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Ito-Takimura recently defined a splice-unknotting number u−(D) for knot diagrams.
They proved that this number provides an upper bound for the crosscap number of

any prime knot, asking whether equality holds in the alternating case. We answer their

question in the affirmative. (Ito has independently proven the same result.) As an appli-
cation, we compute the crosscap numbers of all prime alternating knots through at least

13 crossings, using Gauss codes.
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1. Introduction

Let K ⊂ S3 be a knot. An embedded, compact, connected surface F ⊂ S3 is said

to span K if ∂F = K. The crosscap number of K, denoted cc(K), is the smallest

value of β1(F ) among all 1-sided spanning surfaces for K.ab

A theorem of Adams and the author [4] states that, given an alternating diagram

D of a knot K, the crosscap number of K is realized by some state surface from

D. (Section 2 reviews background.) Moreover, given such D and K, an algorithm

in [4] finds a 1-sided state surface F from D with β1(F ) = cc(K).

Ito-Takimura recently introduced a u− type splice-unknotting move and used this

move to define a splice-unknotting number u−(D) for knot diagrams [8]. Minimizing

this number across all diagrams of a given knot K defines a knot invariant, u−(K).

After proving that u−(D) ≥ cc(K) holds for any diagram D of any nontrivial knot

K, Ito-Takimura ask whether this inequality is ever strict in the case of prime

alternating diagrams. The main theorem of this paper answers their question in the

negative, and states that u−(D) is minimal among all diagrams of K:

Theorem 1.1. If D is an alternating diagram of a prime knot K, then

u−(D) = u−(K) = cc(K).

aSince S3 is orientable, a spanning surface is 1-sided if and only if it contains a mobius band.
bβ1(F ) = rank(H1(F )) = 1− χ(F ) counts how many holes are in F .
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The main idea behind Theorem 1.1 is that, when D is alternating, each splice-

unknotting sequence that realizes u−(D) corresponds to a sequence of cuts (at

vertical crossing arcs) which reduces some minimal-complexity state surface to a

disk, via 1-sided spanning surfaces for other knots. The main difficulty in the proof

is that for some diagrams, like the one in Fig. 1, any such sequence will include

non-prime diagrams. The trouble this presents is that u−(D) is additive under

diagrammatic connect sum, whereas crosscap number is not additive under connect

sum. Addressing this issue requires some work. Lemmas addressing tangles appear

in §3, with further technical lemmas in §4. The proof of Theorem 1.1 follows in §5.

Ito-Takimura have independently proven the same result [10]. Their proof uses

generalized splice moves; unlike the u− type move from [8] (see §2), each of these

generalized moves either respects orientation or involves a new choice of orientation,

and some of the moves change the number of link components. In [9], Ito-Takimura

explore a related move of “type Bl,” which generalizes splice moves in a different

way and correspond to unoriented band sum operations on spanning surfaces. These

Bl type moves lead to a knot invariant Bl(K) which is closely related to u−(K),

and when K is alternating, Bl(K) equals its “overall” (orientable and nonorientable)

genus β1(K) – see (2.1). Moreover, Ito-Takimura show that Bl is additive under con-

nect sum of alternating knots. This allows them to determine the crosscap number

of any (prime or non-prime) alternating knot K in terms of Bl(K).

Section 6 describes how Theorem 1.1 enables an efficient computation of cross-

cap numbers for the table of prime alternating knots, using Gauss codes and data

from the faces determined by the associated knot diagrams. An appendix lists the

crosscap numbers for prime alternating knots through 12 crossings.c Previously, [4]

determined all of these values in theory, listing them through 10 crossings, and

knotinfo listed crosscap numbers for 174 of the 367 prime alternating knots with

11 crossings and for 316 of the 1288 with 12 crossings [1]. Most of these values,

cCrosscap numbers for prime alternating knots through at least 13 crossings are posted at [3],
together with data regarding these knots and their diagrams.

Fig. 1. This state surface for the 910 knot realizes crosscap number, but cutting it at any crossing

produces a state surface for either a 2-component link or a non-prime knot.
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and the upper and lower bounds for the remaining 11- and 12-crossing knots, come

from either Burton-Ozlen, using normal surfaces [5], or from Kalfagianni-Lee, using

properties of the colored Jones polynomial [11]. Interestingly, every new crosscap

number we compute through 12 crossings matches the upper bound previously given

on knotinfo.

2. Background

2.1. Splices, smoothings, and states

Let D ⊂ S2 be an n-crossing diagram of a knot K ⊂ S3. Let c be a crossing of

D, and let νc be a disk about c in S2 such that D ∩ νc consists of two arcs which

cross only at c. Up to isotopy, there are two ways to get an (n − 1)-crossing knot

diagram by replacing these two arcs within νc with a pair of disjoint arcs. These

two replacements are called the splices of D at c:

←− −→

Orient D arbitrarily. Of the two splices of D at a given crossing, one respects the

orientation on D and yields a diagram of a two-component link; this splice is said

to be of Seifert type. The other splice yields a knot diagram and does not respect

orientation. If this non-Seifert-type splice has the same effect as a Reidemeister-I

move (with planar isotopy), it is said to have type RI−; otherwise this splice has

type u− (called type S− in [9]). Note that splice types are independent of which

orientation is chosen for D. See Fig. 2.

There are also two smoothings of D at any crossing c: these are the same as

the splices of D at c, except with an extra A- or B-labeled arc in νc glued to the

resulting diagram:

←− −→

There are 2n ways to smooth all the crossings in D, each of which results in a

diagram x called a state. A state thus consists of a disjoint union of simple closed

curves joined by A- and B- labeled arcs, one arc from each crossing in D. The arcs

and circles in x are called state arcs and state circles, respectively.

2.2. State surfaces

Given a state x of a knot diagram, D, construct a state surface Fx from x as

follows. (See Fig. 3.) First, as a preliminary step, perturb D near each crossing point

u−

RI−
S−

Fig. 2. Seifert (S−) and non-Seifert (u− and RI−) type splices
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to obtain an embedding of K in a thin neighborhood of S2, such that projection

π : νS2 → S2 sends K to D. Note that the fiber over each crossing point c contains

a properly embedded arc in the knot complement; call this arc the vertical arc

associated to c.

Next, cap the state circles of x with disjoint disks on the same side of S2. Then,

near each state arc in x, glue on a half-twisted band (called a crossing band) which

contains the associated vertical arc, such that the resulting surface Fx spans K,

∂Fx = K.

Given a state surface Fx from a reducedd knot diagram, partition the vertical

arcs in Fx as Ax = Ax,S t Ax,u, so Ax,S contains those of Seifert-type and Ax,u
those of u− type.

Observation 2.1. Given a state surface Fx from a reduced knot diagram, the follow-

ing are equivalent:

(1) The state surface Fx is 2-sided.

(2) The state x has only Seifert-type smoothings, i.e. Ax,u = ∅.

(3) The boundary of each disk of S2\\x contains an even number of state arcs.e

Regarding the last condition, note that the boundaries of the components of

S2\\x give a generating set for H1(Fx), and each generator corresponds to an an-

nulus or a mobius band in Fx according to whether it contains an even number of

state arcs (see Fig. 3).

If F is a spanning surface for K, then one can increase the complexity of F

by attaching a (positive or negative) crosscap or a handle. The inverses of these

local moves, called compression and ∂-compression, are shown in Fig. 4. Note that

attaching a ± crosscap increases β1(F ) by 1 and changes slope(F ) by ±2, while

attaching a handle increases β1(F ) by 2 and does not change slope(F ).f

dA knot diagram D is reduced if every crossing is incident to four distinct disks of S2\\D.
eNotation: Whenever Y ⊂ X, X\\Y denotes “X-cut-along-Y .” This is the metric closure of X \Y ,

which is homeomorphic to X \ νY , where νY is a regular open neighborhood of Y in X.
fWhen F spans a knot K, slope(F ) denotes the boundary slope of F , which is the linking number

of K with a co-oriented pushoff of K in F .

∗

∗
∗

∗

Fig. 3. Constructing a state surface Fx (right) from a state x (middle-left) of a knot diagram

(left). Note regarding Observation 2.1 that each starred disk of S2\\x contains an odd number of
state arcs and corresponds to a mobius band in Fx.
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There are two traditional notions of essentiality for spanning surfaces; we will

work with the weaker, “geometric” notion, defined as follows. If F admits (resp.

does not admit) a compression move, then F is called (in)compressible. If F admits

(resp. does not admit) a ∂-compression move, then F is called geometrically ∂-

(in)compressible. If F is (resp. is not) incompressible and ∂-incompressible, then F

is called (in)essential.g

Proposition 2.2. Let Fx be a 1-sided state surface from a reduced alternating dia-

gram D of a prime knot K, with β1(Fx) = cc(K). Then the following are equivalent:

(1) The state surface Fx is essential.

(2) The state x is adequate (i.e. each state arc joins distinct state circles).

(3) The state x has more than one non-Seifert smoothing.

Proof. Any state surface Fx from an alternating diagram is a plumbing of checker-

board surfaces and is essential if and only if each checkerboard plumband is essen-

tial [6, 7, 16]. Moreover, since Fx comes from an alternating diagram, the checker-

board plumbands do as well, and so the checkerboard plumbands are all essential if

and only if their underlying states are adequate; this is the case if and only if x is

adequate. Thus (1) and (2) are equivalent.

If x is non-adequate, then it differs from the Seifert state at exactly one crossing,

since β1(Fx) = cc(K), so there is exactly one non-Seifert smoothing. Conversely,

if x has at most one non-Seifert smoothing, then x has exactly one non-Seifert

smoothing, since Fx is 1-sided. Hence, x differs from the Seifert state at exactly one

crossing, so x is non-adequate. Thus (2) and (3) are equivalent.

The main theorem in [4] states that, when a knot K has an alternating diagram

gA standard application of the loop theorem implies that, with the exception of either mobius
band spanning the unknot, if inclusion int(F ) ↪→ S3 \K induces an injective map on fundamental

groups, then F is essential. That is, if F is “algebraically essential,” or “π1-injective,” then F is
(geometrically) essential. The converse is true when F is 2-sided, but false in general.

