the tribrach: If the tribrach is installed incorrectly, the measuring precision could be effected. Occasionally check the adjusting screws on the tribrach. Make sure the base fixing lever is locked and the base fixing screws are tightened.
- Guarding the instrument against shocks: When transporting the instrument, provide some protection to minimize risk of shocks. Heavy shocks may cause the measurement to be faculty.
- Carrying the instrument: Always carry the instrument by its handgrip.
- g. Exposing the instrument to extreme heat: Do not leave the instrument in extreme heat for longer than necessary. It could adversely affect its performance.
- Sudden changes of temperature: Any sudden change of temperature to the instrument or prism may result in a reduction of measuring distance range, i.e when taking the instrument out from heated vehicle. Let instrument acclimate itself to ambient temperature.
- Battery level check: Confirm battery level remaining before operating.
- Memory backup: The back-up battery built in the instrument needs to be charged approximately 24 hrs. before using it for the first time after purchase. Connect the fully charged battery to the instrument in order to change the back-up battery.
- Taking the battery out: Leaving the instrument without the battery for more than an hour will cause the mermorize data to be lost, due to low voltage of the backup battery. Connect the battery as soon as possible or execute RAM back-up.
- No responsibility: of the seller or manufacturer for loss of data stored in the memory in case unexpected accidents.
- Battery Cover: Completely close the battery cover before using. If the battery cover is not completely closed, instrument will not operate normally, regardless of whether the battery cover is opened while in operation, operation will automatically be us perided.

412

- n. Power OFF: When turning off the Power, be sure to turn off the power switch.
- Do not turn off the power by removing the battery.
- Before removing the battery, press the power switch and confirm that the power is off. Then remove the battery.
- q. While using the external power source, do not turn off with the switch on the external power source.

If the above-mentioned operating procedure is not followed, then the next time that power is turned on, it will be necessary to reboot the instrument.

13. WHILE SUPERVISING THE TOTAL STATION WORK:

Follow items mentioned below carefully.

- Have keen observation on the prism boy's attitude. When his precision is required, use the prism tripod, to avoid human error.
- b. The position of prism shall always be on hard surface instead of soft soil.
- Focusing shall be exactly at the centre of prism, with the help of cross hairs and prism plate.
- While measuring the instrument height and prism height, enough attention shall be diverted. Also, have keen observation while entering the above data.
- Note the location and coordinates of station point and back sight so that specified intermediate points can be checked.

14. SOURCES OF ERRORS IN TOTAL STATION:

- Instrumental errors: Error caused imperfection in instrument.
- Natural errors: Errors due to changing condition in surrounding environment.
- Human errors: Errors due to limitations in human senses
- Random errors: Like Placement of instrument targeting the prism, placing prism tip, circle reading etc.,

7. C Highways

7.5 ROADS (I.R.C. STANDARD)

7.5.1. Classes of Highways:

- 1. National Highways (N.H.) 2. State Highways (S.H.)
- 3. Major District Road (M.D.R.) 4, Other District Roads (O.D.R.)
- 5. Village Roads (V.R.)

7.5.2 Design capacity and No. of Traffic Lanes:

Traffic	Very light	ht Light	Medium		Heavy	Very Heavy		
Classification		===	Α	В		Α	В	С
Average Daily Tonnage	upto 200	201 to 500	501 to 750	751 to 1000	1001 to 1500	1501 to 2500	2501 to 5000	Over 5000
No. of Traffic Lanes		76	1	.a	1	2* or lane divided	4* or Lane divided	6**

- In addition 9ft, wide Cycle track on each side where required.
- In addition 9ft. wide Cycle track and 9ft. wide foot path where required.

7.5.3 Width of carriageway and roadway for various classes of roads:

Width of carriageway

A-Roads	Single Lane	Two lanes without raised kerbs	Two lanes with raised kerbs	Multi lane pavements per lane
a. National and State Highway	s 3.75m	7.0m	7.5m	3.5m
b. Major District Roads	3.70m		÷	*
c. Other District Roads	3.75m	.6¥1	59	
d. Village Roads	3.75m	-	:: (#	(+)

2. Width of roadway for roads other than in hilly terrain

a.	National and State Highways	12.00m
b	Major District Roads	9.00m
C.	Other District Roads	9.00m
d.	Village Roads	7.50.

For multi-lane carriageways, the width of roadway will be governed by factors such as central verge, footpaths, cycle tracks, etc., and width of roadway is to be designed according to the requirements in each case.

In case of State Highways having a single lane carriageway, the width of roadway could be reduced in 9m provided that the possibilitity of widening the carriageway to 2 lane is very remote.

Clear width of carriageway on road bridges

Single-lane bridges 4.25m

Two-lane bridges 7.50m

Bridges of divided highways with four-lane dual carriageway (2 lanes on either side of 7.50m (for each two lane carriageway) the central dividing verge)

7.5.4 Road camber or cross fall:

a.	Water bound macadum road	1 in 48
		1 in 36 in heavy rain fall regions.
b.	Black topped road	1 in 50 (2%)
C.	Concrete road	1 in 72 (1.4%)
d.	Shoulders	1 in 33 (3%)
e.	Earth roads	3 to 4 percent
f.	Gravel or wbm surface	2.5 to 3 percent
g.	Thin bituminous surfacing 2.5	to 2 percent
6	High type bituminous surfacing	or cement concrete curfacing, 2.0 to 1.70 peougl

7.5.5	Gradient (maximum);	Rulling Limiting Exceptional*
a.	Flat and Rolling terrain	1 in 30 1 in 20 1 in 15
b.	Hilly terrain upto 300m above MSL	1 in 20 1 in 16 1 in 14
C.	Steeps over 300m above MSL	1 in 20 1 in 15 1 in 12
	short distance not exceeding 60 m in a kr	m (300tt in a mile)

For short distance not exceeding 60 m in a km (300ft in a mile)

5.6	Sight Distance in Metres:	ě
1000	MARTIN PROPERTY AND THE PARTY OF THE PARTY O	F

	-7	Over taking	Safe stopping (for Minimum Design Speed	Safe stopping (for ruling Design Speed)
a)	Plain terrian	475 m	120 m	170 m
b) c)	Rolling terrian Hilly terrain	310 m	90 m	120 m
-1	(Mountainous)	2	50 m	60 m
d)	Hilly terrian steep	0.4	40 m	50 m

Superelevation:

Should normally be 1 in 225 R/V2 or e = V2/225 R

Where R-Radius in Metres, V-Design Speed in Kmph, e= Superelevation in m (with Maximum of : i) Plain & Rolling terrain 1 in 15 (6.7%) ii) Hilly terrain 1 in 10 (10%)

Transition: Minimum length of transition

Design Speed in Kmph	30	40	50	65	80
Min. Length of transition CUrve (m)	16	16	16	23	30

Radii for Horizontal Curves in Metres;

*210.		Absolute (min)	Ruling (min)
a)	Plain terrain	250	370
b)	Rolling terrain	155	250
c)	Hilly terrain (Mountainous)	50	80
d)	Hilly terrain (steep)	30	50

MINIMUM CURVE RADII - HILL ROADS

Radius	Mountainou	s terrain	Steep	terrain
Highways Classification	Areas not Affected by snow	Snow bound Ar⊕as	Areas not affected by snow	Snow bound areas
a) N.H. and S.H.	50m	60m	30m	33m
b) Major District Road	30m	33m	14m	15m
c) Other District Road	20m	23m	14m	15m
d) Village Road	14m	15m	14m	15m

Note: The minimum radii have been calculated from the formulae: e= v2/225R or, R=0.008V2/(e x f) Where R is the minimum radius in meters.

v= the design velocity in kilometres per hour : e= The roadway superelevation (0 m) for snow-bound areas and 0.10 for areas not affected by snow) and f= the lateral friction factor assumed as equal to 0.15.

7.5.9 Extra width of carriage way in Curves:

Radius of Curves in Metres Upto		61-150	151-300	Over 300
Extra width in Metres	0.9	0.6	0.3	Nil

7.6 Design Speed

The following design speeds should be adopted for various categories of roads: Terrain Classification Design speed Speed in kms, per hour

		and classificat	ion				Щ
UVC=VCCCVC-CCCC			NH	SH	Mdr	Odr	vr
1)Plain terrain	 a) Rulling des 		100	100	80	65	50
CORRESPONDED IN THE PROPERTY OF THE PROPERTY O	b) Minimum o	lesign speed	80	80	65	50	40
2)Rolling terrain	a) Ruling des	ign speed	80	80	65	50	40
	b) Minimum o	lesign speed	65	65	50	40	35
3)Mountainous	a) Ruling des		50	50	40	30	25
	b) Minimum o	lesign speed	40	40	30	25	20
4)Steep	a) Ruling des	ignspeed	40	40	30	25	25
520	b) Minimum c	lesign speed	30	30	20	20	20

7.7 HAIR-PIN BENDS

- i) A hair-pin bend may be designed as a circular curve with transition curves at each end. Alternatively, compound circular curves may be provided.
- ii) The following design criteria should be adopted for the planning of hairpin bends

	addigit criteria aribuid be	adopted for the planning of t
a)	Max. design speed	20 km.p.h.
b)	Min. width at apex	525-50 (SEA) (SEA) (AVA

-41	wan design speed	20 Km.p.n.	
b)	Min. width at apex		THE SOURCE WIRESON OF
	 i) National and State 	highway	Double lane 11.5m
			Single lane 9.0m
	ii) Major district road	s & other district roads	7.5m
	iii) Village roads		6.5m
c)	Minimum radius for	the inner curve	14.0m
d)	Minimum length of the	he transition	15.0m
e)	Gradient	Max	1 in 40
		Min	1 in 200
f)	Superelevation		1 in 10
Mini	mum vertical aleggenes	Constant from the Links	

Minimum vertical clearance = 5 metres from the highest point of carriage way.

HORIZONTAL CURVES:

- (1) Length of transition curve (should be higher of the following two values).
- a) By rate of change of centrifugal acceleration

0.0215 V3/CR

where L Length of transition curve in metres

Design speed in kmph

Radius of circular curve in metres

Allowable rate of centrifugal acceleration in M/sec.2

80/75-v (subject to maximum of 0.8 and minimum of 0.5)

b) By rate of change of Superelevation.

2.7V2/R For plain and Rolling Terrain

1.0V2/R For Mountainous and steep terrain

Extra width of pavement at Horizontal curves

Radius of Curve(m)	upto 20	21 to 40	41 to 60	61 to 100	101 to 200	above 300
Extra width(m)		-11111-2		- 110		
Two-lane	1.5	1.5	1.2	0.9	0.6	nil
Single lane	0.9	0.6	0.6	nil	nil	nil

- Shift of the transit curve: S = L2/24 R (3)
- Total tangent length: $T = (R + S) \tan\theta + L/2$ Where 9 is deviation angle.
- Total curve length: K = (R0 /180) + L
- Length of circular curve : c = K 2L

MINIMUM LENGTH OF VEDTICAL CURVES

WIDENING AT CURVES 7.8.1

Extra width of carriageway required at curves is given by the following formula:

 $W_{a} = (n \times 18/RC) + 0.1 \text{ V/ Rc}$

Where Wc = Extra width in metres V= design speed in km.per hour

Rc= design radius in metres n= number of lanes

Considering the design speeds and minimum radii for various classes of roads, it is recommended that the pavement should be widened at curves by the following amounts:

Single lane roads:

Radius of curve	Extra width
14 to 20m	1.5m
+20 to 30m	1.2m
+30 to 60m	0.9m
+60 to 150m	0.6m
above 150m	No widening to be done
Two lane roads:	I I HAND I WAS THE VIEW WITH THE

1.44.00.100	THE TOTAL STATE OF THE STATE OF	
	Radius of curve	Extra width
	+ 30 to 40m	1,5m
	+ 40 to 60m	1.2m
	+ 60 to 100m	0.9m
	+ 100 to 150m	0.6m
	above 150m	No widening to be done.

VERTICAL CURVES 7.9

(a) Summit curve (1) Equation of Summit curve :

Summit $Y = X^2/e$ where

Y = Intercept between the grade the origin and the curve in m

X = Horizontal difference from the origin.

6 = 2UN

Where L = Length of summit curve in m

11 = Deviation angle equal to algebraic difference between the two grades.

1 101	WINTER	WILLIAM TOP VEHICAL CONT	ES
	Design speed	Maximum grade change	Minimum length of Vertical Curve

	(% not recurring a vertical curve)	
30	1.5	15
50	1.0	30
60	0.8	40
80	0.6	50

7.10.0 BRIDGES

7.10.1 Loading

i) Single lane of IRC class "AA" loading checked for 2 lanes of IRC Class 'A' loading (within cetain municipal limits in certain existing OR contemplated industrial areas along certain specified highways.)

ii) I.R.C Class 'A' loading for permanentBridges and culverts in other localities.

iii) Temporary Bridges IRC Class 'B'

Axle Load = 8165 Kg

Maximum Permitted wheel load = 4082 Kg

DESIGN PRINCIPLES: 7.10.2

- A high-level bridge is designed to allow all floods to pass through its vents.
- A submersible bridge is designed to be over topped in floods but the interruption to traffic during floods greater than or equal to 2 days at a time and greater than or equal to 6 times in a year.

Depth of foundation (inerodible strata) =1.330.1+ proper grip.

where D = max. scour depth.

Depth below scour 2m, for piers & abutments with arches.

Less than or equal to 1.2 m - do- supporting other types of superstructure.

7.11 Transition curves

Spiral curve should be used for the transitions. The length of the transition required may be calculated from the following formula

LS = 0.0215 V8/CRc

Where V= design speed in km/hr

Rc = radius of circular curves in metres, and c+ 80/(75+v)

Subject to value of 0.46 for speed above 100 km.p.h. and a value of 0.76 for speeds less than 30 km.p.h.

The minimum length of transition provided shall be as under:

- a) 15m, for design speeds upto 40 km./hr.
- b) 20m for design speeds 40 to 50 km/hr

Where the deflection angle is small, it may be advantageous to provide a transitional curve all through omitting the small circular arc in between.

420

INDEX

Chapter - 8

GENERAL

I.S. CODES

8.1. Fo	or Spillway, Non-overflow and Earth Dams	8-2 to 8-6
3.2 Fo	or L.I. Schemes (Excluding Dry Pit Type)	8-7 to 8-8
3.3 Fo	or CM & CD Works and Mechanical Components	8-9 to 8-12
3.4	Building Construction	8-13
3.4.1	Brick Work	8-13
3.4.2	Mortars	8-13
3.4.3	Paints in common use	8-14°
3.4.4	Specifications for residential buildings	8-16
3.4.4.1	Foundations and Plinth	8-16
3.4.4.2	Walls	8-17
3.4.4.3	Floor and roof slabs	6-18
3.4.4.4	Flooring	0-10
3.4.4.5	Doors and windows	8-19
3.4.4.6	Wall finishes	8-20
3.4.4.7	Terracing over flat roofs	6-20
3.4.4.8	Rough estimation for cost of buildings	8-20
3.4.4.9	Brief specification for important works	
	in building construction	8-22
3.4.4.10	Stripping time for reinforced concrete	8-24

	10 TO	
8.4.4.11	Water suppply requirement for buildings	8-24
8.4.4.12	Occupant load	8-24
8.4.4.13	Occupant load	8-25
8.4.4.14	LISeful notes for laving RCC Slabs	0-2/
8.4.5.1	Theoritical cement calculation for various items of work	8-29
8.4.5.2	Fair estimation of cement and steel in buildings	8-33
8.4.5.3	Task on Outturn per day per skilled labour	8-34
8.5.1	Horse Power requirements to lift different quantities	
0.3.1	of water to 3m to 30m elevation	8-35
8.5.2	Cost of electric pumping	8-36
8.6	Triangmetrical functioning of Angles	8-3/
8.7.1	Electricity - General useful facts	8-39
8.7.2	An Idea what can be done appproximately	8-39
8.8	Conversion Tables	8-41
	Approximate radii of Gyration of structural elements	8-45
8.5	Properties of Sections	8-46
8.10	Geometrical properties of sections	8-48
8.11	Permissible loads on masonry	8-51
8.12	Septic Tanks	8-53
8.13		
	manatum moltomos	
	ess rement toof in	
	Lympo Pi mandamir Lagarians L	
	AND THE WORLD	
	Comment to the last of the second to the second	

LIST OF I.S. CODES FOR DESIGNS OF IRRIGATION COMPONENTS

I S CODES FOR SPILLWAY, NON-OVERFLOW DAMS

S.No.	COMPONENT	I.S.CODE No
1	Reservoir capacity-Maximum flood discharge SPF/PMF/500/1000/year flood and fixing of spillway capacity and considering gate inoperative condition.	5477-1971 11223-1985
2	Site Selection	6966-1989
3	Permeability in rock below Gravity Dams	11216-1985
4	In-situ Permeability test	5529-1985
5	Selection of Spill ways and dissipaters	10137-1982
6	Foundation treatment –Consolidation Grouting- Pressure grouting	6066-1994
7	Design Criteria of solid Gravity Dams – stability analysis, Load combinations, Loads Factors of safety against sliding Fetch and free board computations	6512-1984
8	Hydraulic design of High Ogee Overflow Spillways Ogee Profile, U/S and D/S Quadrants, computation of Coefficient of discharge, provision of Breast wall etc.,	6934-1998
9	Hydraulic Design of Bucket type Energy dissipater	7365-1985
	(a) Solid Roller (b)Slotted Roller	
	(c)Trajectory Bucket	
10	Hydraulic jump type stilling basins	4997-1968
11	Structural arrangement of energy dissipater for spillways	11527-1985

