
Essence of a spanning surface

Thomas Kindred

Abstract. Murasugi sum, also called (generalized) plumbing,
is a way of gluing two spanning surfaces along a disk to ob-
tain another spanning surface. Gabai proved that plumbing
π1-essential Seifert surfaces always gives a π1-essential surface,
and Ozawa extended this result to unoriented spanning sur-
faces. We show that the analogous statement about geometri-
cally essential surfaces is untrue.

We then extend the notion of π1-essentiality to a new nu-
merical invariant which we call the essence of a spanning sur-
face F ⊂ S3, which measures how F is from being compressible.
We extend Ozawa’s theorem by showing that plumbing respects
this new invariant. We further extend this result in to spanning
surfaces in thickened surfaces.
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1. Introduction

Murasugi sum, also called (generalized) plumbing, is a way of glu-
ing two spanning surfaces F1 and F2 along a disk U to obtain an-
other spanning surface F = F1 ∗ F2. (There is one extra condition;
see Definition 2.9.) Gabai proved that plumbing respects several
geometric properties of Seifert surfaces, including incompressibility
[Ga83, Ga85], and Ozawa extended Gabai’s result by proving that
plumbing respects π1-essentiality of 1- and 2-sided spanning surfaces
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[Oz11]. Section §2 states these results precisely and surveys other
ways that plumbing has been applied.1

The main results of this paper concern possible extensions of Ozawa’s
theorem. First, in §3, we show that Ozawa’s theorem does not extend
from π1-essential surfaces to geometrically essential ones.

Theorem 3.1. A Murasugi sum of geometrically essential surfaces
need not be geometrically essential.2

Next, in §4, we introduce the essence ess(F ) of a spanning surface
F , roughly a notion of representativity adapted to spanning surfaces.
It measures how far a surface is from being compressible and gener-
alizes π1-essentiality, in the sense that F is π1-essential if and only if
ess(F ) ≥ 2. We extend Ozawa’s theorem as follows:

Theorem 5.5. If F = F1 ∗ F2 is a Murasugi sum of π1-essential
spanning surfaces Fi, then ess(F ) ≥ maxi=1,2 ess(Fi).

2. Background

Definition 2.1. A spanning surface F for a link L ⊂ S3 is a com-
pact surface, orientable or nonorientable, with no closed components
which is properly embedded in the link exterior E = S3 \ ◦νL, such
that ∂F intersects each meridian on ∂νL transversally in one point.

Alternatively, by attaching an annulus to F in each component of
νL, one can view F as an embedded surface in S3 with ∂F = L.

We will use both notions, each of which has advantages.3

Notation 2.2. Throughout, F , F ′, and Fi will denote spanning
surfaces in S3 with respective boundaries L, L′, and Li.

Given a diagram D of L, one can construct two spanning surfaces
B and W by coloring the regions of S2\D black and white in checker-
board fashion. These checkerboard surfaces B and W intersect
in vertical arcs which project to the crossings of D. Figure 1 shows
the construction and the spatial graph B ∩W comprised of L and
the vertical arcs at the crossings.

More generally, given a state x of D (constructed by smoothing

each crossing in one of two ways, A←− B−→ ), one can construct
a spanning surface Fx for L, called a state surface, by attaching a

1E.g. to Alexander polynomials and crossing numbers of alternating knots;
fiberedness, open book decompositions, and contact structures; uniqueness of
minimal genus Seifert surfaces; the HOMFLY-PT polynomial; the Conway poly-
nomial and periodicity; knot Floer homology; Khovanov homology; quasipositiv-
ity; and the slice-ribbon conjecture.

2Figure 13 shows an example of this phenomenon.
3For example, in the paragraph after Notation 2.2, the second sentence adopts

the former perspective, while the third sentence adopts the latter.
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Figure 1. Constructing checkerboard surfaces

disk to each state circle and attaching a half-twisted band at each
crossing. 45

Given a state x of a link diagram, the (abstract) state graphGx is
obtained by collapsing each state circle to a point, while keeping the
A and B labels on the edges. The state x is adequate if Gx has no
loops6, and x is homogeneous if all edges in each cut component7

of Gx have the same type, A or B. If both conditions hold, x is
homogeneously adequate; in this case, Fx is π1-essential. See
Theorem 2.12.

