Crosscap numbers of alternating knots via unknotting splices

Thomas Kindred
Department of Mathematics, University of Nebraska
Lincoln, Nebraska 68588-0130, USA

Abstract

Ito-Takimura recently defined a splice-unknotting number $u^{-}(D)$ for knot diagrams. They proved that this number provides an upper bound for the crosscap number of any prime knot, asking whether equality holds in the alternating case. We answer their question in the affirmative. (Ito has independently proven the same result.) As an application, we compute the crosscap numbers of all prime alternating knots through at least 13 crossings, using Gauss codes.

Keywords: knot, alternating, splice, crosscap number, state surface, Gauss code
Mathematics Subject Classification 2000: 57M25, 57M27

1. Introduction

Let $K \subset S^{3}$ be a knot. An embedded, compact, connected surface $F \subset S^{3}$ is said to span K if $\partial F=K$. The crosscap number of K, denoted $c c(K)$, is the smallest value of $\beta_{1}(F)$ among all 1-sided spanning surfaces for K. ${ }^{\text {ab }}$

A theorem of Adams and the author [4] states that, given an alternating diagram D of a knot K, the crosscap number of K is realized by some state surface from D. (Section 2 reviews background.) Moreover, given such D and K, an algorithm in [4] finds a 1 -sided state surface F from D with $\beta_{1}(F)=c c(K)$.

Ito-Takimura recently introduced a u^{-}type splice-unknotting move and used this move to define a splice-unknotting number $u^{-}(D)$ for knot diagrams [8]. Minimizing this number across all diagrams of a given knot K defines a knot invariant, $u^{-}(K)$. After proving that $u^{-}(D) \geq c c(K)$ holds for any diagram D of any nontrivial knot K, Ito-Takimura ask whether this inequality is ever strict in the case of prime alternating diagrams. The main theorem of this paper answers their question in the negative, and states that $u^{-}(D)$ is minimal among all diagrams of K :

Theorem 1.1. If D is an alternating diagram of a prime knot K, then

$$
u^{-}(D)=u^{-}(K)=c c(K)
$$

[^0]
2 Thomas Kindred

The main idea behind Theorem 1.1 is that, when D is alternating, each spliceunknotting sequence that realizes $u^{-}(D)$ corresponds to a sequence of cuts (at vertical crossing arcs) which reduces some minimal-complexity state surface to a disk, via 1 -sided spanning surfaces for other knots. The main difficulty in the proof is that for some diagrams, like the one in Fig. 1, any such sequence will include non-prime diagrams. The trouble this presents is that $u^{-}(D)$ is additive under diagrammatic connect sum, whereas crosscap number is not additive under connect sum. Addressing this issue requires some work. Lemmas addressing tangles appear in $\S 3$, with further technical lemmas in $\S 4$. The proof of Theorem 1.1 follows in $\S 5$.

Ito-Takimura have independently proven the same result [10]. Their proof uses generalized splice moves; unlike the u^{-}type move from [8] (see $\S 2$), each of these generalized moves either respects orientation or involves a new choice of orientation, and some of the moves change the number of link components. In [9], Ito-Takimura explore a related move of "type B_{l}," which generalizes splice moves in a different way and correspond to unoriented band sum operations on spanning surfaces. These B_{l} type moves lead to a knot invariant $B_{l}(K)$ which is closely related to $u^{-}(K)$, and when K is alternating, $B_{l}(K)$ equals its "overall" (orientable and nonorientable) genus $\beta_{1}(K)$ - see (2.1). Moreover, Ito-Takimura show that B_{l} is additive under connect sum of alternating knots. This allows them to determine the crosscap number of any (prime or non-prime) alternating knot K in terms of $B_{l}(K)$.

Section 6 describes how Theorem 1.1 enables an efficient computation of crosscap numbers for the table of prime alternating knots, using Gauss codes and data from the faces determined by the associated knot diagrams. An appendix lists the crosscap numbers for prime alternating knots through 12 crossings. ${ }^{\text {c }}$ Previously, [4] determined all of these values in theory, listing them through 10 crossings, and knotinfo listed crosscap numbers for 174 of the 367 prime alternating knots with 11 crossings and for 316 of the 1288 with 12 crossings [1]. Most of these values,

[^1]

Fig. 1. This state surface for the 9_{10} knot realizes crosscap number, but cutting it at any crossing produces a state surface for either a 2 -component link or a non-prime knot.
and the upper and lower bounds for the remaining 11- and 12-crossing knots, come from either Burton-Ozlen, using normal surfaces [5], or from Kalfagianni-Lee, using properties of the colored Jones polynomial [11]. Interestingly, every new crosscap number we compute through 12 crossings matches the upper bound previously given on knotinfo.

2. Background

2.1. Splices, smoothings, and states

Let $D \subset S^{2}$ be an n-crossing diagram of a knot $K \subset S^{3}$. Let c be a crossing of D, and let νc be a disk about c in S^{2} such that $D \cap \nu c$ consists of two arcs which cross only at c. Up to isotopy, there are two ways to get an ($n-1$)-crossing knot diagram by replacing these two arcs within νc with a pair of disjoint arcs. These two replacements are called the splices of D at c :

$$
)(\leftarrow \text { 以 } \asymp
$$

Orient D arbitrarily. Of the two splices of D at a given crossing, one respects the orientation on D and yields a diagram of a two-component link; this splice is said to be of Seifert type. The other splice yields a knot diagram and does not respect orientation. If this non-Seifert-type splice has the same effect as a Reidemeister-I move (with planar isotopy), it is said to have type $R I^{-}$; otherwise this splice has type u^{-}(called type S^{-}in [9]). Note that splice types are independent of which orientation is chosen for D. See Fig. 2.

There are also two smoothings of D at any crossing c : these are the same as the splices of D at c, except with an extra A - or B-labeled arc in νc glued to the resulting diagram:

$$
x+x \rightarrow x
$$

There are 2^{n} ways to smooth all the crossings in D, each of which results in a diagram x called a state. A state thus consists of a disjoint union of simple closed curves joined by A - and B - labeled arcs, one arc from each crossing in D. The arcs and circles in x are called state arcs and state circles, respectively.

2.2. State surfaces

Given a state x of a knot diagram, D, construct a state surface F_{x} from x as follows. (See Fig. 3.) First, as a preliminary step, perturb D near each crossing point

Fig. 2. Seifert $\left(S^{-}\right)$and non-Seifert (u^{-}and $\left.\mathrm{RI}^{-}\right)$type splices

4 Thomas Kindred

to obtain an embedding of K in a thin neighborhood of S^{2}, such that projection $\pi: \nu S^{2} \rightarrow S^{2}$ sends K to D. Note that the fiber over each crossing point c contains a properly embedded arc in the knot complement; call this arc the vertical arc associated to c.

Next, cap the state circles of x with disjoint disks on the same side of S^{2}. Then, near each state arc in x, glue on a half-twisted band (called a crossing band) which contains the associated vertical arc, such that the resulting surface F_{x} spans K, $\partial F_{x}=K$.

Given a state surface F_{x} from a reduced ${ }^{\mathrm{d}}$ knot diagram, partition the vertical arcs in F_{x} as $\mathcal{A}_{x}=\mathcal{A}_{x, S} \sqcup \mathcal{A}_{x, u}$, so $\mathcal{A}_{x, S}$ contains those of Seifert-type and $\mathcal{A}_{x, u}$ those of u^{-}type.

Observation 2.1. Given a state surface F_{x} from a reduced knot diagram, the following are equivalent:
(1) The state surface F_{x} is 2 -sided.
(2) The state x has only Seifert-type smoothings, i.e. $\mathcal{A}_{x, u}=\varnothing$.
(3) The boundary of each disk of $S^{2} \backslash \backslash x$ contains an even number of state arcs. ${ }^{\text {e }}$

Regarding the last condition, note that the boundaries of the components of $S^{2} \backslash \backslash x$ give a generating set for $H_{1}\left(F_{x}\right)$, and each generator corresponds to an annulus or a mobius band in F_{x} according to whether it contains an even number of state arcs (see Fig. 3).

If F is a spanning surface for K, then one can increase the complexity of F by attaching a (positive or negative) crosscap or a handle. The inverses of these local moves, called compression and ∂-compression, are shown in Fig. 4. Note that attaching a \pm crosscap increases $\beta_{1}(F)$ by 1 and changes slope (F) by ± 2, while attaching a handle increases $\beta_{1}(F)$ by 2 and does not change slope $(F) .{ }^{\mathrm{f}}$
${ }^{\mathrm{d}}$ A knot diagram D is reduced if every crossing is incident to four distinct disks of $S^{2} \backslash \backslash D$.
${ }^{\text {e }}$ Notation: Whenever $Y \subset X, X \backslash \backslash Y$ denotes " X-cut-along- Y." This is the metric closure of $X \backslash Y$,
which is homeomorphic to $X \backslash \nu Y$, where νY is a regular open neighborhood of Y in X.
${ }^{\mathrm{f}}$ When F spans a knot K, slope (F) denotes the boundary slope of F, which is the linking number
of K with a co-oriented pushoff of K in F.

Fig. 3. Constructing a state surface F_{x} (right) from a state x (middle-left) of a knot diagram (left). Note regarding Observation 2.1 that each starred disk of $S^{2} \backslash \backslash x$ contains an odd number of state arcs and corresponds to a mobius band in F_{x}.

There are two traditional notions of essentiality for spanning surfaces; we will work with the weaker, "geometric" notion, defined as follows. If F admits (resp. does not admit) a compression move, then F is called (in)compressible. If F admits (resp. does not admit) a ∂-compression move, then F is called geometrically ∂ (in)compressible. If F is (resp. is not) incompressible and ∂-incompressible, then F is called (in)essential. ${ }^{\text {g }}$

Proposition 2.2. Let F_{x} be a 1-sided state surface from a reduced alternating diagram D of a prime knot K, with $\beta_{1}\left(F_{x}\right)=c c(K)$. Then the following are equivalent:
(1) The state surface F_{x} is essential.
(2) The state x is adequate (i.e. each state arc joins distinct state circles).
(3) The state x has more than one non-Seifert smoothing.

Proof. Any state surface F_{x} from an alternating diagram is a plumbing of checkerboard surfaces and is essential if and only if each checkerboard plumband is essential $[6,7,16]$. Moreover, since F_{x} comes from an alternating diagram, the checkerboard plumbands do as well, and so the checkerboard plumbands are all essential if and only if their underlying states are adequate; this is the case if and only if x is adequate. Thus (1) and (2) are equivalent.

If x is non-adequate, then it differs from the Seifert state at exactly one crossing, since $\beta_{1}\left(F_{x}\right)=c c(K)$, so there is exactly one non-Seifert smoothing. Conversely, if x has at most one non-Seifert smoothing, then x has exactly one non-Seifert smoothing, since F_{x} is 1-sided. Hence, x differs from the Seifert state at exactly one crossing, so x is non-adequate. Thus (2) and (3) are equivalent.

The main theorem in [4] states that, when a knot K has an alternating diagram

[^2]

Fig. 4. Compressing and ∂-compressing a spanning surface

6 Thomas Kindred
D, the state surfaces from D, stabilized with crosscaps and handles, classify the spanning surfaces of K up to homeomorphism type and boundary slope:
Theorem 2.3 (Adams-Kindred [4]). Let D be an alternating diagram of a knot K, and let F be a spanning surface for K. Then, by choosing an appropriate state surface from D and attaching a (possibly empty) collection of crosscaps or handles, one can construct a spanning surface F^{\prime} for K with the same number of sides (1 or 2) as F and with $\beta_{1}\left(F^{\prime}\right)=\beta_{1}(F)$ and $\operatorname{slope}\left(F^{\prime}\right)=\operatorname{slope}(F) .^{\mathrm{h}}$

In particular:
Corollary 2.4 (Adams-Kindred [4]). If D is an alternating diagram of a nontrivial knot K, then $c c(K)$ is realized by a state surface from D. That is, D has a state x whose state surface F_{x} is 1 -sided with $\beta_{1}\left(F_{x}\right)=c c(K) .{ }^{\text {i }}$

Define the following invariant of any knot K :

$$
\begin{equation*}
\beta_{1}(K):=\min _{\text {surfaces } F \text { spanning } K} \beta_{1}(F) . \tag{2.1}
\end{equation*}
$$

Note that $\beta_{1}(K)=\min \{c c(K), 2 g(K)\}$, where $g(K)$ is the genus of K. Note also that $\beta_{1}(K)<c c(K)$ if and only if $\beta_{1}(K)=2 g(K)=c c(K)-1$, i.e. iff all of the surfaces realizing $\beta_{1}(K)$ are 2-sided. Moreover, $\beta_{1}\left(K_{1} \# K_{2}\right)=\beta_{1}\left(K_{1}\right)+\beta_{1}\left(K_{2}\right)$, by a standard argument. Therefore:

Proposition 2.5. [Murakami-Yasuhara [15]] Any knots K_{1}, K_{2} satisfy $c c\left(K_{1} \# K_{2}\right) \leq c c\left(K_{1}\right)+c c\left(K_{2}\right)$. Equality holds if and only if $c c\left(K_{i}\right)=\beta_{1}\left(K_{i}\right)$ for $i=1,2$.