12	Drainage arrangements of Energy Dissipators, Spacing of contraction joints, size and spacing of half round pipes-details of no fine concrete blocks.	11772-1986
13	Water stops at transverse contraction joints in Spillways, OF dams and at junctions of galleries	12200-2001
14	Construction of Spill ways-preparation of foundations and anchorage maximum size of aggregates for different components, blocks lengths etc.,	, 11155-1994
15	Galleries and other openings in dams -drainage gallery, inspection gallery, instrumentation gallery ,adits ,sump well and pump chambers ,stair wells, lift etc., general and structural design	12966-1990 & 1992 parts 1&2
16	Curtain Grouting from galleries—spacing ,depth of grouting ,size and inclination of grout holes-pressure of grouts etc.,	11293-1993 Part-2
17	Shear parameters at interface of foundations of Dam with Rock.In-situ shear test on rocks	7746-1991
18	General construction of plain and R.C.C.for dams	457-1957
19	Aggregates ,Fine and Coarse for concrete	383-1997 (reaffirmed)
20	HYSD bars and wires for concrete Reinforcement	1786-1990 (Reaffirmed)
21	Drainage system for gravity dams, their foundations and abutments	10135-1985
	(a) spacing ,size and depth of drainage holes	
	(b) size of porous concrete and formed drains	- Unio
22	Earth Quake resistant design of structures seismic zone, and computations, hydrodynamic forces and values at different elevations	1893 -1984 part-1-2000

Dewatering during construction	9759-1981 (Reaffirmed- 1998)
Extreme weather concreting (1) Hot weather (2) Cold weather	7861-1975 (Reaffirmed- 2002)
Temperature control of mass concrete for dams	14591-1999
Computation of seepage –provision of sump well and pump chamber-size of sump etc.,	4721-2000
Radial gates –radius, trunion level etc.,	4623-2000
Instrumentation Location of measuring instruments in concrete & masonry dams.	7436(part-ii) -1997
Selection, splicing, installationand providing protection to the open ends of cables used for connecting type measuring devices in concrete and masonry dams.	10334-1982
Pore pressure measuring devices Electrical Resistance type cell, Vibrating Wire type cell.	8282-1976,1996 (parts-1&2) (1998- Reaffirmed) (2001- Reaffirmed)
Deformation measuring devices in concrete and masonry dams: part-1 resistance type joint meters.	10434-1982 (part-1)
	Extreme weather concreting (1) Hot weather (2) Cold weather Temperature control of mass concrete for dams Computation of seepage –provision of sump well and pump chamber-size of sump etc., Radial gates –radius, trunion level etc., Instrumentation Location of measuring instruments in concrete & masonry dams. Selection, splicing, installationand providing protection to the open ends of cables used for connecting type measuring devices in concrete and masonry dams. Pore pressure measuring devices Electrical Resistance type cell, Vibrating Wire type cell.

(e)	Seismic instrumentation for river valley projects	4967-1968 (2000-RA)
(f)	Instruments for temperature measurement inside dams -	6524-1972
	Resistance type thermometers	(1998-RA)
	STRUCTURAL DESIGN	
1	Pier, Crest	13551-1992
2	Bucket(roller/trajectory)	7365-1985 11772-1986
3	Galleries, Adits, Sump well and pump chamber Stair well and Lifts	12966- 1990(part-2)
4	Stilling basin	11772-1986
5	Training walls and divide walls	12720-1993
6	Air vent pipes	
7	Walkway bridge-steel Concrete	800-1984 (1998- Reaffirme)- 456-2000
3	Spillway bridge	IRC codes

BIS CODES FOR EARTH DAMS

- BIS Code no 875-(Part III) 1987and 1893-1984(Reaffirmed 2002 Design Loads other than Earth Quake for Buildings and Structures and Earth quake analysis of the structures
- BIS Code no 10635-1993/Reaffirmed 1998-Guide Line for Free-board requirements in Embankment dams
- BIS Code 1498-1970/ Reaffirmed 2002/ Classification and Identification of soils for General Engineering purpose
- BIS Code no 7894-1975 (Reaffirmed 1997)- Code of practice for stability analysis of earth dams
- BIS Code 8414-1977 (Reaffirmed 1999) Guide Lines for Design of Under seepage control measures for earth and rock fill dams
- 6. BIS Code 9429-1999. Code of practice for Drainage system for Erath and Rock fill dams
- BIS Code no 8237-1985/ (Reaffirmed 1999) Code of practice for Protection of Slope for Reservoir Embankments
- BIS Code no 7436(Part I)-1993/ (Reaffirmed 1998) Guide for Types of measurements fro structures in River Valley projects and criteria for choice and location measuring instruments Part I – For Erath and Rock fill dams
- BIS Code 7356(Part I) -2002/Reaffirmed 1998- Code of Practice Instrumentation maintenance and observations for pore pressure measurements in Earth dams and Ross fill dams Part I-Porous tube peizometers and Part II Twin tube hydrostatic peizometers

BIS Code no 7500-2000 – Code of Practice for installation and observation of cross drains for measurements of internal vertical movements in Earth dam

geference Codes / Manuals for L.I.Schemes(Excluding Dry pit Type)

s.No	B.I.S Code Number	Year	Code of practice for
1			BHRA Manual on " Hydraulic design of Pump sumps and Intakes"
2			IDC Manual on L.I.Schemes
			Manual on water supply and treatment prepared by the Expert committee, Govt. of India, Ministry of Urban development,
	100		New Delhi determining the acceptability of Hazen- Williams
3		1999	Coefficient (Value of "C")
4	783	1985	Laying of concrete pipes
5	5822	1994	Code of practice for Laying of electrically welded steel pipes for water supply
6	784	2001	Pre-stressed concrete pipes (Including fittings)
7	458	1988	Per-cast concrete pipes(with and without Reinforcement)
8	456	2000	Plain and Reinforced Concrete
9	1916	1989	Specifications for steel cylinder pipe with concrete lining and coating
10	3589	2001	Specifications for steel pipe for water and sewerage (168.3 to 2540 mm Outside Diameter)
11	11639 (p -1&2)	1986	Criteria for design of surface penstocks
12	800	1984	steel structures
13	822	1970	Code of procedure for inspection of Welds
14	4853	1982	Recommended practice for Radiographic inspection of fusion welded butt joints in steel pipes
15	1182	1983	Recommended practice for Radiographic inspection of fusion welded butt joints in steel plates
16	2062	1999	Steel for general structural purposes - specification

LIST OF I.S.CODES ON CANAL ALIGNMENT & DESIGN OF CM & CD WORKS AND OTHER IMPORTANT REFERENCE BOOKS

S.No.	DESCRIPTION	CODE NO / REFERENCE
1	Guide for Planning and layout of Canal System for Irrigation	15:5968-1987
2	Criteria for Design of Cross Section for Unlined	
	Canals in alluvial soils	15:7112-1973
3	Code of practice for Design of Cross Section of Lined Canals	IS:4745-1968
4	Code of practice for laying Cement Concrete/ Stone Slab lining on canals	IS:3873-1993
5	Guidelines for Lining of canals in Expansive soils	IS:9451-1994
6.	Criteria for design of Hydraulic jump type stilling basins with horizontal and sloping apron.	IS:4997-1968
7	Criteria for hydraulic design of Cross Regulators for canals	IS:7114-1973
8	Guide for location, selection and hydraulic design of Canal Escapes	IS:6936-1992
9	Code of practice for design of cross drainage works : part - I, (General features)	IS:7784(part-I)-1993
10	Code of practice for design of cross drainage works : part - 2, (section -1,Aqueducts)	15:7784 (part-2/section-1)-1995
11	Code of practice for design of cross drainage works: part -2, (section -2 super passages)	IS:7784 (part-2 / section-2)-2000
12	Code of practice for design of cross drainage works:part-2,	
	(section-3 canal Syphons)	IS:7784 (part2 / Section-3)-1996
13	Code of practice for design of cross drainage works: part-2,	
	(section-4 Level crossings)	IS:7784 (part-2/-section-4)-1999
14	Code of practice for design of cross drainage works:part - 2,	
	(section-5 Syphon Aqueducts)	IS:7784 (part-2/-section-5)-2000
15	Code of practice for laying of concrete pipes	I5:783 - 1985
16	Specification for precast concrete pipes (with & without Reinforcement).	IS:458 - 1988
17	Standard specifications and code of practice for road bridges section - 1, General features of Design	TRC : 5 - 1998
18	Standard specifications and code of practice for road bridges, section - II, Loads and Stresses.	IRC: 6 - 2000

17	5504	1997	Specifications for spiral welded pipes	
18	5330	1984	Design of Anchor or thrust blocks	
19	SP 16	1980	Design Alds for IS - 456	
20	SP34	100	Hand Book on concrete reinforcement detailing	
21	875(1 - 5)	1987	Dead Loads; Imposed Loads; Wind Loads Snow Loads; Spl and Combination Loads	
22	1893(part -1)	2002	Earthquake Resistant Design of Structures -	
Je ja			General provisions and Buildings	
23	2911	1979	Design and construction of Pile Foundations	
24	IRC - 78	2000	Standard specifications for road bridges -	
			Foundations and Sub-structures	
25	2950	1981	Design and construction of Raft foundations	
26	6403	1981	Determination of Bearing Capacity of shallow foundations	
27	2720(1-41)	1987	Methods of test for soils	
28	2131	1981	Methods of SPT for soils	
29	8009(p2)	1980	Calculation of settlements of foundations	
30	10262	1982	Recommended guidelines for concrete mix design	
31	383	1970	Coarse and fine aggregates from natural sources for concrete	
32	1786	1985	HYSD Bars and Wires for concrete reinforcement	
33	2974 (P-5)		Design and construction of Machine foundations	
34	4326	1993	Earthquake Resistant Design and construction of buildings	
35	13920	1993	Ductile detailing for R.C.C structures subjected to Seismic forces	
36	11908	1988	Recommendations for cement mortar lining for cast iron , mild steel and ductile - iron pipes (Fittings for transportation of water)	

	1	
19	Standard specifications & code of practice for road bridges, section -III, Cement Concrete (Plain and Reinforced).	IRC: 21 - 2000
20	Standard specifications & code of practice for road bridges section - IV, Brick, Stone and Block Masonry.	IRC : 40 - 1995
21	Standard specifications & code of practice for road bridges, section - VII, Foundations and Sub structure.	IRC : 78 - 2000
22	Standard specifications and code of practice for road bridges section-IX, Bearings, Part II: Elastomeric Bearings.	IRC : 83(Part II) - 1987
23	Pocket Book for Bridge Engineers 2000	MOST 2000
24	MOST Standard Plans	
	Standard plans for solid slab type high way bridges	MOST Standard plans of 1977, Volume - II
	b) Standard plans for high way bridges, Concrete T- Beam Bridges	MOST Standard plans of 1983, Volume - III
	Standard plans for 3.0 m to 10m span RCC Solid Slab Super Structure with & without foot paths.	MOST Standard plans of 1991
	d) Standard plans for High way Bridges RCC T-Beam & Slab Super Structure - Span from 10m to 24m with 12m width	MOST Standard plans of 1992
	e) Standard drawings for Road Bridges solid slab Super Structure (15° & 30°) skew span 4m to 10m (with and without foot paths)	MOST Standard plans of 1992
	f) Standard drawings for Road Bridges solid slab Super structure (20°,25° 835°) skew span 4m to 10m (with and without foot paths)	MOST Standard plans of 1992
-	g) Standard drawings for Road Bridges solid slab Super structure (22.5°,35°) skew span 4m to 10m (with & without foot paths)	MOST Standard plans of 1996
25	Code of Practice for Concrete Structures for storage of liquids, Part - I (General requirement)	IS: 3370 - (part I)-1965
26	Code of Practice for Concrete Structures storage of liquids, Part - II (Reinforced Concrete Structure)	IS: 3370 - (part II)-1965
27	Code of Practice for Plain and Reinforced concrete	IS: 456 - 2000
28	Code of Practice for Design and Construction of Raft Foundations, Part 1 : Design.	IS:2950 (part I) - 1981

29	Code of Practice for Design and Construction of Pile Foundations, Part I ;Concrete.	IS: 2911:Part I : 1979
30	Code of Practice for Design and Construction of Piles,	37 (0.02)
	Section I, Driven cast in situ Concrete Piles	IS: 2911:Part I : Section I: 1979
31	Code of Practice for Design and Construction of Piles,	[Male]
	Section 2 , Bored cast in situ Concrete Piles	IS: 2911:Part I : Section 2: 1979
32	Code of Practice for Design and Construction of Piles,	
	Part 3, Under reamed Piles	IS: 2911: Part 3: 1980
32(a)	Code of Practice for Design and Construction of foundations	
	in Soils-Genreal Requirements	IS: 1904-1986 (RA 2000)
33	Design aids for Reinforced Concrete to IS:456 - 1978.	SP - 16 , 1980
34	Hand Book of Concrete Reinforcement and Detailing	SP - 34 (S&T) - 1987
35	Current Practices In Canal design in India	CBIP , Technical Report no - 3
36	Design practices for Unlined incised Canals	CBIP , Technical Report no - 7
37	Manual on Irrigation and Power Channels	CB1 - Publication no: 171
38	Design of weirs on permeable foundation	CBI - Publication no: 12
39	Design of Small Dams	USBR
40	Manual on Canal Falls	CW & PC Publication
41	TVA Hand Book	
42	Test Book of Irrigation Manual	W.M.Ellis

LIST OF I.S CODES FOR MECHANICAL COMPONENTS

	IS:CODE No.		
S.No.	YEAR	DESCRIPTION	
	(latest)	AT SHAPE TO THE TOTAL SHOPE TO	
1	IS:800-1994	General construction in steel code of practice	
2	IS:807-1976	Code of practice for Design,manufacture,erection and testing structural portion of cranes and hoists	
3	IS:3177-1999	Code of practice for Electric overhead traveling cranes and Gantry cranes other than steel work cranes	
4	IS:4622-1992	Recommendations for fixed wheel gates structural design	
5	IS:4623-2000	Recommendations for structural design of Radial gates	
6	IS:5620-1985	Recommendations for structural design criteria for low head slide gates	
7	IS:13591-1992	Criteria for design of Lifting Beams	
8	IS:6938-1989	Code of practice for design of Rope drum and chain Hoists	
		for Hydraulic Gates	
9	Is:9349-1986	Recommendations for structural design of medium and	
		high head slide gates	
10	IS:10210-1993	Criteria for design of hydraulic hoists for gates	
11	IS:11228-1985	Recommendations for design of screw hoist for hydraulic gates	
12	IS:11388-1985	Recommendations for design of Trash racks for intakes	
13	IS:11855-1986	General requirements for rubber seals for hydraulic gates	
14	IS:14177-1994	Guide lines for painting system for hydraulic gates and hoists	

- 1 Materials:- The materials to be adopted are as given the relevant IS codes for the type of gates
- Welding:- Welding shall conform to IS:816 and other relevant IS codes.

Note:- BIS codes shown are indecative. Latest codes with updated amendments, if any, shall be followed

8.4 BUILDING CONSTRUCTION

8.4.1 BRICK WORK

Damaged Bricks can be used in internal walls that will be plastered.

PLUMB LINE need only be used at the ends of walls and then use a string to get a straight wall between

The plumb line should always fall to the bottom course, not to the brick immediately below.

FOR ORDINARY SMALL HOUSES

41/2" brick walls can be used for short stretches of wall.

9" brick walls are adequate for almost all walls.

131/2" brick walls are very rarely necessary.

You can build a 41/2" brick wall, If the wall is too long and too high it will fall over.

But if the lengths of wall are shorter, they will support and strengthen adjoining walls and not fall over.

So a house with walls that go in and out like this will be strong, will not fall over, and can carry the weight of a roof.

8.4.2 MORTARS -

CEMENT and SAND

1 part of Cement : 8 parts of sand. This sets quickly

Use cement only if nothing else is available

LIME and SAND

1 part of lime : 3 parts of sand. This sets slowly but is strong

This can be used for all types of brick work.

LIME CEMENT and SAND

1 part Cement : 4 parts lime : 14 parts sand This sets nearly as quickly as cement. Use this if you need the mortar to set more quickly than lime mortar.

INDEX

Chapter - VII

A - Surveying

7.1	Correction	on to be applied to measured length	7-1
	7.1.1	Correction for Slope	7-1
	7.1.2	Correction for Temperature	7-2
	7.1.3	Correction for Tension	7-2
	7.1-4	Correction for Sag	7-2
7.2	Adjustm	ent Dumpy Level	7-3
	7.2.1	Adjustment of the perpendicularity between	
		vertical axis and Level Tube Axis	7-3
	7.2.2	Adjustment of the Line of Collimation or the Collimation adjustment	
	7.2.3	Sensitivity of level tube	7-4
7.3	Adjustm	ent of Prismatic Compass	7-5
nuò b	7.3.1	Source of Errors in compass observation	7-5
	7.3.2	Testing the Compass	7-5
7.4	Adjustm	ent of theodolite	7-6
	7.4.1	Temporary Adjustment	7-6
	7.4.2	Permanent adjustment of Theodolite	7-7
	7.4.3	Adjustment of the line of sight, or collination adjustment	7-8
		B-TOTAL STATION	
7.5	7.5.1	Introduction GMAS base	1
	7.5.2	Basic mapping terms in survey	
	7.5.3	Distance Measurement	2
	7.5.3	Advantages of Modern Surveying	
		Instruments and Methods UMA2 has TICHA33	2
	7.5.4	Total Station	3
	7.5.5	Component of Total Station	3

437

Cement Paints:

cement paints are supplied in powder form and are available in 5 Kg. container or 25 Kg. and 50 Kg. drums. Cement paint powder and water is mixed as per directions of manufacturer. Only sufficient quantity is mixed at a time to meet an hour's working requirement.