Viewing a spanning surface F as a surface with boundary in S3,
one may cut S3 along F to obtain a compact 3-manifold S3\\F with
boundary; there is a natural map φF : S3\\F → S3 which restricts to
a homeomorphism on S3\int(F ) and to a 2:1 covering map on int(F ).
In particular, we may identify L = ∂F with φ−1F (L) ⊂ ∂(S3 \ \F ).
When F is orientable, S3 \ \F is a sutured manifold with sutures
L, but when F is nonorientable, L does not separate ∂(S3 \ \F ), so
S3 \ \F is not quite a sutured manifold.

Notation 2.3. Throughout, denote SF = S3\\F and φF : S3\\F →
S3 the natural map described above. Also denote L̃ = φF

−1(L) ⊂
∂SF and F̃ = φ−1F (int(F )) = ∂SF \ L̃.

2.1. Geometrically and algebraically essential surfaces.

4The isotopy class of Fx may depend on the layering of the disks relative to the
projection sphere; to avoid such ambiguity, we assume, unless stated otherwise,
that all state circles are capped with disks on the same side of the projection
sphere S2. For an interesting example of a state surface with different layering,
see Figure 4.

5Every state surface is a checkerboard surface of some diagram.
6That is, the endpoints of each crossing arc lie on distinct state circles.
7If Gx has no cut vertices (ones whose deletion disconnects Gx), then Gx has

a single cut component; otherwise, cut Gx at a cut vertex. Cut each resulting
component at a cut vertex, if one exists. Continue until no component has a cut
vertex. The resulting components are the cut components of Gx.
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Figure 2. Geometric compression and ∂-
compression of a spanning surface

Definition 2.4. A spanning surface F is geometrically essential
if F cannot be compressed or ∂-compressed to a spanning surface.
(See Figure 2.) Equivalently, F is geometrically essential if both:

• Every simple closed curve in int(F ) bounding a disk in S3

bounds a disk in F , and
• Every properly embedded arc in F which is parallel through

(an embedded disk in) S3 to ∂F is also ∂-parallel in F .

If F satisfies the first condition, it is called geometrically incom-
pressible, whether or not it satisfies the second.

Definition 2.5. A spanning surface F is π1-essential if it satisfies
the following equivalent conditions:

• SF has incompressible, ∂-incompressible boundary;
• Inclusion int(F ) ↪→ S3 \ L induces an injection of fundamen-

tal groups, and F is not a möbius band spanning the unknot.

Remark 2.6. If F is π1-essential, then F is geometrically essential.

Remark 2.7. A 2-sided spanning surface is π1-essential if and only if
it is geometrically incompressible.

Figure 3 shows a surface F1 which is geometrically incompressible,
because if F1 admitted a geometric compression, then the resulting
surface would be a disk with the same nonzero boundary slope as F1.

There is, however, a compressing disk X̃ in SF1 for F̃1; X = pF1(X̃)
is an immersed disk in S3, whose interior is embedded, but whose
boundary self-intersects. With the exception of the möbius bands
spanning the unknot, any π1-inessential surface admits such a disk
X; call such X an algebraic compressing disk.

Modify F1 as shown in Figure 4 by plumbing on six annuli, each
with two full positive twists, to get a surface F2. (A careful definition
of plumbing follows in §2.2.) Interestingly:

Proposition 2.8. The surface F2 shown in Figure 4 is geometrically
essential but π1-inessential.

The proof of Proposition 2.8 is not too hard. Still, the argument
will be clearer with the extra technical setup of §2.3, which general-
izes the notion of outermost disks. The proof appears in §??.
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Figure 3. Left: A geometrically compressible sur-
face. Right: A geometrically incompressible surface
F1 which admits an algebraic compressing disk X.

plumbing

isotopy

Figure 4. Constructing a surface F2 that is geomet-
rically essential but π1-inessential

2.2. Plumbing. In §2.2, view F as a compact surface in S3 with
∂F = L, rather than as a properly embedded surface in the link
exterior.

Definition 2.9. LetW ⊂ S3 be an embedded disk withW∩F = ∂W
such that

• ∂W bounds a disk U ⊂ F .
• Denoting S3 \ \(U ∪W ) = B1 tB2, neither Fi = F ∩ Yi is a

disk.