Corollary 2.6. A knot $K=\#_{i \in I} K_{i}$ satisfies $c c(K)=\sum_{i \in I} c c\left(K_{i}\right)$ if and only if K is prime or:

$$
\beta_{1}\left(K_{i}\right)=c c\left(K_{i}\right) \text { for each } i \in I
$$

If D is an n-crossing knot diagram, and x is a state of D with ℓ state circles, then its state surface satisfies

$$
\beta_{1}\left(F_{x}\right)=1-\chi\left(F_{x}\right)=1-(\ell-n)=n+1-\ell
$$

Thus, in order to compute $c c(K)$ when K is alternating, it suffices to find a nonSeifert state x of D with a maximal number of state circles. Although there are $2^{n}-1$ possible states to choose from, [4] describes an algorithm that shortens the list of potentially optimal states to at most $2^{\lfloor n / 3\rfloor}$. A tricky question then arises as to how one might record and enumerate the states. Moreover, using this algorithm to compute the crosscap numbers of all alternating knots through a given number

[^3]of crossings would unfortunately require a separate computation for each distinct alternating knot.

Ito-Takimura's splice-unknotting number $u^{-}(D)$, together with Theorem 1.1, will enable an alternate method (involving splice-unknotting sequences rather than states) for calculating crosscap numbers. In particular, this method will be wellsuited to tabulating crosscap numbers of all alternating knots, by using crosscap numbers of lower-crossing knots when calculating those of with higher crossing numbers. In fact, by starting with sufficient data relating alternating knots with their DT codes and Gauss codes, it is possible to tabulate these crosscap numbers in such a way that the computation cost for each knot grows in polynomial time with respect to crossing number. Details follow in $\S 6$.

2.3. Ito-Takimura's splice-unknotting number

Let $D \subset S^{2}$ be an n-crossing diagram of a knot $K \subset S^{3}$. Ito-Takimura define the splice-unknotting number $u^{-}(D)$ as follows. Starting with D, there are n ! distinct sequences of non-Seifert splices, $D=D_{n} \rightarrow D_{n-1} \rightarrow \cdots \rightarrow D_{1} \rightarrow D_{0}=\bigcirc$, all of which terminate with the trivial diagram of the unknot. Each splice in each sequence is of either RI^{-}type or u^{-}type. Ito-Takimura define $u^{-}(D)$ to be the minimum number of u^{-}splices among these splice-unknotting sequences. ${ }^{\mathrm{j}}$ They prove:

Theorem 2.7 (Ito-Takimura). If D is a diagram of a nontrivial knot K, then

$$
c c(K) \leq u^{-}(D)
$$

The point is this: if $D=D_{n} \rightarrow D_{n-1} \rightarrow \cdots \rightarrow D \rightarrow D_{0}=\bigcirc$ is a spliceunknotting sequence that realizes $u^{-}(D)$, then one can construct a 1 -sided state
${ }^{j}$ Since the over-under information at each crossing is immaterial in this definition, the spliceunknotting number $u^{-}(D)$ is most naturally defined on knot projections, rather than on knot diagrams, and indeed this is how Ito-Takimura defined it.

Fig. 5. Ito-Takimura's construction performs an isotopy for each RI^{-}-splice.

Fig. 6. Ito-Takimura's construction attaches a crossing band for each u^{-}splice.
surface F_{n} for D with $\beta_{1}\left(F_{n}\right)=u^{-}(D)$ as follows. For each D_{i}, let K_{i} be the underlying knot. Let F_{0} be a disk spanning the unknot K_{0}. For each splice $D_{i} \rightarrow$ D_{i-1}, construct F_{i} from F_{i-1} by:

- performing a local isotopy move, as in Fig. 5, if the splice has type RI^{-}; or
- gluing a crossing band to F_{i-1}, as in Fig. 6, if the splice has type u^{-}.

This sequence must include at least one gluing move, or else F_{n} would be a disk. Moreover, the first gluing move $F_{k-1} \rightarrow F_{k}$ produces a mobius band. Thus, all surfaces F_{i} with $i \geq k$ are 1-sided. Hence, the sequence $F_{0} \rightarrow \cdots \rightarrow F_{n}$ terminates with a 1-sided surface F_{n} that spans K and has $\beta_{1}\left(F_{n}\right)=u^{-}(D)$. Therefore, $c c(K) \leq \beta_{1}\left(F_{n}\right)=u^{-}(D)$.

Define the splice-unknotting number of any knot $K \subset S^{3}$ to be:

$$
u^{-}(K)=\min _{\text {diagrams } D \text { of } K} u^{-}(D)
$$

Observe that this is a knot invariant. Also note:
Corollary 2.8. For any nontrivial knot $K, c c(K) \leq u^{-}(K)$.
Proof. Theorem 2.7 gives:

$$
c c(K) \leq \min _{\text {diagrams } D \text { of } K} u^{-}(D)=u^{-}(K)
$$

Ito-Takimura prove that $u^{-}(D)$ is additive under diagrammatic connect sum, although crosscap number is not additive under connect sum (see Proposition 2.5). With this in mind, Ito-Takimura ask:

Question 2.1 (Ito-Takimura). Does there exist an alternating diagram D of a prime knot K such that $u^{-}(D)>c c(K)$?

Theorem 1.1 will answer this question in the negative.

3. Boundary connect summands and tangle subsurfaces

Assume throughout $\S 3$, that D is an alternating diagram of a nontrivial knot K, and F_{x} is a 1 -sided essential state surface from D. Also, given a u^{-}type vertical arc $\alpha \subset F_{x}$, denote $F_{x} \backslash \backslash \alpha=F_{x_{\alpha}}$ and $\partial F_{x_{\alpha}}=K_{\alpha}$.

Note that $x=x_{\alpha} \cup \beta$, where $\beta \subset x$ is the state arc that corresponds to the vertical arc $\alpha \subset F_{x}$, and that cutting F_{x} at α corresponds to performing a u^{-}splice on D at the associated crossing. This splice yields the underlying diagram D_{α} for x_{α}. Note also that D_{α} is alternating, but not necessarily prime or reduced.

Given a compact and connected subset $U \subset S^{2}$ whose boundary is disjoint from all state arcs in x, let x^{U} denote the union of all state circles and state arcs of x that intersect U, and let F_{x}^{U} denote the associated state surface, which is a subset of F_{x}. With this notation, we define diagrammatic notions of boundary connect sum and tangle decompositions for state surfaces, and characterize a few of their properties.

Although, strictly speaking, we will not need this fact, it is worth noting that these diagrammatic notions are more general than they seem a priori, because D is alternating. The basic point here is that, by work of Menasco [12], any 2- or 4-punctured sphere can be isotoped in the knot complement to intersect S^{2} in a single circle; hence, every connect sum or tangle decomposition of the alternating knot K can be realized diagrammatically. When F_{x} is essential, every boundary connect sum or tangle decomposition of F_{x} can also be realized diagrammatically. For our purposes, however, it is more straightforward just to define these notions diagrammatically in the first place.

3.1. Boundary connect summands

A boundary connect summand of F_{x} is any F_{x}^{U}, where:

- each component of ∂U is disjoint from state arcs and intersects x transversally in two points,
- F_{x}^{U} is connected but not simply connected,
- for any simple closed curve $\gamma \subset U$ which is disjoint from state arcs and intersects x transversally in exactly two points, all of the non-nugatory state arcs in U lie on the same side of $\gamma .{ }^{\mathrm{k}}$

Note that the last two conditions in the definition imply that any boundary connect summand F_{x}^{U} is prime, meaning that if $F_{x}^{U^{\prime}}$ is a boundary connect summand of F_{x}^{U}, then F_{x}^{U} and $F_{x}^{U^{\prime}}$ are isotopic in F_{x}.

Observation 3.1. Suppose that F_{x} is prime, but that, for some u^{-}type vertical arc $\alpha, F_{x_{\alpha}}$ is not prime. Then every boundary connect summand of $F_{x_{\alpha}}$ has the form $F_{x_{\alpha}}^{U}$, where U is a disk or an annulus, and each component of ∂U intersects the state arc $\beta=x \backslash x_{\alpha}$. Moreover, when D is oriented, both points of $D \cap \partial U$ where D points out of U lie on the same state circle, and the orientation of one of the two strands of $D \cap U$ is reversed in $D_{\alpha} \cap U$.

See Fig. 7. In particular:
Observation 3.2. Suppose a u^{-}type splice at a crossing c in D produces a diagram D^{\prime} of a non-prime knot K^{\prime}. Then there is a simple closed curve $\gamma \subset S^{2}$ which intersects D transversally at c and two other points, both on edges of D not incident to c. Moreover, both disks of $S^{2} \backslash \gamma$ contain non-nugatory crossings in D^{\prime}.

3.2. Tangle subsurfaces

A tangle subsurface of F_{x} is any F_{x}^{U}, where:

- $U \subset S^{2}$ is compact and connected,

[^4]- ∂U intersects x transversally in four points and is disjoint from all state arcs in x,
- F_{x}^{U} is connected but not simply connected.

Then F_{x}^{U} is the tangle subsurface of F_{x} determined by U. Note that $D \cap U$ is a (diagrammatic) tangle in the traditional sense.

Proposition 3.3. Suppose that F_{x}^{U} is a 2-sided tangle subsurface of F_{x} which contains a u^{-}type vertical arc α. If $F_{x_{\alpha}}^{U}$ is connected, then $F_{x_{\alpha}}$ is 1-sided.

Proof. Because $\alpha \subset U$, we have:

$$
F_{x_{\alpha}}=\left(F_{x_{\alpha}}^{S^{2} \backslash \backslash U}\right) \cup\left(F_{x_{\alpha}}^{U}\right)=\left(F_{x}^{S^{2} \backslash \backslash U}\right) \cup\left(F_{x}^{U} \backslash \backslash \alpha\right)
$$

Thus, if $F_{x}^{S^{2} \backslash \backslash U}$ is 1 -sided, the result follows immediately. Otherwise, there exist properly embedded arcs $\rho_{0} \subset F_{x}^{S^{2} \backslash \backslash U}$ and $\rho_{1} \subset F_{x}^{U}$ with the same endpoints such that $\rho_{0} \cup \rho_{1}$ is the core of a mobius band in F_{x}. Since $F_{x}^{U} \backslash \backslash \alpha$ is connected, there is a properly embedded arc $\rho_{2} \subset F_{x}^{U} \backslash \backslash \alpha$ such that $\rho_{1} \cap \rho_{2}=\partial \rho_{1}=\partial \rho_{2}$. The fact that F_{x}^{U} is 2 -sided implies that $\rho_{1} \cup \rho_{2}$ is the core of an annulus in F_{x}. Therefore, $\rho_{0} \cup \rho_{2}$ is the core of a mobius band in $F_{x} \backslash \backslash \alpha$.

Say that a tangle subsurface F_{x}^{U} is minimal if, for any tangle subsurface $F_{x}^{U^{\prime}}$ with $U^{\prime} \subset U$, every state arc in U^{\prime} is also in U. Note that every tangle subsurface F_{x}^{U} contains a minimal one.

Observation 3.4. If F_{x} is prime and $\alpha \subset F_{x}$ is a u^{-}type vertical arc such that $F_{x_{\alpha}}$ is essential and non-prime, then each boundary connect summand $F_{x_{\alpha}}^{U}$ of $F_{x_{\alpha}}$ corresponds to a minimal tangle subsurface F_{x}^{U} of F_{x}.
(This extends Observation 3.1; see Fig. 7.)
Observation 3.5. If F_{x}^{U} is a minimal tangle subsurface of F_{x}, then:

Fig. 7. If $F_{x_{\alpha}}$ is an essential boundary connect sum, then each of its summands appears as left (purple or green). Hence, F_{x} has an associated minimal tangle subsurface, shown right (green).

- no vertical $\operatorname{arc} \alpha \subset F_{x}^{U}$ is parallel through F_{x}^{U} to ∂F_{x}^{U}, and
- for any properly embedded $\operatorname{arc} \delta \subset U$ which intersects x transversally in two points, both on the same state circle of x, all of the non-nugatory state arcs of x in U lie on the same side of δ.

3.3. Properties of 2-sided tangle subsurfaces

Lemma 3.1. Suppose that F_{x}^{U} is a prime 2-sided tangle subsurface of F_{x}; that when D is oriented, both points of $D \cap \partial U$ where D points out of U lie on the same state circle; and that, for some u^{-}type vertical arc $\alpha \subset F_{x}$, the orientation on one of the two strands of $D \cap U$ is reversed in $D_{\alpha} \cap U$. Then F_{x}^{U} contains a u^{-}type vertical arc.

Figure 8 illustrates the situation.

Proof. The fact that both points of $D \cap \partial U$ where D points out of U lie on the same state circle implies that the underlying diagrams for both x^{U} and x_{α}^{U} represent $k n o t s$, and that x_{α}^{U} is the Seifert state for its diagram. Thus, any crossing between the two strands of $D \cap U$ must have a u^{-}type smoothing in x^{U}. Moreover, these two strands must cross, since F_{x}^{U} is prime, in particular connected but not simply connected. Therefore, F_{x}^{U} must contain a u^{-}type vertical arc.

In particular, using Observations 3.1 and 3.4 together with Lemma 3.1:
Corollary 3.6. Suppose that F_{x} is prime and $F_{x_{\alpha}}^{U}$ is a 2-sided boundary connect summand of $F_{x_{\alpha}}$. If necessary, adjust U so that it does not intersect the state arc $\beta=x \backslash x_{\alpha}$ or any other state arcs that join the same two state circles that β does. Then F_{x}^{U} is a 2-sided minimal tangle subsurface in F_{x} which contains a u^{-}type vertical arc.

Lemma 3.2. Suppose that F_{x} contains a 2-sided minimal tangle subsurface F_{x}^{U} which contains a u^{-}type vertical arc α. Then $F_{x_{\alpha}}$ is 1-sided, and K_{α} is prime.