Enamel Paints:

Enamel Paints are of various qualities. Superior quality enamels cost quite high and cheaper inferior quality enamels are also available.

Enamels have hard mirror-like gloss. Top quality gloss enamel is used for exterior use and to withstand rugged conditions such as finishing trucks, transport coaches, machinery, furniture fixtures, shining sign-board, toys e.t.c.

The paints have an average covering capacity of 14-16 - sq.meters per litre and they are available in 20 litre, 4 litre and 1 litre as also 100 ml., 200ml., packing.

Colour Management

Introduction to any serger west studied by upon the agreem table table, seeing transmitted that

The term colour management connotes actions involved in Designing, Choosing, Arranging, Placing, Coordinating and Controlling the 'inputs' of colours to achieve desired effective 'outputs' - colour schemes useful to Architects, Artists, Impressionists, Exterior/Interior Decorators, Graphic Designers, Fashion Designers, Process Colour Printers and painters.

Colour management, therefore, presupposes knowledge of colours and their characteristics, psychological impact and emotional instinct associated with some colours and colour combinations to produce colour schemes acceptable to end users or professionals. The final impact would, however, depend on the physiological perceptions of the target audience.

There are a number of colours, but all of them are blending of three primary colours -Red, Yellow, and Blue, plus varying degrees of Black and white. With green, Purple and Brown, these colours 'the living palette' make up hues that we see in daily life.

PRACTICAL APPLICATION

Choosing colours, be it a fun to some one or far more serious purposes, is by no means a simple task. There is more to choosing an effective colour combination than simply picking the colours that appeal to ones. The Picking is colour management action, for the combination should be logical, based on the scientific relationship of different colours,

their placement or arrangement and co-ordination, turning to harmony for appropriate desired effect.

Select background colour first. For interior painting, pale or pastel colours for walls and ceiling, then pick a darker or vivid colour for the molding and then trim.

For exterior painting of buildings, observe design (front elevation and also other sides). The first selection of colour should be for the largest area i.e. body colour then go for the next largest and so on-contrast colour if felt necessary to give effect to design aspects columns-bends-boarders-projections-sunken portion, etc.

Limit the number of colours. Whatever may be the combination of colour - two, three, or four, take one dominant colour that sets the tone for the whole colour scheme, the others should be clearly subordinate in hue, value and intensity.

Use natural colours, Natural colours by definition are harmonious.

Use familiar colours, Avoid uncommon colour like Magenta, Cyans, Purple.

All said and done, and clear though an array of colours may appear on a design to some, a great number of factors affect the perception of them, including physiological capacity and immeasurable powers of emotional association and above all, stylish preference. Colours may often have tremendous emotional and personal impact on account of psychological factors, rather than from any scientific application and determining application and determining agreement in reactions to colours is sometimes difficult. However, most people do agree that some colour combinations imply heat and some cold and that some bring forth pleasure and others pain. Red can be among the other things, either a welcome or a warning signal conveying either warmth or danger. The 'Voice' of colour depends largely on the colours that are placed next, to it - the essence of this exercise-COLOUR MANAGEMENT.

8.4.4 SPECIFICATIONS FOR RESIDENTIAL BUILDINGS 8.4.4.1 Foundation & Plinth

1 1	1tem 2	tem Sp	
1.	Foundations And Plinth	(i)	15 cm to 20 cm thick cement concrete (1:5:10) or lime concrete (with stone or

brick aggregates) with 40 per cent (1:2to 3) mortar

(ii) Brick work or Random Rubble (R.R) stone masonry in cement mortar (1:8) or lime mortar (1:2: to 3)

Note:

- a) Higher contents of cement or lime to be used only when required under local conditions.
- b) Anti- termite treatment of foundation as per IS: 6313be provided in termite -infested areas.
- c) Under reamed piles are recommended in black cotton soil, being effective and economical.
- d) Depth of foundations will depend upon local conditions. National Building Code provides for a minimum foundation depth of 50 cm which would be adequate in normal conditions.
- e) Plinth height will depend on local conditions like flooring, sub-soil, water level etc. In well - drained area, the plinth height need not be more than 30cm.

8.4.4.2 WALLS:

- (i) Brick work (ii) R.R. stone masonry
- (iii) precast stone block masonry (usually 20cm thick)
- (iv) Timber posts and Ekra walling (with reeds, split bamboo or expanded metal)
- (v) Timber posts and planks (vi) Precast RCC posts and 11.5 cm brick nogging.

Note: a) Whenever stone masonry is required due to non-availability of bricks or whenever brick wall thicker than 23cm becomes necessary due to poor quality of bricks, use of precast stone blocks item (iii) is recommended as they would be usually found more economical.

b) In brick work and R.R. masonry, mortar mixes usually used are cement mortar (1:8) for one and two storeyed construction and (1:6) in construction higher than two storeys, or cement lime mortar (1:2:9) or lime mortar (1:2:to 3). However, the mortar to be actually used will depend on locally available materials and the actual strength of masonry required. The strength of mortar should match the strength of bricks. Thickness of walls and mortar mixes (or strength design of walls) should be worked out as per provisions of National Building Code.

c) For earthquake resistant construction of load-bearing walls structures zones III, IV and V. IS:4326 should be referred to.

8.4.4.3 FLOOR AND ROOF SLABS: (i) RCC slab M15(1:2:4)

- (ii) Precast roofing systems, core units, channel units, doubly curved shells etc.,
- (iii) Reinforced brick panels
- (iv) Brick tiles over timber joists
- (v) Brick jack arches with precast RCC joists
- (vi) Stone putty slabs (10to 15cmthick)
- (vii) 40 to 50 mm stone slabs (like Agra stone) over precast RCC or wooden joists
- (viii)Madras terrace flooring over timber joists
- (ix) Sloping roof with A.C / C.G.I sheets Manglore tiles, slates, shingle, etc.

Note:

- a) For economy, RCC slabs should be designed as per limit state theory or yield line method and high strength deformed bars should be preferably used as reinforcement. Where roofs are used in heavy rainfall regions they may be preferably laid in a sloping position.
- b) Use of item (ii) results in saving of cement and steel and leads to faster work...
- c) Items (iii) to (v) can be used where bricks of a good quality are available.
- d) Items (vi) to (vii) can be used in Delhi / Rajasthan areas where suitable stone slabs are available
- e) Item (viii) is used in certain areas of Karnataka , Kerala and Tamil Nadu.
- f) Item (ix) is appropriate in heavy, rainfall regions like Assam, Kashmir, Himachal Pradesh, Eastern and Western coastal regions.
- g) Saving in cement and steel can be effected through the adoption of items(ii) to (ix).

8.4.4.4 FLOORING:

- (i) 30to 35mm thick CC 1:2:4 flooring to be used generally, Better specifications like mosaic flooring should be confined only to bath and W.C.s of all type of quarters and living and dining rooms of quarters.
- (ii) In ground floor, use 75-80 mm thick lean concrete base with lime concrete or CC1:5:10.

8.4.4.5 DOORS AND WINDOWS

A-Frames

- (i) Wooden frames Generally a size of 100X60mm is adequate for door frames (This may be increased to 120mm X60mm where fly- proof shutters are also provided). The size of the frames could be reduced up to 75mmX60mm in the case of windows.
- (ii)M.S. sections (sizes generally used are 40X40X6mm T.section or 45X30X5 mm angle iron section.).
- (iii) Precast RCC frame (100X75) mm size.

Note:a) For wooden frames locally available seasoned timber as deodar , sal, Bijasal, Pillamarudu, Karimarudu, Hollock etc. and other secondary species as per IS:399 - 1964 may be used.

B- Shutters

- (i) Panelled or battened and braced shutters for doors and partly or fully glazed shutters for windows made of Deodar, Kail or other locally available secondary species of timber .
- (ii) Commercial type black board flush shutters.
- (iii) Wood particle board panelled or flush shutters.
- (iv) Kitchens may be provided with fly- proof shutters.
- (v) External windows to be provided with simple grills made of M.S. rounds and flats.
- (vi) Oxidised iron fittings to be generally used. Only in special quarter anodised aluminium fittings may be used.

Note:

- a) Shutter thickness: 35mm is usually adequate for shutters of over 800 mm width .Thickness could be reduced to 30 mm for shutters of less width.
- b) For secondary species of timber please refer to IS: 399 1964.
- c) Windows opening area 10- 12% in hot and dry regions, 16 18% in hot and humid regions.

8.4.4.6 WALL FINISHES

a) Internal Surfaces

12 mm thick plaster with cement mortar (1:6) or cement lime mortar (1:2:9) finished with white wash.

b) External Surfaces

- (i) Same as above (finished with colour wash)
- (ii) Cement /lime pointing.

Note:

- a) The thickness of plaster on rough surface of brick work may be increased to 16mm.
- b) The thickness may be reduced to 10mm for plastering precast masonry blocks.
- c) Plastering on external surfaces need not be done in case of R.R. stone masonry and precast masonry blocks.

8.4.4.7, TERRACING OVER FLAT ROOFS

- (i) The top of roof slab shall be painted with bitumen.
- (ii) On the bitumen painted roof shall be laid 10cm thick mud phuska and 2.5 cm thick mud gobri plaster to be overlaid by flat brick tiles.

If earth suitable for mudphuska is not available use lime concrete terracing 7.5 cm average thickness. Where quality of lime concrete is not satisfactory, it needs to be overlaid by a layer of pressed clay tiles or two layers of country flat tiles or 30 to 35 cm thick 1:2:4CC panels...

8.4.4.8 Rough Estimate for Cost of Buildings

	Name of Item	Percentage of Total cost
1.	Labour	30 to 35
2.	Cost of Material	70 to 65
3.	Foundation upto and including plinth	15 to 20
4.	Superstructure	80 to 85
5.	Second Storey	75 to 85 of 1st storey
6.	Direct and overhead cost :	
	a) Direct on actual work	85

	b) Overhead costs due to establishment	INCHES OF THE PARTY OF THE PART	
	supervision, incidentals etc	15	
		- TONEON TANK A - A - AND	4
7.	Sanitation and Electrification		
	a) Sanitary and water supply	7 to 9	1
	b) Electric installations without Fans	7.	
	c) Electric Fans	5	
		Comment of the little	
8.	Cost break-up of different components :	A F. M. Den granner A.B.	
	a) Earthwork in Excavation and filling	1-2	
	b) Foundation Concreting	4 to 6	Д
	c) Damp proof course	2	
	d) Brick work	34	
	e) Roofing	20	
	f) Doors, Windows and Ventilators	16-20	
	g) Plastering and Pointing	10	
	h) White and colour washing, painting	2-4	
	i) Miscellaneous	4-8	
9.	Cost of material and labour (Probables)		
	a) Bricks	15	
	b) Cement	15 16 11 11 11 11 11 11	
	c) Steel Bars	15	
	d) Timber	15	
	e) Lime	5	
	f) Labour	30	
	g) Miscellaneous	5	
10.	Material required on plinth area basis for single st	toray huildings	
	per square metre of plinth area (Probables)	iorcy bandings.	i
	a) Brick	500 Numbers	
	b) Cement	1.5 bags	
	c) Steel	10 kg	
11.		18.53	
		The state of the s	

Committee of the Commit

8.4.4.9 BRIEF SPECIFICATION FOR IMPORTANT WORKS IN BUILDING CONSTRUCTION

PART - I. CIVIL WORKS

- 1. Earth work excavations in all soils for foundation of parrow width.
- 2. Supplying and filling in foundation and basement with sand
- 3 Filling basement with excavated soils in layers and consolidation.
- 4 Cement concrete 1:5:10, using 40mm broken stone jelly for foundation .
- 5 R.R. masonry in C.M. 1:5 for foundation and basement with bond stones and simultaneous flush pointing in C.M. 1:5
- Brick work in C.M. 1:3/1:5/1:6 for foundation and basement.
- Damp proof course in C.M.1:3/1:4 mixed with water proofing compound at 2% by weight of cement .
- Brick work in C.M.1:5/1:6, usingBricks of size......for superstructure in Ground. Floor/First Floor /Second Floor etc.
- Supplying and erecting shuttering for RCC plane surfaces such as column footings, plinth beam etc. in foundation &basement.
- Supplying and erecting centering for sides and soffits including structuring upto 3.29m
 - a) for RCC floor slabs, rectangular beams lintels, bed blocks, staircase waist slabs, canopy etc.
 - b) For vertical slabs, concrete walls, RCC columns sunshades etc.
 - c) For curved column surfaces including circular columns.
- 11. Cement Concrete 1:2:4,using 20mm size broken stone jelly for all RCCworks.
- 12. Plain Concrete 1:2:4/1:3:6 using 20mm size broken stone jelly.
- Supplying , fabricating and placing in position MS/High strength steel grills for all RCCworks.
- Supplying and fixing TW/C.W. frames for doors, windows and all ventilators.
 - Single shutter /two shutters with steel grills /without steel grills etc.
- Supplying and fixing shutters for doors, windows and ventilators including labour, wrought and put up.
 - with multipanel glazed shutter panel/ with single panel glazed shutter
 - with 3 panel glazed shutter /- with TW/C.W/Andaman padauk fly proof shutters
 - with vertical glazed louvers for ventilators,
- Supplying and fixing TW/C.W weldmesh doors /windows /ventilators.
- 17. Floor with cuddapah slabs of 40mm thick, over 20mm cm 1:3.
- 18. Cement concrete 1:5:10, using 40mm hard broken stone for flooring.

- Weathering course in brick jelly 20mm size lime concrete in-pure slaked lime (lime to brick jelly in the proportion of 12.5:32).
- Paving the floor with mosaic by hydraulic pressed square tiles over a base layer of C.M.1:3< 20mm thick.
- Finishing the flooring with mosaic in-situ over a base layer of C.M. 1:3,20mm thick and top layer of 12mm thick mosaic in situ marble chips.
- Dadooing walls with mosaic in- situ work with a base layer of C.M.1:3:,4mm thick and a top layer of 8mm thick mosaic in situ, using marble chips.
- 23. Providing granolithic floor finish with plain concrete 1:2:4, using hard broken stone of 10mm and 12mm size ;-20mm thick for residence /-25mm thick for offices /-40mm thick for workshop
 - -20mm thick for residence /-25mm thick for offices /-40mm thick for workshop &godowns.
- Finishing the top of roof with one course of machine pressed tiles of size 200mmx200mmx200mm in C.M. 1:3 with water proofing compound at 2%by weight of cement.
- Dadooing the walls with glazed square tiles of 150mmx150mmx5mm in C.M. 1:2 and pointing with C.M.1:2.
- Brick partition wall of thickness 11.5cm, using Country Bricks/Stock bricks/ I/II Class bricks in C.M. 1:3.
- Plastering the surfaces of walls with C.M. 1:5, 12 mm thick in brick masonry/ 20mm thick in RR masonry.
- Special ceiling plastering and finishing the exposed surfaces of RCC works in C.M,
 1:3: 10mm thick.
- 29. White washing with freshly burnt shell lime-with one coat/- two coats.
- 30. Colour washing two coats with freshly slaked shell lime.
- 31. Supplying and painting the walls with two coats of Cement paint.
- supplying and painting the Ceiling or walls with two coats of synthetic enamel paint/ plastic emulsion paint of approved quality.
- 33. Painting new work with two coats of synthetic enamel paint of approved quality.
- 34. Painting new Iron work with two coats of synthetic enamel paint of approved quality.
- 35. Providing and fixing AC/PVC Downwall pipes with fixtures.
- 36. TW/CW wrought and put up for AC sheet roofing.
- 37. Precast RC slab 20/25mm thick using 10mm & below hard broken jelly.
- 38. Precast RC slab 40/50/75 mm thick, using 20mm hard broken jelly.
- 39. Supplying and fixing MS grills for doors, windows & ventilators.
- 40. Supplying and fixing TW hand rail with size of 150 X 50mm.

446

447

8.4.4.10 Stripping time for Reinforced Concrete

(As per IS: 456-1978 (Clause 10.3))

Note: 1 In formal circumstances and where ordinary Portland cement is used, forms may be generally be removed after the expiry of the following periods:

a)	Wall, columns and vertical faces of	24 to 48 hours as may be decided by
	all structural members	the engineer - in charge.
b)	Slabs (props left under)	3 days
c)	Beam soffits (props left under)	7 days
d)	Removal of props under slabs	Shift in the late of the late
1)	Spanning upto 4.50 m	7 days
2)	Spanning over 4.50 m	14 days
e)	Removal of props under beams and arches:	
1)	Spanning upto 6 m	14 days
2)	Spanning over 6 m	21 days

For other cements, the stripping time recommended for ordinary Portland Cement may be suitably modified.

Note: 2 The number of props left under, their sizes and disposition shall be such as to be able to safely carry the full dead load of the slab, beam or arch as the case may be together with any other live load likely to occur during curing or further construction.

8.4.4.11 Water Supply requirements for buildings : (As per part IV of NBC 1983)

Water Supply for residences: The requirements regarding water supply, drainage and sanitation for residences shall assume that a minimum water supply of 200 litres per head per day is assured together with full flushing system.

Note: The minimum value of water supply given as 200 litres per head per day may be reduced to 135 litres per head per day for houses for Lower Income Group (LIG) and Economically Weaker Sections of Society (EWS) depending upon prevailing conditions.