Then W is a plumbing cap for F , and U is its shadow. (If W
satisfies the first condition but not the second, W is a fake plumbing
cap.)

Say that F is obtained by (generalized) plumbing F1 and F2 along
U , denoted F1 ∗ F2 = F . This operation is also called Murasugi
sum. The associated decomposition is a deplumbing. See Figure
5.

The operation F → F ′ = (F \U)∪W is called replumbing. See
Figure 6.

A great deal is known about oriented Murasugi sums F = F1 ∗F2.
Murasugi first used plumbing to compute Alexander polynomials of
alternating knots inductively, and thereby determined the genera of
alternating knots [Mu58]. (Crowell independently obtained the same
result [Cr59]; for a recent, elementary proof which also uses plumb-
ing, see [Ki22].) Harer showed that every fiber surface in S3 can be
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= along

Figure 5. Plumbing, also called Murasugi sum

Figure 6. Replumbing

constructed by plumbing Hopf bands and performing twisting oper-
ations introduced by Stallings [Ha82, St78]. Harer conjectured fur-
ther that plumbing and deplumbing Hopf bands suffices, as Giroux-
Goodman later confirmed using contact topology [GG06]. Gabai
proved that there are several geometric properties which F possesses
if and only if F1 and F2 do [Ga83, Ga85]:

Theorem 2.10. [Gabai [Ga83, Ga85]] If F1 ∗ F2 = F is a Murasugi
sum of Seifert surfaces with each ∂Fi = Li and ∂F = L, then:

(1) F is essential if F1 and F2 are essential.8

(2) F has minimal genus if and only if F1 and F2 both have
minimal genus.

(3) L is a fibered link with fiber F if and only if each Li is fibered
with fiber Fi.

(4) S3 \ ◦νL has a nice codimension 1 foliation if and only if both
S3 \ ◦νLi do.

See [Ga85] for details. Much more on (i) shortly.
Recently, Baader-Graf described a simple geometric method of

fiber-detection, leading to a new proof of (iii) [BG16]. Torisu extends
(iii) to a statement about tight contact structures [To00]. Saito–
Yamamoto prove that for any oriented plumbing F = F1 ∗F2 of fiber
surfaces, the arc complex for the open book decomposition of S3 with
page F has translation distance at most two [SY10]. Extending (ii),
Kobayashi proves that a minimal genus Seifert surface F = F1 ∗F2 is
isotopically unique if and only if F1 is also unique and F2 is fibered,
or vice-versa [Ko89].

8The converse is false. See Figure 10.
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Oriented plumbing has also proven to be a valuable tool for study-
ing polynomial and homological knot invariants. For example, Hongler–
Weber [HW04, HW05] used Menasco–Thistlethwaite’s flyping theo-
rem [MT91, MT93, Tait] to show that every oriented alternating link
decomposes in a unique way under Murasugi sum, and they used
this decomposition to extend results of Kobayashi–Kodama [KK88]
and Murasugi–Przytycki [MP89], which also used oriented plumbing,
regarding the term of the HOMFLY-PT polynomial of maximum
z-degree. Costa–Hongler used similar techniques to study Conway
polynomials of periodic alternating links [CH18].

Perhaps the most remarkable application of oriented plumbing is
Ni’s plumbing-to-product formula for knot Floer homology,

(1) ĤFK(K, g;F) ∼= ĤFK(K1, g1;F)⊗ ĤFK(K2, g2;F),

where F is any field and g, g1, g2 denote 3-genus [Ni06]. Juhász ob-
tained a new proof of (1) which led to a simplified proof of the fact
that knot Floer homology detects fibered knots [Ju08].

Rudolph constructed interesting oriented plumbings in the con-
texts of quasipositivity [Ru89] and the slice-ribbon conjecture [Ru02].

If F1 ∗F2 = F3 is a plumbing of Seifert surfaces with plumbing cap
X, then |∂X ∩ L3| = 2n for some n; Goda established the following
inequality among the handle numbers of the sutured manifolds SFi
[Go92]:9

h(SF1) + h(SF2)− n+ 1 ≤ h(SF3) ≤ h(SF1) + h(SF2).

Thus, handle number is additive under boundary connect sum and is
subadditive under plumbing, with defect bounded by the complexity
of the plumbing.

