
Design of a Glove Controller for Human / Robot Interface

By

Gwyer Quest Sinclair

An Honors Capstone
Submitted in partial fulfillment of the requirements

For the Honors Diploma
to

The Honors College

of

The University of Alabama in Huntsville

November 13th, 2018

Honors Capstone Director: Dr. John Piccirillo

Student Date

Director Date

Department Chair Date

Honors College Dean Date

1

2

Table of Contents

Dedication 3

Abstract 4

Background 4

Hardware Design 6

Electrical Design 7

Software Design 10

Robot Integration and Control 11

Results 14

Conclusion 14

Table of Figures 15

Appendix 1: Parts List 15

Appendix 2: Wiring Diagram 16

Appendix 3: Arduino Code 17

TERMINOLOGY

Algorithm – A technique a programmer could explain, but doesn’t want to
DOF – Degrees of Freedom

I2C – Inter-Integrated Circuit Communication Protocol
IMU – Inertial Measurement Unit

PCB – Printed Circuit Board
PLA – Polylactic Acid

PWM – Pulse Width Modulation
STEM – Science, Technology, Engineering and Mathematics Fields

STL – Stereolithography (file format)

3

Dedication:

This work is dedicated to the memory of Steve Sinclair, who taught me to imagine fantastic
things.

4

Abstract

This paper discussed a prototype a human interface device, a glove which utilizes

various sensors to measure data, process it, and relay commands to robotic hardware. The

glove controller will provide an intuitive robotic control to the end user.

Background

There are a number of existing techniques that are used to control arm-like industrial

robots. Other robot types (such as mobile robots) may be remote controlled or controlled by

internal logic. This project, however, focuses on creating a new control method for industrial

robots. The three traditional methods are Walkthrough Training, Pendant control, and

Programming.

Walkthrough training features a human ‘teacher’

physically manipulating the robot’s appendages through

a set of actions, while the robot records those actions.

Later, the actions can be replayed to mimic the task with

accuracy. This method is very useful for worker without a

technical skillset, as one only needs to physically

manipulate the robot. However, not all robots can be

manipulated this way as some are too heavy or

cumbersome to reliably move, and sometimes there is a

safety factor. The robot can be quickly retrained, but it

limited by the precision of the user. Users who do not

have the strength or dexterity to adjust the robot are not

capable of using this control method.

Figure 1: Industrial Robotic Arm

5

Pendant control is the use of a portable, specialized

computer to control a robot. A pendant connects to the robot

and a technician uses the device to command incremental

movement or actions, while the system records the task.

Unlike the walkthrough method, pendant training requires a

technician to be trained with the individual system, as each

robot will use a unique control system. The pendant training

method has the advantage of precision over the walkthrough

Figure 2: Pendant method, but is much slower.

Programming is the use of computer control and simulation to plot a task for a robot. It

is similar to the pendant method in that it programs a set of actions directly into the memory,

but is often done off-site and without direct access to the robot. Both computerized methods

are slower than walkthrough training, and have the advantage of precision control, though

direct programming is often the best at creating efficient tasks and coordinating multiple tasks /

robot interactions. A disadvantage of programming a robot offsite is the lack of an ability to

check your work in real-time. In addition, this method is substantially slower than the others.

This project seeks to extend the main benefit of walkthrough training (that it is

accessible to people with non-technical skillsets), and remove the physical limitations. By

mapping the movement of a robot arm to the hand’s motion, my product would allow those

with limited physical mobility or strength to operate robots. In addition, it would increase the

safety of workers by keeping them away from the product lines when robots have to be

retrained. This project is research into more intuitive and inclusive robotics for all.

6

Hardware Design

 An important factor in product design is ergonomics, and consideration must be made

that the product is comfortable and easy to use. I designed the glove with this in mind, keeping

it light and efficient by designing robust parts to be manufactured with 3D printing. The parts

have been designed to fit my hand, but small adjustments can be made to easily change to

another’s measurements. I neglected to design a one-size-fits-all item, as the working base for

my hand was all that was required to prototype the product and test its efficacy. These parts

were designed in AutoCAD Inventor Professional 2018 ™, a software which AutoCAD has made

free to students and educators. The images provided are used with attribution to the AutoCAD

Software Suite and ViewSTL.com.