8.4.4.12 Occupant Load - (Para 7.3 - Part IV of N.B.C - 1983.)

For determining the exact quantity required, the number of persons within any floor area or the occupant load shall be based on the actual number of occupants, but in no case

less	than	that	spec	ified	below
------	------	------	------	-------	-------

Group of Occupancy	Occupant Load Floor Area in m ² /person.
Residential	12.5
Educational	4
Institutional	15

8.4.4.13 USEFUL NOTES FOR LAYING OF RCC COLUMNS AND FOOTINGS

L EXCAVATION OF TRENCH

- A trench for the footing of size given in the drawing providing 15cm extra on four sides to get required size of footing at the bottom of trench shall be excavated.
- The depth of the pit should be minimum 1m and should be decided by the consulting engineer if the hard strata is not met with in 1m depth.
- Any deviations regarding the depth of pit should be referred to the consulting engineer.

II. BASE CONCRETE

- All the loose materials at the bottom of the pit should be removed before laying the base concrete.
- The base concrete should be of 23 cm thick with c:c (1:4:8) using 40mm size down grade metal.
- The base concrete should be tamped well to get dense concrete.

III. FOOTING CONCRETE

- The footing concrete mix shall be V.R.C.C (1:1½:3) (M 15) using 20mm hard broken graded metal.
- 8. Cement slurry should be put over the base concrete before laying footing concrete.
- Minimum cover of 5cm should be provided for the reinforcement of footing.

- 10. Pin vibrator must be used for vibrating the concrete of more than 10 cm.
- Machine mixing should be done.
- 12. Minimum 4 cubes of 15 cm X 15 cm X 15 cm should be extracted during concrete and should be got tested for 14 days and 21 days strength for every days work and record shall be maintained.

IV. STEEL

- Tor steel grade 40 shall be used unless specified in the drawing.
- 14. The steel should be free from rust.
- 15. Correct dia of steel should be used with correct spacing and cover as specified in the drawing.
- The reinforcement bars should be tied properly.

SAND, CEMENT AND METAL

- 17. The cement should be fresh without lumps, cement more than 3 months old should be got tested for its strength. Water cement ratio is maintained for workability of the mix and the wet mix should be placed with in 30 minutes to obtain maximum strength.
- 18. Approved brand cement shall be used.
- The 20mm size metal should be crusher metal and should be free from dust.
- 20. The sand should be free from dust, inorganic materials and pebbles.
- 21. The sand shall be screened for removing over size materials.
- Coarse sand only shall be used for concrete work.

COLUMN

- The concrete mix for the column shall be as specified in the drawing.
- Steel form work should be used
- The over lapping length for column bars should be 35D where D is the dia of the

- bars. The column bars should be vertical.
- 27. The leg of the column bar should be minimum 45 cm and should be tied to the footing mat.
- Minimum 4cm cover should be provided for reinforcement.
- The column should be vertical through out the floors and no eccentricity is allowed.
- Pin vibrator must be used to vibrate the concrete.
- 31. Minimum 4 cubes of 15 cm X 15 cm X 15 cm size should be extracted during concrete and should be got tested for 14 days and 21 days strength for each days work and record shall be maintained.

8.4.4.14 USEFUL NOTES FOR LAYING OF R.C.C. SLAB

I. FORM WORK

- Steel form work is advised for neat and level ceiling.
- The form work shall be strong and should withstand the impact loading of concrete. All the holes in the form work shall be closed to avoid possible bleeding of concrete A MARINE STORY OF THE STORY OF during vibration.
- The centering shall be removed only after the concrete attains the desired strength. The state of sensity in particles, property of

II. PRECAUTIONS

- The column levels shall be at the same level (or lower) with respect to the bottom of the beam of maximum depth.
- All the column junctions are cleaned and no oil should be seen on column surface. III. STEEL on the tercente settlette are motifying tryrock?

- 12.5mm clear cover for slab reinforcement and 25mm cover for beam reinforcement shall be maintained.
- The steel should be fresh and free from rust and correct diameter of steel shall be and the by an administration of the property and authorizing purpose and the second

- Overlapping length shall be 45 times the dia of the reinforcement.
- For the rods of dia above 6mm the TOR steel of grade 40 and the bars of 6mm dia shall be in MS grade.
- 10. All the reinforcement steel shall be tied effectively with binding wire at the joints.
- 11. The reinforcement shall be got checked by the design engineer before slab is cast.

IV. MATERIALS

- 12. The sand shall be screened and shall be free from dust and silt.
- Coarse sand shall be used for RCC works, machine crushed 20mm size down grade metal shall be used for RCC works.
- Always fresh cement shall be used and should not contain lumps and 3 months old cement shall be tested for its strength properties.

V. CONCRETE

- The RCC mix (1:2:4) M15 with 20mm down grade metal shall be used for slab and beams.
- Machine mixing and measurement boxes shall be used for loading the sand and metal in to the hopper.
- 17. Pin vibrator for beams and pan vibrator for slab shall be used.
- The thickness of slab shall be provided as per drawings.
- The water cement ratio and workability of concrete are to be maintained under the supervision of an Engineer.
- 5 or 6 concrete cubes of 15cmX15cmX15cm size shall be extracted and tested for its compressive strength at 14 days and 21 days age.
- The junctions are to be treated with cement slurry between old and new concrete whenever there is time delay. Lapping shall be maintained at the junctions of old and new layers.
- 22. In case of rain during concreting the concrete shall be covered with gunny bags

available at site to avoid erosion of concrete.

451

Curing shall be done for minimum of 21 days with 1" depth of standing water. Start
curing on the next day of work, before sun rays fall on the concrete.

VI. LEAK PROOF TREATMENT

Annual Control of the
 The top of the roof shall be plastered with CM (1:4) mixed with 1 kg of ACCO proof compound per 1 bag of cement and fine rendering shall be done over the plastering.

NOTE: Any deviations of the above shall be brought to the notice of the engineer before execution of the work.

8.4.5.1 THEORETICAL CEMENT CALCULATION FOR VARIOUS ITEMS OF WORK.

Description of work	Cement for 1 Cum of wo		
The December of the con-	or 10 Sq.m of F	inished	
	Surface	St. Actual	
	This property provide	kgs	
Cement mortar 1:2		720	
Cement mortar 1:3		480	
Cement mortar 1:4		360	
Cement mortar 1:5	and provide the contract	288	
Cement mortar 1:6		240	
Cement mortar 1:8		180	
Cement concrete 1:11/2:3	0.45 X 960 =	432	
Cement concrete 1:2:4	0.45 X 720 =	324	
Cement concrete 1:3:6	0.45 X 480 =	216	
Cement concrete 1:4:8	0.45 X 360 =	162	
Cement concrete 1:4:10	0.38 X 360 =	137	

	Cement concrete 1:5:10	0.45 X 288 =130 kgs/cum
	Cement concrete 1:5:121/2	0.38 X 288 =110 kgs/cum
	Special ceiling plastering for RC slabs	
	and beams with cement mortar	THE REPORT OF THE PERSON.
	1:3,10 mm thick - 10 sqm	0.10 X 480 = 48 kgs/ 10 sqm
	Providing through vertical joint with	
	15 mm space filled with bituminous	
	conpound with c.m. 1:3, 15 mm	
	thick - 10 Sq.m	0.15 X 480 =72 /10 sqm
	Brick work in cement mortar (1:6) using	
	Bricks of size 9" X 4 3/8" X 2 3/4"	= 0.25 X 240 = 60 / 1 cum
	Bricks of size 8 3/4" X 4 1/4" X 2 3/4"	= 0.28 X 240 = 67.2 / 1 cum
	Bricks of size 8 3/4" X 4 1/4" X 2 1/4"	= 0.30,X 240 = 72 /1 cum
	Bricks of size 19 cm X 9 cm X 9 cm	= 0.22 X 240 = 52.80/ 1 cum
	Bricks of size 19 cm X 9 cm X 5.7 cm	= 0.27 X 240 = 64.80/ 1 cum
	Granolithic flooring c.c. 1:2:4 using 20mm	
	thick using 12.5 mm size jelly	0.09 X 324 = 2916/10m ²
	Pebble ash plastering 1:5 /12 mm thick	40.32 Kg /10 Sq.m
	20mm thick	63.36 Kg/ 10 Sq.m
	Honey comb brick work using bricks of	
	19 cm X 9cm X9cm in c.m. 1:3	0.7 X 288 = 201.6/10 Sq.m
	Brickwork 10cm, thick-partition walls using	The state of the s
	1class bricks in c.m. 1:3	0.14 X 480 = 67/ 1 cum
1	Plastering with c.m 1:5, 12 mm	
	thick (20sq.m). 0.12 X (20/10) X288 =	69 / 20 Sq.m
	Cutstone in cement mortar 1:2	0.16 X 720 = 115 / 1 cum
	TO STATE OF THE ST	Company of Company of Company of Company

Coursed Rubble masonry in c.m.1:2- 1 st Sort	0.28 X 720 =	202 k	g/1 Cum
Coursed Rubble masonry in c.m. 1:5- 1 st Sort	0.28 X 288 =	81	**
Coursed Rubble masonry in c.m. 1:2- II nd Sort	0.32 X 720 =	230	77
Coursed Rubble masonry in c.m. 1:5- II nd Sort	0.32 X 288 =	92	74
Random Rubble masonry in c.m. 1:3	0.34 X 480 =	163	**
Random Rubble masonry in c.m. 1:6	0.34 X 240 =	82 1	**
Damp proof course in c.m. 1:4, 20mm thick -10 Sq.m	0.21 X 360 =	75.6	kg /10 Sc
Manufacturing sand cement blocks			
of size 60 X 30 X 20 c.m. in C.M	manufacturing	171.0	-4
1:8 and packing them in C.M 1:6 in	packing 14.4		-
aprons and revetments -1 Cum			
Manufacturing sand cement blocks	THE MARKET		
of size 60 X 45 X 15 c.m. in C.M	manufacturing	228	
1:6 and packing them in C.M 1:6 in	packing 14.4		
aprons and revetments -1 Cum			
Finishing the floor with 20mm cement			
concrete (Ellis pattern - 1 st Sort -No sand	ميتين كالمتا		UMIT.
to be used) - 10 Sq.m			117
Paving Hydraulic pressed cement mosaic	Aut Creation		
tiles of size 20cm X 20cm X 20mm thickness			
with c.m. 1:3, 20mm thick and pointed			
with same cement -10 Sq.m	0.21 X 480 =		101
			2
75mm concrete, 2 courses of flat	c.m. 0:24 X 480	=	115
tiles to top and 1 coat of cement	Plastering - 0.15		
plaster 1:3, 15mm thick	Pointing - 0.05 X	480 =	24

OTTO LINGUIS TIANUDUCK		
Reinforced concrete 1:2:4 roofing 125mm thick, two courses of flat tiles with C.M, 1:3 -10 Sq.m	1.25 X 0.45 X 720 = 405 kgs	
O Was Max Max Max And Max	Flat tiles 0.27 X 480 = 1	30
Terrace flooring with one course of pressed		
tiles 20cm X 20cm X 20mm using CM 1:3	0.04x 4.80 = 19	
Pointing Flat tiles	0.05 X 480 = 24	
Pressed tiles	0.04 X 480 = 19	
Plastering with C.M. 1:3, 12mm thick - 10 Sq.		
Plastering with C.M. 1:5, 12mm thick - 10 Sq.	m 0.12x288 = 35	
(For country bricks) 1:5,12mm thick - 10 Sq.n		
Plastering with c.m 1:3,20mm thick - 10 Sq.m		
Stucco Plastering 12mm thick using	mi2 c-andina a papara	
blue granite chips of size 10mm and	THE THE PARTY OF THE LIBERTY OF	
below over a base plastering		
in C.M 1:5, 12mm thick - 10 Sq.m Base	1:5 -0,12 X 288 ≥ 35	
Pointing with CM 1:3 flush pointing		
Brick work - 10 Sq.m	0.06x480 = 29	
Pointing with C.M 1:3 flush pointing	ومرجناك مساحمات	
Random Rubble Masonry - 10 m ²	0.09 x 480 = 43	
Pointing with C.M 1:3 to full depth		
of tiles(marble slabs, pressed tiles,		
ornamental tiles) - 10 Sq.m	0.04 x 480 = 19	
A STATE OF THE STA		

Pointing with C.M 1:3 cuddapah	
slabs to full depth - 10 Sq.m	$0.05 \times 480 = 24$
Pointing with C.M. 1:3 square	
brick flooring - 10 Sq.m	$0.05 \times 480 = 24$

8.4.5.2 Table : Fair Estimate of Cement and Steel in Building Works

	Residential Bldgs	Office Buildings (Multistoreyed)		Commercial Bldgs such as Bus stands,
		Load bearing	Framed structure	Restaurents etc. Framed structure
1. Cement	16 to 20 tons	12 to 15 tons	25 tons	22.5 tonns
(i) For 100 sqm	(320 to 400)	(240 to 300)	(500)	(450)
of plinth area	bags	bags	bags	bags
2. STEEL		annis Ball	ALL REAL PROPERTY.	
(i) For 100sqm of			direct a section of	Annual Contract
plinth area.	1.8 to 2.0	1.5	2.5	2.25
	tonnes	tonnes	tonnes	tonnes
(ii) For 1 cum of			OH MAN DEDC	11/0/04
RCC	100 Kgs	80Kgs	150 Kgs	120 Kgs
(iii) For Rs1.0 lakh cost estimate	1.5 tonnes	1.20 tonnes	2.00 tonnes	
(1989-90) rates			SHIP W	MINISTER CONTRACTOR
Various sizes			to Company	the short of the
Dia 6mm	15%	15%	10%	10%
8 mm	50%	40%	30%	25%
			11000 000	esantile noma premier

Civil Engineers I	Civil Engineers mandbook								
10 mm	15%	10%	10%	15%					
12 mm	10%	15%	15%	10%					
16 mm	10%	15%	10%	20%					
20 mm	- teams now	5%	15%	10%					
25 mm	373		10%	10%					

For Foundation & Basement of Framed Structures (Upto 4 storeyed) alone

C	A A	_	B. I	7
u	ľVľ	ш	ľV	44

Civil Engineere! Handbook

For 100sqm of	2.0 tonnes	1.75 tonnes	2.5 tonnes	2.25 tonnes
Plinth area	(40 bags)	(35 bags)	(50 bags)	(45 bags)

STEEL

For 100 sqm of

Plinth area	500kg	400kg	650 kg	750kg
		10000000		

Materials required for single Storey Building

*Cement	: 3.50 to 4.00 Bags / sqm of Plinth area
*Steel	: 12 Kg to 15 Kg / Sqm of Plinth area
* Bricks	: 250 to 300 nos / som of Plinth area

8.4.5.3 Task or out turn per day per skilled labour

White washing or colour washing three coats	70.00 sqm per white washer			
White washing or colour washing door				
one coat	200.00sqm per white washer			
Painting or varnishing door or windows one coat	25.00 sqm per painter			
Painting large surface one coat	35.00 sqm per painter			
Distempering one coat	35.00 sqm per painter			

2.5 cm C.C. floor	7.50 sqm per mason
Timber framing sal or teak wood	0.07 cum per carpenter
- Do - Country wood	0.15 cum per carpenter
Door or Window shutter panel or glazed	0.70 sqm per carpenter
- Do - battened	0.80sqm per carpenter
Single Allahabad tiling or Mangalore tiling	6.00sqm per tile layer

8.5.1 Horse power required to lift different quantities of water to elevations 3m to 30m

H.P. = { Quantity of rpm x Head in metres x 2 / 60x76 } Assuming 50% efficiency of pump.

Qty in	lpm		HP	required	for the ele	vation o	f
	3m	5m	10m	15m	20m	25m	30m
500	0.66	1.10	2.19	3.29	4.39	5.48	6.58
1000	1.32	2.19	4.39	6.58	8.77	10.96	13.16
1500	1.97	3.29	6.58	9.87	13.16	16.45	19.74
2000	2.63	4.39	8,77	13.16	17.54	21.93	26.32
2500	3.29	5.48	10.96	16.45	21.93	27.41	32.89
3000	3.95	6.58	13.16	19.74	26.32	32.89	39.47
3500	4.61	7.68	15.35	23.03	30.70	38.38	46.05
4000	5.26	8.77	17.54	26.32	35.09	43.86	52.63
4500	5.92	9.87	19.74	29.61	39,47	49.34	59.21
5000	5.68	10.96	21.93	32.89	43.86	54.82	65.79
5500	7.24	12.06	24.12	36.18	48.25	60.31	172.37
6000	7.89	13.16	26.32	39.47	52.63	65.79	78.95
6500	8.55	14.25	28.51	42.76	57.02	71,27	85.53
7000	9.21	15.35	30.70	46.05	61.40	76.75	92.10
7500	9.87	16.45	32.89	49.34	65.79	82.24	98.68

NORMS FOR ELECTRICAL INSTALLATION IN RESIDENTIAL BUILDING

1/2 H.P monoblock, centrifugal motor pumpset is adequate in case of open well with suction height upto 26 feet - for a family of eight.

1/2 H.P. jet motor - pumpset is adequate in case of open well or bore well with suction height ranging from 26 feet to 50 feet - for a family of eight.

8.5.2. COST OF ELECTRIC PUMPING

To pump one gallon of water in one minute against a head of one foot with 100% over all efficiency requires 0.000189 kilowatts. Pumping 1,000 gallons per minute per foot head at 100% efficiency requires 0.189 kilowatts.