For any s ∈ Q, let K(s) denote the 3-manifold obtained from S3

by performing Dehn surgery along L3 with surgery slope s. With
n as above, Li showed that K(s) has a taut foliation for all slopes
1− n < s < n− 1 [Li03].

Ozbagci–Popescu-Pampu generalized the notion of Murasugi sum
to smooth oriented manifolds of arbitrary dimension in such a way
that Gabai’s theorem still holds [OP16]. Their paper is also an ex-
cellent survey of prior literature.

Perhaps the best-studied class of plumbings are the arborescent
surfaces, obtained by plumbing together essential unknotted annuli
and möbius bands according to the pattern of a tree, not just in the
oriented case [Sa94, Ga86b, KK88] but also in the unoriented case
in a magnificent treatise by Bonahon–Siebenmann [BS10].

9The handle number h(W ) of a compression body W is the minimal number
of 2-handles needed to construct W . The handle number of a sutured manifold
(M,γ) is min{h(W ) : (W,W ′) is a Heegaard splitting of (M,γ)}.



8 THOMAS KINDRED

Figure 7. Caps for F are compressing disks for ∂SF .

Unoriented plumbings appear less often in the literature than ori-
ented ones. Recently, the author used replumbings of definite sur-
faces to give the first purely geometric proof of Menasco–Thistlethwaite’s
flyping theorem [Ki21, MT91, MT93, Tait]. Earlier, the author con-
sidered used replumbing moves in the context of Khovanov homol-
ogy [Ki18]. The following theorem of Ozawa, extending part (i) of
Gabai’s theorem to the unoriented case, concludes this survey:

Theorem 2.11 ([Oz11]). If F = F1 ∗ F2 is a Murasugi sum of π1-
essential spanning surfaces Fi, then F is π1-essential.

As a corollary, Ozawa obtains the following fact (see Remark 2.16):

Theorem 2.12 ([Oz11]). If x is a homogeneously adequate state,
then Fx is π1-essential.

2.3. Caps and height. Again in §2.3, view F ⊂ S3, rather than
in the link exterior.

Definition 2.13. Using Notation 2.3, a cap for F is the image

W = φF (W̃ ) of a compressing disk for ∂SF .10 See Figure 7.

A cap system for F is a union W =
⋃
iWi of caps Wi = φF (W̃i)

for F with disjoint interiors, such that W̃ =
⋃
i W̃i is a disjoint

union of properly embedded disks which cuts SF into balls, and ∂W̃
contains L̃ and cuts F̃ into disks.

Notation 2.14. If X is a cap for F , then X̃ denotes the (unique)

properly embedded disk in SF satisfying φF (X̃) = X. Likewise, for a

cap systemW, W̃ denotes (unique) lift which is comprised of disjoint,
properly embedded disks.

Example 2.15. If B and W are the checkerboard surfaces from a
connected link diagram, then B is a cap system for W , and W is a
cap system for B.

Remark 2.16. If W is a cap system for F , then F ∪W cuts S3 into
polyhedra and cuts S3 \L into ideal polyhedra. In [FKP13, FKP14],

10Note that if W is a cap for F , then ∂W may well intersect ∂F . Moreover,

if ∂W ∩ ∂F = ∅, then ∂W cannot be contractible in F , or else ∂W̃ would be
contractible in ∂SF .
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BA

Figure 8. Smoothings in the crossing ball setting

Futer-Kalfagianni-Purcell use such polyhedral decompositions to es-
tablish deep relationships between essential surfaces, hyperbolic ge-
ometry, and colored Jones polynomials. In particular, they obtain
an independent proof of Theorem 2.12 in the case that x is all-A or
all-B.

To extend Example 2.15 to a more general class of examples, it will
be helpful to use the crossing ball structures introduced by Menasco
in [M84]. Given a diagram D of a link L, insert a tiny ball Ci at
each crossing and perturb D to get an embedding of L in (S2 \C)∪
∂C, where C =

⊔
iCi. Then the states of D correspond to the

submanifolds x ⊂ (L ∪ ∂C) ∩ S2 that contain L ∩ S2. See Figure 8.
In this setting, ∂Ci ∩ S2 \ L consists of four arcs on the equator

of ∂Ci for each i. The union of L ∩ ∂Ci with either opposite pair of
arcs forms a simple closed curve on ∂Ci, which bounds a crossing
band in Ci. Thus, a spanning surface F of L is a state surface of D
if and only if (it can be isotoped such that) F ∩ Ci is comprised of
crossing bands and F \ C is comprised of disks.