Figure 3: Finger Mount Ver. 5 Figure 4: Hand Wrap Ver. 5

Figure 5: Microcontroller Box Ver. 1 Figure 6: Microcontroller Box Cap Ver. 1

7

 Each piece went through a design process consisting of an initial part and fitting,

followed by successive incremental changes and re-printing. The final pieces are shown

in Figures 3-6, with version numbers provided. Each of these parts was printed from PLA, a

commonly used 3D printing thermoplastic that is biodegradable, light, and strong. PLA is also

very cheap, and the total cost for all of the prototyped parts comes to just under $5.

Electrical Design

After designing the printed ‘shell’ of the gloves the next step was to prototype the

electrical components. This was a multi-step process involving the selection, testing, and

assembly of a sensor package, microcontroller, and connective components. The weight, power

consumption, and complexity of the design were all factors in these choices, but even more

important was consideration of the intended features of the design.

First I chose sensors which would allow me to gather a range of useful data on the user’s

motions. These parts are all listed in further specificity in Appendix 1: Parts List and Costs. The

general use, design, and parameters of each sensor are included below:

 IMU: The IMU I used was the MPU9250 breakout from Sparkfun

electronics. This is a 9 DOF IMU, meaning that it measures acceleration,

angular rate, and magnetic field each in three axes. The IMU was placed

on the back of the hand, and used to measure the pose angle and side-to-

side motion of the hand. This was achieved by use of trigonometry and a

high-pass rejection filter, respectively, which is discussed further detail in

“Robot Integration and Control”, on page 11.

Figure 7: MPU9250

8

 Flex Sensor: A flex sensor is a variable resistor. As the sensor is

flexed, bands of metal on its surface get farther apart, increasing its

resistance. I mounted the flex sensor across the index finger, effectively

measuring the amount of bend in the finger. This was to be mapped to

the forward motion of the arm or the closing motion of the claw,

depending on individual user preference.

 Soft Potentiometer: A soft potentiometer is another version of

variable resistor, featuring two metal strips that are not in contact.

When a force (such as a finger) is placed on a point along its length, the

strips are forced together, completing the circuit. The resistance to this

current is proportional to the amount of metal the current has to pass

through, meaning that touching further along the length increases the

resistance. In this way, the soft potentiometer determines where along

its length it was touched. I mounted this sensor to the outside of the

index finger, where it could be operated the thumb, and mapped it to

the open/close position of the robot manipulator.

 Buttons: Buttons are points where the circuit is open, and the user

may apply a force to connect it. This allows the button to sense an ‘on’

or ‘off’ state, and an action may be mapped to a button press. I

constructed buttons out of copper tape on the back of the hand. Buttons

can eventually be used to record or replay actions, or may be mapped to

another function.

Figure 8: Flex Sensor

Figure 9: Soft
Potentiometer

Figure 10: Arduino RedBoard

9

 Microcontroller: Arduino RedBoard (Figure 10), a microprocessor with 13 Digital I/O

Pins (6 PWM Enabled), 6 Analog IN Pins, 3.7 and 5.5 V Power Circuits, and I2C

Connection Capability

After selecting my parts and theoretically mapping their measurements to robot actions, I

began to prototype this control with the Arduino Microcontroller and software IDE (integrated

development environment). This is discussed further in the following section, Software Design.

The only output was the control of 6 servos, which constitute the joints of the robot arm. A

servo is a type of motor which can be commanded to rotate to and hold at a certain angle,

using PWM control. Using kinematics, any arm position or movement can be broken down into

a discrete set of servo angles over time. This kinematic theory is studied in “Robot Integration

and Control” on Pages 12-13.

Finally, after each system was tested individually, I attached each sensor to the hardware

and completed the assembly (see Appendix 2: Wiring Diagram). This involved cable

management and soldering of multiple pull-up resistors in-between wire nodes. A production-

level device of this sort would use Arduino’s internal pull-up resistors instead, or those on a

PCB. After final assembly was complete, troubleshooting of the software began.