Fig. 8. The situation in Lemma 3.1: F_{x}^{U} (center), the two possibilities for $F_{x_{\alpha}}^{U}$ (left, right).

Proof. If $F_{x}^{U} \backslash \backslash \alpha$ is connected, then $F_{x_{\alpha}}$ is 1-sided, by Proposition 3.3. Assume instead that $F_{x}^{U} \backslash \backslash \alpha$ is not connected. Then $x_{\alpha} \cap U$ is not connected, so there is a properly embedded $\operatorname{arc} \delta \subset U$ which separates the two components of $x_{\alpha} \cap U$. The fact that $x \cap U$ is connected implies that $|\delta \cap \beta|=1$, where β is the state arc corresponding to α. The first part of Observation 3.5 implies that α is not parallel through F_{x} to ∂F_{x}^{U}. Hence, neither component of $F_{x}^{U} \backslash \alpha$ is simply connected. Thus, each component of $x_{\alpha} \cap U$ contains a non-nugatory state arc. This contradicts the second part of Observation 3.5. In all cases, therefore, $F_{x_{\alpha}}$ is 1-sided.

Assume for contradiction that K_{α} is not prime. Then there is a simple closed curve $\gamma \subset S^{2}$ which intersects D_{α} transversally in two points, neither of them crossings, such that both components of $D_{\alpha} \backslash \gamma$ contain non-nugatory crossings of D_{α}. The assumption that K is prime implies that γ must intersect β. Hence, there is a properly embedded $\operatorname{arc} \delta \subset U$ which intersects x in a single point, which lies on β. Again, the first part of Observation 3.5 provides non-nugatory state arcs in both components of $x_{\alpha} \cap U$, contradicting the second part of Observation 3.5. Therefore, K_{α} is prime.

4. Technical lemmas

Throughout $\S 4, D$ will be a reduced alternating diagram of a prime knot K, and F_{x} will be a 1 -sided state surface from D with $\beta_{1}\left(F_{x}\right)=c c(K) .{ }^{1}$ Further, partitioning the vertical arcs in F_{x} as $\mathcal{A}_{x, S} \cup \mathcal{A}_{x, u}$ as in Observation $2.1, \alpha \in \mathcal{A}_{x, u}$ will be a u^{-} type vertical arc in $F_{x}{ }^{\mathrm{m}}$ As in $\S 3$, denote $F_{x} \backslash \backslash \alpha=F_{x_{\alpha}}$ and $\partial F_{x_{\alpha}}=K_{\alpha}$, with D_{α} the underlying diagram for x_{α}.

4.1. Overview of cases

The key step in Ito-Takimura's proof that $c c(K) \leq u^{-}(D)$ involves building up more complex state surfaces from simpler ones, often by gluing on crossing bands in a way that corresponds to undoing a u^{-}type splice. The key step in proving the reverse inequality is basically the opposite. Namely, the key is to show that there exist F_{x} and α such that $F_{x_{\alpha}}$ is 1 -sided with $\beta_{1}\left(F_{x_{\alpha}}\right)=c c\left(K_{\alpha}\right)$, such that K_{α} either is prime or satisfies the condition (\dagger) from Corollary 2.6.

This situation varies mainly according to whether or not $\beta_{1}(K)=c c(K)$. Subsection 4.2 addresses the case $\beta_{1}(K)<c c(K)$. For each of the states x which differs from the Seifert state y at a single crossing, F_{x} has a single u^{-}type vertical arc. Also $\beta_{1}\left(F_{x}\right)=c c(K)=\beta_{1}(K)+1$. Lemma 4.1 establishes that, for at least one of these states $x, F_{x_{\alpha}}$ is 1-sided with $\beta_{1}\left(F_{x_{\alpha}}\right)=c c\left(K_{\alpha}\right)$, and K_{α} is prime.

Subsection 4.3 addresses the case $\beta_{1}(K)=c c(K)$. Given a 1-sided F_{x} from D with $\beta_{1}\left(F_{x}\right)=c c(K)$, Lemma 3.2 states that, if F_{x} has a 2 -sided minimal tangle

[^5]subsurface which contains an arc $\alpha \in \mathcal{A}_{x, u}$, then $F_{x_{\alpha}}$ is 1 -sided with $\beta_{1}\left(F_{x_{\alpha}}\right)=$ $c c\left(K_{\alpha}\right)$, and K_{α} is prime. Otherwise, every 2-sided minimal tangle subsurface in F_{x} contains only Seifert-type vertical arcs. (This includes the case of the knot 9_{10}.) After some setup, this case follows easily from Corollary 3.6, using the condition (\dagger) for K_{α} and an associated condition $(*)$ for $F_{x_{\alpha}}$.

4.2. Alternating knots with $\beta_{1}(K)<c c(K)$

In addition to the assumptions stated at the beginning of $\S 4$, assume throughout $\S 4.2$ that $\beta_{1}(K)<c c(K)$, and that y is the Seifert state of D. Then the associated Seifert surface satisfies $\beta_{1}\left(F_{y}\right)=\beta_{1}(K)=c c(K)-1>0$.

Proposition 4.1. No two state arcs in y join the same two state circles.
Proof. If two state arcs in y join the same two state circles, then reversing these two smoothings will produce a state $z \neq y$ with the same number of state circles as y. (See Fig. 9.) But then the state surface F_{z} will be 1-sided with $\beta_{1}\left(F_{z}\right)=\beta_{1}\left(F_{y}\right)=$ $\beta_{1}(K)<c c(K) .{ }^{\mathrm{n}}$
${ }^{\mathrm{n}} \mathrm{A}$ similar argument proves more generally that if any knot K satisfies $c c(K)>\beta_{1}(K)$, then any minimal genus Seifert surface for K must have no Hopf band plumbands.

Fig. 9. Proposition 4.1 states that if a Seifert surface F_{y} for an alternating knot K satisfies $\beta_{1}\left(F_{y}\right)<c c(K)$, then no two state arcs in y join the same two state circles.

Fig. 10. If F_{x} differs from the Seifert surface F_{y} at a single crossing c, then cutting F_{x} at c gives the same surface as untwisting F_{y} at c.

14 Thomas Kindred

Reversing any one smoothing of y produces a non-adequate state x whose associated state surface satisfies $\beta_{1}\left(F_{x}\right)=\beta_{1}\left(F_{y}\right)+1=c c(K)$. There is only one u^{-}type smoothing in x. Cutting F_{x} at the associated vertical arc yields the same surface as "untwisting" the associated crossing band in F_{y}. See Fig. 10.

Proposition 4.2. Untwisting F_{y} at any crossing band gives a 1-sided state surface F_{w} from a reduced alternating knot diagram D^{\prime}.

Proof. To see that F_{w} is 1-sided, use the fact that D is reduced to obtain a simple closed curve $\gamma \subset F_{y}$ that passes exactly once through the given crossing band. This γ is the core of an annulus in F_{y}, and thus of a mobius band in F_{w}.

To see that D^{\prime} is reduced, suppose otherwise. Then some state circle v in w either is incident to only one state arc or is incident to itself at a state arc, β_{1}. The former is impossible, since untwisting a crossing band merges two state circles, and all state circles in y are incident to at least two crossings. In the latter case, v must be the result of merging two state circles u_{1}, u_{2} from y at the state arc β_{2} that corresponds to the untwisted crossing band. Because no state circle in y is incident to itself at a state arc, it follows that both β_{1} and β_{2} join u_{1} and u_{2}. This contradicts Proposition 4.1.

Proposition 4.3. Untwisting F_{y} at some crossing band yields a 1-sided state surface F_{w} from a prime reduced alternating knot diagram.

Proof. Proposition 4.2 implies that, for each crossing c_{i} of D, untwisting F_{y} at the crossing band near c_{i} yields a 1 -sided state surface from a reduced alternating knot diagram D_{i}. Assume for contradiction that each of these diagrams D_{i} is non-prime. Then Observation 3.2 implies that for every crossing c_{i} in D there is a simple closed curve $\gamma_{i} \subset S^{2}$ which intersects D transversally at c and two other points, both of which lie on edges of D which are not incident to c, such that $\left|\gamma_{i} \cap D^{\prime}\right|=2$ and both disks of $S^{2} \backslash \gamma_{i}$ contain crossing points of D_{i}. See Fig. 11, left.

Fig. 11. If K is alternating and prime with $\beta_{1}(K)<c c(K)$, then there is a non-Seifert-type splice which yields a prime knot.

This, together with Proposition 4.1 and the fact that D is prime and reduced, implies that every disk of $S^{2} \backslash \backslash D$ is incident to at least three crossings. Yet, an euler characteristic argument shows that some disk of $S^{2} \backslash \backslash D$ is incident to at most three crossings. Hence, there is a disk X of $S^{2} \backslash \backslash D$ which is incident to exactly three crossings. Up to symmetry, there are two possible configurations around such a disk X in an arbitrary Seifert state; Proposition 4.1 rules out one of them. The only other possibility is that ∂X is a Seifert circle of y, as in Fig. 11, right.

Let c_{1}, c_{2} be two crossings on ∂X, and consider the arcs γ_{1}, γ_{2} passing through them. Each γ_{i} passes through exactly three disks of $S^{2} \backslash \backslash D$, namely X and two others, Y_{i} and Z_{i}, where Z_{i} is incident to c_{i}. Since γ_{1} and γ_{2} intersect in a second point, outside of X, we must either have $Y_{1}=Y_{2}$ or $Z_{1}=Z_{2}$. The first possibility contradicts the assumptions that K is prime and D is reduced; the second contradicts Proposition 4.1.

Therefore, with the assumptions and notation from the beginning of $\S 4$ and $\S 4.2$:
Lemma 4.1. There exist F_{x} and α such that $F_{x_{\alpha}}$ is 1 -sided with $\beta_{1}\left(F_{x_{\alpha}}\right)=$ $\beta_{1}\left(K_{\alpha}\right)=c c\left(K_{\alpha}\right)$, and D_{α} is a reduced alternating diagram of the prime knot K_{α}.

Proof. Use Proposition 4.3 to obtain a state x of D which differs from the Seifert state y of D at exactly one crossing, such that untwisting F_{y} at the associated crossing band yields a 1 -sided state surface F_{w} from a prime reduced alternating knot diagram D_{α}. Then F_{x} contains only one u^{-}type vertical arc α, namely the one at the crossing where x differs from y, and $F_{x_{\alpha}}=F_{w}$. Hence, $F_{x_{\alpha}}$ is a 1-sided state surface from a prime reduced alternating knot diagram.

To see that $\beta_{1}\left(F_{x_{\alpha}}\right)=\beta_{1}\left(K_{\alpha}\right)=c c\left(K_{\alpha}\right)$, use Theorem 2.3 to obtain a state surface S^{\prime} from D_{α} with $\beta_{1}\left(S^{\prime}\right)=\beta_{1}\left(K_{\alpha}\right)$. Attaching a crossing band to S^{\prime} near α gives a state surface S for K with $\beta_{1}(S)=\beta_{1}\left(S^{\prime}\right)+1$. If it were the case that $\beta_{1}\left(S^{\prime}\right)<\beta_{1}\left(F_{x_{\alpha}}\right)$, then we would have the contradiction

$$
\beta_{1}(K)=\beta_{1}\left(F_{y}\right)=\beta_{1}\left(F_{x_{\alpha}}\right)>\beta_{1}\left(S^{\prime}\right)=\beta_{1}(S)+1 .
$$

The fact that $F_{x_{\alpha}}$ is 1 -sided now gives $\beta_{1}\left(F_{x_{\alpha}}\right)=\beta_{1}\left(K_{\alpha}\right)=c c\left(K_{\alpha}\right)$.

4.3. Alternating knots with $\beta_{1}(K)=c c(K)$

In addition to the assumptions stated at the beginning of $\S 4$, assume throughout $\S 4.3$ that $\beta_{1}(K)=c c(K)$.

Proposition 4.4. For any $\alpha \in \mathcal{A}_{x, u}, F_{x_{\alpha}}$ is 1 -sided and essential with

$$
\beta_{1}\left(F_{x_{\alpha}}\right)=\beta_{1}\left(K_{\alpha}\right)=c c\left(K_{\alpha}\right) .
$$

Proof. Assume for contradiction that some $F_{x_{\alpha}}$ is 2-sided. Then x_{α} is the Seifert state of D_{α} and, by Observation 2.1, the boundary of each component of $S^{2} \backslash \backslash x_{\alpha}$
contains an even number of state arcs from x_{α}. Therefore, the components of $S^{2} \backslash \backslash x$ incident to α were the only two that contained an odd number of state arcs. Since α was arbitrary in $\mathcal{A}_{x, u}$, all state arcs in $\mathcal{A}_{x, u}$ must be incident to the same two components of $S^{2} \backslash \backslash x$.

Hence, D consists of n crossings whose smoothing in x is non-Seifert-type, together with n diagrammatic tangles, each of which contains only crossings whose smoothing in x is Seifert-type. (Figure 12, left, shows the case $n=3$.) Some of these tangles may be trivial, containing no crossings, but at least one of the tangles must contain crossings, since $\beta_{1}\left(F_{x}\right)>1$. This situation is impossible, by Lemma 3.1. Thus, $F_{x_{\alpha}}$ is 1-sided.