Definition 2.17. Let Fx be a state surface from a connected link
diagram D, with the crossing ball structure described above, i.e.
F ∩ Ci is comprised of crossing bands and C cuts F into disks.

Suppose that int(Fx) ∩ S2 \ C = ∅, i.e. each state circle of x is
capped with a disk disjoint from S2 ∪C. Let y be the opposite state
of D, i.e. x and y have opposite smoothings at each crossing, and
let Wy be the union of the crossing bands associated to y. Then
(S2 \ C) ∪Wy is a cap system for Fx.

This works more generally, provided that any intersections be-
tween int(Fx) and S2 \ C are (transverse) arcs, or (nontransverse)
disks bounded by arcs. Then we call (S2 \ C) ∪ Wy the flat cap
system for (this positioning of) Fx.

Capping structures W are useful for determining, e.g., whether F
is π1-essential, by either finding an algebraic compressing disk X or
proving that none exists.

Here is the idea. Hypothesize an algebraic compressing disk X,
and assume that X has been chosen to intersect W transversally
and minimally. Then |X ∩ W| = 1

2 |∂X ∩ W|. Hence, the latter
quantity is also minimized, so no arc of ∂X is parallel through F to
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Figure 9. π1-essential checkerboard surfaces for the
(−3, 3,−3) and (−2, 2,−2) pretzel links

W. Characterize the possible outermost disks of X \ \W and “work
inward.”

In some examples, there are no outermost disks. For example:

Exercise 2.18. [FKP13] Both checkerboard surfaces of any reduced
alternating diagram of any prime non-split link are π1-essential.

Remark 2.19. Futer-Kalfagianni-Purcell define a polyhedral decom-
position to be prime if no pair of faces meets along more than one
edge. When the decomposition from F ∪ W is prime, F is incom-
pressible, since no outermost disk is possible.

Even when a given polyhedral decomposition is not prime, i.e.
outermost disks of X \ \W are possible, it is sometimes possible to
refine it to produce a prime decomposition. See [FKP13, FKP14]
for details. Alternatively, one can keep W and “work inward” in X
according to the following notion of height.

Definition 2.20. Given a finite system A =
⊔
i∈I αi of disjoint prop-

erly embedded arcs in a disk X, let T be the tree with one vertex for
each disk of X \ A in which two vertices are adjacent whenever the
corresponding disks abut.

Define the height of each disk of X \A recursively as follows. Let
T0 = T . Outermost disks of X \ A, corresponding to leaves in T0,
have height 0. For i ≥ 1, Let Ti be the tree obtained by deleting each
leaf of Ti−1 and its edge. Disks of X \A that correspond to leaves in
Ti, have height i.

Example 2.21. The surface shown left in Figure 9 is π1-essential;
its flat cap system admits no disk of height 1.

In general, with this setup, one can try to determine whether or
not a surface F is π1-essential by characterizing possible disks of
height 0, then of height 1, and so on. For example:
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Figure 10. Top: an essential Seifert surface F ob-
tained by plumbing an annulus onto a compressible
surface. Bottom: F as a checkerboard surface.

Example 2.22. The surface shown right in Figure 9 is π1-essential;
its flat cap system admits disks of height 0 and 1 (shown), but not
of height 2.11

Example 2.23. Consider the surface F in Figure 10. The flat cap
system from the checkerboard picture admits a disk of height 4,

, as shown in Figure 11, so it is not immedi-
ately clear whether F is essential. By contrast, the flat cap system
from the top picture admits disks of height 0, but none of height 1,
confirming that F is indeed π1-essential.

Example 2.23 demonstrates that it is possible to plumb an essen-
tial Seifert surface onto a compressible one in a way that yields an
essential surface. In fact, the next example shows that it is possible
to plumb two compressible Seifert surfaces in a way that yields an
essential surface.

Example 2.24. The surface shown in Figure 12, obtained by plumb-
ing two compressible Seifert surfaces, is essential. Indeed, the flat cap
system from Figure 12 admits disks of height 0, but not of height 1.