 Figure 11: Electrical Prototyping Figure 12: Final Glove Assembly

10

Software Design

 My prototype product is nothing without its ‘brain’ – the software which recorded and

processed inputs, and directed control to the servo motors in the robot arm. I began with

individual sections of code which I had formulated to test each individual sensor circuit, and

combined them into one program (See Appendix 3: Code). I will briefly discuss the code here in

layman’s English. The technically-savvy reader should refer to Appendix 3 and view the well-

documented1 code itself.

 The code performs a set of initialization tasks on startup, and then a repeating string of

tasks in quick succession for as long as it remains on. Upon starting up, the program configures

the microcontroller to expect inputs on certain pins (where the sensors are attached) and

create outputs on others (the servos). It then carves out space in its memory to store values

which correspond to those read from each sensor, the values to be sent to the servos, and

numerous variables which will be used for intermediary mathematics. These variables are

empty locations in memory for now, later they will be filled and then re-written with their

values. After the program is initialized, it enters the ‘operational’ mode, where the following

functions happen in order, and loop back to #1 when complete:

1. Each sensor is polled to find its current value

2. Mathematical operations are performed to determine the output values

3. The output values are sent to each servo, which rotates to match

1 The code is user-friendly. It is, however, very particular of who its friends are.

11

In this way, the code continually updates the position of the arm to the desired position.

The program runs thousands of times in one second, meaning that the arm has the illusion of

smooth motion.

Robot Integration and Control

 The controller measures physical data from the wearer’s hand and performs a series of

mathematical operations on them to determine what output angles to send to the servos.

These operations are discussed in reference to each of the six servos indicated on Figure 14.

Servo 0: “Base”

 Servo 0 controls the polar rotation of the arm, and its angle is determined by the left-to-

right position of the hand as determined by the IMU. The IMU gyroscope is utilized to measure

the angular acceleration about the z-axis (the vertical axis). A simple high-pass check is also

utilized, so low values do not register. This is to eliminate the ‘noise’ inherent in the sensor

from interference or a jittery human hand. When the user deliberately moves with an angular

acceleration great enough to overcome the filter, a variable is incremented in the direction of

motion.

Figure 13: Finite State Machine Diagram

12

Servos 1 and 2: “Shoulder” and “Elbow”

 Servos 1 and 2 control the

forward extension and height of the arm.

In this project they are tied together to

act in tandem, combining to move the

arm out to the desired extension. Due to

the limitations of finding absolute

position with an IMU without

complementary external sensors, these

servos are tied to the flex sensor in this

implementation. The flex of the finger is

mapped to the extension. With servos 1

and 2 both held to the same angle, the

“forearm” section of the robot maintains

level at all times. This may be altered in future builds to be modified by a ‘height’ parameter,

controlled by the gyroscope as in servo 0, which adds the height dimension into the control

scheme.

Figure 15: Interaction of Servos 1 and 2

Figure 14: Lynxmotion Robotic Arm
(Servos marked)

13

Servos 3 and 4: “Wrist Pitch” and “Wrist Roll”

 Servos 3 and 4 control the pose angle of the “wrist”. The angle of each of these servos is

determined by a trigonometric manipulation of the acceleration obtained from the IMU’s 3 DOF

accelerometer.

Figure 16: Calculating Angle from Acceleration

𝜃𝑅 = 𝑎𝑡𝑎𝑛2 (
𝐴𝑧

−𝐴𝑥
) 𝜃𝑃 = 𝑎𝑡𝑎𝑛2 (

𝐴𝑧

−𝐴𝑦
)

Servo 5: “Manipulator”

 Servo 5 controls the end effector of the robot arm, in this case a claw-like manipulator.

This servo is coupled to a linear screw which moves the claw’s fingers from open (0 degrees) to

closed (180 degrees). This value is mapped directly from the soft potentiometer. In this way the

user can open or close the robot’s fingers by sliding the thumb along the sensor.

14

Results

 The prototyping phase of this project took the majority of my time, and it was not

without its challenges. The cycle between hardware part iterations took some time, but I was

able to use it to test individual sensor circuit controls. The most challenging part was

determining absolute position of the hand from the sensors I had available, and I eventually

pivoted to a simpler solution which only limits the glove control in 1 axis – height. This solution

allows for smooth control and quick response time, and avoids all errors that would be

introduced through the process of determining position through integration of acceleration

data. Without utilizing exteroceptive sensors (which acquire information from the

environment), the glove measures correct, finely-tunable position in 5 axes and removes all but

the most significant human jitter from the arm’s motion. Control can be extended to 6 axes in

future iterations, as discussed in the previous section.