The following formula can be used for determining power costs of pumping.

Cost per 1000 gallons for each foot of head

0.189 X R	0.00315 X R
=	=
PEXMEX60	OPE

Where:

= Power cost per kilowatt hour.

P.E. = Pump efficiency

M.E. = Motor efficiency

O.P.E. = Overall plant efficiency

Cost per hour

0.000189 X gallons perminX total head XR

O.P.E.

To determine H.P. at electric meter

R.M.D. X K X 3600

8 - 36

Where:

RMD = revolution of meter disc in time t.

K = disc constant in watt hours per revolution of disc (generally found stamped on the meter)

t = time in seconds

Specific speed of a pump (British/U.S.) ng= ng / H 3/4

Conversion factor: If nq = 1 Metric, it is 12.9 British and 14.2 U.S. specific speeds.

8.6 TRIGONOMETRICAL FUNCTIONS OF ANGLES

A	ngle								2. 1
De	g. Radn	Chord	Sine	Tan	Cot	Cos	Chord	Radian	Deg
0	0	0	0	0	0	1	1.414	1.5708	90
1	.0175	.017	.0175	0.175	57.2900	.9998	1.402	1.5533	89
2	.0349	.035	.0349	.0349	28.6363	.9994	1.389	1.5359	88
3	.0524	.052	.0523	.0524	19.0811	.9986	1.327	1.5184	87
4	.0698	.070	.0698	.0699	14.3006	.9976	1.364	1.5010	85
5	.0873	.087	.0872	.0875	11.4301	.9962	1.351	1.4834	85
6	1047	.105	.1045	.1051	9.5144	.9945	1.338	1.4661	84
7	.1222	.122	.1219	.1228	8.1443	.9925	1.325	1.4486	83
8	.1496	.139	.1392	.1405	7.1144	.9903	1.312	1.4312	82
9	1571	.157	,1564	.1584	6.3138	.9877	1.299	1.4137	81
10	.1745	.174	.1736	.1763	5.6713	.9848	1.286	1.3963	80
11	.1920	.192	.1908	.1944	5.1446	.9816	1.272	1.3788	79
12	2094	.209	.2079	.2126	4.7046	.9781	1.259	1.3514	78
13	.2269	.226	.2250	.2309	4.3315	.9744	1.245	1.3439	77
14	.2443	.244	.2419	.2493	4.0108	.9703	1.231	1.3265	76
15	.2681	.261	.2588	.2679	3.7321	,9659	1.217	1.3090	75
16	.2793	.278	.2756	.2867	3.4874	.9613	1.204	1,2915	74

8.7.1. ELECTRICITY - GENERAL USEFUL FACTS

Angl	E			+					
1	Radn	Chord	Sine	Tan	Cot	Cos	Chord	Radian	Deg.
17	.2967	.296	.2924	.3057	3.2709	.9563	1.110	1.2741	73
18	.3142	.313	.3090	.3249	3.0777	.9511	1.176	1.2566	72
19	.3316	.330	.3256	.3443	2.9042	.9455	1.171	1.2392	71
20	.3491	.347	.3420	.3640	2.7475	.9397	1.147	1.2217	70
	.3665	.364	.3584	.3839	2.6055	.9336	1.133	1.2043	69
	.3840	.382	.3746	.4040	2.4751	.9272	1.118	1.1868	68
	.4014	.399	.3907	.4245	2.3559	.9205	1.104	1.1694	67
	.4182	.416	.4067	.4542	2.2460	.9135	1.089	1.1519	66
100	.4363	.433	.4226	.4663	2.1445	.9063	1.075	1.1345	65
8	.4538	.450	.4384	.4877	2.0503	.8988	1.060	1.1170	64
8	.4712	.467	.4540	.5095	1.9626	.8910	1.045	1.0996	63
B	.4687	.484	.4695	.5317	1.8807	.8829	1.030	1.0821	62
(4)	.9061	.501	.4848	.5543	1.8040	.8746	•1.015	1.0645	61
30	.5226	.518	.5000	.5774	1.7321	.8660	1.000	1.0472	60
9	.5411	.531	.5150	.6009	1.6643	8572	.985	1.0123	59
100	.5585	.551	.5299	.6249	1.6003	.8480	.970	1.0297	58
9	.5760	.568	.5446	.6494	1.5399	.8387	.954	.9948	57
39	.5934	.585	.5592	.6745	1.4826	.8290	.939	.9774	56
4	.6109	.601	.5736	.7002	1.4281	.8192	.923	.9599	55
38	.6283	.618	.5878	.7265	1.3761	.8090	.908	.9425	54
\$7	.6458	.635	.6018	.7536	1.3270	.7986	.892	.9250	53
30	.6632	.651	.6157	.7813	1.2799	.7880	.877	.9076	52
3	.6807	.668	.6293	.8098	1.2349	.7771	.861	.8901	51
9	.6981	.684	.6428	.8391	1.1918	.7650	.845	.8727	50
2	.7156	.700	.6561	.8693	1.1504	.7549	.829	.8552	49
	.7380	.717	.6691	.9004	1.1106	.7431	.813	.8378	48
M	.7505	.733	.6820	.9325	1.0724	.7314	.797	.8203	47
	.7670	.749	.6947	.9657	1.0355	.7193	.781	.8029	46
13	.7054	.765	.7071	1.0000	1.0000	.7071	.765	.7854	45

1. H.P. = 745 watts	= 0.745 kw - 23,000 ft.lbs,per min.
Name of the state	= 1,104 metric HP " 76.11 kg.m/sec
1, Metric H.P.	= 75 m.kg/sec
1. B.O.T. unit	= 1,000 watt Hours (or) 1 kilowatt hour
Torque (ft.lbs)	= H.P. X 33,000 (R.P.M. X 2)
Current, Amperes	= watt / volts
Motor Output in H.P.	 Kilowatt input X Efficiency) /0.746
K.V.A.	= (Volts X Amps) / 1,000
Power factor	= ratio of True Power/Apparent power
	= Kilowatt / K.V.A.
True power in 3 phase Circuit in kilowatt	= (1.73 X volts X Amps X p.p) / 1000
Single phase motor Amperes	= H.P. X 746 / (Efficiency X volts X P.F)
Two phase motor Amperes	= H.P X 746 / (Efficiency X volts X P.F X 2)
Three phase amperes	= H.P X 746 / (Efficiency X volts X P.F X 1.73)
1 Electrical unit (B.O.T.)	= 1 kilowatt hour
1 kilowatt (K.W.)	= 738 ft per sec.
% - %	= 102 m kg. per sec.
	= 1.341 horse power
	=1.360 Metric horse power
1 kilowatt hour (KWH)	= 3.413 B.Th.U.
	= 880 Calories
	= 0.1383 mkg.
1 B.Th.U.	= 778.3 ft lb.
	= 107.6 mkg.
	= 0.2520 calories
1 Calorie (cal.)	= 3.088 foot pounds
0 0	= 3698 B. Th.U.

8.7.2 AN IDEA WHAT CAN BE DONE APPROXIMATELY

	4.11
By one unit of Electricity in the House House	əld

Raise 2500 gallons of water over 50 ft One 40 watt lamp 25 hrs

Light Make

60 cups of water to bath temperature A floor polisher of vacuum cleaner six hours Operate

Run	A sewing machine for 20 hrs
Run	A washing machine to do two weeks washing for six person
Run	A 10" fan for 150 hrs
Run	A ceiling fan for 10 hrs
Milk	52 cow
Separate	3000 gallons of milk
Churn & Work	180 lbs. of water
Heat	2 gallons of water
Make	10 lbs. of ice
The probable consump	tion of electricity by appliances in general use in hrs/ Unit
Lamps	(Vacuum or filament type)
Marked 20W	50 hrs
Marked 40W	25 hrs
Marked 60W	16 hrs
Marked 100W	10 hrs
Night Lamp	200 hrs
Fires	
Marked 1KW(1000W)	1 hr
Marked 2KW(1000W)	½ hr
Irons	
Marked 330W	3 hrs
Marked 500W	2 hrs
Marked 50077	2185
Cookers	
(4 to 5 KW) Varying with	n nature of use, generally one unit per day for each person in a
small family where all co	poking is done by electricity.
Water heaters (Storage	type) for bath : 3 to 4 units per bath
Boiling vessels (1/2 pint o	apacity)
Milk heater, shaving wat	er mugs etc 25 to 30 operations/unit
Fan (small)	: 10 15 hrs.
	3 15/1 15/1 15/1 15/1 15/1 15/1 15/1 15/
Vaccum cleaner	: 4 hrs

8.8. CONVERSION	AT V	BLE			
1. LENGTH					
1 inch	=	2.54 cms	1 cm	=	0.393701 inch.
1 ft	=	30.479 cms	1 cm	=	0.0328 feet
1 yd	=	0.91438 cms	1 m	=	1.09361 yds
1 mile	=	1.609344 km	1 km	=	0.62187 mile
1 furlong	=	201.188 metres	1 metre	= .	0.004971 furlong
100' chain	=	0.03048 km	1 m	#	3,28084 feet
2. AREA					
1 in ²	=	645.16 m.m ²	1mm ²	=	0.00155 m.m ²
1 ft ²	=	0.0929 m ²	1m ²	=	10.7639 ft ²
1 yd ²	=	0.836127 m ²	1m ²	=	1,196068 yd ²
1 Acre	22	(4840 sq. yards)	1 hectare	=	2.4698676 acre
	=	0.40468 hectare		=	10,000 sq.m.
1 acre	=	4046.856 m ²	1 m ²	=	0.000247 acres
1 sq. mile	=	2.589988 km ² =640 Ac		=	0.386106 mile ²
1 mile ²	=	258.999 hectare (ha)	1 ha	=	0.00386 mile ²
3. VOLUME AND	CAF	PACITY			
1 inch ³	=	16.3871 cm ³	1 cm ³	-	0.0610237 inch ³
1 ft ³	=	0.0289168 m ³	1 m ³	_	DONE STATE OF THE
1 ft ³	=	28.316 litres	1 litre	=	0.035315 ft ³
		6.24 gallons	1.000		0.00001011
1 acre ft		1233.50 m ³	1 m ³	-	0.00081071 acre ft
1 yd ³	1	0.764555 m ³	1 m ³	=	1.30795 yd ³
1 acre ft		0.1234 hectare metres	1 hectare m		8.1037 acre ft
1 acre ft	=	1613.33 yd ³	1 yd ³	_	0.00061984 acre ft
1 yd ³		0.764555 kilo litres	1 kilo litre	-	1.30795 yd ³
1 Imp gallor		4.54596 litres	1 litre	_	District Control of the Control of t
1 US.	1-50	THE TOPO IN CO.			are root a mile Semon
big gallon	=	3.78531 litre	1 litre	=	0.264179US.big gallon

FLOWRATE-VOLUME

One cusec day	1.9835 Acre feet
	m m m m m m m m m m m m m m m m m m m

0.0864 Million cubic feet 8.64 Hectare Metre

One cusec day 0.0864 Million cubic Metres

4.WEIGHT			,1,			Last references a
1 lb average	8	=	0.4535929 kg	1 kg		= 2.20462 lbs average
1 kip		=	1000lbs (ave)	1 lb (ave)		= 0.001 kips
1 poundals		=	0.13826 newtons	1 newton		= 7.233 poundals
1 cwt		=	50.802 4.kg	1 c.kg		= 0.01968 cwt
1 cwt		-	0.508024 Quintals	1 Quintal		= 1.9684 cwt(100 kg)
1 ton		-	19.684 cwt	1 cwt		= 0.05081 tonnes
1 ton		==	1016.0536 kgs	1 kg		= 0.00098421
1 ton (2240)	lbs)	=	1.01606 MT	1 MT		= 0.98419 tonnes
1 Tola		=	0.0116635 kgs	1 kg		= 85.735 Tolas
1 maund		=	37.324157 kgs	1 kg		= 0.0267923 Mound
1 seer		=	0.933106 kg	1 kg		= 1.07169 seers
1 ounce (av	e)	=	28.35 gm	1 gm		= 0.03527 ounce (ave)
1 Tola		-	0.411429 ounce	1 ounce		= 2.43056 Tolas
1 kg		=	9.807 Newton	1 Newton		= 0.1020 kgs
1 Tonne		=	9.807 Kilo Newton	1 Kilo Nev	vton	
5.WEIGHT PEI	R UN	IT LE	NGTH			
1 lb/inch			8582 kg/m	1 kg/m	=	0.055996 lb/inch
1 lb/yd			96055 kg/m	1 kg/m	=	2.015906 lb/yd
1 lb/yd	-		33333 lb/ft	1 lb/ft		3.000 lb/ft
1 lb/ft	=		8882 kg/m	1 kg/m	10	0.6720 lbs/ft
1 lb/inch	=		00 lb/ft	1 lb/ft		0.083333 lbs/inch
1 kg/m	12		/ k.m	1 t/k.m		1 kg/m
1 Ton/ft	=		335 t/m	1 f/m		0.30000 t/ft
6. DENSITY						
1 lb/inch3	=	27.	68032 gm/cm ³	1 gm/cm ³		0.0361267 lb/ inch3
1 lb/ft ³	=		0187 kg/m ³	1 kg/m ³	-	0.06243 lb/ft ³
1 lb/yd ³	=		93278 kg/m ³	1 kg/m ³		• 1.68555 lb/yd ³
1 lb/inch3	=		79.900 kg/m ³	1 kg/m ³	-	0.0000361272 lb inch ³
1 lb/inch3	-		B lbs/fts3	1 lb/ft ³	=	0.0005787 lb/inch3
1 gm/cm ³	=		0 kg/m ³	1 kg/m ³	=	0.000 gms/cm ³
1 T/yd ³	=		8.959 kg/m ³	1 kg/m ³	_	0.75246 X 10 ⁻³ t/yd ³
1 T/yd ³	=		28959 t/m ³	1 Vm ³	=	0.752488 t/yd3
1 lb/cu.in	=		58032 gm/c.c.	0.00		U. OLAGO DYG
1 lb/cu.ft	=		0187 kg/cu.m			
		100	Charles and the state of the st			

7.STRESS			ī			HISHOW IS
1 lb/inch²	=	0.7030 kg/cm ²		1 kg/cm ²	=	14.223 lb/inch2
1 lb/tt ²	-			1 kg/m ²	=	0.205 lb/ft ²
1 t/inch2	=			1 kg/mm ²	=	0.635 t/inch2
1 T/ft ²	=			1 kg/cm ²	=	0.91383 t/ft ²
1 T/ft ²	-			1 t/m²	=	0.914 t/ft ²
1 kg/cm ²	-			1. t/m ²	=	0.1 kg/cm ²
1 kg/mm ²	-	INTERVIEW IN THE		1 Newton/m	m ² =	0.102 kg/mm ²
1 kg/cm ²			2	1 Newton/m		10.20 kg/cm ²
1 lb/sq.in	=	19		1	8	Metric Ton
T	-					
				77.00		
8. POWER		CONTRACTOR DELLANA				
1 H.P.	Ħ.	0.74570 K.W. (British H.P.)	1	K.W.	#:	1.34102 H.P.
1 H.P.	=	1.01387 M.H.P.	1	M.H.P.	=	0.98632 H.P. (British)
1 H.P.	=	745.70 Watts	1	Watt	=	0.001341 H.P.
1 H.P. hour	=	2.68452 X 10 ⁵ Joules	1	Joule	+	0.3725 X 10 ⁻⁶ H.P. hour
1 H.P. hour	=	541.19 Kilo calories	1	Kilo calory	=	0.001559 H.P. hour
1 H.P. hour	=	0.74570 kilowatt hrs		kilo watt hour	=	1.341 H.P. hour
		ALAL SAN AND MAKE AND	1	cheval vapou	r=	75 kg.m/sec = 736
						watts (Metric H.P.)
700			1	Metric/min	#	0.65616 in/sec
9. VELOCITY		7410		- "		
1 ft/sec	=	0,3048 m/sec	1	metre/sec	=	3.2808 ft/sec
			1	km/hr	=	27.7778 cm/sec
1 cm/sec	=	0.022369 miles/hr	1	mile/hr	=	44.704 cm/sec
1 ft/sec	=	0.68182 miles/hr	1	mile/hr	=	1.46667 ft/sec
1 m/sec	=	2.236936 miles/hr	1	mile/hr	=	0.44704 metre/ sec
1 ft/sec	=	1.09728 km/hr	1	km/hr •	=	0.91134 ft/sec*
10. DISCHAR	GE	-				
(Cusecs)	7			714115	(Cu	mecs)
1 ft ³ /sec	-	0.028317 m ³ /sec	4	m ³ /sec	=	35.3147 ft ³ /sec
1 gl/sec		4.5460 lit/sec		lit/sec	_	0.21997 gl/sec
11. SPEED		He tag in one	1	110.000		4.4.1.4.1
1 mile/hr		C00244 km/hr		Langua Militar		0.52137 mile/hr
r mae/m	=	1.609344 km/hr	1	km/hr	=	0.52137 mile/m

12. MOMENT						
1 lb.feet = 0	0.138	3 kg cm	_1	lb.in	=	1.1521 kg cm
1 kg cm =	10-5	tm	1	kg metre	=	7.233 lb feet
			-1	tm	=	10.5 kg cms
1 kg.metre = 9	9.807	Newton metre	1	Newton metre	==	0.102 kg.mt
1 ton metre =	9.807	7 kilo Newton metr	e 1	kilo Newton m	t=	0.102 ton metre
13.PRESSURE						
1 atmosphere	9 =	14.7 lbs/inch ²		1 lbs/inch ²	=	0.06805 atmosphere
	=	1002 m of water	colu	ıma		
1 inch. of Hg	=	0.491145 lbs/inc	1121	1 lbs/inch2	=	2.03606 inch of Hg
1 inch, of Hg	=	0.0345316 kg/cm	2	1 kg/cm ²	#	28.95898 inch of Hg
					=	736.6mm of Hg at NTP
						= 1 Atmosphere
1 lb/ft ²	=	4.8868 kg/m ²		1 mm of Hg	=	2.78507 lbs/ft ²
1 lb/inch2	=	2.30672 ft of water	36	1 ft of water	=	0.433515 lg/inch ²
	=	0.0703 kg/cm ²				
1 ft of water	=	0.03048 kg/cm ²		1 kg/cm ²	=	32.8084 ft of water
				100	=	14.223 lbs/inch ²
1 ton/sq.cm	=	10.9367 tonnes/n	n ²		=	10.20 m of water Col
14. MISCELLAN	EOUS	5				
1 lb/sec	=	0.4535924 kg/sed	0	1 kg/sec	=	2.204523 lbs/sec
1 lb/sec	=	1.53293 ten/hr		1 t/hr	=	0.612396 lb/sec
1 degree	=	60 Minute		1 Minute	=	0.0167 degree
1 degree	=	0.017453 Radian	s	1 Radian	=	57.296 degrees
1 fatham	=	6 feet		1 ft	=	0.1655 fatham
1 I.N.M.	=	1.852 kilo Metres		1 K.M.	=	0.53996 INM
1 I.N.M.	=	1.15078 Miles		1 Mile	=	0.858976 INM
1 lb/acre/day	=	0.122 gm/day/sq.	m	1 lb/acre/da	y =	1.22 kg/Ha/day
1 lb/day/cu.ft	=	16.0 kg/day/cu.m		1 lb/day/sq.	ft =	0.0049 gm/day/sq.m

15. TEMPERATURE

- C/5 = (F-32)/9;

C = Temperature in Centigrade, F = Temp. in Fareignheit.