11Here is another proof that this surface must be π1-essential: compressing
this surface would yield a disjoint union of a disk and an annulus, but this is
impossible since each pair of link components has nonzero linking number.
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Figure 11. The flat cap system from the checker-
board picture in Figure 10 admits a disk of height 4.

Figure 12. An essential Seifert surface obtained by
plumbing two compressible Seifert surfaces.

3. Geometric essentiality under unoriented plumbing

In this section, we use cap systems and height to prove that the
surface F2 constructed in Figure 4 is geometrically essential, giving
our first main result:

Theorem 3.1. A Murasugi sum of geometrically essential surfaces
need not be geometrically essential.

Proof. By plumbing a Hopf band onto the surface in Figure 4 as
shown in Figure 13, one can obtain a geometrically compressible sur-
face. Indeed, the boundary of a compressing disk and its intersection
with the projection plane are colored in the rightmost part of the fig-
ure. The theorem now follows the following proposition. �
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plumbing

isotopy

∗ =

Figure 13. A geometrically inessential plumbing of
geometrically essential surfaces

Proposition 2.8. The surface F2 constructed in Figure 4 is geomet-
rically essential but π1-inessential.

Proof. Certainly F2 is algebraically compressible, as the plumbed-on
annuli do not obstruct the algebraic compressing disk from Figure 3.
To see that F2 is geometrically essential, isotope F2 to appear as the
checkerboard surface shown in Figure 14, and consider the resulting
flat cap systemW. Denote int(F2)∩W = v, so that F2∩W = L∪ v;
v consists of vertical arcs, one at each crossing.

Suppose for contradiction that F2 is (geometrically) compressible.
Choose a compressing disk X for F2 which minimizes |X tW|. Then
X ∩W consists entirely of arcs, each with endpoints on distinct arcs
of v. Likewise, each arc of ∂X \ \v has endpoints on distinct arcs of
v. Conversely, each point of ∂X ∩ v is an endpoint of such an arc.

Now consider the possibilities for the disks of X \ \W, starting
with those of height 0, each of whose boundary consists of just two
arcs, one in W \ \v and one in ∂X \ \v ⊂ F \ \v. Up to symmetry,
there are three types of height 0 disks, two of each type in each ball
of S3 \ (F2 ∪W); all twelve possible disks appear in Figure 14.

Up to symmetry, there are three types of height 1 disks that abut a
single outermost disk, ; Figure 15 shows all three types. There
are also two possible configurations, up to symmetry, for height 1
disks which abut two outermost disks, (or the same with
colors reversed); Figure 16 shows both types.

There are no geometric compressing disks in which every subdisk
has height at most 1. (There is, however, such an algebraic com-
pressing disk!) There are also no disks of height 2, since such a disk
could not abut any type of disk shown in Figure 15, nor on the left
in Figure 16, hence must abut the type shown right in Figure 16,
which gives the contradiction shown in Figure
17. Thus, F is incompressible.
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Figure 14. Possible height 0 disks in the proof of
Proposition 2.8

Figure 15. Height 1 disks abutting a single outer-
most disk

Figure 16. Height 1 disks abutting two outermost disks

Finally, we must adapt the argument above to show that F2 is
not ∂-compressible. Suppose otherwise. As before, choose a ∂-
compressing disk X for F2 which minimizes |X t W|, and consider
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Figure 17. The main contradiction in the proof of
Proposition 2.8.

Figure 18. Possible height 0 disks in a ∂-
compressing disk

the possible configurations of the disks of X\\W, starting with those
of height 0.

In addition to the types from Figure 14, there is, up to symmetry,
one additional type of possible outermost disk of X \\W. See Figure
18. Yet, such a disk cannot abut a disk of height 1. In fact, the
only types of height 1 are still those in Figures 15-16. Considering
disks of height 2 leads to the same contradiction as before, with an
additional case , shown in Figure 19. �
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Figure 19. The final contradiction in the proof of
Proposition 2.8.

4. Algebraic and geometric essence

Recall that a cap is the image X = φF (X̃) of a compressing disk
for ∂SF , and that X is a plumbing cap if ∂X bounds a disk in F .
More generally, define the following types of caps:

Definition 4.1. Let X be a cap for F . Call X geometric if ∂X
does not self-intersect, singular if it does. Call X ∂-contractible
if ∂X is contractible in F , ∂-essential if it does not.