Use Theorem 2.3 to obtain a state surface S^{\prime} from D_{α} with $\beta_{1}\left(S^{\prime}\right)=\beta_{1}\left(K_{\alpha}\right)$. Attaching a crossing band to S^{\prime} near α gives a state surface S for K with $\beta_{1}(S)=$ $\beta_{1}\left(S^{\prime}\right)+1$. If it were the case that $\beta_{1}\left(S^{\prime}\right)<\beta_{1}\left(F_{x_{\alpha}}\right)$, then we would have the contradiction

$$
\beta_{1}(K)=\beta_{1}\left(F_{x}\right)=\beta_{1}\left(F_{x_{\alpha}}\right)+1>\beta_{1}\left(S^{\prime}\right)+1=\beta_{1}(S) .
$$

The fact that $F_{x_{\alpha}}$ is 1 -sided now implies that $\beta_{1}\left(F_{x_{\alpha}}\right)=\beta_{1}\left(K_{\alpha}\right)=c c\left(K_{\alpha}\right)$, and hence that $F_{x_{\alpha}}$ is essential.

With the setup from the start of $\S 4$, suppose that $F_{x_{\alpha}}=\natural_{i \in I} F_{i}$ is a boundary connect sum decomposition of $F_{x_{\alpha}}$ associated to the connect sum decomposition $K_{\alpha}=\#_{i \in I} K_{i}$. Say that $F_{x_{\alpha}}$ satisfies ($*$) if

$$
\begin{equation*}
F_{i} \text { is } 1 \text {-sided with } \beta_{1}\left(F_{i}\right)=\beta_{1}\left(K_{i}\right) \text { for each } i \in I . \tag{*}
\end{equation*}
$$

Observation 4.5. Any $F_{x_{\alpha}}$ satisfying $(*)$ is 1 -sided with $\beta_{1}\left(F_{x_{\alpha}}\right)=\beta_{1}\left(K_{\alpha}\right)=$ $c c\left(K_{\alpha}\right)$.

Moreover, each F_{i} is essential, as is $F_{x_{\alpha}}$. This further implies that the boundary connect sum decomposition of $F_{x_{\alpha}}$ is unique. Note additionally that, if $F_{x_{\alpha}}$ satisfies $(*)$, then K satisfies the property (\dagger) defined in Corollary 2.6. Conversely, Theorem 2.3 implies:

Observation 4.6. Any alternating knot obeying (\dagger) has a state surface obeying (*).
Here is the main result of this subsection.

Fig. 12. The situation in the proof of Proposition 4.4.

Lemma 4.2. Any 1-sided state surface F_{x} from D with $\beta_{1}\left(F_{x}\right)=\beta_{1}(K)$ contains a u^{-}type vertical arc α such that $F_{x_{\alpha}}$ satisfies (*).

Proof. Assume first that F_{x} contains a 2-sided minimal tangle subsurface which contains some $\alpha \in \mathcal{A}_{x, u}$. Then Lemma 3.2 implies that $F_{x_{\alpha}}$ is 1 -sided and K_{α} is prime. Proposition 4.4 further implies that $F_{x_{\alpha}}$ is prime with $\beta_{1}\left(F_{x_{\alpha}}\right)=\beta_{1}\left(K_{\alpha}\right)=$ $c c\left(K_{\alpha}\right)$. Therefore, $F_{x_{\alpha}}$ satisfies (*).

Assume instead that every 2 -sided minimal tangle subsurface of F_{x} contains only Seifert-type vertical arcs. Choose any $\alpha \in \mathcal{A}_{x, u}$. If $F_{x_{\alpha}}$ satisfies $(*)$, then we are done. Otherwise, some boundary connect summand of $F_{x_{\alpha}}$ is 2-sided. But then Corollary 3.6 implies that the corresponding minimal tangle subsurface in F_{x} is 2 -sided and contains a u^{-}type vertical arc, contrary to assumption.

5. Main theorem

Throughout $\S 5, D$ will be a reduced alternating diagram of a nontrivial knot K, and F_{x} will be a 1-sided state surface from D with $\beta_{1}\left(F_{x}\right)=c c(K)$. (We no longer assume K is prime.) As in $\S 4$, denote $\mathcal{A}_{x}=\mathcal{A}_{x, S} \cup \mathcal{A}_{x, u}$, and given $\alpha \in \mathcal{A}_{x, u}$, denote $F_{x} \backslash \backslash \alpha=F_{x_{\alpha}}$ and $\partial F_{x_{\alpha}}=K_{\alpha}$. Now also let $F_{x}=\natural_{i \in I} F_{i}$ and $K=\#_{i \in I} K_{i}$ be corresponding (boundary) connect sum decompositions. Recall that F_{x} satisfies (*) if each F_{i} is 1 -sided with $\beta_{1}\left(F_{i}\right)=\beta_{1}\left(K_{i}\right)$. Recall also that, if K admits such a state surface, then K satisfies $(\dagger): c c\left(K_{i}\right)=\beta_{1}\left(K_{i}\right)$ for each $i \in I$. Proposition 4.4 and Lemma 4.2 generalize to this setting as follows:

Observation 5.1. For any $\alpha \in \mathcal{A}_{x, u}, F_{x_{\alpha}}$ is 1 -sided and essential with $\beta_{1}\left(F_{x_{\alpha}}\right)=$ $\beta_{1}\left(K_{\alpha}\right)=c c\left(K_{\alpha}\right)$.

Observation 5.2. If F_{x} satisfies $(*)$, then $F_{x_{\alpha}}$ satisfies $(*)$ for some $\alpha \in \mathcal{A}_{x, u}$.
Before moving to the main theorem, we mention an application of Observation 5.2. Namely, given a reduced alternating diagram D of a prime alternating knot K satisfying $(*)$, every 1 -sided state surface F_{x} from D with $\beta_{1}\left(F_{x}\right)=\beta_{1}(K)$ can be obtained from a minimal splice-unknotting sequence for D, using the construction behind Theorem 2.7. Thus, a list of all minimal-length splice-unknotting sequences for D conveys a list of all minimal-complexity 1 -sided state surfaces from D. Unfortunately, the list of such sequences grows rather quickly with crossings. The data through 9 crossings is posted at [3].

Theorem 5.3. Suppose that D is an alternating diagram whose underlying knot K is nontrivial and either is prime or satisfies (\dagger). Then $u^{-}(D)=u^{-}(K)=c c(K)$.

Proof. We argue by induction on $c c(K)$. In all cases, by Theorem 2.3, D has a 1-sided state surface F_{x} that satisfies $\beta_{1}\left(F_{x}\right)=c c(K)$. In the base case, F is a mobius band, which, cut at any crossing, becomes a disk; thus $u^{-}(D)=u^{-}(K)=$
$1=c c(K) .{ }^{\circ}$
For the inductive step, let D be an alternating diagram of a knot K with $c c(K) \geq$ 2, where K is prime or satisfies (\dagger). Assume that whenever D^{\prime} is an alternating diagram of a nontrivial knot K^{\prime} with $c c\left(K^{\prime}\right)<c c(K)$, and K^{\prime} is prime or satisfies (\dagger), then $u^{-}\left(D^{\prime}\right)=u^{-}\left(K^{\prime}\right)=c c\left(K^{\prime}\right)$.

Assume first that $\beta_{1}(K)<c c(K)$. Then K does not obey (\dagger), so by assumption K is prime. In this case, Lemma 4.1 provides a state surface F_{x} and a vertical arc $\alpha \in \mathcal{A}_{x, u}$ such that $F_{x_{\alpha}}$ is 1 -sided with $\beta_{1}\left(F_{x_{\alpha}}\right)=c c\left(K_{\alpha}\right)$, and K_{α} is prime. Hence:

$$
\begin{align*}
c c(K) & =\beta_{1}\left(F_{x}\right)=\beta_{1}\left(F_{x_{\alpha}}\right)+1=c c\left(K_{\alpha}\right)+1=u^{-}\left(D_{\alpha}\right)+1 \\
& \geq u^{-}(D) \tag{5.1}\\
& \geq u^{-}(K)
\end{align*}
$$

Corollary 2.8 gives the reverse inequality, $c c(K) \leq u^{-}(K)$. Thus, $c c(K)=u^{-}(K)$. Also, $c c(K) \geq u^{-}(D) \geq u^{-}(K)$ by (5.1). Therefore, $u^{-}(D)=u^{-}(K)=c c(K)$.

Otherwise, $\beta_{1}(K)=c c(K)$. Then, if K is prime, K satisfies (\dagger); also, by assumption, if K is not prime, then K satisfies (\dagger). Thus, K satisfies (\dagger). Use Observation 4.6 to obtain a state x of D such that F_{x} satisfies $(*)$. Then, by Observation 5.2, there exists $\alpha \in \mathcal{A}_{x, u}$ such that $F_{x_{\alpha}}$ satisfies $(*)$. Since $F_{x_{\alpha}}$ satisfies $(*)$, it follows that K_{α} satisfies (\dagger). Therefore, by repeating the computation (5.1), with the subsequent application of Corollary 2.8 and squeeze argument, we can conclude in this final case that $u^{-}(D)=u^{-}(K)=c c(K)$.

In particular, we have proven:
Theorem 5.4 (Theorem 1.1). If D is a prime alternating diagram of a nontrivial knot K, then $u^{-}(D)=u^{-}(K)=c c(K)$.

6. Computation

Using the fact that every prime alternating knot K satisfies $u^{-}(K)=c c(K)$, we will construct a list $D_{\text {cc }}$ of dictionaries $D_{\text {cc }}[n], n=3,4,5, \ldots$, in which to look up prime alternating knots by name and crossing number and find their crosscap numbers. Everything is coded in python. All data is available at [3]. The basic idea for constructing $D_{\text {cc }}$ is this.

First, using data imported from $[1,2]$, we construct a list D_{G} of dictionaries $D_{\mathrm{G}}[n]$ in which to look up a prime alternating knot K by name and crossing number and find a Gauss code $G=D_{\mathrm{G}}[n][K]$ for a reduced alternating diagram D of K.

Next, we write a list $D_{\text {splice }}$ of dictionaries $D_{\text {splice }}[n]$ which associates to each n-crossing prime alternating knot K a list of n lists of knot names. For each knot K the dictionary $D_{\mathrm{G}}[n][K]$ provides a Gauss code, which describes a diagram D.

[^6]Each of the n lists in $D_{\text {splice }}[n][K]$ describes the connect sum decomposition of the diagram obtained from D by the u^{-}type splice at one of the crossings of D.

We then define a list $D_{u^{-}}$of dictionaries $D_{u^{-}}[i]$ recursively, first setting $D_{u^{-}}[0]\left[{ }^{[} 1_{0}{ }^{\prime}\right]=0$. Then for each K and n as above, we compute:

$$
D_{u^{-}[n][K]}=1+\min _{i=1, \ldots, n} \sum_{j=0}^{\operatorname{len}\left(D_{\text {splice }}^{[n][K][i])}\right.} D_{u^{-}}\left[\operatorname{len}\left(D_{\text {splice }}[n][K][i][j]\right)\right]\left[D_{\text {splice }}[n][K][i][j]\right]
$$

Each new dictionary $D_{u^{-}}[n]$ records the invariant $u^{-}(K)$ for all prime alternating knots K with n crossings. Finally, using Theorem 1.1, we copy $D_{u^{-}}[i]$ for all $i \geq 3$ to construct a list $D_{\text {cc }}$ of dictionaries $D_{\text {cc }}[i]$ which record the crosscap numbers of all prime alternating knots.

The main technical challenge is that a given alternating knot can have many distinct alternating diagrams, each of which has its own unique reduced Gauss code. Thus, given a Gauss code (say, resulting from a u^{-}type splice) its reduced form may or may not appear in D_{G}; it may not be obvious which knot the code represents. In order to solve this problem, we construct a list D_{DT} of dictionaries $D_{\mathrm{DT}}[n]$ in which to look up certain DT codes (one for each prime alternating diagram) and find the name of the associated knot.

After some background, we give more details regarding the construction of D_{G}, $D_{\mathrm{DT}}, D_{\text {splice }}, D_{u^{-}}$, and D_{cc}. Of these constructions, the most computationally expensive is that of D_{DT}. These lists of dictionaries are among the data posted at [3].

6.1. Basics of Gauss and DT codes

For an arbitrary knot diagram D, one obtains a Gauss code G as follows. First, choose an orientation and a starting point (away from crossings). Then, moving along D accordingly, label the crossings of D as $1, \ldots, n$, where n is the number of crossings in D, according to the order in which they first appear along D. Also, record all crossings of D, in order, as a word of length $2 n$ in which each character $-n, \ldots,-1,1, \ldots, n$ appears exactly once: the entry in the Gauss code corresponding to the overpass (resp. underpass) at the crossing with label i is i (resp. $-i$). Note that D is reduced if and only if any Gauss code from D has no cyclically consecutive entries $i,-i$.

Working exclusively with alternating knots and regarding mirror images as equivalent renders the signs in the Gauss code redundant. Thus, it makes sense to omit these signs, as we will do from now on.

If $G=\left[c_{1}, c_{2}, \ldots, c_{2 n}\right]$ is a Gauss code, then for each $r=1, \ldots, n$ there exist odd i and even j with $c_{i}=r=c_{j}$. Thus, for each $s=1, \ldots, n$, there is a unique even integer $2 \leq j(s) \leq 2 n$ with $c_{j(s)}=c_{2 s-1}$. The Dowker-Thistlethwaite code associated to G is $[j(1), j(2), \ldots, j(n)]$. For example, the DT code abbreviating the Gauss code $[1,2,3,1,2,3]$ is $[4,6,2]$, since $c_{1}=1=c_{4}, c_{3}=3=c_{6}$, and $c_{5}=2=c_{2}$. The main advantage of DT codes over Gauss codes is their length; DT codes are useful when writing dictionaries.