Fig. 4. Compressing and ∂-compressing a spanning surface
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D, the state surfaces from D, stabilized with crosscaps and handles, classify the

spanning surfaces of K up to homeomorphism type and boundary slope:

Theorem 2.3 (Adams-Kindred [4]). Let D be an alternating diagram of a knot

K, and let F be a spanning surface for K. Then, by choosing an appropriate state

surface from D and attaching a (possibly empty) collection of crosscaps or handles,

one can construct a spanning surface F ′ for K with the same number of sides (1 or

2) as F and with β1(F ′) = β1(F ) and slope(F ′) = slope(F ).h

In particular:

Corollary 2.4 (Adams-Kindred [4]). If D is an alternating diagram of a non-

trivial knot K, then cc(K) is realized by a state surface from D. That is, D has a

state x whose state surface Fx is 1-sided with β1(Fx) = cc(K).i

Define the following invariant of any knot K:

β1(K) := min
surfaces F spanning K

β1(F ). (2.1)

Note that β1(K) = min{cc(K), 2g(K)}, where g(K) is the genus of K. Note also

that β1(K) < cc(K) if and only if β1(K) = 2g(K) = cc(K) − 1, i.e. iff all of the

surfaces realizing β1(K) are 2-sided. Moreover, β1(K1#K2) = β1(K1) +β1(K2), by

a standard argument. Therefore:

Proposition 2.5. [Murakami-Yasuhara [15]] Any

knots K1,K2 satisfy cc(K1#K2) ≤ cc(K1) + cc(K2). Equality holds if and only

if cc(Ki) = β1(Ki) for i = 1, 2.

Corollary 2.6. A knot K = #i∈IKi satisfies cc(K) =
∑
i∈I cc(Ki) if and only if

K is prime or:

β1(Ki) = cc(Ki) for each i ∈ I. (†)

If D is an n-crossing knot diagram, and x is a state of D with ` state circles,

then its state surface satisfies

β1(Fx) = 1− χ(Fx) = 1− (`− n) = n+ 1− `.

Thus, in order to compute cc(K) when K is alternating, it suffices to find a non-

Seifert state x of D with a maximal number of state circles. Although there are

2n − 1 possible states to choose from, [4] describes an algorithm that shortens the

list of potentially optimal states to at most 2bn/3c. A tricky question then arises as

to how one might record and enumerate the states. Moreover, using this algorithm

to compute the crosscap numbers of all alternating knots through a given number

hTheorem 2.3 extends to alternating links, by replacing “boundary slope” with “net” or “aggre-

gate” slope, which is the sum of the boundary slopes of F along all the link components.
iCorollary 2.4 also holds for alternating links.
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of crossings would unfortunately require a separate computation for each distinct

alternating knot.

Ito-Takimura’s splice-unknotting number u−(D), together with Theorem 1.1,

will enable an alternate method (involving splice-unknotting sequences rather than

states) for calculating crosscap numbers. In particular, this method will be well-

suited to tabulating crosscap numbers of all alternating knots, by using crosscap

numbers of lower-crossing knots when calculating those of with higher crossing

numbers. In fact, by starting with sufficient data relating alternating knots with

their DT codes and Gauss codes, it is possible to tabulate these crosscap numbers

in such a way that the computation cost for each knot grows in polynomial time

with respect to crossing number. Details follow in §6.

2.3. Ito-Takimura’s splice-unknotting number

Let D ⊂ S2 be an n-crossing diagram of a knot K ⊂ S3. Ito-Takimura define the

splice-unknotting number u−(D) as follows. Starting with D, there are n! distinct

sequences of non-Seifert splices, D = Dn → Dn−1 → · · · → D1 → D0 = ©, all of

which terminate with the trivial diagram of the unknot. Each splice in each sequence

is of either RI− type or u− type. Ito-Takimura define u−(D) to be the minimum

number of u− splices among these splice-unknotting sequences.j They prove:

Theorem 2.7 (Ito-Takimura). If D is a diagram of a nontrivial knot K, then

cc(K) ≤ u−(D).

The point is this: if D = Dn → Dn−1 → · · · → D → D0 = © is a splice-

unknotting sequence that realizes u−(D), then one can construct a 1-sided state

jSince the over-under information at each crossing is immaterial in this definition, the splice-

unknotting number u−(D) is most naturally defined on knot projections, rather than on knot
diagrams, and indeed this is how Ito-Takimura defined it.

Fig. 5. Ito-Takimura’s construction performs an isotopy for each RI−-splice.

Fig. 6. Ito-Takimura’s construction attaches a crossing band for each u− splice.
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surface Fn for D with β1(Fn) = u−(D) as follows. For each Di, let Ki be the

underlying knot. Let F0 be a disk spanning the unknot K0. For each splice Di →
Di−1, construct Fi from Fi−1 by:

• performing a local isotopy move, as in Fig. 5, if the splice has type RI−; or

• gluing a crossing band to Fi−1, as in Fig. 6, if the splice has type u−.

This sequence must include at least one gluing move, or else Fn would be a

disk. Moreover, the first gluing move Fk−1 → Fk produces a mobius band. Thus,

all surfaces Fi with i ≥ k are 1-sided. Hence, the sequence F0 → · · · → Fn termi-

nates with a 1-sided surface Fn that spans K and has β1(Fn) = u−(D). Therefore,

cc(K) ≤ β1(Fn) = u−(D).

Define the splice-unknotting number of any knot K ⊂ S3 to be:

u−(K) = min
diagrams D of K

u−(D).

Observe that this is a knot invariant. Also note:

Corollary 2.8. For any nontrivial knot K, cc(K) ≤ u−(K).

Proof. Theorem 2.7 gives:

cc(K) ≤ min
diagrams D of K

u−(D) = u−(K)

Ito-Takimura prove that u−(D) is additive under diagrammatic connect sum,

although crosscap number is not additive under connect sum (see Proposition 2.5).

With this in mind, Ito-Takimura ask:

Question 2.1 (Ito-Takimura). Does there exist an alternating diagram D of a

prime knot K such that u−(D) > cc(K)?

Theorem 1.1 will answer this question in the negative.

3. Boundary connect summands and tangle subsurfaces

Assume throughout §3, that D is an alternating diagram of a nontrivial knot K,

and Fx is a 1-sided essential state surface from D. Also, given a u− type vertical

arc α ⊂ Fx, denote Fx\\α = Fxα and ∂Fxα = Kα.

Note that x = xα ∪ β, where β ⊂ x is the state arc that corresponds to the

vertical arc α ⊂ Fx, and that cutting Fx at α corresponds to performing a u− splice

on D at the associated crossing. This splice yields the underlying diagram Dα for

xα. Note also that Dα is alternating, but not necessarily prime or reduced.

Given a compact and connected subset U ⊂ S2 whose boundary is disjoint from

all state arcs in x, let xU denote the union of all state circles and state arcs of x that

intersect U , and let FUx denote the associated state surface, which is a subset of Fx.

With this notation, we define diagrammatic notions of boundary connect sum and

tangle decompositions for state surfaces, and characterize a few of their properties.
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Although, strictly speaking, we will not need this fact, it is worth noting that

these diagrammatic notions are more general than they seem a priori, because D

is alternating. The basic point here is that, by work of Menasco [12], any 2- or

4-punctured sphere can be isotoped in the knot complement to intersect S2 in a

single circle; hence, every connect sum or tangle decomposition of the alternating

knot K can be realized diagrammatically. When Fx is essential, every boundary

connect sum or tangle decomposition of Fx can also be realized diagrammatically.

For our purposes, however, it is more straightforward just to define these notions

diagrammatically in the first place.

3.1. Boundary connect summands

A boundary connect summand of Fx is any FUx , where:

• each component of ∂U is disjoint from state arcs and intersects x transversally

in two points,

• FUx is connected but not simply connected,

• for any simple closed curve γ ⊂ U which is disjoint from state arcs and intersects

x transversally in exactly two points, all of the non-nugatory state arcs in U lie

on the same side of γ.k

Note that the last two conditions in the definition imply that any boundary

connect summand FUx is prime, meaning that if FU
′

x is a boundary connect summand

of FUx , then FUx and FU
′

x are isotopic in Fx.

Observation 3.1. Suppose that Fx is prime, but that, for some u− type vertical arc

α, Fxα is not prime. Then every boundary connect summand of Fxα has the form

FUxα , where U is a disk or an annulus, and each component of ∂U intersects the

state arc β = x \ xα. Moreover, when D is oriented, both points of D ∩ ∂U where

D points out of U lie on the same state circle, and the orientation of one of the two

strands of D ∩ U is reversed in Dα ∩ U .

See Fig. 7. In particular:

Observation 3.2. Suppose a u− type splice at a crossing c in D produces a diagram

D′ of a non-prime knot K ′. Then there is a simple closed curve γ ⊂ S2 which

intersects D transversally at c and two other points, both on edges of D not incident

to c. Moreover, both disks of S2 \ γ contain non-nugatory crossings in D′.

3.2. Tangle subsurfaces

A tangle subsurface of Fx is any FUx , where:

• U ⊂ S2 is compact and connected,

kA state arc β in x is nugatory if x \ int(β) is disconnected.
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• ∂U intersects x transversally in four points and is disjoint from all state arcs in

x,

• FUx is connected but not simply connected.

Then FUx is the tangle subsurface of Fx determined by U . Note that D ∩ U is a

(diagrammatic) tangle in the traditional sense.

Proposition 3.3. Suppose that FUx is a 2-sided tangle subsurface of Fx which con-

tains a u− type vertical arc α. If FUxα is connected, then Fxα is 1-sided.

Proof. Because α ⊂ U , we have:

Fxα =
(
FS

2\\U
xα

)
∪
(
FUxα

)
=
(
FS

2\\U
x

)
∪
(
FUx \\α

)
.