Note: a geometric ∂-contractible cap is also called a plumbing cap.

Definition 4.2. Let X be a cap for F which is not parallel to F ,12

and denote the set of self-intersection points of ∂X by x. We say that
X is acceptable if it admits none of the simplifying moves shown
in Figures 20 and 21, i.e. if:13

• no arc of X ∩ ∂νL is parallel in ∂νL to F ∩ νL;
• no arc of ∂X \ \∂νL that contains at most one point in X is

parallel in F to F ∩ νL; and
• no two arcs of ∂X \ \x are parallel in F \ νL.

Notation 4.3. Denote the set of all caps for F by Cap(F ). Likewise,
denote these sets of caps for F as follows.

12That is, ∂X either intersects L or is an essential curve in the interior of F .
13It may be too onerous to require that a cap system be comprised entirely of

acceptable caps. For example, the flat cap system φF (
⋃
i Ũi) for a non-alternating

checkerboard is never acceptable, and the simplifying isotopy removes the prop-

erty that
⋃
i ∂Ũi ⊃ L̃.
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Figure 20. A geometric cap is acceptable if it cannot
be simplified by either of these moves.

Figure 21. A cap is acceptable if it cannot be sim-
plified by these moves or those in Figure 20.
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• Geometric caps: Capg(F );
• ∂-essential caps: Cape(F );
• Plumbing caps: Capp(F );

Definition 4.4. The (algebraic) essence of F is

ess(F ) = min
X∈Cape(F )

|∂X ∩ L|.

We will show in Theorem 5.5 that ess(F ) is well-behaved under
plumbing. Theorem 5.6 is a related result for min{ess(F ), essc(F )},
albeit with an extra condition on the complexity of the plumbing.
First, two remarks:

Remark 4.5. F is π1-essential if and only if ess(F ) ≥ 2.

Remark 4.6. ess(F ) = 1 if and only if F is a möbius band spanning
the unknot.

Although we will mainly be interested in essence as defined “al-
gebraically” above, there is a related “geometric notion,” which we
now introduce and discuss briefly. Recall that a cap X is geometric
if ∂X does not self-intersect, Capg(F ) denotes the set of geometric
caps X for F , and Cape(F ) denotes the set of ∂-essential caps for F .
Note that Capg(F ) \ Cape(F ) = Capp(F ) is the set of all plumbing
caps for F .

Definition 4.7. The geometric essence of F is

essg(F ) = min
X∈Capg(F )∩Cape(F )

|∂X ∩ L|.

Remark 4.8. Every spanning surface F satisfies ess(F ) ≤ essg(F ).

Remark 4.9. A spanning surface F is geometrically incompressible if
and only if essg(F ) ≥ 1.

Remark 4.10. A spanning surface F is geometrically essential if and
only if essg(F ) ≥ 2.

Theorem 3.1 implies that plumbing does not respect geometric
essence. Yet, this notion also has advantages. One advantage is that
any acceptable geometric cap X describes a possible surgery move
on F , much as geometric compressing disks and ∂-compressing disks
do (recall Definition 4.2).

One can surger F along an acceptable geometric cap X as follows.
Viewing F as a properly embedded surface in the link exterior E,
cut F along the n arcs of ∂X ∩ F , and glue in two parallel copies
of X. The resulting surface F ′ satisfies β1(F

′) = β1(F ) + n− 2 and
|s(F )− s(F ′)| ≤ 2n, where s(F ) is the slope of F [Ki21].14 Thus, the

14When L is a knot, s(F ) is the boundary slope of F . See [Ki21] for the general
case.
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effect of the surgery move on β1(F ) and s(F ) gets “worse” as |∂X∩L|
increases. The precise effect of this surgery on s(F ) depends on the
slope of X, which we define next.

5. Plumbing respects essence

The main goal of §5 is to prove Theorem 5.5. First, we need some
technical results. For expository reasons, we also include a proof of
a weaker version of Theorem 5.5 in which boundary connect sum
replaces Murasugi sum (see Theorem 5.3).