Given a Gauss code G of length $2 n$, one can determine all the Gauss codes from the same diagram, but with different choices of starting point and/or orientation, by permuting and/or reversing the $2 n$ characters in the Gauss code arbitrarily, and then permuting the n crossing labels so that smaller labels always precede larger ones. (That is, act dihedrally on G and then relabel.) Among the resulting codes, one, say Y, is lexicographically minimal. Call Y the reduced form of G. Say that G is reduced if its underlying diagram is reduced and if G is its own reduced form.

For any reduced Gauss code G which represents a prime alternating knot diagram, there is, up to isotopy and reflection, a unique knot diagram D whose reduced Gauss code is G. (There may be several choices of basepoint and orientation on D that give G.)

A reduced Gauss code G of a knot K represents a connect sum if and only if $G=w_{1} w_{2} w_{3}$, where w_{2} is a nonempty proper subword of G that shares no characters with w_{1} nor w_{3}. After relabeling (so that smaller labels always precede larger ones), w_{2} and $w_{1} w_{3}$ give Gauss codes for two, not necessarily prime, connect summands of K. Continuing in this way eventually gives the connect sum decomposition of K.

Fig. 13. Face data from the diagram of 7_{7} with Gauss code $[1,2,3,1,4,5,6,3,2,4,7,6,5,7]$: Edges around A-faces: $[[14,4,10],[8,1,3],[12,5,9,2,7],[13,6,11]]$. Edges around B-faces: $[[4,1,9],[2,8],[10,5,13],[6,12],[11,7,3,14]]$.

Fig. 14. Face data from the diagram of 7_{7} with Gauss code $[1,2,3,1,4,5,6,3,2,4,7,6,5,7]$. Crossings around A-faces: $[[1,4,7],[2,1,3],[5,4,2,3,6],[5,6,7]]$. Crossings around B-faces: $[[1,2,4],[2,3],[4,5,7],[5,6],[6,3,1,7]]$.

6.2. Face data and flypes

We have imported Gauss codes from [1, 2], one for each prime alternating knot through n crossings. We we have organized this data as a list, D_{G}, of dictionaries, $D_{\mathrm{G}}[n]$, so that one can look up the name (e.g. ' 7_{4} ') of any n-crossing prime alternating knot K in $D_{\mathrm{G}}[n]$ and find a Gauss code $D_{\mathrm{G}}[n][K]$ for a reduced alternating diagram of K. Then we clean up this data by replacing each Gauss code with its reduced form. Finally, we augment this data by replacing each entry in each dictionary, a Gauss code G, with the list $[G, S]$: here, S lists the signs of the crossings of the diagram associated to G, with the convention that the first crossing is an overpass with a positive sign. Although these signs are encoded by G, they take some time to compute; recording them now ensures that we only need to compute them this once.

We now set about constructing a list D_{DT} of dictionaries $D_{\mathrm{DT}}[n]$ in which to look up certain DT codes (one code for each prime alternating diagram with n crossings) and find the name of the associated knot. The key is to find a list D_{0}, \ldots, D_{k} of all reduced alternating diagrams of each prime alternating knot K. To do so, we need to use the flyping theorem, conjectured by Tait [17] and proven by MenascoThistlethwaite $[13,14]$. Here is how to do this.

Let G_{0} be a reduced Gauss code of a prime alternating knot. If G_{0} has length $2 n$, then the associated projection has n crossings, which are joined by $2 n$ edges (in the sense that the projection is a 4 -valent graph). Also, the projection cuts S^{2} into $n+2$ black and white disks, or faces. The face data from G_{0} records which edges and crossings are incident to each face, proceeding counterclockwise around the boundary of the face. ${ }^{\mathrm{p}}$ It is convenient to partition this data into four sets, two for crossings and two for edges, each split between data from the black faces and from the white. Figure 14 shows an example.

This face data allows one to identify possible flype moves on the diagram. To do this, define four sets as follows. The first two sets, $E E_{B}$ and $E E_{W}$, consist of pairs of distinct edges which lie on the boundary of the same (black or white, resp.) face and which do not share any endpoints. The other two sets, $E C E_{B}$ and $E C E_{W}$, consist of triples, each triple consisting of two edges and a crossing, such that neither edge is incident to the crossing and the two edges abut the (two black or two white, resp.) faces incident to the crossing. Associate to each element of $E E_{B}\left(E E_{W}\right.$, resp.) an arc whose interior lies in a black (white) face of $S^{2} \backslash \backslash D$ and whose endpoints lie on non-incident edges of D. Likewise, associate to each element of $E C E_{B}\left(E C E_{W}\right.$, resp.) an arc whose interior intersects D in a single point, a crossing, and otherwise lies entirely in two black (white) faces of $S^{2} \backslash \backslash D$, and whose endpoints lie on edges of D which are not incident to this crossing. Thus, associated to each element of $E E_{B} \cap E C E_{W}\left(E E_{W} \cap E C E_{B}\right.$, resp. $)$ is a simple closed curve which intersects

[^7]one black (white) face of $S^{2} \backslash \backslash D$ and two white (black) faces of $S^{2} \backslash \backslash D$, and which intersects D transversally in two edges e_{1}, e_{2} and one crossing c, none of them incident. In this way, each element of $E E_{B} \cap E C E_{W}$ identifies a possible flype move on D, as does each element of $E E_{W} \cap E C E_{B}$.

The flype move changes the Gauss code by removing both c terms, re-inserting them in the intervals of the Gauss code associated to e_{1} and e_{2}, and then relabeling. More precisely, with $G=\left(c_{1}, \ldots, c_{2 n}\right)$, there exist indices $1 \leq i_{1}, i_{2} \leq 2 n-1$ such that e_{1} joins $c_{i_{1}}$ and $c_{i_{1}+1}$, while e_{2} joins $c_{i_{2}}$ and $c_{i_{2}+1}$. Assume without loss of generality that $i_{1}<i_{2}$. There are also two indices $1 \leq j_{1}<j_{2} \leq 2 n$ such that $c_{j_{1}}=c=c_{j_{2}}$. There are two explicit possibilities for the Gauss code resulting from the flype. If $i_{1}<j_{1}<i_{2}<j_{2}$, then the new Gauss code is

$$
\left(c_{1}, \ldots, c_{i_{1}}, c, c_{i_{1}+1}, \ldots, \widehat{c_{j_{1}}}, \ldots, c_{i_{2}}, c, c_{i_{2}+1}, \ldots, \widehat{c_{j_{2}}}, \ldots, c_{2 n}\right)
$$

after relabeling. (The hats indicate entries to delete from the Gauss code.) Otherwise, $j_{1}<i_{1}<j_{2}<i_{2}$, and the new Gauss code is

$$
\left(c_{1}, \ldots, \widehat{c_{j_{1}}}, \ldots, c_{i_{1}}, c, c_{i_{1}+1}, \ldots, \widehat{c_{j_{2}}}, \ldots, c_{i_{2}}, c, c_{2_{1}+1}, \ldots, c_{2 n}\right)
$$

after relabeling. See Fig. 15. This is how we construct, for each element of $E E_{B} \cap$ $E C E_{W}$ and $E E_{W} \cap E C E_{B}$, a Gauss code for the diagram produced by the associated flype move on D.

Given a Gauss code G for an alternating diagram D_{0} of a prime knot K, we are now ready to compute a list L of $D T$ codes, one from each reduced alternating diagram of K. (Each $D T$ code will correspond to the reduced Gauss code of some diagram of K.) Begin by computing the reduced form G_{0} of G, let T_{0} be its DT code, and let $L=[T 0]$. Then compute $E E_{B} \cap E C E_{W}$ and $E E_{W} \cap E C E_{B}$ from G_{0} to identify possible flype moves on D_{0}. Compute the reduced form of the Gauss code resulting from each flype move. If L does not already contain the DT code for this reduced Gauss code, then append that DT code. After doing this for each possible flype move on D_{0}, repeat the process for each of the other diagrams described by the DT codes in L, appending any new DT codes to L. The flyping theorem implies that this process will produce a list L consisting of one DT code for each reduced alternating diagram of K.

Fig. 15. Four flype moves on the same diagram of 7_{7}.

Now we can build the dictionary D_{DT} : for each knot type K, say with Gauss code G, we compute the list L as above from G, and then for each T_{i} in L we update the dictionary D_{DT} with the entry $T_{i}: K$. For example, for knots with seven crossings, $D_{\text {DT }}$ looks like:

DT code	knot	DT code	knot
$[8,10,12,14,2,4,6]$	7_{1}	$[4,10,14,12,2,8,6]$	7_{2}
$[6,10,12,14,2,4,8]$	7_{3}	$[6,12,10,14,2,4,8]$	7_{4}
$[4,10,12,14,2,8,6]$	7_{5}	$[4,10,14,12,2,6,8]$	7_{5}
$[4,8,12,2,14,6,10]$	7_{6}	$[4,8,12,10,2,14,6]$	7_{6}
$[4,8,10,12,2,14,6]$	7_{7}	$[4,8,12,14,2,6,10]$	7_{7}

The dictionary list D_{DT} through at least 13 crossings is available at [3].

6.3. Splices from face data

The next step is to construct a dictionary $D_{\text {splice }}$ in which one can look up any prime alternating knot K, say with crossing number n, and find n lists of knot types, where each list describes the connect sum decomposition of the knot which results from splicing a given diagram for K (the one described by its imported Gauss code) at one of its n crossings.

Recall that we have used our imported data to construct a list D_{G} of dictionaries $D_{\mathrm{G}}[n]$ which give us, for every prime alternating knot K with crossing number n, the reduced Gauss code G of some reduced alternating diagram D of K (and a list of the signs of the crossings in $D)$. Given any $i=1, \ldots, n$, let $c=c_{i}$. We can write $G=w_{1} c w_{2} c w_{3}$, where w_{2} is nonempty, as is at least one of w_{1} or w_{3}. After relabeling, $w_{1} \overline{w_{2}} w_{3}$ is a Gauss code for the diagram obtained from D via a u^{-}type splice at $c ; \overline{w_{2}}$ denotes the reverse of w_{2}. Let G_{i} be the reduced form of this Gauss code.

The Gauss codes G_{1}, \ldots, G_{n} constructed in this way from G are the reduced Gauss codes which describe the knot diagrams which result from each of the possible u^{-}type splices on D. For each $i=1, \ldots, n$, decompose G_{i} into its connect summands, as described in $\S 6.1$. Then compute the reduced Gauss code of each summand, look up the associated DT code in D_{DT}, and record the knot type. For

Fig. 16. Given the diagram of the knot 7_{7} with Gauss code $(1,2,3,1,4,5,6,3,2,4,7,6,5,7)$, splicing at crossing 4 gives the diagram of $3_{1} \# 3_{1}$ with Gauss code $(1,2,3,1,2,3,4,5,6,4,5,6)$.
example, for knots with seven crossings, $D_{\text {splice }}$ looks like:

knot	splice						
7_{1}	0_{1}	0_{1}	0_{1}	0_{1}	0_{1}	0_{1}	0_{1}
7_{2}	6_{1}	5_{1}	5_{1}	6_{1}	6_{1}	6_{1}	6_{1}
7_{3}	6_{1}	3_{1}	3_{1}	3_{1}	3_{1}	6_{1}	6_{1}
7_{4}	6_{2}	$3_{1}, 3_{1}$	6_{2}	6_{2}	6_{2}	6_{2}	6_{2}
7_{5}	6_{2}	5_{2}	5_{2}	4_{1}	4_{1}	4_{1}	6_{2}
7_{6}	6_{1}	5_{2}	5_{2}	6_{2}	6_{2}	6_{3}	6_{3}
7_{7}	6_{2}	6_{3}	6_{3}	$3_{1}, 3_{1}$	6_{3}	6_{3}	6_{2}

6.4. Crosscap numbers from splice data

Finally, we are ready to construct a list $D_{u^{-}}$of dictionaries $D_{u^{-}}[n]$, each listing $u^{-}(K)$ for the unknot and all prime alternating knots K with n crossings. Because all prime alternating knots K satisfy $u^{-}(K)=c c(K)$ by Theorem 1.1, we can then copy these dictionaries to obtain the list $D_{\text {cc }}$ of dictionaries $D_{\text {cc }}[n]$ recording the crosscap numbers of all prime alternating knots with n crossings, for $n \geq 3$.

First, let $D_{u^{-}}[0]=\left\{{ }^{‘} 0_{1}^{\prime}: 0\right\}$, with $D_{u^{-}}[1]=[]=D_{u^{-}}[2]$. Then starting with crossing number $n=3$ and increasing from there, compute $D_{u^{-}}[n]$ as follows. For each K in $D_{\text {splice }}[n]$ and each $i=1, \ldots, n$, consider $D_{\text {splice }}[n][K][i]=$ [$K_{i, 1}^{\prime}, \ldots, K_{i, m_{i}}^{\prime}$]. Each $K_{i, j}^{\prime}$ has fewer crossings $n_{i, j}$ than K, so we can look up each $D_{u^{-}}\left[n_{i, j}\right]\left[K_{i, j}^{\prime}\right]$. This gives:
$c c(K)=u^{-}(K)=D_{u^{-}}[n](K)=1+\min _{i=1, \ldots, n} \sum_{j=1}^{m_{i}} u^{-}\left(K_{i, j}^{\prime}\right)=1+\min _{i=1, \ldots, n} \sum_{j=1}^{m_{i}} D_{u^{-}}\left[n_{i, j}\right]\left[K_{i, j}^{\prime}\right]$.
In other words, we build the dictionary $D_{u^{-}}$of splice-unknotting numbers inductively, by looking at the connect summands of the diagrams obtained by u^{-}-splices on a given diagram, looking up these summands' crosscap numbers in $D_{u^{-}}$, summing, minimizing, and adding 1.