	TRY A	
T _k =0·289		Ty=0.41d ty=0.32b
dm 7 _{r_x=0·400}	Ty=0.42d	1 r _x =0-38d d r _y =0-22b
T _X =0250	d T _x =0.39d	Ty=0:40d
7 00-35	T _x =0.40d	Q .
7 TX =0.30	9 -0406	Tx=0-42d
d % = 000 ry = 0-21	d T _x =0-36d	r _x =0.29d r _y =0.25b

8.9 APPROXIMATE RADII OF GYRATION OF STRUCTURAL ELEMENTS

TION	
SECT	ľ
96	
11168	
ROPE	
2	
6	
9	

	SECTION	AREA	MOMENT DF INCRIIA DN	SECTION	CYRATION
1	TRIANGLE STATE OF THE STATE OF	1/2 bc sin A 80 x x (o(s-a)(s-b)(n-c) 2	3.5. 60 zz. 60 3.6. 4 3.5. 80	8 80 80 80 80 80 80 80 80 80 80 80 80 80	κθουτ ×-ξ υ.235 ο
1	TRAPEZIUN	(A+B)-	X.X. (B · 48A · A) 2 36 (A · B)	X.X (B 2484.A) 2 BASE (G-Y) 2 (B 48A.A) 2 (B 48A.A) 2 (D 12(B-2A)	2(8 -48A+A) 36(A+B)
1	MEGTAWGLE **	n.u	x.x. up y.y un 12 3 3 2 2 2 8 0 2 3 3 5 6 (8 + 0.)	X.X. 80 TOP ON 8 8 8 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ABOUT X.X 0.269 D
	HOLLOW RECTANGLE	B(0-4)	x.x. 8(0 - d) 12 (2 - d) 7.7 (x.x.4 4	X.X. 2 2 TOP B(D- d) OR BASE 60	ABDUT X.X
i w	SPHERE	11.02	17.0 A	r i i	0.5 0 or R

	FLANGED 4T.		(p- 0)q•pq	.1/3[BN -	X.X. 3 3 (0 - N) -1/3[6N -6 (0 - N) - (N-0) (8-6)]	X.X. 1 X. X	п	VIXAX-
	SQUARE 4		~ ₌	* *	40184018	x.x. 0	1 (3)	About x.x OR Y.Y. G.269 D.
	REGULAR HEXAGON UN FACE	0	C. 1997	x.x. 0.06	06 0.4 06 0.0	x.x. 0.12 D	n o n o	ABOUT X.X GR
100	HEZAGON HEZAGON		0.65 0	x.x. 0.03360	3380	х.х0676 D	e C	ABBUT X.X 0.228 D.
1. T.	REGULAR &	.	p u.828 D	x.x. 0.055 U y.r. 0.055 U	20 20 20 20	x.x. 6.109 0 y.y. 0.1015 U	m_m_	ABOUT X.X. OH Y.Y. 0.257 D
	CINCLE X	ф	U.7854 B	*. F 49	4 3	*.*. TT 32 13 32 13 13 13 13 13 13 13 13 13 13 13 13 13		ABGUT 7.X.
	HOLLOW S.	0	0.7854 (0 - d)	*F12	* î	X.X. TT. 55	- -:	4 1 10 - 10
	100	, GI	0.7654 R	X.X.	• **	A.X. 0.129 R		0.264 R
	UNACLE X	7-1	0.2146 R	x.x. 2 .0075	· z	X.X. , U095 H		.187 8

8-47

469

18.01	Geometrical form p	Perimeter	Area	Centre of Gravity	Gravity	
5.0	Ellipse jaxes 24;24) 213-	2 2 a b b 2 (approx)	TIA	AT CENTRE.		1
ni.	Perebola (base - b)	2 b .:.33h	2/3 bh	In the existength from	exis 3/5 of from vertex.	92 22
e de	Parallelogram (sides * a,b angle between them * 8 2 ht to base a * h)	(a • b)	ab sin 8 • ah	At the inter section of diagonals.	r section	· #
4	unedrilateral (d, d, e d.agonals B . angle of their intersection)		1/2 d d sine 1 2			
. n	5.alTrapezium (two parallel sides. o & b, base . e ht . h) b)Trapozium (No side is paralle) (b-o-c) . base, h, H haishis)		1/2 (a · b) h	3 (a + b)		4,90
co	Queerant of circle	Ē	• !	On the mid 0.90028 X centre.	On the middle regius 0.90028 X radius centre.	from
	Semi purabola		1	3/5 of th vurtux & 3/ from axis.	the exis 3/8 of sent ts.	from
62	Kuctangular solid or cubical edgms a,b,c.	5	2 (ab · bc · ca)	AT CENTRE.		
o,	Cylindrer (radius r.height h)		2TT r (h.r.)	AT CENTRE.		

ដ	George Fig 10Fm		aun ToA	Centre of bravity
	10. Cone (radius r. height h. slant height 1)		1/3IIF h	h/4 above base.
S	11. Sphere (radius r)	4IT r	4/3/T r	AT CENTHE.
Ŧ	12. Hemisphere	зт. г	2/3TT r	3/8 radius from base to the vertex or 5/8r from Appex
5.5	Sector of sphere (Spherical sector)	(2h-0.25c)	2/3TTr n	3/4 (r - h/2)
4. g.wcrrm	Pyramid (A-Arms of base s = length of each side, n = number of sides, r = helf the base, h = height! r = radius of inscribed circle R = radius of circumscribed circle	cle	THS AN OFF AN OFF	JR - = /47h/4 a frove Good.
÷.	Parabalota	1	1	in the axis, 2/3 of its length from vertex.
. 1	Anchor ring (mean radius R. radius of circular section ri	* 411	211 5 3	
	17. Spherical segment.	211Fh	TT (3r-h)	() h (4r-h) 4 (3r-n)
€.	Circular Sector	1/2 a r	:	2/3 br/a (of Semi Circle, 4r/3II from Uia).

	424	T/sft	T/M²
		1/510	1700
Block masonry in 1:3 cement			VT. IT-HIRET
mortaraverage crushing strength of block not less than			
		21/2	27
500 lbs/sq.in 1000 lbs/sq.in		6	66
2000 lbs/sq.in		91/2	104
Solid cement conrete block masonry in cement	1:3	15	164
(As per the IRC standard the follo	wing are the safe workin	g stresses in	tension for masonry
Ist class dressed stone or 1:3		1.30	14
cement concrete			
Block masonry in cement mortar			
Ist class dressed stone or 1:2		0.65	7
cement concrete			
Block masonry in cement mortar			
1:3 Ist class brick masorny in		1.30	14
cement mortar In lime mortar	1:2	0.65	7
Lime concrete masonry with stor	ne	0.65	7

Note:

metal and hydraulic lime mortar

- It is uneconomical to use cement mortar richer than (1:6) for bricks of ordinary grade (Hyderabad brick whose strength is around 35 kg/cm²) as it does not improve its bearing strength proportionately.
- Combination of wind/earthquake loads :- Increase the permissible stresses by 33% (wind and earthquake does not simultaneously act)
- As lintel beam arrangs/colourn bases etc to increase upto 20% is permissible (local stress) and the contact area may be checked for this uniformly distribution pressure.
- 4) For eccentric loadings 25% excess permissible provided there is not tension in masonry.
- Permissible stress in shear and or tension should be not more than 10% of the allowable comparative stresses.

8-13 SEPTICTANK

L. SECTION SECTION OF SEPTIC TANK

SIZE	S OF SEP	LIQUID CAF PER			
No. of Length users		Breadth	Liquid depth	Cum	
5	1.2	0.4	1 to 1.05	0.1	
10	1.44	0.48	1 to 1.40	0.1	
15	1.50	0.50	1 to 2.00	0.1	
20	1.80	0.60	1 to 1.80	0.1	
50	2.70	0.90	1 to 2.00	.0.1	

Alternative in protection that the Manuach Superior and the mission of the Control of the Contro

QUALITY CONTROL

FORMATION OF EXBANKMENTS

DO'S AND DO NOT'S OF WORKS OF IMPORTANT SPECIFICATIONS OF EARTH WORK (IS CODES, 2720, 4701, 8237, 9451, 4081, 1200)

EXCAVATION OF CANALS:

 Fix up the centre line and set the curves correctly.

DO'S

- 2. Take working levels, real variation in 2. Avoid over break and loosening of canal. ground levels and classification of soils as per Govt. Memo No. 1970-12/72-11, dated 4-7-1994.
- Get top soil vegetation (organic/inorganic) etc. removed.
- Provide treatment with C.N.S. Soils in B.C. Reaches (expansive soils)
- Form spoil bank as per drawing and away from side drain with suitable gaps for drainage into the valley.
- Form Dowel Bank, as per drawing.
- 7. Form Inspection path to a uniform longitudinal gradient and with gentle transverse slope towards drains.
- 8. Compact over excavation/breakage portion with suitable soils, gravel, spalls.

- 1. Do not avoid approval of the deviation
- Do not mix up useful soils with other soil of

statement.

DO NOTS

cutting

Quality Control

1. Get the top spoil, vegetation and sand patches removed to complete depth.

2. Scarify the ground and wet properly.

DO'S

- 3. Obtain P.D. OMC for the useful soils and borrow soils.
- Provide C.O.T.s according to height of bank.
- Raise embankment to full width with uniform horizontal layer of 25cm thickness.
- Break clods, remove roots, big boulders other materials etc., larger than 80mm from the solls used in embankment.
- Supplement deficit moisture whenever required.
- Provide 0.45 Mtr. Extra offset on both sides of bank.
- 9. Compaction with 8 to 10 to Tonnes Power roller, vibro max roller
- 10. Conduct field compaction tests and determine compaction efficiency.
- 11. Check embankment profiles periodically.
- 12. Ensure 8 minimum No. of Passes.
- 13. Provide 10% allowance in setting profile of the embankment.

DO NOTS

- Do not raise the bank in piecemeal,
- 2. Do not allow new layer without scarification and wetting of old layer.
- 3. Do not allow new layer unless required degree of compaction is achieved.
- 4. Don't leave any loose layer un-rolled at the end of the day in rainy season.
- 5. Don't allow compacted layer to be more than 150mm.
- 6. No new layer to be laid unless the over moistured layer is either completely removed or allowed to dry.
- Don't dump soils in heaps.
- 8. Don't dump the soils in water and slush.
- 9. No. of roller passes should not be less than 10.
- 10. Do not forget to provide settlement allowance of 2cm/mtr. Height of bank,
- 11. Don't use expansive soils in banking,

CA	DI ALI	 PH 1 1	N .

DO'S

DO NOTS

- Check the canal prism and verify the bed levels.
- Check the gradation analysis of fine and coarse aggregats to the requirement of mix at batching plant.
- Allow the ingredients of fine and coarse aggregate as per required mix by weigh batching.
- Check the calibration of weighing machine at batching plant.
- Check the water meter and its discharge.
- Check the batch of cement, its make and test results.
- Check the water cement ratio and record the slump.
- Check whether any retarders and air entraining agents are added.
- Maintain load register.
- Record the No. CC Cubes cast and its compressive strength.
- 11. Cure CC Lining with water for 28 days.
- Ensure smooth surface with paver roller passes.
- Ensure the contraction and construction joints as per approved drawing.
- Check the thickness of C.C. Unling for each panels.
- Checking placing of mastic pad at structures of contruction joints.
- Allow concrete lining at temperature between 15°C and 32°C.
- Check periodically the coefficient of variation in the compressive strength of cement.
- The batching plant to be used shall confirm to the requirements of IS 4925-1968.

- Do not allow the concrete over loose subgrade.
- Do not allow lining without wetting subgrade.
- Do not allow C.C. Lining manually without vibration.
- Do not allow segregation of concrete while laying through discharge conveyor.
- Do not allow concrete directly on subgrade from transit mixer.
- Do not form contraction joints over longitudinal drains.
- Do not fill up contraction joints with sealing compound without cleaning with air water jet or sand blast.
- Do not allow any projections or contraction joint over the surface of the lining.
- Do not allow the C.C. Lining without applying suitable primer to sides.
- Do not remove the channels immediately before setting of C.C.
- Do not use untested cement.
- Do not allow to sink the porous plugs in the drains.
- Do not allow lining without making proper arrangements for curing with water.
- The Co-efficient of variation in the compressive strength of cement should not be more than 8%.

	FOR FOUNDATION
1272742	

DO'S

DO NOTS

- Verify dimensions and foundation levels as per drawing.
- Wet the foundation surface to a depth of 2, 150 mm or to impermeable material.
- Ensure the rock surface free from oil, objectionable coating unsound fragments.
- Check-up correct batching of ingredients.
- 5. Check the batch of cements and its make.
- Check-up water cement ratio and slump test.
- 7. Ensure uniform mixing.
- Ensure proper compaction with vibrators and keep stand-by vibrator and needles.
- Operate immersion type vibrators nearly in vertical position to vertical drain.
- 10. Cure with water for 28 Days.
- Compact with suitable bedding materials in case of over excavations and with M-5 grade concrete in case of rock.
- 12. Allow admixtures as per I.S. 9103-1979.

- Do not forget to compare bearing capacity of actual soils met with design strength.
- Don't lay the foundation concrete without wetting the surface.
- Do not lay the concrete under water and over slush.
- The minimum mixing time should not be less than 2 min.
- Do not forget to keep stand by vibrator and needles.
- Do not place concrete in raw in sufficiently heavy to wash mortar from concrete.
- Do not forget to cast the cubes.
- Do not allow segregation of concrete.
- 9. Do not use unsatisfactory mix.
- Don't allow admixtures which will harm the strength of concrete.

FOR STRUCTURE :

DO'S

DO NOTS

- 1. Check the form work.
- Apply cement slurry after cleaning the surface at vertical joints.
- Clean and cover with a layer of 10 to 15 mm thick mortar of the same proportion of concrete mix for horizontal joints.
- Place the concrete at temperature between 15°C to 30°C.
- The concrete shall be discharged with in half an hour after introduction of the mix water and cement.

- Avoid abrupt surface irregularities.
- Do not deviate from specified dimensions of cross section from - 6mm to +12mm.
- Do not allow concreting until all form work installation of items to be embedded and preparation of surface involved are approved.

MASONRY (IS codes 1597, 1812, 1200, 383, 269, 2116)

DO'S

The stone shall be of uniform colour, texture, strong, hard durable.

- Dressing of C.R.S. Stone to a depth of 75mm on all four sides.
- Wet the stones before placing in position clean and cover with fresh mortar.
- 4. Place stones in layers to the line and plumb.
- Provide weep holes at 2 mtrs interval staggered as per drawing.
- 6. Chisel dress the corner stones,
- Face stones shall be laid alternately in headers and stretchers.
- Provide bond stones at 2 mtrs. Interval in each layer and mark.
- Place the hearting stones on its broadest face.
- Ensure perfect hearting to make the masonry water tight.
- Mortar shall be used within 30 min. after discharged from mixer.

DO NOTS

- Do not use stones other than granite of crushing strength less than 1000 kgs/ sq.cm.
- Do not allow brushing more than 40 mm on the face.
- Do not allow stones of length more than
 3 times the height.
- Do not allow stone of breadth less than height of ¾ of thickness of wall.
- Do not allow breaking of vertical joints less than 75 mm.
- Header shall not project not less than 10 cm beyond stretcher.
- Do not place stones in position without cleaning and wetting.
- Do not allow skin stones, weathered stones.
- Do not place stone in position without wetting.