Thus, if F
S2\\U
x is 1-sided, the result follows immediately. Otherwise, there exist

properly embedded arcs ρ0 ⊂ F
S2\\U
x and ρ1 ⊂ FUx with the same endpoints such

that ρ0 ∪ ρ1 is the core of a mobius band in Fx. Since FUx \\α is connected, there

is a properly embedded arc ρ2 ⊂ FUx \\α such that ρ1 ∩ ρ2 = ∂ρ1 = ∂ρ2. The fact

that FUx is 2-sided implies that ρ1 ∪ ρ2 is the core of an annulus in Fx. Therefore,

ρ0 ∪ ρ2 is the core of a mobius band in Fx\\α.

Say that a tangle subsurface FUx is minimal if, for any tangle subsurface FU
′

x

with U ′ ⊂ U , every state arc in U ′ is also in U . Note that every tangle subsurface

FUx contains a minimal one.

Observation 3.4. If Fx is prime and α ⊂ Fx is a u− type vertical arc such that

Fxα is essential and non-prime, then each boundary connect summand FUxα of Fxα
corresponds to a minimal tangle subsurface FUx of Fx.

(This extends Observation 3.1; see Fig. 7.)

Observation 3.5. If FUx is a minimal tangle subsurface of Fx, then:

Fig. 7. If Fxα is an essential boundary connect sum, then each of its summands appears as left

(purple or green). Hence, Fx has an associated minimal tangle subsurface, shown right (green).
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• no vertical arc α ⊂ FUx is parallel through FUx to ∂FUx , and

• for any properly embedded arc δ ⊂ U which intersects x transversally in two

points, both on the same state circle of x, all of the non-nugatory state arcs of

x in U lie on the same side of δ.

3.3. Properties of 2-sided tangle subsurfaces

Lemma 3.1. Suppose that FUx is a prime 2-sided tangle subsurface of Fx; that

when D is oriented, both points of D∩ ∂U where D points out of U lie on the same

state circle; and that, for some u− type vertical arc α ⊂ Fx, the orientation on one

of the two strands of D ∩ U is reversed in Dα ∩ U . Then FUx contains a u− type

vertical arc.

Figure 8 illustrates the situation.

Proof. The fact that both points of D ∩ ∂U where D points out of U lie on the

same state circle implies that the underlying diagrams for both xU and xUα represent

knots, and that xUα is the Seifert state for its diagram. Thus, any crossing between

the two strands of D ∩ U must have a u− type smoothing in xU . Moreover, these

two strands must cross, since FUx is prime, in particular connected but not simply

connected. Therefore, FUx must contain a u− type vertical arc.

In particular, using Observations 3.1 and 3.4 together with Lemma 3.1:

Corollary 3.6. Suppose that Fx is prime and FUxα is a 2-sided boundary connect

summand of Fxα . If necessary, adjust U so that it does not intersect the state arc

β = x \ xα or any other state arcs that join the same two state circles that β does.

Then FUx is a 2-sided minimal tangle subsurface in Fx which contains a u− type

vertical arc.

Lemma 3.2. Suppose that Fx contains a 2-sided minimal tangle subsurface FUx
which contains a u− type vertical arc α. Then Fxα is 1-sided, and Kα is prime.

Fig. 8. The situation in Lemma 3.1: FU
x (center), the two possibilities for FU

xα (left, right).
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Proof. If FUx \\α is connected, then Fxα is 1-sided, by Proposition 3.3. Assume

instead that FUx \\α is not connected. Then xα ∩ U is not connected, so there is

a properly embedded arc δ ⊂ U which separates the two components of xα ∩ U .

The fact that x ∩ U is connected implies that |δ ∩ β| = 1, where β is the state arc

corresponding to α. The first part of Observation 3.5 implies that α is not parallel

through Fx to ∂FUx . Hence, neither component of FUx \α is simply connected. Thus,

each component of xα ∩ U contains a non-nugatory state arc. This contradicts the

second part of Observation 3.5. In all cases, therefore, Fxα is 1-sided.

Assume for contradiction that Kα is not prime. Then there is a simple closed

curve γ ⊂ S2 which intersects Dα transversally in two points, neither of them

crossings, such that both components of Dα \ γ contain non-nugatory crossings of

Dα. The assumption that K is prime implies that γ must intersect β. Hence, there

is a properly embedded arc δ ⊂ U which intersects x in a single point, which lies on

β. Again, the first part of Observation 3.5 provides non-nugatory state arcs in both

components of xα ∩U , contradicting the second part of Observation 3.5. Therefore,

Kα is prime.

4. Technical lemmas

Throughout §4, D will be a reduced alternating diagram of a prime knot K, and Fx
will be a 1-sided state surface from D with β1(Fx) = cc(K).l Further, partitioning

the vertical arcs in Fx as Ax,S ∪Ax,u as in Observation 2.1, α ∈ Ax,u will be a u−

type vertical arc in Fx.m As in §3, denote Fx\\α = Fxα and ∂Fxα = Kα, with Dα

the underlying diagram for xα.

4.1. Overview of cases

The key step in Ito-Takimura’s proof that cc(K) ≤ u−(D) involves building up

more complex state surfaces from simpler ones, often by gluing on crossing bands

in a way that corresponds to undoing a u− type splice. The key step in proving the

reverse inequality is basically the opposite. Namely, the key is to show that there

exist Fx and α such that Fxα is 1-sided with β1(Fxα) = cc(Kα), such that Kα either

is prime or satisfies the condition (†) from Corollary 2.6.

This situation varies mainly according to whether or not β1(K) = cc(K). Sub-

section 4.2 addresses the case β1(K) < cc(K). For each of the states x which differs

from the Seifert state y at a single crossing, Fx has a single u− type vertical arc.

Also β1(Fx) = cc(K) = β1(K) + 1. Lemma 4.1 establishes that, for at least one of

these states x, Fxα is 1-sided with β1(Fxα) = cc(Kα), and Kα is prime.

Subsection 4.3 addresses the case β1(K) = cc(K). Given a 1-sided Fx from D

with β1(Fx) = cc(K), Lemma 3.2 states that, if Fx has a 2-sided minimal tangle

lSuch Fx exists by Theorem 2.3; sometimes this surface will be arbitrary, subject to these condi-
tions; other times, we will choose a particular surface Fx of this type.
mSuch α exists by Observation 2.1; as with Fx, we will sometimes take α to be arbitrary, and

other times will we choose α.
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subsurface which contains an arc α ∈ Ax,u, then Fxα is 1-sided with β1(Fxα) =

cc(Kα), and Kα is prime. Otherwise, every 2-sided minimal tangle subsurface in

Fx contains only Seifert-type vertical arcs. (This includes the case of the knot 910.)

After some setup, this case follows easily from Corollary 3.6, using the condition

(†) for Kα and an associated condition (∗) for Fxα .

4.2. Alternating knots with β1(K) < cc(K)

In addition to the assumptions stated at the beginning of §4, assume throughout

§4.2 that β1(K) < cc(K), and that y is the Seifert state of D. Then the associated

Seifert surface satisfies β1(Fy) = β1(K) = cc(K)− 1 > 0.

Proposition 4.1. No two state arcs in y join the same two state circles.

Proof. If two state arcs in y join the same two state circles, then reversing these

two smoothings will produce a state z 6= y with the same number of state circles as

y. (See Fig. 9.) But then the state surface Fz will be 1-sided with β1(Fz) = β1(Fy) =

β1(K) < cc(K).n

nA similar argument proves more generally that if any knot K satisfies cc(K) > β1(K), then any

minimal genus Seifert surface for K must have no Hopf band plumbands.

y z

Fig. 9. Proposition 4.1 states that if a Seifert surface Fy for an alternating knot K satisfies

β1(Fy) < cc(K), then no two state arcs in y join the same two state circles.

Fig. 10. If Fx differs from the Seifert surface Fy at a single crossing c, then cutting Fx at c gives
the same surface as untwisting Fy at c.
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Reversing any one smoothing of y produces a non-adequate state x whose as-

sociated state surface satisfies β1(Fx) = β1(Fy) + 1 = cc(K). There is only one

u− type smoothing in x. Cutting Fx at the associated vertical arc yields the same

surface as “untwisting” the associated crossing band in Fy. See Fig. 10.

Proposition 4.2. Untwisting Fy at any crossing band gives a 1-sided state surface

Fw from a reduced alternating knot diagram D′.

Proof. To see that Fw is 1-sided, use the fact that D is reduced to obtain a simple

closed curve γ ⊂ Fy that passes exactly once through the given crossing band. This

γ is the core of an annulus in Fy, and thus of a mobius band in Fw.

To see that D′ is reduced, suppose otherwise. Then some state circle v in w

either is incident to only one state arc or is incident to itself at a state arc, β1.

The former is impossible, since untwisting a crossing band merges two state circles,

and all state circles in y are incident to at least two crossings. In the latter case,

v must be the result of merging two state circles u1, u2 from y at the state arc β2
that corresponds to the untwisted crossing band. Because no state circle in y is

incident to itself at a state arc, it follows that both β1 and β2 join u1 and u2. This

contradicts Proposition 4.1.

Proposition 4.3. Untwisting Fy at some crossing band yields a 1-sided state sur-

face Fw from a prime reduced alternating knot diagram.

Proof. Proposition 4.2 implies that, for each crossing ci of D, untwisting Fy at the

crossing band near ci yields a 1-sided state surface from a reduced alternating knot

diagram Di. Assume for contradiction that each of these diagrams Di is non-prime.

Then Observation 3.2 implies that for every crossing ci in D there is a simple closed

curve γi ⊂ S2 which intersects D transversally at c and two other points, both of

which lie on edges of D which are not incident to c, such that |γi ∩ D′| = 2 and

both disks of S2 \ γi contain crossing points of Di. See Fig. 11, left.

γi

ci

γ1 γ2

X

c2 c1Z2 Z1

Y1 Y2

Fig. 11. If K is alternating and prime with β1(K) < cc(K), then there is a non-Seifert-type splice
which yields a prime knot.
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This, together with Proposition 4.1 and the fact that D is prime and reduced,

implies that every disk of S2\\D is incident to at least three crossings. Yet, an

euler characteristic argument shows that some disk of S2\\D is incident to at most

three crossings. Hence, there is a disk X of S2\\D which is incident to exactly three

crossings. Up to symmetry, there are two possible configurations around such a disk

X in an arbitrary Seifert state; Proposition 4.1 rules out one of them. The only

other possibility is that ∂X is a Seifert circle of y, as in Fig. 11, right.