6.5. A note about computational efficiency

Tabulating the list D_{DT} of dictionaries $D_{\mathrm{DT}}[n]$ is admittedly computationally expensive. Yet, this work has nothing to do with splices or crosscap numbers per se. Starting from the data D_{DT} and D_{G}, we can justify the claim from the end of $\S 2.2$ regarding computational efficiency.

Recall that, given an n-crossing alternating diagram D, the main theorem of [4] states that one of the $2^{n}-1$ non-Seifert states of D realizes $c c(D)$, and the minimal genus algorithm from [4] shortens this list of potentially optimal states from $2^{n}-1$ to at most $2^{\lfloor n / 3\rfloor}$. Thus, in order to compute $c c(D)$, one might find a way to enumerate these states and select one of minimal complexity. Putting aside the question of how in fact to record and enumerate the states, this computation promises to grow, like the number of potentially optimal states, exponentially with crossing number.

Yet, supplied with the lists D_{G} and D_{DT} of dictionaries $D_{\mathrm{G}}[n]$ and $D_{\mathrm{DT}}[n]$, the computational cost of each entry in $D_{\text {splice }}[n]$ grows in polynomial time with respect to crossing number, n. Indeed, for each of the n crossings of a given diagram, computing the spliced Gauss code $w_{1} \overline{w_{2}} w_{3}$, computing the reduced form of that Gauss code, and computing the Gauss codes of the resulting connect summands are all polynomial-time computations.

Supplied further with $D_{\text {splice }}$ and $D_{\text {cc }}[m]$ for all $m<n$, the computational cost of each entry in $D_{\text {cc }}[n]$ also grows in polynomial time, since this simply involves looking up and adding the crosscap numbers coming from the n different splices of the given diagram.

Therefore, the computation cost for calculating the crosscap number of an alternating knot grows, too, in polynomial time with respect to crossing number.

Note that the dictionary $D_{\text {cc }}[n]$ relies on the dictionaries $D_{\text {cc }}[m]$ with $m<n$, and so this improved efficiency relies heavily on the fact that we are computing crosscap numbers for the entire alternating knot tables, rather than for individual knots, as well as on the fact that we have already tabulated D_{G} and D_{DT}.

Using Theorem 1.1 and the facts about Gauss codes and splices from $\S 6.3$, but no further data (such as the lists of dictionaries D_{G} and D_{DT}), one can compute the crosscap number of any particular alternating knot diagram, given its Gauss code, by computing each possible splice-unknotting sequence and finding a sequence of minimal length. The crosscap numbers tabulated in the appendix were double-checked with this sort of computation. This computation, however, grows exponentially with crossing number.

May 26, 2020 10:44 WSPC/INSTRUCTION FILE

26 Thomas Kindred

Appendix A: Tables of crosscap numbers

Table 1. Crosscap numbers $n=c c(K)$ of 11-crossing prime alternating knots K

K	n														
11_{1}	5	11_{2}	5	11_{3}	5	11_{4}	4	11_{5}	5	11_{6}	5	11_{7}	4	11_{8}	4
11_{9}	3	11_{10}	4	11_{11}	5	11_{12}	5	11_{13}	4	11_{14}	5	11_{15}	4	11_{16}	5
11_{17}	5	11_{18}	5	11_{19}	5	11_{20}	5	11_{21}	4	11_{22}	4	11_{23}	5	11_{24}	5
11_{25}	5	11_{26}	5	11_{27}	5	11_{28}	5	11_{29}	4	11_{30}	5	11_{31}	5	11_{32}	5
11_{33}	4	11_{34}	5	11_{35}	5	1136	5	11_{37}	4	11_{38}	5	11_{39}	4	11_{40}	4
11_{41}	5	11_{42}	5	11_{43}	5	11_{44}	5	11_{45}	4	11_{46}	4	11_{47}	5	11_{48}	5
1149	5	11_{50}	4	11_{51}	5	11_{52}	5	11_{53}	4	11_{54}	5	11_{55}	4	11_{56}	5
11_{57}	4	11_{58}	4	11_{59}	3	11_{60}	4	11_{61}	4	11_{62}	3	11_{63}	4	11_{64}	5
11_{65}	4	11_{66}	5	11_{67}	4	11_{68}	4	11_{69}	5	11_{70}	5	11_{71}	5	11_{72}	5
11_{73}	5	11_{74}	3	11_{75}	4	11_{76}	5	11_{77}	5	11_{78}	5	1179	5	11_{80}	5
11_{81}	4	11_{82}	4	11_{83}	4	11_{84}	5	11_{85}	5	11_{86}	4	11_{87}	5	11_{88}	4
11_{89}	5	11_{90}	4	11_{91}	5	11_{92}	4	11_{93}	4	11_{94}	5	11_{95}	4	11_{96}	5
11_{97}	3	11_{98}	4	11_{99}	4	11_{100}	5	11_{101}	5	11_{102}	4	11_{103}	4	11_{104}	5
11_{105}	5	11_{106}	4	11_{107}	4	11_{108}	4	11_{109}	5	11_{110}	4	11_{111}	4	11_{112}	5
11_{113}	4	11_{114}	5	11_{115}	4	11_{116}	5	11_{117}	5	11_{118}	4	11_{119}	4	11_{120}	5
11_{121}	5	11_{122}	5	11_{123}	4	11_{124}	5	11_{125}	5	11_{126}	5	11_{127}	4	11_{128}	5
11_{129}	4	11_{130}	5	11_{131}	5	11_{132}	5	11_{133}	4	11_{134}	5	11_{135}	5	11_{136}	5
11_{137}	4	11_{138}	5	11_{139}	4	11_{140}	3	11_{141}	4	11_{142}	3	11_{143}	4	11_{144}	4
11_{145}	4	11_{146}	5	11_{147}	5	11_{148}	4	11_{149}	5	11_{150}	5	11_{151}	5	11_{152}	4
11_{153}	4	11_{154}	4	11_{155}	5	11_{156}	4	11_{157}	5	11_{158}	4	11_{159}	5	11_{160}	5
11_{161}	3	11_{162}	5	11_{163}	4	11_{164}	5	11_{165}	4	11_{166}	3	11_{167}	5	11_{168}	5
11_{169}	4	11_{170}	5	11_{171}	5	11_{172}	5	11_{173}	5	11_{174}	4	11_{175}	5	11_{176}	5
11_{177}	4	11_{178}	5	11_{179}	3	11_{180}	4	11_{181}	4	11_{182}	4	11_{183}	5	11_{184}	4
11_{185}	4	11_{186}	5	11_{187}	5	11_{188}	3	11_{189}	5	11_{190}	4	11_{191}	4	11_{192}	4
11_{193}	4	11_{194}	4	11_{195}	3	11_{196}	5	11_{197}	5	11_{198}	4	11_{199}	4	11_{200}	4
11_{201}	4	11_{202}	5	11_{203}	3	11_{204}	4	11_{205}	4	11_{206}	3	11_{207}	4	11_{208}	5
11_{209}	5	11_{210}	4	11_{211}	4	11_{212}	5	11_{213}	5	11_{214}	4	11_{215}	4	11_{216}	5
11_{217}	5	11_{218}	5	11_{219}	4	11_{220}	4	11_{221}	4	11_{222}	4	11_{223}	3	11_{224}	4
11_{225}	3	11_{226}	4	11_{227}	5	11_{228}	5	11_{229}	4	11_{230}	3	11_{231}	4	11_{232}	4
11_{233}	5	11_{234}	3	11_{235}	4	11_{236}	5	11_{237}	4	11_{238}	4	11_{239}	5	11_{240}	3
11_{241}	4	11_{242}	3	11_{243}	4	11_{244}	5	11_{245}	4	11_{246}	3	11_{247}	2	11_{248}	5
11_{249}	4	11_{250}	3	11_{251}	5	11_{252}	4	11_{253}	5	11_{254}	4	11_{255}	5	11_{256}	4
11_{257}	4	11_{258}	3	11_{259}	3	11_{260}	3	11_{261}	4	11_{262}	4	11_{263}	3	11_{264}	5
11_{265}	4	11_{266}	5	11_{267}	5	11_{268}	4	11_{269}	4	11_{270}	5	11_{271}	5	11_{272}	5
11_{273}	5	11_{274}	5	11_{275}	5	11_{276}	5	11_{277}	5	11_{278}	4	11_{279}	3	11_{280}	4
11_{281}	4	11_{282}	4	11_{283}	5	11_{284}	5	11_{285}	5	11_{286}	4	11_{287}	5	11_{288}	5
11_{289}	5	11_{290}	4	11_{291}	4	11_{292}	5	11_{293}	3	11_{294}	4	11_{295}	4	11_{296}	4
11_{297}	5	11_{298}	5	11_{299}	4	11_{300}	5	11_{301}	5	11_{302}	4	11_{303}	4	11_{304}	4
11_{305}	4	11_{306}	4	11_{307}	4	11_{308}	3	11_{309}	4	11_{310}	3	11_{311}	4	11_{312}	4
11_{313}	3	11_{314}	5	11_{315}	5	11_{316}	4	11_{317}	4	11_{318}	5	11_{319}	5	11_{320}	4
11_{321}	5	11_{322}	5	11_{323}	3	11_{324}	4	11_{325}	4	11_{326}	5	11_{327}	5	11_{328}	5
11_{329}	5	11_{330}	3	11_{331}	4	11_{332}	5	11_{333}	3	11_{334}	3	11_{335}	4	11_{336}	3
11_{337}	4	11_{338}	3	11_{339}	3	11_{340}	4	11_{341}	3	11_{342}	2	11_{343}	3	11_{344}	5
11_{345}	4	11_{346}	3	11_{347}	4	11_{348}	4	11_{349}	5	11_{350}	5	11_{351}	5	11_{352}	4
11_{353}	5	11_{354}	4	11_{355}	3	11_{356}	4	11_{357}	4	11_{358}	2	11_{359}	3	11_{360}	3
11_{361}	3	11_{362}	3	11_{363}	3	11_{364}	2	11_{365}	3	11_{366}	4	11_{367}	1		