DO'S	DO NOTS
12. Sieve analysis for sand shall be do periodically which confirm to: I.S. Sieve % of passing Designation 4.75 mm 100 2.36 mm 90 to 100 1.18 mm 70 to 100 600 micron 40 to 100 300 micron 5 to 70 150 micron 0 to 15 13. For flush pointing the mortar shall finished off flush and level with edges the stones. 14. Joints shall be racked out to minimum de of 12 mm when the mortar is green. 15. Cure the masonry with water for 2 weels. 16. Cure the plastered surface with water 14 days. 17. Cure the pointing surface with water for days.	course. 11. Joints thickness should not be more than 12 mm. 12. Do not allow mixing less than 3 minutes for thorough mix. 13. Do not add more water than required to have a consistency of 90 mm to 130 mm. 14. Avoid spreading of mortar over the surface of the masonry. 15. No Pointing to be commenced without washing and wetting the joints thoroughly or 7
	MENT CONCRETE SLABS es 2502, 1786)
DO'S	DO NOTS
Check the reinforcement as per drawing. Provide asphaltic pad and water stop as per drawing.	

	LINING S	UBGRADE
	DO'S	DO NOTS
1. 2. 3. 4.	Check the model Section to the canal profile i.e., bottom or lining. Check the canal profile with reference to model sections. Remove roots and stumps completely from sub-grade. Compact over-excavation in soils with gravel duly wetted. Compact over -excavation in rocky area	 Do not allow concrete lining on loose subgrade. Do not allow any root or stumps to be on sub-grade. Do not allow lining in expansive soils without treatment with C.N.S. Soils. Do not place the porous plug below the surface of the lining. Do not allow lining without wetting the sub-
6.	with gravel spalls and aggregate spalls and aggregate duty wetted. Provide treatment with C.N.S.Soils in expansive soils i.e., 0.6 mtrs., thick for discharge up to 50 cusecs. Provide Porous plugs of size 375 mm long × 100 mm dia in each panel with local filters	grade suitably.
8.	of graded metal and sand size 600 x 600 x 750 mm. Provide longitudinal and transverse drain of size 600 x750 mm filled up with graded metal and transverse are described.	Madesty Kon Line (1987) 11
	metal and sand as per drawing. Check whether porous plugs are freely draining or not. Note down December water table for providing longitudinal drains and other relief measures (as per drawing).	

485

Pac	kage No:					
Circ						
Divi	sion					
1	Grade of concrete		M20/M15/Other			
2	Whether PCC/ RCC		PCC/ RCC			
3	Maximum size of coarse aggregate		mm			
4	Intended use and exposure:					
5	Exposure condition	-	If not 'moderate' reasons for the same			
6	Degree of Quality control		If not 'good' reasons for same			
7	Required slump		mm			
8	Sand grade					
9	Max W/C ratio permitted as per		0.55 for RCC & 0.60			
	agreement:		for PCC			
10	Whether air -entrained OR not -air entrained	HIII	if air- entrained reasons for same			
11.	PROPOSED MIX DESIGN:					
	W/C Ratio	1-11-5				
	Water	Ltrs				
	Cement	Kgs				
	Sand	Kgs				
	Coarse aggregate	Kgs				
	Total	Kgs				
	Air-Content	96				

12	If air-entrained con	crete	wheth	ier V	N/C	ratio			_
	increased according		1311.419.49		-			1111	
	Reasons for adopting	-	-entra	inec	1 00	ncret	۵٠.		
	Recommended air					THEFEL			
13	Whether W/C ratio	The state of the s	-	STREET, STREET	-	mont	,		
14	Recommendation	СОПЪ	iy will	ayı	(CC)	HEIR	1	Accounted / est	
DE		FDFO	LICKIO					Accepted / not	
SNO	REMISSIBLE VALUE /					IESI.	S ON E		TERIALS
	DESCRIPTION OF TESTS	PERM	NSSIBLE	VALI	UES			FREQUENCIES	REMARKS
1	Cement								
	a) Specific Gravity		er than :						
	b) Initial Setting Time		ess than	_					
	c) Final setting time	Great	er than t	600 m	rinute	35		12.00	
	d) Specific surface	OPC.	-Greater	than	2250	cm2 /g	r >		
	by Blain's air Permeability							one test from	For more
	e) Cube strength							Consignment having	details
	3 days, 7 days, 28 days							same batch & No. of	refer IS 26
							the same factory	IS 1489	
		(Min. Compressive S			ressive S	Strength (Kg/sqcm)		
			3rade				7 days		
			3 Grade 22				430		
		b	53 Gr	ade 270 370		370	530		
2	Coarse Aggregate								
	a) Gradation		1				-		
		IS sieve	% pass	ing fo	r gra	ded age	jre-		
_			gate of nor						
_		Desg	40mm	20m	m	16mm	12.5mm		THE PARTY NAMED IN
_		80mm	100					One test daily	For more
-		63mm							details
-		40mm	95-100	100				1	refer IS 383 &
-		20 mm	30-70	95-10	_	100	100:		(Part 1 to 8)
-		16 mm			_	90-100	4.00		IS 515
-		12.5mm	49.65		_	90-100			
-		10 mm	10-35	25-55	_	30-70	40-85		
		4.75mm	0.5	0-10		0-10	0-10		

	b) Specific Gr.	Minimu	m.26			000	District			SNO	DESCRIPTION OF TEST	5	PREMISSIBLE VALUES	
	c) Water absorption	- (+-max		en immerse	d in water fo	,	-			4	Water			
	oj (rosa assorptos)	24 hour		uli militaciaci	og Hill	н шаа	obsiter spain	anti-			a) PH	6 to	8	
	d) Aggregate crushing	45 % fo	r Mass C	oncrete, 30	% for	one te	st Whenever	WILL.			b) Suspended Matter	Less	than 0.2 %	
	value		g surfaces		HEMPS.	Quan	у				c) Organic Matter	Less	than 0.2 %	
	e) Aggregate impact value			oncrete, 30°	% for	Chang	es or strata change	0			d) Inorganic Matter	_	than 0.3 %	
CHL			g surfaces		** *		JUNE DUNING	VA LITTLE			e) Chlorides	Less	than 0.2 % for PCC	
	f) Abrasion value		r mass co g surfaces	oncrete, 30	% 101	Occur	LAVE HIE	V989		-			than 0.1 % for RCC	
	g) Soundness test	The second second	the second second		with Na ₂ St	2	or code and	DO THE	-		f) Sulphates	Less	than 0.05 %	
					with MgSo ₄		los	10.7	-	5	Concrate			
	h) Flakiness index		an 35 %	Trial to to to to	Hill Highes					-	a) Mix design	Cube	s should satisfy the targ	
	I) Elongation index	Less the				- 1				-	b) Slump	a) Ro	ad work 20	
SNO	DESCRIPTION OF TESTS	1000		MISSIBLE V	UUES		FREQUENCIES	REMARKS		-		b) Bea	ims and Slabs 50	
3	Fine Agrregate			miodiace w	2010		TACGOCHUICA	REMARKS		-		c) Wal	ls 751	
	a) Gradation	IS sieve	Percent	tage passing	for grading					-		d) Vibr	ated Concrete 151	
		15.5515	Zone-i	Zone - II	Zone - III	Zone -IV	1			-		_	s Concrete 25 t	
			100	100	100	100				-	c) Temperature		n 15 to 32 deg C	
		a) 4.75 mm	90-100	90-100	90-100	95-100			1		d) Unit weight	2400 K	gs/cum for plain concrete.	
		b) 2.36 mm	60-95	75-100	85-100	95-100	One test in marring	For more			e) Cube Strength	Minimu	m Characterstic Strength	
		c) 1.18 mm	30-70	55-90	75-100	90-100	One test in Afternoon	The second second	1		f) Non destructive test by Rebound Hammer	Minimus	n Characterstic strength o	
		d) 600 micron	15-34	35-39	60-79	80-100	STREETS ALTERNATION	& IS 2383			by Redound Hammer	-		
		e) 300 micron	5-20	8-30	12-40	15-50		(Part 1 to 8)			g) Core test	No.		
		Note: Where t						(r art + 10 b)	1		27 50-0 (65)	and 96 (than 75 % of cube strength	
		particular gradi					SECURITY IN		1			Note: As p	% on average of atleast 3	
		IS sievs by a to		-	the state of the s	The state of the s			1 1		- 3	Note: As per gradation analysis at sit concrete mix shall be given every day		
	CHE TO YELL	regarded as fal		the state of the s					1					
		-		The state of the s	ding Zone -	should not b	0		1	_	Mortor			
		used in reinford							1		a) Slumps test		For workability	
	b) Fineness Modulii	2.00 -3.20)			1		b) Unit weight for Proportion	ns	many and and an arrangement of the second	
	c) % silt & clay content	Less than 3%							1		of ingradient			
	d) % deliterius materials	Less than 5%		1.00	(17-11)	(As per		1		b) 50 mm size of CM test s	pecimen		
	e) % Soundness	Less than 10 %	When te	sted with N	a, SO,		requirement		1	-+	d) Permeability test for eve	ry 3M	3.0 Lugeons limit for r	
		Less than 15 %				184							2.5 Lugeons for front t	
						,				7 6	Bricks			
					116				1	_	TOTAL STATE OF THE PARTY OF THE		WORKER OF THE RESERVE	
			1		1 20					16	Water absorption after 2 Size			
			-							10	1 9000		190 x190 x90mm	

SNO	DESCRIPTION OF TESTS	s	PREMISSIBLE VALUES	_	T		
4	Water		THE PROPERTY OF THE PROPERTY O	_	FREQUENCIES		REMARKS
	a) PH	6 to 8	C C	_			
	b) Suspended Matter	_	than 0.2 %				
	c) Organic Matter		than 0.2 %	_	-	_	
	d) Inorganic Matter	-	than 0.3 %				-
	e) Chlorides		than 0.2 % for PCC	_			for more
			than 0.1 % for RCC				details refer
	f) Sulphates		han 0.05 %	_			IS 456, IS 5
5	Concrate	2000	nan 0.05 %		1		
	a) Mix design	Cribar	about and the				
	b) Slump	a) Ros	should satisfy the target strengt		in mix design		For more
		-	20 to 30 Hill				details refer
		c) Wal				The second	IS 456, IS 51
			10 (0 100 118)	n	Twice for Shift		IS9103, IS 644
			ated Concrete 15 to 25 mm		- 100-100		IS 1199, IS 303
	c) Temperature		s Concrete 25 to 25 mm				S.P 23
	d) Unit weight		n 15 to 32 deg C		For mass concrete or	ie	
	e) Cube Strength	2400 N	ps/cum for plain concrete, 2500 Kgs	dourn RCC	specimen for 150 Cur	n	
	f) Non destructive test	Afronnia	n Characterstic Strength of Propose	od mix	For structural concret	e four	
	by Rebound Hammer	MINIMA	m Characterstic strength of Propose	d mix	specimens upto 50 Ca		
	- I service				and 12 cubes /Sh 2 or		
	g) Core test	Mot lace	has XX at a t		each element of structure		
		and 85 9	han 75 % of cube strength for individu ii on average of atleast 3 sample	al sample	One test for 2000 sqm		
		lote : As pe	or average or alleast 3 sample or gradation analysis at site bin correction a shall be given every day	lining and one test for each			
	- 1	oncrete mi	x shall be given every day	0.10E	element of structure		
1	Mortor	_		er .			
-	a) Slumps test		- CONTROL HOUSE			1.	
) Unit weight for Proportion		For workability	Specimen to be cast at the . IS			597 (P1 & P2)
	fingradient	ris .		rate of or	ne sample of		
	50 mm size of CM test s	20 11 11		3 cubes for 100 Cu m of			
1	Permanhilly test for	pecimen	tested for 28 days strength	ry and tested for			
10	Permeability test for every 3M		3.0 Lugeons limit for rear face	lays strength			
			2.5 Lugeons for front face				
В	ricks						
_	Water absorption after 2	4 Hours	Loca then 20 th	-			
(b)	Size Size	110013				for m	ore details
1.			190 x190 x90mm			IS 10	77

Comments of

SNO	DESCRIPTION OF TESTS	PREMISSIBLE VALUES	FREQUENCIE	s	REMARKS		Lowe	Lessan
	c) Density					- F	SNO	DESCRIPTION
	d) Compresive strength	Greater than 40 Kg /sqcm						
8	Rough Stone					12		
	a) Soundness		when rec	julfed	2-01			
	b) Abration				For more details			
			3		refer			
	c) Water absortion	Less than 5% when immersed	n water for 24 hours		1S1121, IS1124 &			
	d) Density				IS 1126			
	e) Crushing strength -Granite	Greater than or equal to 1000 k	g/ cum					
9	Reinforcement							
	a) Diameter	Satisfy the required diameter	1) The spacing of the				-	
	b) Weight in kgs/m length	Satisfy the required weigth	reinforcement rods is t	be			-	
			checked					
- 1	c) 0.2 % Proof strength	Greater than Yield stress	2) The Overlap length	5	For more details		di.	
			Provided shall be ched		refer IS 2502,			
			It shall be 45D		IS 1786, IS 5525			
	d) Ultimate tensile strength-	10 % more than the actual					11	
	for Fe 415	0.2 % Proof			Land Life Till			
		stress but not less than	3) The cover shall be o	checked				a) No fine concr
	and the second second second	485 N/ Sqmm					-	concrete
	e) % elongation	Mild steel -23%	4) The bearing capacit	y of the		1	-	171 111
8	Manager Comment	HYSD -Fe 415 -14.5%	From work shall be ve				-	104
-	f) Bend and rebend test	Satisfactory						DE D
10	Drilling & Grouting	After grouting another test hole	The following test are	required				
	a) Loging of the drilling	shall be drilled in that area	before starting of grout				\rightarrow	No. The Control of th
	Operations	and tested for the	1) The logging of the d	THE REAL PROPERTY.		+		b) Filter in expan
		Permeability	operations and core re			-	-	
	b) Permeability test		shall be analysed for th	ne seam		-	-	
			and the voids in the su	-		-	-	
			2) The Permeability tes		For more	-	\rightarrow	
			be conducted and then		details refer		C) CNS soils for b
			water loss, will give an	-	IS 6066, IS		-	
	30-6		tion of the cavitation is		5529, IS 4999		_	

SNO	DESCRIPTION OF TESTS	PREMISSIBLE VALUES	FREQUENCIES	REMARKS
_			3) The input materials (i.e.,)	IS 11216 -198
			cement, sand and mortar sha	aif.
			be got tested The following tests are	
			required during execution of	
			work	
-			1) The cement grout consum;	
-			tion at every stage of grouting	
-			shall be observed & analysed	
-			with reference to the core	
-			losses previously observed.	
			2) The cement and sand being	
\dashv			used shall be got tested at the	
- 1			regular frequency after	
-			grouting, another test hole	
-			shall be drilled in that area	
-			and test-id of the permeability	
1 1	Lining			grillight
8	No fine concrete and porus	Compressive strength for		
	concrete	cylinder 15cm dia & 30cm hit.		For more details
		shall not less than 70 kgs/sqem		IS 3873, IS 6509
	0.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	what not loss than 70 kgs/sqem		- C - C - C - C - C - C - C - C - C - C
	43 77	Permeability shall be 500 Lit/		
	HE V	min sqm with 10 m head of		
-		water		
b)	Filter in expansion joint			
	Paris John Communication of the Communication of th	Asphalt -80 IW -30% by Vol	700	2-0-1
- 10		Sand 51% by Vol	41 1 1 1 1 1 1 1 1 1	
		Cement 17 % by Vol		
(0)	CNS soils for bed			
10	ONG SUBSTOR DEC	Heap cut into length 2% by		S :3873
+		volume Propotion materials as		
+		per IS 3873 The soils to be		
		used for CNS layers shall be		100

SNO	DESCRIPTION OF TESTS	PREMISSIBLE VALUES	FREQUENCIES	REMARKS
		tested for the following		
		properties day (<2 micron) -		
		15 to 20% slit		
		(0.06mm -0.002mm)-30 to 40%		
		sand (2mm -0.06mm) 30 to40%		
		grains (2>mm)0 to 10%		
		plasticity index less than 30%		
		but >15% It should have 'C'		
		and & ranging from 10.342 Kn/m²		
		and 25° to 20.684 to		
		27.579 Kn/m² and 12° to 14°		
	d) Morrum back fill behind	The material shall; be tested for	1	
	revelment	the following properties Fine		
	(Westernam)	passing 75 micron < 10%		
		Liquid limit < 20%		
		Plasticity index < 6%		
12	Bearings			
	a) Hardness	60+5 IRHD		IS:3400
	b) Min Tensile strength	17 Mpa		IS:3400
	c) Min. elongation at break	400%		IS:3401
	d) Max. compression at test	The second is the second in th		IS: 3402
	e) Accelerated aging			IS: 3403
	f) Max. change in Hardness	+ 15 IRHD		IS:3404
	g) Max.change in tensile strength	-15%		IS: 3405
	h) Max.change in elogation	-40%		IS: 3406
13	Rubber water stop			
	a) Tensile strength	Min 116 kg/sqm		For more
	b) Ultimate elongation	Min 300%		Information
	c) Tear resistance	Min 49 kgs/sqm		refer IS 9766
	d) Stiffness flexure	Min 24.6 kgs/sqcm		
	e) Alkali test	After 7 days of immersion,		
		weight shall increase by 0.25%		
		and decreaase by 0.1%		
		After 28 days immersion.		