Let c1, c2 be two crossings on ∂X, and consider the arcs γ1, γ2 passing through

them. Each γi passes through exactly three disks of S2\\D, namely X and two

others, Yi and Zi, where Zi is incident to ci. Since γ1 and γ2 intersect in a second

point, outside of X, we must either have Y1 = Y2 or Z1 = Z2. The first possi-

bility contradicts the assumptions that K is prime and D is reduced; the second

contradicts Proposition 4.1.

Therefore, with the assumptions and notation from the beginning of §4 and §4.2:

Lemma 4.1. There exist Fx and α such that Fxα is 1-sided with β1(Fxα) =

β1(Kα) = cc(Kα), and Dα is a reduced alternating diagram of the prime knot Kα.

Proof. Use Proposition 4.3 to obtain a state x of D which differs from the Seifert

state y of D at exactly one crossing, such that untwisting Fy at the associated

crossing band yields a 1-sided state surface Fw from a prime reduced alternating

knot diagram Dα. Then Fx contains only one u− type vertical arc α, namely the

one at the crossing where x differs from y, and Fxα = Fw. Hence, Fxα is a 1-sided

state surface from a prime reduced alternating knot diagram.

To see that β1(Fxα) = β1(Kα) = cc(Kα), use Theorem 2.3 to obtain a state

surface S′ from Dα with β1(S′) = β1(Kα). Attaching a crossing band to S′ near

α gives a state surface S for K with β1(S) = β1(S′) + 1. If it were the case that

β1(S′) < β1(Fxα), then we would have the contradiction

β1(K) = β1(Fy) = β1(Fxα) > β1(S′) = β1(S) + 1.

The fact that Fxα is 1-sided now gives β1(Fxα) = β1(Kα) = cc(Kα).

4.3. Alternating knots with β1(K) = cc(K)

In addition to the assumptions stated at the beginning of §4, assume throughout

§4.3 that β1(K) = cc(K).

Proposition 4.4. For any α ∈ Ax,u, Fxα is 1-sided and essential with

β1(Fxα) = β1(Kα) = cc(Kα).

Proof. Assume for contradiction that some Fxα is 2-sided. Then xα is the Seifert

state of Dα and, by Observation 2.1, the boundary of each component of S2\\xα
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contains an even number of state arcs from xα. Therefore, the components of S2\\x
incident to α were the only two that contained an odd number of state arcs. Since

α was arbitrary in Ax,u, all state arcs in Ax,u must be incident to the same two

components of S2\\x.

Hence, D consists of n crossings whose smoothing in x is non-Seifert-type, to-

gether with n diagrammatic tangles, each of which contains only crossings whose

smoothing in x is Seifert-type. (Figure 12, left, shows the case n = 3.) Some of these

tangles may be trivial, containing no crossings, but at least one of the tangles must

contain crossings, since β1(Fx) > 1. This situation is impossible, by Lemma 3.1.

Thus, Fxα is 1-sided.

Use Theorem 2.3 to obtain a state surface S′ from Dα with β1(S′) = β1(Kα).

Attaching a crossing band to S′ near α gives a state surface S for K with β1(S) =

β1(S′) + 1. If it were the case that β1(S′) < β1(Fxα), then we would have the

contradiction

β1(K) = β1(Fx) = β1(Fxα) + 1 > β1(S′) + 1 = β1(S).

The fact that Fxα is 1-sided now implies that β1(Fxα) = β1(Kα) = cc(Kα), and

hence that Fxα is essential.

With the setup from the start of §4, suppose that Fxα = \i∈IFi is a boundary

connect sum decomposition of Fxα associated to the connect sum decomposition

Kα = #i∈IKi. Say that Fxα satisfies (∗) if

Fi is 1-sided with β1(Fi) = β1(Ki) for each i ∈ I. (∗)

Observation 4.5. Any Fxα satisfying (∗) is 1-sided with β1(Fxα) = β1(Kα) =

cc(Kα).

Moreover, each Fi is essential, as is Fxα . This further implies that the boundary

connect sum decomposition of Fxα is unique. Note additionally that, if Fxα satisfies

(∗), then K satisfies the property (†) defined in Corollary 2.6. Conversely, Theorem

2.3 implies:

Observation 4.6. Any alternating knot obeying (†) has a state surface obeying (∗).

Here is the main result of this subsection.

Fig. 12. The situation in the proof of Proposition 4.4.
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Lemma 4.2. Any 1-sided state surface Fx from D with β1(Fx) = β1(K) contains

a u− type vertical arc α such that Fxα satisfies (∗).

Proof. Assume first that Fx contains a 2-sided minimal tangle subsurface which

contains some α ∈ Ax,u. Then Lemma 3.2 implies that Fxα is 1-sided and Kα is

prime. Proposition 4.4 further implies that Fxα is prime with β1(Fxα) = β1(Kα) =

cc(Kα). Therefore, Fxα satisfies (∗).
Assume instead that every 2-sided minimal tangle subsurface of Fx contains

only Seifert-type vertical arcs. Choose any α ∈ Ax,u. If Fxα satisfies (∗), then we

are done. Otherwise, some boundary connect summand of Fxα is 2-sided. But then

Corollary 3.6 implies that the corresponding minimal tangle subsurface in Fx is

2-sided and contains a u− type vertical arc, contrary to assumption.

5. Main theorem

Throughout §5, D will be a reduced alternating diagram of a nontrivial knot K,

and Fx will be a 1-sided state surface from D with β1(Fx) = cc(K). (We no longer

assume K is prime.) As in §4, denote Ax = Ax,S ∪Ax,u, and given α ∈ Ax,u, denote

Fx\\α = Fxα and ∂Fxα = Kα. Now also let Fx = \i∈IFi and K = #i∈IKi be

corresponding (boundary) connect sum decompositions. Recall that Fx satisfies (∗)
if each Fi is 1-sided with β1(Fi) = β1(Ki). Recall also that, if K admits such a state

surface, then K satisfies (†): cc(Ki) = β1(Ki) for each i ∈ I. Proposition 4.4 and

Lemma 4.2 generalize to this setting as follows:

Observation 5.1. For any α ∈ Ax,u, Fxα is 1-sided and essential with β1(Fxα) =

β1(Kα) = cc(Kα).

Observation 5.2. If Fx satisfies (∗), then Fxα satisfies (∗) for some α ∈ Ax,u.

Before moving to the main theorem, we mention an application of Observation

5.2. Namely, given a reduced alternating diagram D of a prime alternating knot K

satisfying (∗), every 1-sided state surface Fx from D with β1(Fx) = β1(K) can be

obtained from a minimal splice-unknotting sequence for D, using the construction

behind Theorem 2.7. Thus, a list of all minimal-length splice-unknotting sequences

for D conveys a list of all minimal-complexity 1-sided state surfaces from D. Unfor-

tunately, the list of such sequences grows rather quickly with crossings. The data

through 9 crossings is posted at [3].

Theorem 5.3. Suppose that D is an alternating diagram whose underlying knot K

is nontrivial and either is prime or satisfies (†). Then u−(D) = u−(K) = cc(K).

Proof. We argue by induction on cc(K). In all cases, by Theorem 2.3, D has a

1-sided state surface Fx that satisfies β1(Fx) = cc(K). In the base case, F is a

mobius band, which, cut at any crossing, becomes a disk; thus u−(D) = u−(K) =
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1 = cc(K).o

For the inductive step, let D be an alternating diagram of a knot K with cc(K) ≥
2, where K is prime or satisfies (†). Assume that whenever D′ is an alternating

diagram of a nontrivial knot K ′ with cc(K ′) < cc(K), and K ′ is prime or satisfies

(†), then u−(D′) = u−(K ′) = cc(K ′).

Assume first that β1(K) < cc(K). Then K does not obey (†), so by assumption

K is prime. In this case, Lemma 4.1 provides a state surface Fx and a vertical arc

α ∈ Ax,u such that Fxα is 1-sided with β1(Fxα) = cc(Kα), and Kα is prime. Hence:

cc(K) = β1(Fx) = β1(Fxα) + 1 = cc(Kα) + 1 = u−(Dα) + 1

≥ u−(D)

≥ u−(K).

(5.1)

Corollary 2.8 gives the reverse inequality, cc(K) ≤ u−(K). Thus, cc(K) = u−(K).

Also, cc(K) ≥ u−(D) ≥ u−(K) by (5.1). Therefore, u−(D) = u−(K) = cc(K).

Otherwise, β1(K) = cc(K). Then, if K is prime, K satisfies (†); also, by assump-

tion, if K is not prime, then K satisfies (†). Thus, K satisfies (†). Use Observation

4.6 to obtain a state x of D such that Fx satisfies (∗). Then, by Observation 5.2,

there exists α ∈ Ax,u such that Fxα satisfies (∗). Since Fxα satisfies (∗), it follows

that Kα satisfies (†). Therefore, by repeating the computation (5.1), with the sub-

sequent application of Corollary 2.8 and squeeze argument, we can conclude in this

final case that u−(D) = u−(K) = cc(K).

In particular, we have proven:

Theorem 5.4 (Theorem 1.1). If D is a prime alternating diagram of a nontrivial

knot K, then u−(D) = u−(K) = cc(K).

6. Computation

Using the fact that every prime alternating knot K satisfies u−(K) = cc(K), we

will construct a list Dcc of dictionaries Dcc[n], n = 3, 4, 5, . . ., in which to look

up prime alternating knots by name and crossing number and find their crosscap

numbers. Everything is coded in python. All data is available at [3]. The basic idea

for constructing Dcc is this.

First, using data imported from [1, 2], we construct a list DG of dictionaries

DG[n] in which to look up a prime alternating knot K by name and crossing number

and find a Gauss code G = DG[n][K] for a reduced alternating diagram D of K.

