The Radicals

Sums, subtractions, multiplication and division with radicals

Guided Practice From the book THE HOUSE OF THE NUMBERS, A study guide to prepare for the math test included in the GED, HiSET or TASC exam.

CDEC – Chamber of Studies

I. Similar radicals

Radicals with the same indexes, as seen in the equation: $a \sqrt[n]{R} + b = \sqrt[n]{R} (a + b) \sqrt[n]{R}$ Examples:

1.
$$2\sqrt[3]{9} + 4\sqrt[3]{9} = 6\sqrt[3]{9}$$

2.
$$5\sqrt[5]{20} - 3\sqrt[5]{20} + 2\sqrt[5]{20} = 5\sqrt[5]{20} - 3 + 2 = (5-3+2)\sqrt[5]{20} = 4\sqrt[5]{20}$$

3.
$$\sqrt[4]{4} + \sqrt[6]{8} - \sqrt[12]{64} = \sqrt[4]{2^2} + \sqrt[6]{2^3} - \sqrt[12]{2^6} =$$

Steps to make the indexes homogeneous:

a) Find factors of each radicand to find equivalence to them (4, 8, and 64)

=>
$$4 = 2^{*}2 = 2^{2}$$
, $8 = 2^{*}2^{*}2 = 2^{3}$, $64 = 2^{*}2^{*}2^{*}2^{*}2^{*}2 = 2^{6}$ replace radicands
 $\sqrt[4]{4} + \sqrt[6]{8} - \sqrt[12]{64} = \sqrt[4]{2^{2}} + \sqrt[6]{2^{3}} - \sqrt[12]{2^{6}} =$

- b) Divide the indexes between the exponents o powers found: 4/2 = 2, 6/3 = 2, 12/6 = 2 to make the radicals homogeneous $\Rightarrow =\sqrt{2} + \sqrt{2} - \sqrt{2} = \sqrt{2}$
- c) Add and subtract 2 + 2 2 = 2 radicands, the answer is $\sqrt{2}$

4.
$$\sqrt{27}$$
 + $3\sqrt{3}$ - $2\sqrt{75}$ =

- a) Find the factors of the radicand $\sqrt{27} = \sqrt{3^2 * 3} = 3\sqrt{3}$
- b) Replace in equation = $> 3\sqrt{3} + 3\sqrt{3} 2\sqrt{75} =$
- c) Find the factors of the radicand $(2\sqrt{75}) = 2\sqrt{5^2 * 3} = 2 * 5\sqrt{3} = 10\sqrt{3}$ and
- d) Replace in equation $= 3\sqrt{3} + 3\sqrt{3} 10\sqrt{3} = 6\sqrt{3} 10\sqrt{3} =$ The answer $= 4\sqrt{3}$

II. Multiplication of radicals with the same index: \sqrt{a} . $\sqrt{b} = \sqrt{a \times b}$

When you must solve an exercise where the radicals have the same index, simply multiply the radicands and you will get the answer.

1.
$$\sqrt{3}$$
. $\sqrt{9} = \sqrt{3x9} = \sqrt{27} = \sqrt{3^2x3} = 3\sqrt{3}$ 2. $\sqrt{25}$. $\sqrt{9} = \sqrt{5^2}$. $\sqrt{3}^2 = 5^*3 = 15$

2.
$$\sqrt{25}$$
. $\sqrt{9} = \sqrt{5}^2$. $\sqrt{3}^2 = 5^*3 = 15$

3.
$$\sqrt[3]{27}$$
 . $\sqrt[3]{3375} = \sqrt[3]{3}$ 3. $\sqrt[3]{15}$ 3 = 3*15 = 45

III. Multiplication of radicals with different indices

Here are three alternatives for finding the answers in radicals multiplication Examples:

1.
$$\sqrt{25}$$
. $\sqrt[3]{9}$. $\sqrt[4]{27} = (\sqrt{5^2})(\sqrt[3]{3^2})(\sqrt[4]{3^3}) =$

a) Find the mcm between the indexes of the radicals (2, 3, 4) mcm = 12

$$2\ 3\ 4\ 2$$
 b) Divide the mcm with each index $(12/2 = 6)$, $(12/3 = 4)$, $(12/4 = 3)$

1 3 2 2 c) Replace the index in the radical by 12, factor the radicands

1 3 1 3 and multiply each exponent by the values found 6, 4, and 3.

1 1 1

b) Replacing:
$$\sqrt{25} \cdot \sqrt[3]{9} \cdot \sqrt[4]{27} = \sqrt[12]{(5^2)^6} \times \sqrt[12]{(3^2)^4} \times \sqrt[12]{(3^3)^3} =$$

$$\text{solving} \qquad = \sqrt[12]{5^{12}} \times \sqrt[12]{3^8} \times \sqrt[12]{3^9} = 5\sqrt[12]{3^8} \cdot 3^9$$

$$= 5\sqrt[12]{3^{17}} = 5.3\sqrt[12]{3^5} = 15\sqrt[12]{3^5} = 15\sqrt[12]{243}$$

c) If
$$\sqrt[12]{243} = 1.580521...$$
 In decimal format $15\sqrt[12]{243} = 15 \times 1.580521$
= $23.70782876 = 15\sqrt[12]{243}$

$2.\sqrt{25}.\sqrt[3]{9}$

- a) Find the mcm of the indices (2, 3) = 6
- b) Replace the index on each radical by six and factor the radicands
- c) Divide mcm between each index: 6/2 and 6/3 result (3, 2)
- d) Multiply (3, 2) respectively for each power of the radicand

So,
$$\sqrt{25}$$
. $\sqrt[3]{9} = \sqrt[6]{5^2 \cdot 3^2} = \sqrt[6]{5^6 \cdot 3^4} = 5\sqrt[6]{3^4} = (5)(3^{4/6} = 2/3) = (5)\sqrt[3]{3^2} = 5\sqrt[3]{9}$

3.
$$\sqrt[4]{4^2}$$
. $\sqrt[6]{8^2}$ => $4^{2/4}$. $8^{2/6} = 4^{1/2}$. $8^{1/3} = \sqrt{2^2}$. $\sqrt[3]{2^3} = 2^*2 = 4$

IV. Division of radicals $\sqrt[n]{a/b}$ root of a root $\sqrt[n]{\sqrt[n]{a}}$ or $\sqrt[n]{\sqrt[n]{a}}/b$

1.
$$\sqrt{\frac{2^2}{5^2}} = \sqrt{4/25} = 2/5$$
 2. $\sqrt{\sqrt{81}} = \sqrt[4]{81} = \sqrt[4]{34} = 3$