SNO	DESCRIPTION OF TESTS	PREMISSIE	BLE VALUES	FREQUENCIES	REMARKS
		The weight sh	all not increase by		
		0.4% or decre	ase by 0.3%		
		The dimension	n shall not after by 1.09	6	
14	Bearing capacity of strata	Should be ens	soured for the	For all the important	
		stress indicate	d in design/	structures	1
		drawings			
15.	Embankments				For more details
	a) Cut-off - Permeability	Less than 10°	cm/sec		refer
	Filters - test for metal / sand				IS USBR earth
	Gradation for metal	IS Sieve % pa	assing		manual
		80 mm 100			IS-1498, 1970, 8959
		40 mm 80 -	40 mm 80 - 56		1973, IS-5529-
		20 mm 84 -	24		1985, 11293,
		10 mm 64 -	В		11532, 14650,
		4.25 mm 25 - 0			14954.
	i) Uniformity Coefficient	Cu - D60 / D 10 >6 for sand			
		>4 for metal			
	ii) Coefficient of Curvature	Cc = D30 ³ / (D10xD60) lies			
		between 1 to 3			
	III)	D 15 of filter >4 and <20			
		D 15 base			
	N)	D 15 of filter	<5		
		D 85 of base			
	V)	D 50 offilter	<25		
		D 50 of base			
	vi) Relative Density	Rn ≈ E max -E			
		E max - E min			
		individual sample should not be			
		less than 70% and average			
		shall not be less than 85%			
		E max=voids ratio in loose state			
		E min=voids rat	io in compacted		
		state			

SNO	DESCRIPTION OF TESTS	PREMISSIBLE VALUES	FREQUENCIES	REMARKS
		Thickness of each lalyer shall		
		be less than 150 mm		
	c) Compaction		One test whenever borrow	for more details
			area chunges	is 4701, IS 2720
				(Part 1 to 30)
-	1) Gradation using Hydrometer			
J.C.	analysis			1
	2) Attenberg limits	tested for suitability for casing		
æ	3) Sp. Gr & voids ratio	and hearting soils as per design		
	4) Proctor compation	>98% of Proctor density	For 1500Cu.m of Earthwork	
	(Field density)	controlled within + or -1% omc	or in each layer laid on	
	d) Swell pressure	If swell pressure>50 KN/Sqm,	embankment	
		CNS layer shall be provided as		
-11		per IS 3873, 9451		
	e) Difference free swell	If DFS > 50, swell pressure test		
		shall be conducted		
	Total soluble solids present			
	g) Suitability of soils	Based on soil classification /	One test in one week	
		designs	of every 3 m of embankment	
	h) Stability of soils	Based on soil classification /		
		designs		
	i) Permeability	Field permeability by Japanese		
		method 107 cm / sec		
	i) Revetment bed			
	pitching & rock toe	as per item 2,3,8		
	k) Shrinkage factor		One test in a week or	
			5m of embankment	
	I) Triaxial shear test	Tested for C&	One test in a week,	
			every 3 m of embankment	
	m) Std proctor test	Tested for 98% PD	One test per day for individual	
1			borrow area & moisture	
			and conient	

As per Engineer -in Chief (Irrigation) circular DCE -1/O T/ MP/AEE/ 29384 /2005 -1 dt:26.12.05
10% of the tests conducted by the EPC agency should be got checked by the Third Party Quality Control Agency apart from conducting independent tests.

Tests conducted be EPC agency and Third Party Quality Control agency should invariably be checked by department Quality Control staff.

16	MECHANICAL TESTS	MANUFACTURING STAGE	REMARKS
	1. HYRAULIC GATES AND HOISTS &	Company of the compan	Rocketter Controller S
	ALLIED EQUIPMENT	The second second second	100
	a) Manufactruring & installation stage	a) E.M. parts, gates and hoists.	
	b) Straight & co-planary accuracy	b) Straightness and co-planary accuracy be	Vacci
		checked for all materials and its components jigs.	
	c) Fabrication tolerances	c) Fabrication tolerances checked and	
		maintained as per IS 7215-1974 etc.	
	d) Weldments	d) inspection and testing of weldmnets (as per	
		IS 822,823-1964:816 3658-1980:8780-1978:	ed state ly
T		3664-1981:2595-1978 and ASME-Section.	Seaton III
	e) NDT Testing	8) And latest addition for size of welds. Edge	
	liguid penetrate testing	preparation-weld procedures for various joints.	
	(IS 3658-1980)	Joint preparation-type of electrodes-root gap.	Consult E
		Selection of electrodes for each component as	
	magnetic particle testing	per the standards and recommendation of	
	(IS 3703-1980)	manufactures for its foad bearing capacity and	" T. ST.
Т		strength of welds. Preheating of electrodes weld	I SEA
	3) ultrasonic testing (IS 3664-1981)	travels speed for automatic welds and manual	
		& ensure follow of weld designs and procedures.	
	4) radiographic testing	e) Testing for soundness and strength of	
	(IS 2595 & IS 1182)	welds (DPT, X rays and gamma ray)	
	f) Destructive testing	f) (1): tensile, compression, elongation, hardness,	
٦	Physical properties	impact, torsion etc.,	
	Chemical properties	f) (2); wet analysis, spectra analyr is	
4	g) Rubber seals :	g) Shore's hardness and water absorption	IS: 3400-1980
	h) Steel wire ropes	h) wire rope and lifting socket assembly, load	IS: 2365-1977 & 2226
		testing of rope and socket assembly	
	i) Welding electrodes	i) As per IS codes.	IS: 1442-1964,
			IS: 814-1974,
9	Laborate Control		IS: 815-1974/E-7018
T)) Paint Tests	j) Surface preparation sand blasting and painting	IS: 14177-1994
		as per specification.	

MECHANICAL TESTS	MANUFACTURING STAGE	REMARKS
II) Tests for Radial Gates	II. Tests for machined items: test for allowances	
a) Pre tensioning in anchor rod	and tolerances as per drawings BIS specifica-	STILL IN
b) Trunnion centre: coplanar and	tions for all items and components for which	
parallel to sill	machining operations are involved. (such as:	
-0.1	turning, planning, grinding, milisig, gear,	
The state of the s	hobbing, drum scouring, drilling, boring and	
I I I I I I I I I I I I I I I I I I I	slotting etc.	
c) Inclinations of yoke and anchore	- Newschool courses and official	
girder and its co-plane accuracy	Dimensional accuracy and critical	
grider and its co-plane accuracy	dimensions of E.M parts at least in 300mm	
	intervals on asssembly.	
d) Radius of skin plate & wall plate	 Assemblies and sub-assemblies as per 	
	drawings and specified tolerances (Is codes	
	7718.10096-1986, etc)	101
e) Side seal face to face	Dimensional accuracy and critical	
f) Level of horizontal girder	parameters of components / assembly of gates	
g) Site weld testing strength	as per IS codes.	
	gate assembly * roller assembly * scale	
	assembly * guide roller assembly * roller cage	i Pari (1)
2011	assembly *trunnions and pins assembly*	
THE PERSON NAMED IN COLUMN	yoke girder assembly * support / chair * end gear	
	box units assembly. Central drive units	
	assembly * control panels *wire rope and lifting	
MI THE RESIDENCE OF THE PARTY O	socket assembly * gate lifting measuring dial	
	indicator gauge.	
	 Shop painting - surface preparation 	
	painting process	Maria
mm-maile		
	components.	

MECHANICAL TESTS	MANUFACTURING STAGE	REMARKS
Additional tests for Radial Gates	* Pre tensioning of anchore rods* trunnion	REMARKS
	centres: co-planer and paraller to sill * chair	
	level/rest plate: co-planer and parallel to sill*	
	inclination of yoke and anchor girders and its	
	co-planar accuracy *radius of si in plate and	
	wall plate * side seal face to face* level of	
	horizontal girder* radius of skin plate and wall	
	plate * pre tension of anchorages * site weld	
	design and sequence * site weld testing for	
	strength and quality as per IS codes.	
	Only one longitudinal joint permissible.	
	Welding shall be tested @ 5% by radiography	
4	and 95% by ultrasound testing.	IS 800-1984,
III) water conductor and penstocks	Checks of dimensional accuracy (Cylinder	IS 226-1975.
a) Raw material tests-tensile,	dimensions, angle incase of bends, coplanar	IS 814-1991.
bend physical tests etc.	accuracy of flanges after welding and/or	IS 816-1969,
	jointing shells/pipes etc.	IS 3589-2001,
b) Weliding tests	 Welding-submerged arc/manuel arc' 	IS 5822-1994.
	welding of shells and bends.	IS4353, IS 2825,
c) NDT	→ DPT, RT, UT etc.	IS 4225, IS 823,
d) Hydrostatic test		IS 2595 & IS 1182
	pressure.	IS 3664-1981.
e) Paint test	Painting: surface preparation, sand	IS 3658-1980.
	blasting & painting as per specification.	IS 3703-1980
	INSTALLATION / ERECTION	Capital Park
	Thorough testing & check up of	
	components for quality and dimensional	
*** PRESCRIPT	accuracy be done on shifting to erection site.	
	Ensure any defect unnoticed during fabrication	
	should be rectified before installation.	
	 Checking of critical dimensions of all 	
	E.M. parts at least in 300mm intervals (on	William III

MECHANICAL TESTS	MANUFACTURING STAGE	REMARKS
	assembly and installation) during erection,	130,000
	before & after concreting, as per IS:4622, and	
	7718 etc. as applicable with in tolerance &	
	limits. *roller track centre to centre-seal track	
	centre to centre-side guide centre to centre*	
	verticality of roller track seal track. Side guide	
and the second second	track * co-plenary of roller track and seal track	
	- horizontally of sill beam - levels of sill beam	
	and hoist bridge * roller assembly and its	
	alignment-side roller gaps.	
	 Testing of welds-for strength and 	
	soundness-DPT. X rays and gamma ray.	
	Dry testing of rubber sealing and pre-	
	compression	
THE STATE OF	Alignment of line shafts.	
	and the state of t	
	Drain holes to horizontal beams, trunnion	
	brackets holsts bridges.	
Book at the second second	 Alignment of gears & shafts. 	
	 Sand blasting and painting (IS 14177-1994) 	
E STORY OF THE STORY	surface cleaning for abrasive blasting (Swedish	100
A COLUMN TO STATE OF THE STATE	standards: S. A2.5 white/rough) and or	
April 19 19	IS: 5905-1989) paint specification binder solids.	
manufacture of the factor	pigments, additives solvents, driers etc	
	Thickness of paint in microns.	
IV) Lift Irrigation machinery	o challenge serve	
a) Pump sets		
Standard running test	and the same of th	
2) NPSH test	Pumps shall be tested in accordance with	
	stipulations of Hydraulic institute standards as	
	applicable.	
B) DP tests on shaft and impeller		
Noise & Vibration		
	and to be repeated at site also.	

_	MECHANICAL TESTS	MANUFACTURING STAGE	L
	5) Non-destructive test		REMARKS
100	6) Field Testing	 After installation, the pumps shall be operated to Prove satisfactory performance. 	The second second
		to ritive satisfactory performance.	BIS Specification
	b) Motor	The state of the s	
	1) HV tests	at Life Institute on Ballid and	
	2). Impedence & voltage test	HV tests on field coils assemble t on poles	A kittle
	3) Static flux test		100
	4) Calibration of over speed devices		
	Insulation resistance test	Calibration of over speed devices	
		 Insulation resistance test for accuracy of stater 	
		and rotor windings RTD & BTD tests on excitat	non
		& Regulation epuipments	
-			
-		pressure switches	
1	6) Type Tests	Test device and the control of	
		 On the completely assembly motor and 	As per relevant Bit
121	American of page yearing.	associated auxiliaries shall be carried out at	Specifications.
		works. A sense that the sense that t	
C	Earthing & lightening & protection	Type tests, Galvanizing tests, Welding tests, Earth	10 0000 1011
+		continuity test. Earth resistance tests of total	IS: 2309-1989, IS
_		et (inthinism)	3043-1987
1			IS: 2633-1986
-			IS: 4759-1984
d)) Switchgear, Power & control cables	As parennafication a	IS: 3725-1966
	instrumentation and control - data		As per relevant BIS
	Communication systems-other regd.		Specifications
-	equipment		
+			
+			
	ATTENDED TO A STATE OF THE PARTY OF THE PART		
			A STREET
1			

CATEGORIZATION OF DEFECTS OF TESTS RESULTS FOR ANALYSIS

In general the defects/short comings for not confirming to the required standards of the tests performed for ensuring QA/QC of the works both in-situ and in the laboratory, may be placed under the following category depending upon the type of tests and the site conditions.

Category A: Failure of tests and no scope for rectification.

Action:

- To be rejected.
- 2. If alredy used Agreement concluding Authority to assess the impact and initiate action either by recovery if not detrimental else reconstruction by removing the same at the cost of the agency.

Example: 1. In case of foundations, SBC not confirming but foundations already executed, then no payment, immediate analysis of impact, alteration of design if possible, recovery as penalty else reconstruction of the work component at the cout of the agency.

Only Agreement concluding Authority is authenticated for necessary action.

Similary for borrow area conveyance for earth work, CNS soils etc. Upon testing if found not suitable shall not be allowed. If already used, the earth, shall be removed if it is detrimental else suitable recovery as penalty to be imposed duly carrying out the rectification.

Only Agreement concluding Authority is authenticated for necessary action.

Note: Certain tests categorized under category B will also be escalate to under this category, based on the site conditions. The Head of the department is the authority to take necessary action.

Non Confirming to specified limits but scope for rectification. Category B:

Analyse and go for remedy action within the time frame. Action:

- Remedy action out timed, then to be secalated to category A, for action from the agreement concluding Authority.
- If escalation from Category C. then unit officer in coordination with Superintendent Engineer, Quality Control to study the impact and propose recovery accordingly.
- 4. If the above beyond rectification, immediate stopage of payment and to escalate it to category A from agreement concluding authority to initiate necessary action.

Example: 1. Tests for cement, OMC for embankment, P.D. test etc.

Category C: Non conformity of initial tests for materials, preparatory tests, linear measurements etc.

Action: 1. To be rejected and removall of the same from the site to be ensured.

2. After rejection if used, then to escalate to category B for unit officer to take to necessary action in coordination with Superintendingt Engineer, Quality Control.

S.No. Material Name Test Name 1 Borrow Soils OMC Borrow Soils Soils Classifications	Category
ONC	Defect
Borrow Soils Soils Classifications	A
	В
2 Soils Attenberg limits	c
Soils Permeability test	В
Soils Shear Test	В
3 Embankment OMC	В
Embankment Proctor Density	В
Embankment Cut-off permeability	В
Embankment Filters	В
Embankment Shrinkage, Swel etc.	В
4 Lining CNS Soils	B
Lining Filter in expansion joint	В
Lining Morrum Back fill behind revetn	
5 Foundation Earth Safe bearing capacity	A
6 Cement Specific Gravity	В
Cement Cubes Strength	В
7 Coarse Aggregate Flakiness	C
Coarse Aggregate Gradation	C
Coarse Aggregate Impact Test	C
Coarse Aggregate Abrasion	C
Coarse Aggregate Soundness	C
Coarse Aggregate Crushing	
Fine Aggregate Slit Content	
Fine Aggregate Gradation	C
Fine Aggregate Bulkage	
Fine Aggregate Silt & Clay content	C
Fine Aggregate Soundness	C

502

Quality Care

	9	Water	PH Qua	ality Contro
	34	Concrete	THE PARTY OF THE P	1-0
		Concrete	- Sterigti	C
		Concrete		
r er	10	Mortar	Core Test	В
gon		Mortar	Slump	A
ate	_11	Bricks	Permeability	В
ti		Bricks	Water Absorption	В
1	12	Rough Stone	Compressive Strength	В
	13	Reinforcement	Soundness, Abrasion, Density, Compressive Strength Diameter, Weight, 0,284, 0	В
2		Reinforcement	The street of th	
ì	14	Foundation Earth	citinate lensile strength	C
	15	Gates Gates	Safe bearing capacity	В
		Odles	Critical Dimensions for	A
		Gates	embedded parts	
		Gates	Full load Test	В
			No Load Test	A
	16	Gates	Critical Dimensions	A
		Motor	Load Test	В
	17	Motor	SCADA Test	A
3	18	Pipes	Load Test	A
1	10	Pressure Main	Welding Test	A
-	19		Hydraulic Load Test	A
-	17	Pumps	Hydrostatic Test	A
E		Pumps	Full Load Test	A
-	-	Pumps	Testing for Vibrations	A
	0	Pumps	SCADA Tests	В
-	0	Stone	Size	В
/	vote : Ir	nitially defects will be	Size (EIIIDIID E SIEDVINA LES	

Note: Initially defects will be categorized based on the test name and later based on the site conditions provision will be given escalate from C to B to A etc.

Engineering the future

Operating on the National Scale in the Infrastructure Sector.

Dynamic Management, Competent Executives, Dedicated Workmen.

Extensive Construction Capability in Complex Structures, Major Dams, Canals, Aqueducts, Barrages, Highways, Tunnels, etc.

State - of - the - art Plant & Machinery.

Quality Construction to critical time schedules.

Turnover of Rs. 17,442 Million.

Order book of Worth Rs. 1,20,000 Million.

SOMA ENTERPRISE LIMITED

Regd, Office Soma Heights Siddhivinayak Society Karve Road, Pune -411 038. Ph:+91-02-2543 5474 Fax: +91-02-2543 5484

E-mail: somapune@somaenterpirse.com

www.somaenterprise.com

Corporate Office: 14, Avenue 4, Banjara Hills, Hyderabad - 500 034, Ph: + 91-40-6663 6666 Fax: +91-40-2332 1286 E-mail:info@somaenterprise.com