Next, we write a list Dsplice of dictionaries Dsplice[n] which associates to each

n-crossing prime alternating knot K a list of n lists of knot names. For each knot

K the dictionary DG[n][K] provides a Gauss code, which describes a diagram D.

oThis uses the fact that any alternating diagram of the unknot can be reduced to the trivial

diagram by RI moves.
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Each of the n lists in Dsplice[n][K] describes the connect sum decomposition of the

diagram obtained from D by the u− type splice at one of the crossings of D.

We then define a list Du− of dictionaries Du− [i] recursively, first setting

Du− [0][‘10’] = 0. Then for each K and n as above, we compute:

Du− [n][K] = 1 + min
i=1,...,n

len(Dsplice[n][K][i])∑
j=0

Du− [len(Dsplice[n][K][i][j])] [Dsplice[n][K][i][j]]

Each new dictionary Du− [n] records the invariant u−(K) for all prime alternating

knots K with n crossings. Finally, using Theorem 1.1, we copy Du− [i] for all i ≥ 3

to construct a list Dcc of dictionaries Dcc[i] which record the crosscap numbers of

all prime alternating knots.

The main technical challenge is that a given alternating knot can have many

distinct alternating diagrams, each of which has its own unique reduced Gauss code.

Thus, given a Gauss code (say, resulting from a u− type splice) its reduced form may

or may not appear in DG; it may not be obvious which knot the code represents.

In order to solve this problem, we construct a list DDT of dictionaries DDT[n] in

which to look up certain DT codes (one for each prime alternating diagram) and

find the name of the associated knot.

After some background, we give more details regarding the construction of DG,

DDT, Dsplice, Du− , and Dcc. Of these constructions, the most computationally ex-

pensive is that of DDT. These lists of dictionaries are among the data posted at [3].

6.1. Basics of Gauss and DT codes

For an arbitrary knot diagram D, one obtains a Gauss code G as follows. First,

choose an orientation and a starting point (away from crossings). Then, moving

along D accordingly, label the crossings of D as 1, . . . , n, where n is the number

of crossings in D, according to the order in which they first appear along D. Also,

record all crossings of D, in order, as a word of length 2n in which each character

−n, . . . ,−1, 1, . . . , n appears exactly once: the entry in the Gauss code correspond-

ing to the overpass (resp. underpass) at the crossing with label i is i (resp. −i).
Note that D is reduced if and only if any Gauss code from D has no cyclically

consecutive entries i, −i.
Working exclusively with alternating knots and regarding mirror images as

equivalent renders the signs in the Gauss code redundant. Thus, it makes sense

to omit these signs, as we will do from now on.

If G = [c1, c2, . . . , c2n] is a Gauss code, then for each r = 1, . . . , n there exist

odd i and even j with ci = r = cj . Thus, for each s = 1, . . . , n, there is a unique

even integer 2 ≤ j(s) ≤ 2n with cj(s) = c2s−1. The Dowker-Thistlethwaite code

associated to G is [j(1), j(2), . . . , j(n)]. For example, the DT code abbreviating the

Gauss code [1, 2, 3, 1, 2, 3] is [4, 6, 2], since c1 = 1 = c4, c3 = 3 = c6, and c5 = 2 = c2.

The main advantage of DT codes over Gauss codes is their length; DT codes are

useful when writing dictionaries.
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Given a Gauss code G of length 2n, one can determine all the Gauss codes from

the same diagram, but with different choices of starting point and/or orientation,

by permuting and/or reversing the 2n characters in the Gauss code arbitrarily, and

then permuting the n crossing labels so that smaller labels always precede larger

ones. (That is, act dihedrally on G and then relabel.) Among the resulting codes,

one, say Y , is lexicographically minimal. Call Y the reduced form of G. Say that G

is reduced if its underlying diagram is reduced and if G is its own reduced form.

For any reduced Gauss code G which represents a prime alternating knot dia-

gram, there is, up to isotopy and reflection, a unique knot diagram D whose reduced

Gauss code is G. (There may be several choices of basepoint and orientation on D

that give G.)

A reduced Gauss code G of a knot K represents a connect sum if and only if

G = w1w2w3, where w2 is a nonempty proper subword ofG that shares no characters

with w1 nor w3. After relabeling (so that smaller labels always precede larger ones),

w2 and w1w3 give Gauss codes for two, not necessarily prime, connect summands

of K. Continuing in this way eventually gives the connect sum decomposition of K.
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Fig. 13. Face data from the diagram of 77 with Gauss code [1, 2, 3, 1, 4, 5, 6, 3, 2, 4, 7, 6, 5, 7]:
Edges around A-faces:

[
[14, 4, 10], [8, 1, 3], [12, 5, 9, 2, 7], [13, 6, 11]

]
. Edges around B-faces:[

[4, 1, 9], [2, 8], [10, 5, 13], [6, 12], [11, 7, 3, 14]
]
.
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Fig. 14. Face data from the diagram of 77 with Gauss code [1, 2, 3, 1, 4, 5, 6, 3, 2, 4, 7, 6, 5, 7].

Crossings around A-faces:
[
[1, 4, 7], [2, 1, 3], [5, 4, 2, 3, 6], [5, 6, 7]

]
. Crossings around B-faces:[

[1, 2, 4], [2, 3], [4, 5, 7], [5, 6], [6, 3, 1, 7]
]
.
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6.2. Face data and flypes

We have imported Gauss codes from [1, 2], one for each prime alternating knot

through n crossings. We we have organized this data as a list, DG, of dictionaries,

DG[n], so that one can look up the name (e.g. ‘74’) of any n-crossing prime alter-

nating knot K in DG[n] and find a Gauss code DG[n][K] for a reduced alternating

diagram of K. Then we clean up this data by replacing each Gauss code with its

reduced form. Finally, we augment this data by replacing each entry in each dictio-

nary, a Gauss code G, with the list [G,S]: here, S lists the signs of the crossings

of the diagram associated to G, with the convention that the first crossing is an

overpass with a positive sign. Although these signs are encoded by G, they take

some time to compute; recording them now ensures that we only need to compute

them this once.

We now set about constructing a list DDT of dictionaries DDT[n] in which to look

up certain DT codes (one code for each prime alternating diagram with n crossings)

and find the name of the associated knot. The key is to find a list D0, . . . , Dk of

all reduced alternating diagrams of each prime alternating knot K. To do so, we

need to use the flyping theorem, conjectured by Tait [17] and proven by Menasco-

Thistlethwaite [13,14]. Here is how to do this.

Let G0 be a reduced Gauss code of a prime alternating knot. If G0 has length

2n, then the associated projection has n crossings, which are joined by 2n edges

(in the sense that the projection is a 4-valent graph). Also, the projection cuts S2

into n + 2 black and white disks, or faces. The face data from G0 records which

edges and crossings are incident to each face, proceeding counterclockwise around

the boundary of the face.p It is convenient to partition this data into four sets, two

for crossings and two for edges, each split between data from the black faces and

from the white. Figure 14 shows an example.

This face data allows one to identify possible flype moves on the diagram. To do

this, define four sets as follows. The first two sets, EEB and EEW , consist of pairs of

distinct edges which lie on the boundary of the same (black or white, resp.) face and

which do not share any endpoints. The other two sets, ECEB and ECEW , consist

of triples, each triple consisting of two edges and a crossing, such that neither edge

is incident to the crossing and the two edges abut the (two black or two white, resp.)

faces incident to the crossing. Associate to each element of EEB (EEW , resp.) an

arc whose interior lies in a black (white) face of S2\\D and whose endpoints lie

on non-incident edges of D. Likewise, associate to each element of ECEB (ECEW ,

resp.) an arc whose interior intersects D in a single point, a crossing, and otherwise

lies entirely in two black (white) faces of S2\\D, and whose endpoints lie on edges

of D which are not incident to this crossing. Thus, associated to each element of

EEB ∩ ECEW (EEW ∩ ECEB , resp.) is a simple closed curve which intersects

pFor edges, the data at [3] also records the orientation of the edge with a sign: + if the edge runs

counterclockwise along the boundary of the face, − if it runs clockwise.
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one black (white) face of S2\\D and two white (black) faces of S2\\D, and which

intersects D transversally in two edges e1, e2 and one crossing c, none of them

incident. In this way, each element of EEB ∩ECEW identifies a possible flype move

on D, as does each element of EEW ∩ ECEB .

The flype move changes the Gauss code by removing both c terms, re-inserting

them in the intervals of the Gauss code associated to e1 and e2, and then relabeling.

More precisely, with G = (c1, . . . , c2n), there exist indices 1 ≤ i1, i2 ≤ 2n − 1 such

that e1 joins ci1 and ci1+1, while e2 joins ci2 and ci2+1. Assume without loss of

generality that i1 < i2. There are also two indices 1 ≤ j1 < j2 ≤ 2n such that

cj1 = c = cj2 . There are two explicit possibilities for the Gauss code resulting from

the flype. If i1 < j1 < i2 < j2, then the new Gauss code is

(c1, . . . , ci1 , c, ci1+1, . . . , ĉj1 , . . . , ci2 , c, ci2+1, . . . , ĉj2 , . . . , c2n),

after relabeling. (The hats indicate entries to delete from the Gauss code.) Other-

wise, j1 < i1 < j2 < i2, and the new Gauss code is

(c1, . . . , ĉj1 , . . . , ci1 , c, ci1+1, . . . , ĉj2 , . . . , ci2 , c, c21+1, . . . , c2n),

after relabeling. See Fig. 15. This is how we construct, for each element of EEB ∩
ECEW and EEW∩ECEB , a Gauss code for the diagram produced by the associated

flype move on D.