May 26, 2020 10:44 WSPC/INSTRUCTION FILE

Table 2. Crosscap numbers $n=c c(K)$ of 12-crossing prime alternating knots K

K	n														
12_{1}	5	12_{2}	4	12_{3}	5	124	6	12_{5}	6	12_{6}	5	$12{ }_{7}$	6	128	5
129	4	12_{10}	6	12_{11}	5	12_{12}	5	12_{13}	5	12_{14}	6	12_{15}	5	12_{16}	5
12_{17}	5	12_{18}	4	12_{19}	5	12_{20}	5	12_{21}	6	12_{22}	4	12_{23}	5	12_{24}	4
12_{25}	6	12_{26}	5	12_{27}	5	12_{28}	6	12_{29}	6	12_{30}	5	12_{31}	4	12_{32}	5
12_{33}	5	12_{34}	4	12_{35}	5	12_{36}	4	12_{37}	5	12_{38}	4	12_{39}	5	12_{40}	6
12_{41}	5	12_{42}	5	12_{43}	6	12_{44}	6	12_{45}	5	12_{46}	5	12_{47}	6	12_{48}	6
12_{49}	5	12_{50}	5	12_{51}	5	12_{52}	4	12_{53}	5	12_{54}	5	12_{55}	5	12_{56}	4
12_{57}	5	12_{58}	6	12_{59}	6	12_{60}	6	12_{61}	5	12_{62}	5	12_{63}	6	12_{64}	6
12_{65}	5	12_{66}	5	12_{67}	5	12_{68}	5	12_{69}	6	12_{70}	5	12_{71}	5	12_{72}	5
12_{73}	6	12_{74}	6	12_{75}	5	12_{76}	4	12_{77}	6	12_{78}	5	12_{79}	5	12_{80}	5
12_{81}	5	12_{82}	6	12_{83}	6	12_{84}	5	12_{85}	5	12_{86}	5	12_{87}	5	12_{88}	6
12_{89}	5	12_{90}	6	12_{91}	5	12_{92}	5	12_{93}	4	12_{94}	5	12_{95}	5	12_{96}	4
12_{97}	4	12_{98}	5	12_{99}	6	12_{100}	5	12_{101}	5	12_{102}	6	12_{103}	6	12_{104}	5
12_{105}	4	12_{106}	5	12_{107}	6	12_{108}	6	12_{109}	5	12_{110}	5	12_{111}	5	12_{112}	5
12_{113}	6	12_{114}	6	12_{115}	5	12_{116}	5	12_{117}	6	12_{118}	5	12_{119}	5	12_{120}	6
12_{121}	5	12_{122}	5	12_{123}	4	12_{124}	5	12_{125}	6	12_{126}	6	12_{127}	5	12_{128}	4
12_{129}	5	12_{130}	5	11_{131}	5	12_{132}	6	12_{133}	5	12_{134}	5	12_{135}	5	12_{136}	5
12_{137}	5	12_{138}	5	11_{139}	6	12_{140}	5	12_{141}	5	12_{142}	5	12_{143}	4	12_{144}	5
12_{145}	5	12_{146}	3	12_{147}	4	12_{148}	5	12_{149}	6	12_{150}	5	12_{151}	5	12_{152}	4
12_{153}	4	12_{154}	6	12_{155}	5	12_{156}	4	12_{157}	5	12_{158}	4	12_{159}	5	12_{160}	4
12_{161}	5	12_{162}	6	12_{163}	5	12_{164}	5	12_{165}	4	12_{166}	5	12_{167}	5	12_{168}	4
12_{169}	3	12_{170}	5	12_{171}	5	12_{172}	4	12_{173}	5	12_{174}	5	12_{175}	6	12_{176}	4
12_{177}	5	12_{178}	4	12179	5	12_{180}	5	12_{181}	6	12_{182}	5	12_{183}	4	12_{184}	6
12_{185}	5	12_{186}	5	12_{187}	5	12_{188}	5	12_{189}	5	12_{190}	5	12_{191}	6	12_{192}	5
12_{193}	4	12_{194}	5	12_{195}	4	12_{196}	5	12_{197}	4	12_{198}	6	12_{199}	6	12_{200}	5
12_{201}	4	12_{202}	5	12_{203}	5	12_{204}	5	12_{205}	4	12_{206}	4	12_{207}	4	12_{208}	5
12_{209}	6	12_{210}	6	12_{211}	5	12_{212}	5	12_{213}	5	12_{214}	6	12_{215}	5	12_{216}	4
12_{217}	5	12_{218}	5	12_{219}	5	12_{220}	5	12_{221}	5	12_{222}	6	12_{223}	4	12224	5
12_{225}	6	12_{226}	6	12_{227}	6	12_{228}	5	12_{229}	6	12_{230}	5	12_{231}	5	12_{232}	6
12_{233}	6	12_{234}	5	12_{235}	5	12_{236}	4	12_{237}	5	12_{238}	5	12_{239}	4	12_{240}	5
12_{241}	5	12_{242}	5	12_{243}	5	12_{244}	5	12_{245}	5	12_{246}	4	12_{247}	5	12_{248}	4
12_{249}	5	12_{250}	4	12_{251}	5	12_{252}	4	12_{253}	5	12_{254}	4	12_{255}	4	12_{256}	5
12_{257}	6	12_{258}	5	12_{259}	4	12_{260}	4	12_{261}	5	12_{262}	4	12_{263}	6	12_{264}	5
12_{265}	6	12_{266}	5	12_{267}	5	12_{268}	6	12_{269}	5	12_{270}	4	12_{271}	5	12_{272}	5
12_{273}	6	12_{274}	5	12_{275}	5	12_{276}	4	12_{277}	5	12_{278}	5	12_{279}	5	12_{280}	5
12_{281}	5	12_{282}	6	12_{283}	5	12_{284}	5	12_{285}	5	12_{286}	5	12_{287}	6	12_{288}	6
12_{289}	5	12_{290}	5	12_{291}	4	12_{292}	5	12_{293}	6	12_{294}	5	12_{295}	6	12_{296}	6
12_{297}	5	12_{298}	5	12_{299}	4	12_{300}	5	12_{301}	5	12_{302}	5	12_{303}	5	12_{304}	4
12_{305}	5	12_{306}	5	12_{307}	5	12_{308}	5	12_{309}	5	12_{310}	6	12_{311}	5	12_{312}	4
12_{313}	5	12_{314}	6	12_{315}	6	12_{316}	6	12_{317}	5	12_{318}	5	12_{319}	5	12_{320}	4
12_{321}	4	12_{322}	5	12_{323}	6	12_{324}	5	12_{325}	5	12_{326}	5	12_{327}	5	12_{328}	5
12_{329}	5	12_{330}	4	12_{331}	5	12_{332}	5	12_{333}	6	12_{334}	5	12_{335}	5	12_{336}	6
12_{337}	6	12_{338}	6	12_{339}	4	12_{340}	6	12_{341}	6	12_{342}	6	12_{343}	5	12_{344}	5
12_{345}	4	12_{346}	5	12_{347}	5	12_{348}	6	12_{349}	5	12_{350}	6	12_{351}	5	12_{352}	6
12_{353}	5	12_{354}	5	12_{355}	4	12_{356}	4	12_{357}	5	12_{358}	5	12_{359}	6	12_{360}	5
12_{361}	6	12_{362}	5	12_{363}	5	12_{364}	6	12_{365}	4	12_{366}	5	12_{367}	4	12_{368}	5
12_{369}	3	12_{370}	4	12_{371}	4	12_{372}	5	12_{373}	4	12_{374}	5	12_{375}	4	12_{376}	4
12_{377}	5	12_{378}	4	12_{379}	3	12_{380}	3	12_{381}	5	12_{382}	4	12_{383}	5	12_{384}	5
12_{385}	5	12_{386}	5	12_{387}	5	12_{388}	6	12_{389}	6	12_{390}	6	12_{391}	5	12_{392}	4
12_{393}	6	12_{394}	5	12_{395}	5	12_{396}	5	12_{397}	5	12_{398}	4	12_{399}	5	12_{400}	5
12_{401}	5	12_{402}	5	12_{403}	5	12_{404}	4	12_{405}	5	12_{406}	6	12_{407}	5	12_{408}	6
12_{409}	4	12_{410}	5	12_{411}	5	12_{412}	5	12_{413}	5	12_{414}	4	12_{415}	6	12_{416}	5
12_{417}	6	12_{418}	5	12_{419}	5	12_{420}	4	12_{421}	4	12_{422}	3	12_{423}	4	12_{424}	5

May 26, 2020 10:44 WSPC/INSTRUCTION FILE

Table 3. Table 2 Continued. Crosscap numbers $n=c c(K)$ of 12 -crossing prime alternating knots K

K	n														
12_{425}	4	12_{426}	6	12_{427}	6	12_{428}	5	12_{429}	5	12_{430}	5	12_{431}	6	12_{432}	6
12_{433}	6	12_{434}	5	12_{435}	6	12_{436}	4	12_{437}	5	12_{438}	5	12_{439}	6	12_{440}	5
12_{441}	5	12_{442}	4	12_{443}	4	12_{444}	4	12_{445}	5	12_{446}	5	12_{447}	4	12_{448}	4
12_{449}	5	12_{450}	5	12_{451}	5	12_{452}	6	12_{453}	5	12_{454}	4	12_{455}	5	12_{456}	6
12_{457}	5	12_{458}	6	12_{459}	5	12_{460}	6	12_{461}	6	12_{462}	5	12_{463}	4	12_{464}	5
12_{465}	6	12_{466}	5	12_{467}	6	12_{468}	5	12_{469}	5	12_{470}	6	12_{471}	4	12_{472}	6
12_{473}	5	12_{474}	6	12_{475}	5	12_{476}	4	12_{477}	6	12_{478}	5	12_{479}	5	12_{480}	6
12_{481}	4	12_{482}	4	12_{483}	6	12_{484}	6	12_{485}	5	12_{486}	6	12_{487}	6	12_{488}	4
12_{489}	5	12_{490}	5	12_{491}	5	12_{492}	5	12_{493}	4	12_{494}	5	12_{495}	5	12_{496}	6
12_{497}	6	12_{498}	5	12_{499}	6	12_{500}	5	12_{501}	5	12_{502}	4	12_{503}	4	12_{504}	5
12_{505}	5	12_{506}	5	12_{507}	4	12_{508}	5	12_{509}	6	12_{510}	6	12_{511}	5	12_{512}	5
12_{513}	5	12_{514}	5	12_{515}	5	12_{516}	6	12_{517}	4	12_{518}	5	12_{519}	4	12_{520}	4
12_{521}	4	12_{522}	5	12_{523}	5	12_{524}	5	12_{525}	4	12_{526}	6	12_{527}	5	12_{528}	5
12_{529}	5	12_{530}	5	12_{531}	5	12_{532}	4	12_{533}	5	12_{534}	5	12_{535}	5	12_{536}	4
12_{537}	5	12_{538}	4	12_{539}	5	12_{540}	5	12_{541}	4	12_{542}	4	12_{543}	6	12_{544}	5
12_{545}	5	12_{546}	6	12_{547}	6	12_{548}	4	12_{549}	4	12_{550}	5	12_{551}	4	12_{552}	4
12_{553}	5	12_{554}	5	12_{555}	5	12_{556}	5	12_{557}	4	12_{558}	5	12_{559}	5	12_{560}	5
12_{561}	5	12_{562}	5	12_{563}	4	12_{564}	4	12_{565}	5	12_{566}	5	12_{567}	5	12_{568}	5
12_{569}	5	12_{570}	5	12_{571}	6	12_{572}	5	12_{573}	4	12_{574}	4	12_{575}	5	12_{576}	3
12_{577}	4	12_{578}	5	12_{579}	5	12_{580}	3	12_{581}	4	12_{582}	4	12_{583}	5	12_{584}	5
12_{585}	5	12_{586}	5	12_{587}	4	12_{588}	6	12_{589}	5	12_{590}	4	12_{591}	4	12_{592}	6
12_{593}	5	12_{594}	4	12_{595}	4	12_{596}	3	12_{597}	4	12_{598}	5	12599	5	12_{600}	4
12_{601}	4	12_{602}	5	12_{603}	5	12_{604}	6	12_{605}	4	12_{606}	5	12_{607}	5	12_{608}	5
12609	5	12_{610}	4	12_{611}	6	12_{612}	4	12_{613}	5	12_{614}	6	12615	6	12_{616}	5
12_{617}	5	12618	5	12619	4	12620	5	12_{621}	5	12_{622}	5	12_{623}	5	12_{624}	5
12_{625}	5	12_{626}	6	12_{627}	6	12_{628}	5	12_{629}	6	12_{630}	5	12_{631}	6	12_{632}	4
12_{633}	5	12_{634}	4	12_{635}	5	12_{636}	3	12_{637}	5	12_{638}	5	12_{639}	5	12_{640}	4
12_{641}	3	12_{642}	4	12_{643}	4	12_{644}	4	12_{645}	6	12_{646}	5	12_{647}	4	12_{648}	5
12_{649}	4	12_{650}	5	12_{651}	4	12_{652}	5	12_{653}	4	12_{654}	5	12_{655}	5	$12{ }_{656}$	5
12_{657}	5	12_{658}	5	12_{659}	6	12_{660}	4	12_{661}	5	12_{662}	6	12_{663}	4	12_{664}	4
12_{665}	5	12_{666}	6	12_{667}	4	12_{668}	5	12_{669}	3	12_{670}	5	12_{671}	5	12_{672}	6
12_{673}	5	12_{674}	6	12_{675}	5	12_{676}	5	12_{677}	5	12_{678}	5	12_{679}	4	12_{680}	5
12_{681}	4	12_{682}	4	12_{683}	4	12_{684}	5	12_{685}	6	12_{686}	6	12_{687}	6	12_{688}	5
12_{689}	4	12_{690}	4	12_{691}	4	12_{692}	5	12_{693}	4	12_{694}	4	12_{695}	6	12_{696}	5
12_{697}	6	12_{698}	5	12_{699}	5	12_{700}	5	12_{701}	5	12_{702}	4	12_{703}	6	12_{704}	5
12_{705}	6	12_{706}	5	12_{707}	5	12_{708}	4	12_{709}	5	12_{710}	6	12_{711}	5	12_{712}	6
12_{713}	5	12_{714}	4	12_{715}	5	12_{716}	3	12_{717}	4	12_{718}	5	12_{719}	5	12_{720}	4
12_{721}	5	12_{722}	2	12_{723}	3	12_{724}	4	12_{725}	4	12_{726}	4	12_{727}	5	12_{728}	5
12_{729}	5	12_{730}	5	12_{731}	4	12_{732}	4	12_{733}	3	12_{734}	6	12_{735}	4	12_{736}	5
12_{737}	5	12_{738}	4	12_{739}	4	12_{740}	4	12_{741}	6	12_{742}	4	12_{743}	4	12_{744}	3
12_{745}	3	12_{746}	5	12_{747}	5	12_{748}	4	12_{749}	4	12_{750}	4	12_{751}	5	12_{752}	4
12_{753}	3	12_{754}	5	12_{755}	6	12_{756}	5	12_{757}	5	12_{758}	4	12_{759}	3	12_{760}	4
12_{761}	5	12_{762}	3	12_{763}	4	12_{764}	5	12_{765}	6	12_{766}	5	12_{767}	4	12_{768}	5
12_{769}	5	12_{770}	6	12_{771}	5	12_{772}	4	12_{773}	4	12_{774}	4	12_{775}	4	12_{776}	5
12_{777}	4	12_{778}	6	12_{779}	5	12_{780}	6	12_{781}	5	12_{782}	4	12_{783}	5	12_{784}	5
12_{785}	5	12786	5	12787	4	12_{788}	6	12_{789}	4	12_{790}	5	12_{791}	3	12_{792}	4
12_{793}	6	12_{794}	4	12_{795}	5	12_{796}	3	12_{797}	4	12_{798}	6	12_{799}	5	12_{800}	4
12_{801}	4	12_{802}	3	12_{803}	2	12_{804}	5	12_{805}	4	12_{806}	5	12_{807}	5	12_{808}	4
12_{809}	5	12_{810}	5	12_{811}	4	12_{812}	5	12_{813}	4	12_{814}	5	12_{815}	4	12_{816}	5
12_{817}	4	12_{818}	4	12_{819}	5	12_{820}	4	12_{821}	5	12_{822}	4	12_{823}	4	12_{824}	4
12_{825}	4	12_{826}	3	12_{827}	3	12_{828}	5	12_{829}	4	12_{830}	5	12_{831}	5	12_{832}	4
12_{833}	4	12_{834}	4	12_{835}	3	12_{836}	4	12_{837}	4	12_{838}	2	12_{839}	3	12_{840}	4
12_{841}	4	12_{842}	3	12_{843}	3	12_{844}	5	12_{845}	3	12_{846}	5	12_{847}	4	12_{848}	5

May 26, 2020 10:44 WSPC/INSTRUCTION FILE CrosscapNumbersofAlternatingKnotsViaUnknottingSplices26May2020

Table 4. Table 2 Continued. Crosscap numbers $n=c c(K)$ of 12 -crossing prime alternating knots K