Conclusion

 My controller is a step toward more intuitive control methods for robotics. In fact, this

device can be reconfigured to work with any output device, from a drone or mobile robot to a

software, VR, or gaming platform. The application of this project to its original design, the

control of industrial robots, is particularly of note. Intuitive, non-technical control will become

increasingly important in the industry of tomorrow as automation continues to replace human

labor. Innovators need to provide solutions for workers with non-technical backgrounds to

interface with these new machines, or the demand for STEM trained individuals will quickly

outstrip the supply. My glove controller is a step towards more inclusive and intuitive control of

the robots of tomorrow.

15

Table of Figures

Number Figure Page Source

1 Industrial Robotic Arm 4 Wikipedia.com

2 Pendant 5 Wikipedia.com

3 Finger Mount Ver. 5 6 viewStl.com / AutoCAD

4 Hand Wrap Ver. 5 6 viewStl.com / AutoCAD

5 Microcontroller Box Ver. 1 6 viewStl.com / AutoCAD

6 Microcontroller Box Cap Ver. 1 6 viewStl.com / AutoCAD

7 MPU 9250 7 Sparkfun.com

8 Flex Sensor 8 Sparkfun.com

9 Soft Potentiometer 8 Sparkfun.com

10 Arduino RedBoard 8 Sparkfun.com

11 Electrical Prototyping 9 Photograph

12 Final Glove Assembly 9 Photograph

13 Finite State Machine Diagram 11 -

14 Lynxmotion Robotic Arm 12 robotShop.com

15 Interaction of Servos 1 and 2 12 -

16 Calculating Angle from Acceleration 13 Hobbytronics.co.uk

APPENDIX 1: Parts List

Consumables and parts with fractional cost are omitted (tape, wire, pins, solder, etc)
All costs in US Dollars

Part Name Type Source Quantity / Cost Notes

Arduino RedBoard Microcontroller SparkFun Electronics 1 x 19.95

Flex Sensor 4.5” Sensor SparkFun Electronics 1 x 12.95

MPU-9250 IMU Sensor SparkFun Electronics 1 x 14.95 Breakout Board

PLA Filament Raw Material Amazon.com .25 x 19.99 3D printing material

Soft Potentiometer Sensor SparkFun Electronics 1 x 4.95 50 mm length

 ~$60 TOTAL COST

16

APPENDIX 2: Wiring Diagram (made with Fritzing)

17

APPENDIX 3: Code

#include <Wire.h>
#include <TimerOne.h>
#include <Servo.h>

#define MPU9250_ADDRESS 0x68

#define GYRO_FULL_SCALE_250_DPS 0x00
#define GYRO_FULL_SCALE_500_DPS 0x08
#define GYRO_FULL_SCALE_1000_DPS 0x10
#define GYRO_FULL_SCALE_2000_DPS 0x18

#define ACC_FULL_SCALE_2_G 0x00
#define ACC_FULL_SCALE_4_G 0x08
#define ACC_FULL_SCALE_8_G 0x10
#define ACC_FULL_SCALE_16_G 0x18

const int button1Pin = 11; // fwd copperbutton pin
const int button2Pin = 13; // back copperbutton 2 pin
const int flexPin = A0; // Define analog input pin to measure
const int potPin = A1; // Analog input pin

//int count = 0;

int extPos; // how far is the arm extended
int potValue; // soft potentiometer
int flexPosition; // Input value flex sensor
int swivel = 90; // start val for base rotation (forward)
int claw; // claw gripper

int button1State, button2State; // variables to hold the pushbutton states

Servo servo0, servo1, servo2, servo3, servo4, servo5; // declare arm servos

void setup()
{
 Wire.begin();
 Serial.begin(115200);

 // Set accelerometers low pass filter at 5Hz
 I2CwriteByte(MPU9250_ADDRESS,29,0x06); // thanks to SPARKFUN ELECTRONICS for IMU setup code
 // Set gyroscope low pass filter at 5Hz
 I2CwriteByte(MPU9250_ADDRESS,26,0x06);