Given a Gauss code G for an alternating diagram D0 of a prime knot K, we

are now ready to compute a list L of DT codes, one from each reduced alternating

diagram of K. (Each DT code will correspond to the reduced Gauss code of some

diagram of K.) Begin by computing the reduced form G0 of G, let T0 be its DT

code, and let L = [T0]. Then compute EEB∩ECEW and EEW ∩ECEB from G0 to

identify possible flype moves on D0. Compute the reduced form of the Gauss code

resulting from each flype move. If L does not already contain the DT code for this

reduced Gauss code, then append that DT code. After doing this for each possible

flype move on D0, repeat the process for each of the other diagrams described by

the DT codes in L, appending any new DT codes to L. The flyping theorem implies

that this process will produce a list L consisting of one DT code for each reduced

alternating diagram of K.
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Fig. 15. Four flype moves on the same diagram of 77.
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Now we can build the dictionary DDT: for each knot type K, say with Gauss

code G, we compute the list L as above from G, and then for each Ti in L we

update the dictionary DDT with the entry Ti : K. For example, for knots with

seven crossings, DDT looks like:
DT code knot DT code knot

[8, 10, 12, 14, 2, 4, 6] 71 [4, 10, 14, 12, 2, 8, 6] 72
[6, 10, 12, 14, 2, 4, 8] 73 [6, 12, 10, 14, 2, 4, 8] 74
[4, 10, 12, 14, 2, 8, 6] 75 [4, 10, 14, 12, 2, 6, 8] 75
[4, 8, 12, 2, 14, 6, 10] 76 [4, 8, 12, 10, 2, 14, 6] 76
[4, 8, 10, 12, 2, 14, 6] 77 [4, 8, 12, 14, 2, 6, 10] 77

The dictionary list DDT through at least 13 crossings is available at [3].

6.3. Splices from face data

The next step is to construct a dictionary Dsplice in which one can look up any

prime alternating knot K, say with crossing number n, and find n lists of knot

types, where each list describes the connect sum decomposition of the knot which

results from splicing a given diagram for K (the one described by its imported Gauss

code) at one of its n crossings.

Recall that we have used our imported data to construct a list DG of dictionaries

DG[n] which give us, for every prime alternating knot K with crossing number n,

the reduced Gauss code G of some reduced alternating diagram D of K (and a

list of the signs of the crossings in D). Given any i = 1, . . . , n, let c = ci. We can

write G = w1cw2cw3, where w2 is nonempty, as is at least one of w1 or w3. After

relabeling, w1w2w3 is a Gauss code for the diagram obtained from D via a u− type

splice at c; w2 denotes the reverse of w2. Let Gi be the reduced form of this Gauss

code.

The Gauss codes G1, . . . , Gn constructed in this way from G are the reduced

Gauss codes which describe the knot diagrams which result from each of the pos-

sible u− type splices on D. For each i = 1, . . . , n, decompose Gi into its connect

summands, as described in §6.1. Then compute the reduced Gauss code of each

summand, look up the associated DT code in DDT, and record the knot type. For
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Fig. 16. Given the diagram of the knot 77 with Gauss code (1, 2, 3, 1, 4, 5, 6, 3, 2, 4, 7, 6, 5, 7),
splicing at crossing 4 gives the diagram of 31#31 with Gauss code (1, 2, 3, 1, 2, 3, 4, 5, 6, 4, 5, 6).
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example, for knots with seven crossings, Dsplice looks like:

knot splice splice splice splice splice splice splice

71 01 01 01 01 01 01 01
72 61 51 51 61 61 61 61
73 61 31 31 31 31 61 61
74 62 31, 31 62 62 62 62 62
75 62 52 52 41 41 41 62
76 61 52 52 62 62 63 63
77 62 63 63 31, 31 63 63 62

6.4. Crosscap numbers from splice data

Finally, we are ready to construct a list Du− of dictionaries Du− [n], each listing

u−(K) for the unknot and all prime alternating knots K with n crossings. Because

all prime alternating knots K satisfy u−(K) = cc(K) by Theorem 1.1, we can then

copy these dictionaries to obtain the list Dcc of dictionaries Dcc[n] recording the

crosscap numbers of all prime alternating knots with n crossings, for n ≥ 3.

First, let Du− [0] = {‘01’ : 0}, with Du− [1] = [] = Du− [2]. Then starting

with crossing number n = 3 and increasing from there, compute Du− [n] as fol-

lows. For each K in Dsplice[n] and each i = 1, . . . , n, consider Dsplice[n][K][i] =

[K ′i,1, . . . ,K
′
i,mi

]. Each K ′i,j has fewer crossings ni,j than K, so we can look up each

Du− [ni,j ][K
′
i,j ]. This gives:

cc(K) = u−(K) = Du− [n](K) = 1+ min
i=1,...,n

mi∑
j=1

u−(K ′i,j) = 1+ min
i=1,...,n

mi∑
j=1

Du− [ni,j ][K
′
i,j ].

In other words, we build the dictionary Du− of splice-unknotting numbers induc-

tively, by looking at the connect summands of the diagrams obtained by u−-splices

on a given diagram, looking up these summands’ crosscap numbers in Du− , sum-

ming, minimizing, and adding 1.

6.5. A note about computational efficiency

Tabulating the list DDT of dictionaries DDT[n] is admittedly computationally ex-

pensive. Yet, this work has nothing to do with splices or crosscap numbers per se.

Starting from the data DDT and DG, we can justify the claim from the end of §2.2

regarding computational efficiency.

Recall that, given an n-crossing alternating diagram D, the main theorem of [4]

states that one of the 2n−1 non-Seifert states of D realizes cc(D), and the minimal

genus algorithm from [4] shortens this list of potentially optimal states from 2n−1 to

at most 2bn/3c. Thus, in order to compute cc(D), one might find a way to enumerate

these states and select one of minimal complexity. Putting aside the question of how

in fact to record and enumerate the states, this computation promises to grow, like

the number of potentially optimal states, exponentially with crossing number.
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Yet, supplied with the lists DG and DDT of dictionaries DG[n] and DDT[n],

the computational cost of each entry in Dsplice[n] grows in polynomial time with

respect to crossing number, n. Indeed, for each of the n crossings of a given diagram,

computing the spliced Gauss code w1w2w3, computing the reduced form of that

Gauss code, and computing the Gauss codes of the resulting connect summands are

all polynomial-time computations.

Supplied further with Dsplice and Dcc[m] for all m < n, the computational cost

of each entry in Dcc[n] also grows in polynomial time, since this simply involves

looking up and adding the crosscap numbers coming from the n different splices of

the given diagram.

Therefore, the computation cost for calculating the crosscap number of an al-

ternating knot grows, too, in polynomial time with respect to crossing number.

Note that the dictionary Dcc[n] relies on the dictionaries Dcc[m] with m < n,

and so this improved efficiency relies heavily on the fact that we are computing

crosscap numbers for the entire alternating knot tables, rather than for individual

knots, as well as on the fact that we have already tabulated DG and DDT.

Using Theorem 1.1 and the facts about Gauss codes and splices from §6.3, but

no further data (such as the lists of dictionaries DG and DDT), one can compute the

crosscap number of any particular alternating knot diagram, given its Gauss code, by

computing each possible splice-unknotting sequence and finding a sequence of min-

imal length. The crosscap numbers tabulated in the appendix were double-checked

with this sort of computation. This computation, however, grows exponentially with

crossing number.
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Appendix A: Tables of crosscap numbers

Table 1. Crosscap numbers n = cc(K) of 11-crossing prime alternating knots K

K n K n K n K n K n K n K n K n

111 5 112 5 113 5 114 4 115 5 116 5 117 4 118 4

119 3 1110 4 1111 5 1112 5 1113 4 1114 5 1115 4 1116 5

1117 5 1118 5 1119 5 1120 5 1121 4 1122 4 1123 5 1124 5

1125 5 1126 5 1127 5 1128 5 1129 4 1130 5 1131 5 1132 5

1133 4 1134 5 1135 5 1136 5 1137 4 1138 5 1139 4 1140 4

1141 5 1142 5 1143 5 1144 5 1145 4 1146 4 1147 5 1148 5

1149 5 1150 4 1151 5 1152 5 1153 4 1154 5 1155 4 1156 5

1157 4 1158 4 1159 3 1160 4 1161 4 1162 3 1163 4 1164 5

1165 4 1166 5 1167 4 1168 4 1169 5 1170 5 1171 5 1172 5

1173 5 1174 3 1175 4 1176 5 1177 5 1178 5 1179 5 1180 5

1181 4 1182 4 1183 4 1184 5 1185 5 1186 4 1187 5 1188 4

1189 5 1190 4 1191 5 1192 4 1193 4 1194 5 1195 4 1196 5

1197 3 1198 4 1199 4 11100 5 11101 5 11102 4 11103 4 11104 5

11105 5 11106 4 11107 4 11108 4 11109 5 11110 4 11111 4 11112 5

11113 4 11114 5 11115 4 11116 5 11117 5 11118 4 11119 4 11120 5

11121 5 11122 5 11123 4 11124 5 11125 5 11126 5 11127 4 11128 5

11129 4 11130 5 11131 5 11132 5 11133 4 11134 5 11135 5 11136 5

11137 4 11138 5 11139 4 11140 3 11141 4 11142 3 11143 4 11144 4

11145 4 11146 5 11147 5 11148 4 11149 5 11150 5 11151 5 11152 4

11153 4 11154 4 11155 5 11156 4 11157 5 11158 4 11159 5 11160 5

11161 3 11162 5 11163 4 11164 5 11165 4 11166 3 11167 5 11168 5

11169 4 11170 5 11171 5 11172 5 11173 5 11174 4 11175 5 11176 5

11177 4 11178 5 11179 3 11180 4 11181 4 11182 4 11183 5 11184 4

11185 4 11186 5 11187 5 11188 3 11189 5 11190 4 11191 4 11192 4

11193 4 11194 4 11195 3 11196 5 11197 5 11198 4 11199 4 11200 4

11201 4 11202 5 11203 3 11204 4 11205 4 11206 3 11207 4 11208 5

11209 5 11210 4 11211 4 11212 5 11213 5 11214 4 11215 4 11216 5

11217 5 11218 5 11219 4 11220 4 11221 4 11222 4 11223 3 11224 4

11225 3 11226 4 11227 5 11228 5 11229 4 11230 3 11231 4 11232 4

11233 5 11234 3 11235 4 11236 5 11237 4 11238 4 11239 5 11240 3

11241 4 11242 3 11243 4 11244 5 11245 4 11246 3 11247 2 11248 5

11249 4 11250 3 11251 5 11252 4 11253 5 11254 4 11255 5 11256 4

11257 4 11258 3 11259 3 11260 3 11261 4 11262 4 11263 3 11264 5

11265 4 11266 5 11267 5 11268 4 11269 4 11270 5 11271 5 11272 5

11273 5 11274 5 11275 5 11276 5 11277 5 11278 4 11279 3 11280 4

11281 4 11282 4 11283 5 11284 5 11285 5 11286 4 11287 5 11288 5

11289 5 11290 4 11291 4 11292 5 11293 3 11294 4 11295 4 11296 4

11297 5 11298 5 11299 4 11300 5 11301 5 11302 4 11303 4 11304 4

11305 4 11306 4 11307 4 11308 3 11309 4 11310 3 11311 4 11312 4

11313 3 11314 5 11315 5 11316 4 11317 4 11318 5 11319 5 11320 4

11321 5 11322 5 11323 3 11324 4 11325 4 11326 5 11327 5 11328 5

11329 5 11330 3 11331 4 11332 5 11333 3 11334 3 11335 4 11336 3

11337 4 11338 3 11339 3 11340 4 11341 3 11342 2 11343 3 11344 5

11345 4 11346 3 11347 4 11348 4 11349 5 11350 5 11351 5 11352 4

11353 5 11354 4 11355 3 11356 4 11357 4 11358 2 11359 3 11360 3

11361 3 11362 3 11363 3 11364 2 11365 3 11366 4 11367 1
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Table 2. Crosscap numbers n = cc(K) of 12-crossing prime alternating knots K