K	n														
12_{849}	5	12_{850}	4	12_{851}	5	12_{852}	5	12_{853}	4	12_{854}	4	12_{855}	4	12_{856}	5
12_{857}	5	12_{858}	4	12_{859}	3	12_{860}	4	12_{861}	5	12_{862}	5	12_{863}	4	12_{864}	5
12_{865}	5	12_{866}	6	12_{867}	6	12_{868}	6	12_{869}	4	12_{870}	5	12_{871}	5	12_{872}	4
12_{873}	4	12_{874}	6	12_{875}	5	12_{876}	4	12_{877}	4	12_{878}	3	12_{879}	4	12_{880}	5
12_{881}	3	12_{882}	4	12_{883}	4	12_{884}	5	12_{885}	5	12_{886}	5	12_{887}	6	12_{888}	5
12_{889}	4	12_{890}	5	12_{891}	5	12_{892}	5	12_{893}	6	12_{894}	5	12_{895}	6	12_{896}	4
12_{897}	5	12_{898}	5	12_{899}	5	12_{900}	6	12_{901}	5	12_{902}	5	12_{903}	6	12_{904}	5
12_{905}	4	12_{906}	6	12_{907}	5	12_{908}	5	12_{909}	4	12_{910}	5	12_{911}	5	12_{912}	4
12_{913}	4	12_{914}	5	12_{915}	6	12_{916}	5	12_{917}	5	12_{918}	5	12_{919}	5	12_{920}	4
12_{921}	5	12_{922}	6	12_{923}	4	12_{924}	5	12_{925}	5	12_{926}	4	12_{927}	4	12_{928}	5
12_{929}	4	12930	4	12_{931}	5	12_{932}	4	12_{933}	5	12_{934}	6	12_{935}	5	12_{936}	5
12_{937}	3	12_{938}	4	12_{939}	5	12_{940}	4	12_{941}	4	12_{942}	4	12_{943}	5	12_{944}	5
12_{945}	5	12_{946}	4	12_{947}	4	12_{948}	5	12_{949}	5	12_{950}	4	12_{951}	5	12_{952}	4
12_{953}	5	12_{954}	5	12_{955}	4	12_{956}	5	12_{957}	5	12_{958}	5	12_{959}	5	12_{960}	6
12_{961}	6	12_{962}	5	12_{963}	4	12_{964}	5	12_{965}	6	12_{966}	5	12_{967}	5	12_{968}	5
12_{969}	4	12_{970}	3	12_{971}	4	12_{972}	4	12_{973}	5	12_{974}	5	12_{975}	4	12_{976}	5
12_{977}	4	12_{978}	4	12_{979}	5	12_{980}	5	12_{981}	4	12_{982}	5	12_{983}	5	12_{984}	3
12_{985}	4	12_{986}	5	12_{987}	5	12_{988}	4	12_{989}	5	12_{990}	5	12_{991}	4	12_{992}	6
12_{993}	5	12_{994}	6	12_{995}	5	12_{996}	5	12_{997}	5	12_{998}	6	12_{999}	5	12_{1000}	4
12_{1001}	4	12_{1002}	5	12_{1003}	5	12_{1004}	6	12_{1005}	5	12_{1006}	5	12_{1007}	4	12_{1008}	5
12_{1009}	4	12_{1010}	5	12_{1011}	4	12_{1012}	4	12_{1013}	4	12_{1014}	5	12_{1015}	4	12_{1016}	5
12_{1017}	3	12_{1018}	4	12_{1019}	6	121020	5	121021	6	12_{1022}	5	121023	4	12_{1024}	4
12_{1025}	5	12_{1026}	4	12_{1027}	3	12_{1028}	4	12_{1029}	3	12_{1030}	3	12_{1031}	3	12_{1032}	4
12_{1033}	4	12_{1034}	4	12_{1035}	4	12_{1036}	4	12_{1037}	5	12_{1038}	5	12_{1039}	4	12_{1040}	4
12_{1041}	5	12_{1042}	5	12_{1043}	5	12_{1044}	5	12_{1045}	4	12_{1046}	5	12_{1047}	5	12_{1048}	5
12_{1049}	5	12_{1050}	5	12_{1051}	4	12_{1052}	5	12_{1053}	5	12_{1054}	5	12_{1055}	5	12_{1056}	6
12_{1057}	5	12_{1058}	5	12_{1059}	4	12_{1060}	5	12_{1061}	6	12_{1062}	4	12_{1063}	4	12_{1064}	5
12_{1065}	5	12_{1066}	5	12_{1067}	6	12_{1068}	4	12_{1069}	6	12_{1070}	5	12_{1071}	5	12_{1072}	5
12_{1073}	5	12_{1074}	4	12_{1075}	4	12_{1076}	6	12_{1077}	5	12_{1078}	5	12_{1079}	6	12_{1080}	4
12_{1081}	5	12_{1082}	4	12_{1083}	4	12_{1084}	4	12_{1085}	5	12_{1086}	5	12_{1087}	5	12_{1088}	6
12_{1089}	4	12_{1090}	5	12_{1091}	5	12_{1092}	5	12_{1093}	5	12_{1094}	4	12_{1095}	3	12_{1096}	5
12_{1097}	5	12_{1098}	6	12_{1099}	5	12_{1100}	5	12_{1101}	5	12_{1102}	6	12_{1103}	5	12_{1104}	5
12_{1105}	6	12_{1106}	4	12_{1107}	3	12_{1108}	4	12_{1109}	5	12_{1110}	5	12_{1111}	4	12_{1112}	5
12_{1113}	5	12_{1114}	3	12_{1115}	4	12_{1116}	5	12_{1117}	6	12_{1118}	4	12_{1119}	5	12_{1120}	4
12_{1121}	5	12_{1122}	5	12_{1123}	6	12_{1124}	6	12_{1125}	4	12_{1126}	4	12_{1127}	4	12_{1128}	3
12_{1129}	4	12_{1130}	4	12_{1131}	3	12_{1132}	4	12_{1133}	5	12_{1134}	3	12_{1135}	4	12_{1136}	5
12_{1137}	4	12_{1138}	3	12_{1139}	4	12_{1140}	4	12_{1141}	5	12_{1142}	3	12_{1143}	5	12_{1144}	4
12_{1145}	3	12_{1146}	4	12_{1147}	4	12_{1148}	3	12_{1149}	2	12_{1150}	5	12_{1151}	4	12_{1152}	6
12_{1153}	4	12_{1154}	5	12_{1155}	6	12_{1156}	4	12_{1157}	2	12_{1158}	3	12_{1159}	4	12_{1160}	4
12_{1161}	3	12_{1162}	3	12_{1163}	4	12_{1164}	4	12_{1165}	3	12_{1166}	3	12_{1167}	6	12_{1168}	5
12_{1169}	4	12_{1170}	4	12_{1171}	3	12_{1172}	5	12_{1173}	5	12_{1174}	4	12_{1175}	5	12_{1176}	4
12_{1177}	5	12_{1178}	4	12_{1179}	3	12_{1180}	5	12_{1181}	4	12_{1182}	5	12_{1183}	4	12_{1184}	5
12_{1185}	5	12_{1186}	5	12_{1187}	6	12_{1188}	6	12_{1189}	5	12_{1190}	5	12_{1191}	4	12_{1192}	5
12_{1193}	6	12_{1194}	4	12_{1195}	5	12_{1196}	5	12_{1197}	5	12_{1198}	5	12_{1199}	5	12_{1200}	4
12_{1201}	5	12_{1202}	5	12_{1203}	4	12_{1204}	4	12_{1205}	3	12_{1206}	6	12_{1207}	5	12_{1208}	5
12_{1209}	5	12_{1210}	4	12_{1211}	6	12_{1212}	5	12_{1213}	5	12_{1214}	2	12_{1215}	4	12_{1216}	4
12_{1217}	5	12_{1218}	4	12_{1219}	4	12_{1220}	3	12_{1221}	5	12_{1222}	5	12_{1223}	4	12_{1224}	4
12_{1225}	6	12_{1226}	4	12_{1227}	5	12_{1228}	5	12_{1229}	6	12_{1230}	5	12_{1231}	5	12_{1232}	4
12_{1233}	3	12_{1234}	4	12_{1235}	4	12_{1236}	4	12_{1237}	5	12_{1238}	4	12_{1239}	5	12_{1240}	3
12_{1241}	4	12_{1242}	2	12_{1243}	3	12_{1244}	4	12_{1245}	5	12_{1246}	4	12_{1247}	3	12_{1248}	5
12_{1249}	6	12_{1250}	5	12_{1251}	6	12_{1252}	6	12_{1253}	5	12_{1254}	4	12_{1255}	4	12_{1256}	4
12_{1257}	5	12_{1258}	5	12_{1259}	4	12_{1260}	5	12_{1261}	5	12_{1262}	4	12_{1263}	5	12_{1264}	4
12_{1265}	5	12_{1266}	4	12_{1267}	4	12_{1268}	5	12_{1269}	5	12_{1270}	6	12_{1271}	5	12_{1272}	5
12_{1273}	3	12_{1274}	4	12_{1275}	5	12_{1276}	3	12_{1277}	4	12_{1278}	2	12_{1279}	3	12_{1280}	6
12_{1281}	4	12_{1282}	3	12_{1283}	3	12_{1284}	4	12_{1285}	3	12_{1286}	2	12_{1287}	3	12_{1288}	4

Acknowledgements

Thank you to Dr. Noboru Ito and his coauthor Yusuke Takimura for sharing their work $[9,10]$. Thank you also to the referee for their helpful comments.

References

[1] https://www.indiana.edu/~knotinfo/
[2] https://regina-normal.github.io/data.html
[3] https://www.thomaskindred.com
[4] C. Adams, C., T. Kindred, A classification of spanning surfaces for alternating links, Alg. Geom. Topology 13 (2013), no. 5, 2967-3007.
[5] B. Burton, M. Ozlen, Computing the crosscap number of a knot using integer programming and normal surfaces, arXiv:1107.2382v2.
[6] D. Futer, E. Kalfagianni, J. Purcell, Guts of surfaces and the colored Jones polynomial, Lecture Notes in Mathematics, 2069. Springer, Heidelberg, 2013.
[7] D. Futer, E. Kalfagianni, J. Purcell, Quasifuchsian state surfaces, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4323-4343.
[8] N. Ito, Y. Takimura, Crosscap number and knot projections, Internat. J. Math. 29 (2018), no. 12, 1850084, 21 pp.
[9] N. Ito, Y. Takimura, A lower bound of crosscap numbers of alternating knots, to appear in J. Knot Theory Ramifications, https://doi.org/10.1142/ S0218216519500925.
[10] N. Ito, Y. Takimura, Crosscap number of knots and volume bounds, preprint.
[11] E. Kalfagianni, C. Lee, Crosscap numbers and the Jones polynomial, Adv. Math. 286 (2016), 308-337.
[12] W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), no. 1, 37-44.
[13] W. Menasco, M. Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 403-412.
[14] W. Menasco, M. Thistlethwaite, The classification of alternating links, Ann. of Math. (2) 138 (1993), no. 1, 113-171.
[15] H. Murakami, A. Yasuhara, Crosscap number of a knot, Pacific J. Math. 171 (1995), no. 1, 261-273.
[16] M. Ozawa, Essential state surfaces for knots and links, J. Aust. Math. Soc. 91 (2011), no. 3, 391-404.
[17] P.G. Tait, On Knots I, II, and III, Scientific papers 1 (1898), 273-347.

[^0]: ${ }^{\text {a }}$ Since S^{3} is orientable, a spanning surface is 1 -sided if and only if it contains a mobius band. ${ }^{\mathrm{b}} \beta_{1}(F)=\operatorname{rank}\left(H_{1}(F)\right)=1-\chi(F)$ counts how many holes are in F.

[^1]: ${ }^{\mathrm{c}}$ Crosscap numbers for prime alternating knots through at least 13 crossings are posted at [3], together with data regarding these knots and their diagrams.

[^2]: ${ }^{\mathrm{g}}$ A standard application of the loop theorem implies that, with the exception of either mobius band spanning the unknot, if inclusion $\operatorname{int}(F) \hookrightarrow S^{3} \backslash K$ induces an injective map on fundamental groups, then F is essential. That is, if F is "algebraically essential," or " π_{1}-injective," then F is (geometrically) essential. The converse is true when F is 2-sided, but false in general.

[^3]: ${ }^{\mathrm{h}}$ Theorem 2.3 extends to alternating links, by replacing "boundary slope" with "net" or "aggregate" slope, which is the sum of the boundary slopes of F along all the link components.
 ${ }^{\mathrm{i}}$ Corollary 2.4 also holds for alternating links.

[^4]: ${ }^{\mathrm{k}} \mathrm{A}$ state $\operatorname{arc} \beta$ in x is nugatory if $x \backslash \operatorname{int}(\beta)$ is disconnected.

[^5]: ${ }^{1}$ Such F_{x} exists by Theorem 2.3; sometimes this surface will be arbitrary, subject to these conditions; other times, we will choose a particular surface F_{x} of this type.
 ${ }^{\mathrm{m}}$ Such α exists by Observation 2.1 ; as with F_{x}, we will sometimes take α to be arbitrary, and other times will we choose α.

[^6]: ${ }^{\text {o }}$ This uses the fact that any alternating diagram of the unknot can be reduced to the trivial diagram by RI moves.

[^7]: ${ }^{\mathrm{p}}$ For edges, the data at [3] also records the orientation of the edge with a sign: + if the edge runs counterclockwise along the boundary of the face, - if it runs clockwise.