 // Configure gyroscope range
 I2CwriteByte(MPU9250_ADDRESS,27,GYRO_FULL_SCALE_1000_DPS);
 // Configure accelerometers range
 I2CwriteByte(MPU9250_ADDRESS,28,ACC_FULL_SCALE_4_G);

 // Set up the pushbutton pins to be an input:
 pinMode(button1Pin, INPUT);
 pinMode(button2Pin, INPUT);

 servo0.attach(3); // base
 servo1.attach(5); // shoulder

18

 servo2.attach(6); // elbow
 servo3.attach(9); // wrist pitch
 servo4.attach(11); // wrist roll
 servo5.attach(10); // claw

}

// Main loop, read and display data
void loop()
{
 potValue = analogRead(potPin); // Read the voltage from the softpot (0-1023)

 button1State = digitalRead(button1Pin);
 button2State = digitalRead(button2Pin);

 flexPosition = analogRead(flexPin);

 // Read accelerometer and gyroscope
 uint8_t Buf[14];
 I2Cread(MPU9250_ADDRESS,0x3B,14,Buf);

 // Create 16 bits values from 8 bits data

 // Accelerometer
 int16_t ax=-(Buf[0]<<8 | Buf[1]);
 int16_t ay=-(Buf[2]<<8 | Buf[3]);
 int16_t az=Buf[4]<<8 | Buf[5];

 // Gyroscope
 int16_t gx=-(Buf[8]<<8 | Buf[9]);
 int16_t gy=-(Buf[10]<<8 | Buf[11]);
 int16_t gz=Buf[12]<<8 | Buf[13];

 // calibrate gyroscope values (ROOM TEMPERATURE)
 gx -=48;
 gy += 71;
 gz -= 26;

 // Display values

 // Accelerometer
 /*Serial.print (ax,DEC);
 Serial.print ("\t");
 Serial.print (ay,DEC);
 Serial.print ("\t");
 Serial.print (az,DEC); */
 /*Serial.print (thetaR);
 Serial.print ("\t");
 Serial.print (thetaP);
 Serial.print ("\t");
 Serial.println();*/

 // Gyroscope
 /* Serial.print (gx,DEC);
 Serial.print ("\t");
 Serial.print (gy,DEC);
 Serial.print ("\t");

19

 Serial.print (gz,DEC);
 Serial.print ("\t");*/

 extPos = map(flexPosition, 480, 660, 0, 95); // mapping flex sensor to extension
 extPos = 155-extPos; // it's a reverse mapping (low 155 high 60)
 servo1.write(extPos); // run 1 & 2 at the same angle to stay ~ straight and extend
 servo2.write(extPos);

 float thetaR = degrees(atan2(double(az),double(-ax))); // find roll angle simple trig
 float thetaP = degrees(atan2(double(az),double(-ay))); // QED
 servo3.write(thetaP);
 servo4.write(thetaR); // wrist servos

 claw = map(potValue, 0, 1023, 0, 180); // mapping soft pot to claw
 servo5.write(180-claw);

 if (gz > 1500) swivel -= 1; // increment swivel by rotational acceleration
 else if (gz < -1500) swivel += 1; // threshold values based on how fast hand has to move

 if (swivel < 25) swivel = 25; // limit swivel to physical best spots
 else if (swivel > 155) swivel = 155;
 servo0.write(swivel);

 //delay(100);
 //count++;
 Serial.println("");
}

void I2Cread(uint8_t Address, uint8_t Register, uint8_t Nbytes, uint8_t* Data) // from sparkfun IMU library
{
 // Set register address
 Wire.beginTransmission(Address);
 Wire.write(Register);
 Wire.endTransmission();

 // Read Nbytes
 Wire.requestFrom(Address, Nbytes);
 uint8_t index=0;
 while (Wire.available())
 Data[index++]=Wire.read();
}

// Write a byte (Data) in device (Address) at register (Register)
void I2CwriteByte(uint8_t Address, uint8_t Register, uint8_t Data) // from sparkfun IMU library
{
 // Set register address
 Wire.beginTransmission(Address);
 Wire.write(Register);
 Wire.write(Data);
 Wire.endTransmission();
}