K n K n K n K n K n K n K n K n

121 5 122 4 123 5 124 6 125 6 126 5 127 6 128 5

129 4 1210 6 1211 5 1212 5 1213 5 1214 6 1215 5 1216 5

1217 5 1218 4 1219 5 1220 5 1221 6 1222 4 1223 5 1224 4

1225 6 1226 5 1227 5 1228 6 1229 6 1230 5 1231 4 1232 5

1233 5 1234 4 1235 5 1236 4 1237 5 1238 4 1239 5 1240 6

1241 5 1242 5 1243 6 1244 6 1245 5 1246 5 1247 6 1248 6

1249 5 1250 5 1251 5 1252 4 1253 5 1254 5 1255 5 1256 4

1257 5 1258 6 1259 6 1260 6 1261 5 1262 5 1263 6 1264 6

1265 5 1266 5 1267 5 1268 5 1269 6 1270 5 1271 5 1272 5

1273 6 1274 6 1275 5 1276 4 1277 6 1278 5 1279 5 1280 5

1281 5 1282 6 1283 6 1284 5 1285 5 1286 5 1287 5 1288 6

1289 5 1290 6 1291 5 1292 5 1293 4 1294 5 1295 5 1296 4

1297 4 1298 5 1299 6 12100 5 12101 5 12102 6 12103 6 12104 5

12105 4 12106 5 12107 6 12108 6 12109 5 12110 5 12111 5 12112 5

12113 6 12114 6 12115 5 12116 5 12117 6 12118 5 12119 5 12120 6

12121 5 12122 5 12123 4 12124 5 12125 6 12126 6 12127 5 12128 4

12129 5 12130 5 12131 5 12132 6 12133 5 12134 5 12135 5 12136 5

12137 5 12138 5 12139 6 12140 5 12141 5 12142 5 12143 4 12144 5

12145 5 12146 3 12147 4 12148 5 12149 6 12150 5 12151 5 12152 4

12153 4 12154 6 12155 5 12156 4 12157 5 12158 4 12159 5 12160 4

12161 5 12162 6 12163 5 12164 5 12165 4 12166 5 12167 5 12168 4

12169 3 12170 5 12171 5 12172 4 12173 5 12174 5 12175 6 12176 4

12177 5 12178 4 12179 5 12180 5 12181 6 12182 5 12183 4 12184 6

12185 5 12186 5 12187 5 12188 5 12189 5 12190 5 12191 6 12192 5

12193 4 12194 5 12195 4 12196 5 12197 4 12198 6 12199 6 12200 5

12201 4 12202 5 12203 5 12204 5 12205 4 12206 4 12207 4 12208 5

12209 6 12210 6 12211 5 12212 5 12213 5 12214 6 12215 5 12216 4

12217 5 12218 5 12219 5 12220 5 12221 5 12222 6 12223 4 12224 5

12225 6 12226 6 12227 6 12228 5 12229 6 12230 5 12231 5 12232 6

12233 6 12234 5 12235 5 12236 4 12237 5 12238 5 12239 4 12240 5

12241 5 12242 5 12243 5 12244 5 12245 5 12246 4 12247 5 12248 4

12249 5 12250 4 12251 5 12252 4 12253 5 12254 4 12255 4 12256 5

12257 6 12258 5 12259 4 12260 4 12261 5 12262 4 12263 6 12264 5

12265 6 12266 5 12267 5 12268 6 12269 5 12270 4 12271 5 12272 5

12273 6 12274 5 12275 5 12276 4 12277 5 12278 5 12279 5 12280 5

12281 5 12282 6 12283 5 12284 5 12285 5 12286 5 12287 6 12288 6

12289 5 12290 5 12291 4 12292 5 12293 6 12294 5 12295 6 12296 6

12297 5 12298 5 12299 4 12300 5 12301 5 12302 5 12303 5 12304 4

12305 5 12306 5 12307 5 12308 5 12309 5 12310 6 12311 5 12312 4

12313 5 12314 6 12315 6 12316 6 12317 5 12318 5 12319 5 12320 4

12321 4 12322 5 12323 6 12324 5 12325 5 12326 5 12327 5 12328 5

12329 5 12330 4 12331 5 12332 5 12333 6 12334 5 12335 5 12336 6

12337 6 12338 6 12339 4 12340 6 12341 6 12342 6 12343 5 12344 5

12345 4 12346 5 12347 5 12348 6 12349 5 12350 6 12351 5 12352 6

12353 5 12354 5 12355 4 12356 4 12357 5 12358 5 12359 6 12360 5

12361 6 12362 5 12363 5 12364 6 12365 4 12366 5 12367 4 12368 5

12369 3 12370 4 12371 4 12372 5 12373 4 12374 5 12375 4 12376 4

12377 5 12378 4 12379 3 12380 3 12381 5 12382 4 12383 5 12384 5

12385 5 12386 5 12387 5 12388 6 12389 6 12390 6 12391 5 12392 4

12393 6 12394 5 12395 5 12396 5 12397 5 12398 4 12399 5 12400 5

12401 5 12402 5 12403 5 12404 4 12405 5 12406 6 12407 5 12408 6

12409 4 12410 5 12411 5 12412 5 12413 5 12414 4 12415 6 12416 5

12417 6 12418 5 12419 5 12420 4 12421 4 12422 3 12423 4 12424 5
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Table 3. Table 2 Continued. Crosscap numbers n = cc(K) of 12-crossing prime alternating knots K

K n K n K n K n K n K n K n K n

12425 4 12426 6 12427 6 12428 5 12429 5 12430 5 12431 6 12432 6

12433 6 12434 5 12435 6 12436 4 12437 5 12438 5 12439 6 12440 5

12441 5 12442 4 12443 4 12444 4 12445 5 12446 5 12447 4 12448 4

12449 5 12450 5 12451 5 12452 6 12453 5 12454 4 12455 5 12456 6

12457 5 12458 6 12459 5 12460 6 12461 6 12462 5 12463 4 12464 5

12465 6 12466 5 12467 6 12468 5 12469 5 12470 6 12471 4 12472 6

12473 5 12474 6 12475 5 12476 4 12477 6 12478 5 12479 5 12480 6

12481 4 12482 4 12483 6 12484 6 12485 5 12486 6 12487 6 12488 4

12489 5 12490 5 12491 5 12492 5 12493 4 12494 5 12495 5 12496 6

12497 6 12498 5 12499 6 12500 5 12501 5 12502 4 12503 4 12504 5

12505 5 12506 5 12507 4 12508 5 12509 6 12510 6 12511 5 12512 5

12513 5 12514 5 12515 5 12516 6 12517 4 12518 5 12519 4 12520 4

12521 4 12522 5 12523 5 12524 5 12525 4 12526 6 12527 5 12528 5

12529 5 12530 5 12531 5 12532 4 12533 5 12534 5 12535 5 12536 4

12537 5 12538 4 12539 5 12540 5 12541 4 12542 4 12543 6 12544 5

12545 5 12546 6 12547 6 12548 4 12549 4 12550 5 12551 4 12552 4

12553 5 12554 5 12555 5 12556 5 12557 4 12558 5 12559 5 12560 5

12561 5 12562 5 12563 4 12564 4 12565 5 12566 5 12567 5 12568 5

12569 5 12570 5 12571 6 12572 5 12573 4 12574 4 12575 5 12576 3

12577 4 12578 5 12579 5 12580 3 12581 4 12582 4 12583 5 12584 5

12585 5 12586 5 12587 4 12588 6 12589 5 12590 4 12591 4 12592 6

12593 5 12594 4 12595 4 12596 3 12597 4 12598 5 12599 5 12600 4

12601 4 12602 5 12603 5 12604 6 12605 4 12606 5 12607 5 12608 5

12609 5 12610 4 12611 6 12612 4 12613 5 12614 6 12615 6 12616 5

12617 5 12618 5 12619 4 12620 5 12621 5 12622 5 12623 5 12624 5

12625 5 12626 6 12627 6 12628 5 12629 6 12630 5 12631 6 12632 4

12633 5 12634 4 12635 5 12636 3 12637 5 12638 5 12639 5 12640 4

12641 3 12642 4 12643 4 12644 4 12645 6 12646 5 12647 4 12648 5

12649 4 12650 5 12651 4 12652 5 12653 4 12654 5 12655 5 12656 5

12657 5 12658 5 12659 6 12660 4 12661 5 12662 6 12663 4 12664 4

12665 5 12666 6 12667 4 12668 5 12669 3 12670 5 12671 5 12672 6

12673 5 12674 6 12675 5 12676 5 12677 5 12678 5 12679 4 12680 5

12681 4 12682 4 12683 4 12684 5 12685 6 12686 6 12687 6 12688 5

12689 4 12690 4 12691 4 12692 5 12693 4 12694 4 12695 6 12696 5

12697 6 12698 5 12699 5 12700 5 12701 5 12702 4 12703 6 12704 5

12705 6 12706 5 12707 5 12708 4 12709 5 12710 6 12711 5 12712 6

12713 5 12714 4 12715 5 12716 3 12717 4 12718 5 12719 5 12720 4

12721 5 12722 2 12723 3 12724 4 12725 4 12726 4 12727 5 12728 5

12729 5 12730 5 12731 4 12732 4 12733 3 12734 6 12735 4 12736 5

12737 5 12738 4 12739 4 12740 4 12741 6 12742 4 12743 4 12744 3

12745 3 12746 5 12747 5 12748 4 12749 4 12750 4 12751 5 12752 4

12753 3 12754 5 12755 6 12756 5 12757 5 12758 4 12759 3 12760 4

12761 5 12762 3 12763 4 12764 5 12765 6 12766 5 12767 4 12768 5

12769 5 12770 6 12771 5 12772 4 12773 4 12774 4 12775 4 12776 5

12777 4 12778 6 12779 5 12780 6 12781 5 12782 4 12783 5 12784 5

12785 5 12786 5 12787 4 12788 6 12789 4 12790 5 12791 3 12792 4

12793 6 12794 4 12795 5 12796 3 12797 4 12798 6 12799 5 12800 4

12801 4 12802 3 12803 2 12804 5 12805 4 12806 5 12807 5 12808 4

12809 5 12810 5 12811 4 12812 5 12813 4 12814 5 12815 4 12816 5

12817 4 12818 4 12819 5 12820 4 12821 5 12822 4 12823 4 12824 4

12825 4 12826 3 12827 3 12828 5 12829 4 12830 5 12831 5 12832 4

12833 4 12834 4 12835 3 12836 4 12837 4 12838 2 12839 3 12840 4

12841 4 12842 3 12843 3 12844 5 12845 3 12846 5 12847 4 12848 5
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Table 4. Table 2 Continued. Crosscap numbers n = cc(K) of 12-crossing prime alternating knots K

K n K n K n K n K n K n K n K n

12849 5 12850 4 12851 5 12852 5 12853 4 12854 4 12855 4 12856 5

12857 5 12858 4 12859 3 12860 4 12861 5 12862 5 12863 4 12864 5

12865 5 12866 6 12867 6 12868 6 12869 4 12870 5 12871 5 12872 4

12873 4 12874 6 12875 5 12876 4 12877 4 12878 3 12879 4 12880 5

12881 3 12882 4 12883 4 12884 5 12885 5 12886 5 12887 6 12888 5

12889 4 12890 5 12891 5 12892 5 12893 6 12894 5 12895 6 12896 4

12897 5 12898 5 12899 5 12900 6 12901 5 12902 5 12903 6 12904 5

12905 4 12906 6 12907 5 12908 5 12909 4 12910 5 12911 5 12912 4

12913 4 12914 5 12915 6 12916 5 12917 5 12918 5 12919 5 12920 4

12921 5 12922 6 12923 4 12924 5 12925 5 12926 4 12927 4 12928 5

12929 4 12930 4 12931 5 12932 4 12933 5 12934 6 12935 5 12936 5

12937 3 12938 4 12939 5 12940 4 12941 4 12942 4 12943 5 12944 5

12945 5 12946 4 12947 4 12948 5 12949 5 12950 4 12951 5 12952 4

12953 5 12954 5 12955 4 12956 5 12957 5 12958 5 12959 5 12960 6

12961 6 12962 5 12963 4 12964 5 12965 6 12966 5 12967 5 12968 5

12969 4 12970 3 12971 4 12972 4 12973 5 12974 5 12975 4 12976 5

12977 4 12978 4 12979 5 12980 5 12981 4 12982 5 12983 5 12984 3

12985 4 12986 5 12987 5 12988 4 12989 5 12990 5 12991 4 12992 6

12993 5 12994 6 12995 5 12996 5 12997 5 12998 6 12999 5 121000 4

121001 4 121002 5 121003 5 121004 6 121005 5 121006 5 121007 4 121008 5

121009 4 121010 5 121011 4 121012 4 121013 4 121014 5 121015 4 121016 5

121017 3 121018 4 121019 6 121020 5 121021 6 121022 5 121023 4 121024 4

121025 5 121026 4 121027 3 121028 4 121029 3 121030 3 121031 3 121032 4

121033 4 121034 4 121035 4 121036 4 121037 5 121038 5 121039 4 121040 4

121041 5 121042 5 121043 5 121044 5 121045 4 121046 5 121047 5 121048 5

121049 5 121050 5 121051 4 121052 5 121053 5 121054 5 121055 5 121056 6

121057 5 121058 5 121059 4 121060 5 121061 6 121062 4 121063 4 121064 5

121065 5 121066 5 121067 6 121068 4 121069 6 121070 5 121071 5 121072 5

121073 5 121074 4 121075 4 121076 6 121077 5 121078 5 121079 6 121080 4

121081 5 121082 4 121083 4 121084 4 121085 5 121086 5 121087 5 121088 6

121089 4 121090 5 121091 5 121092 5 121093 5 121094 4 121095 3 121096 5

121097 5 121098 6 121099 5 121100 5 121101 5 121102 6 121103 5 121104 5

121105 6 121106 4 121107 3 121108 4 121109 5 121110 5 121111 4 121112 5

121113 5 121114 3 121115 4 121116 5 121117 6 121118 4 121119 5 121120 4

121121 5 121122 5 121123 6 121124 6 121125 4 121126 4 121127 4 121128 3

121129 4 121130 4 121131 3 121132 4 121133 5 121134 3 121135 4 121136 5

121137 4 121138 3 121139 4 121140 4 121141 5 121142 3 121143 5 121144 4

121145 3 121146 4 121147 4 121148 3 121149 2 121150 5 121151 4 121152 6

121153 4 121154 5 121155 6 121156 4 121157 2 121158 3 121159 4 121160 4

121161 3 121162 3 121163 4 121164 4 121165 3 121166 3 121167 6 121168 5

121169 4 121170 4 121171 3 121172 5 121173 5 121174 4 121175 5 121176 4

121177 5 121178 4 121179 3 121180 5 121181 4 121182 5 121183 4 121184 5

121185 5 121186 5 121187 6 121188 6 121189 5 121190 5 121191 4 121192 5

121193 6 121194 4 121195 5 121196 5 121197 5 121198 5 121199 5 121200 4

121201 5 121202 5 121203 4 121204 4 121205 3 121206 6 121207 5 121208 5

121209 5 121210 4 121211 6 121212 5 121213 5 121214 2 121215 4 121216 4

121217 5 121218 4 121219 4 121220 3 121221 5 121222 5 121223 4 121224 4

121225 6 121226 4 121227 5 121228 5 121229 6 121230 5 121231 5 121232 4

121233 3 121234 4 121235 4 121236 4 121237 5 121238 4 121239 5 121240 3

121241 4 121242 2 121243 3 121244 4 121245 5 121246 4 121247 3 121248 5

121249 6 121250 5 121251 6 121252 6 121253 5 121254 4 121255 4 121256 4

121257 5 121258 5 121259 4 121260 5 121261 5 121262 4 121263 5 121264 4

121265 5 121266 4 121267 4 121268 5 121269 5 121270 6 121271 5 121272 5

121273 3 121274 4 121275 5 121276 3 121277 4 121278 2 121279 3 121280 6

121281 4 121282 3 121283 3 121284 4 121285 3 121286 2 121287 3 121288 4



May 26, 2020 10:44 WSPC/INSTRUCTION FILE CrosscapNumbersofAl-
ternatingKnotsViaUnknottingSplices26May2020

30 Thomas Kindred

Acknowledgements

Thank you to Dr. Noboru Ito and his coauthor Yusuke Takimura for sharing their

work [9, 10]. Thank you also to the referee for their helpful comments.

References

[1] https://www.indiana.edu/~knotinfo/

[2] https://regina-normal.github.io/data.html

[3] https://www.thomaskindred.com

[4] C. Adams, C., T. Kindred, A classification of spanning surfaces for alternating links,
Alg. Geom. Topology 13 (2013), no. 5, 2967-3007.

[5] B. Burton, M. Ozlen, Computing the crosscap number of a knot using integer pro-
gramming and normal surfaces, arXiv:1107.2382v2.

[6] D. Futer, E. Kalfagianni, J. Purcell, Guts of surfaces and the colored Jones polynomial,
Lecture Notes in Mathematics, 2069. Springer, Heidelberg, 2013.

[7] D. Futer, E. Kalfagianni, J. Purcell, Quasifuchsian state surfaces, Trans. Amer. Math.
Soc. 366 (2014), no. 8, 4323-4343.

[8] N. Ito, Y. Takimura, Crosscap number and knot projections, Internat. J. Math. 29
(2018), no. 12, 1850084, 21 pp.

[9] N. Ito, Y. Takimura, A lower bound of crosscap numbers of alternating
knots, to appear in J. Knot Theory Ramifications, https://doi.org/10.1142/

S0218216519500925.
[10] N. Ito, Y. Takimura, Crosscap number of knots and volume bounds, preprint.
[11] E. Kalfagianni, C. Lee, Crosscap numbers and the Jones polynomial, Adv. Math. 286

(2016), 308-337.
[12] W. Menasco, Closed incompressible surfaces in alternating knot and link complements,

Topology 23 (1984), no. 1, 37-44.
[13] W. Menasco, M. Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math. Soc.

(N.S.) 25 (1991), no. 2, 403-412.
[14] W. Menasco, M. Thistlethwaite, The classification of alternating links, Ann. of Math.

(2) 138 (1993), no. 1, 113-171.
[15] H. Murakami, A. Yasuhara, Crosscap number of a knot, Pacific J. Math. 171 (1995),

no. 1, 261-273.
[16] M. Ozawa, Essential state surfaces for knots and links, J. Aust. Math. Soc. 91 (2011),

no. 3, 391-404.
[17] P.G. Tait, On Knots I, II, and III, Scientific papers 1 (1898), 273-347.