Recall that a fake plumbing cap is a geometric cap X for F for
which ∂X bounds a disk U in X, and F intersects one of the closed
balls comprising S3 \ \(X ∪ U) in a disk; the latter condition is

equivalent to the condition that ∂X̃ bounds a disk in ∂SF (recall
Notation 2.14). Generalize this terminology as follows. Suppose

X = φF (X̃) is an arbitrary cap for F . Say that X is fake if ∂X̃
bounds a disk in ∂SF .

Observation 5.1. If X = φF (X̃) is a fake cap for F with ∂X̃ t L̃,
then |∂X ∩ L| is even.

Observation 5.2. If X is a fake cap for F , then ∂X is contractible
in F .

Theorem 5.3. If F = F1\F2 and F1, F2 are π1-essential, then ess(F ) =
mini=1,2 ess(Fi).

Proof. Certainly ess(F ) ≤ k.15 For the reverse inequality, letW be a
plumbing cap which decomposes F as F1\F2, and chooseX ∈ Cap(F )
to lexicographically minimize |∂X ∩L| and |X ∩W |. If X ∩W = ∅,
then X is a non-plumbing cap for F1 or F2, and we are done.

Assume instead that X ∩W 6= ∅. Since |∂W ∩L| = 2, there is an
outermost disk Y of W \ \X with |∂Y ∩ L| ≤ 1. Surger X along Y ,
and denote the resulting caps by X1, X2. They are not fake, by the
minimality of |X ∩W |. Theorem 2.11 implies that F is π1-essential,
so each |∂Xi ∩ L| ≥ 2. Further,

|∂X1 ∩ L|+ |∂X2 ∩ L| = |∂X ∩ L|+ 2|∂Y ∩ L| ≤ |∂X ∩ L|+ 2,

so each |∂Xi∩L| ≤ |∂X∩L|. This, the fact that |Xi∩W | < |X∩W |,
and the lexicographical minimality of |∂X ∩ L| and |X ∩W | imply
that ∂X1 and ∂X2 are both contractible in F . Therefore, ∂X too is
contractible in F , contrary to assumption. �

Before proving the main theorem of this section, we need to es-
tablish a technical lemma. The setting is similar to that of Theorem

15Perhaps surprisingly, this inequality fails to extend to plumbing more gen-
erally, but the opposite inequality does extend.
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5.3 and its proof, except with plumbing in place of boundary connect
sum.

Namely, suppose that W is a geometric plumbing cap for F , that
U ⊂ F is the disk with ∂U = ∂W , and that Bi, i ∈ Z/2Z are the
closed 3-balls comprising S3\\(W ∪U). Denote each F ∩Bi = Fi, so

that F = F0 ∗ F1 along W ∪ U . Let each B̂i denote a copy of Bi in

which F has been deleted from its interior, so that each Bi ∪ B̂i+1 is
a 3-sphere containing a copy of Fi. Identify these copies with F0, F1

themselves, and identify the hemispheres of each ∂B̂i with U and W .
Given a cap X for F , isotope X to intersect W minimally and

transversally, such that W contains no self-intersection points of ∂F
and no points of ∂F ∩ L. Assume that X ∩ W 6= ∅. Orient X.
Label the arcs of X ∩W as α1, . . . , α` and the disks of X\\W as
X0, . . . , X`, such that each αj = ∂Xj ∩ ∂Xj′ for some j′ < j. For
each j = 0, . . . , `, denote Ij = {t : αt ⊂ ∂Xj}. Note that I0 = {1}
and min Ij = j for each j ≥ 1. Define ρ : {0, . . . , `} → Z/2Z so that
each Xj ⊂ Bρ(j).

Let {β1, . . . , β`} be a collection of disjoint properly embedded arcs
in U , where each βj has the same endpoints as αj . For each i ∈ Z/2Z,

let Yi =
⊔`
j=1 Yi,j ⊂ B̂i+1 be a system of disjoint properly embedded

disks with each ∂Yi,j = αj ∪ βj . Extend each disk Xj to a disk

Zj = Xj ∪
⋃
t∈Ij

Yρ(j),t ⊂ Bρ(j) ∪ B̂ρ(j)+1.

This disk Zj is either a cap or a fake cap for Fρ(j). Each Zj inherits an
orientation from Xj ⊂ X and lifts to a properly embedded, oriented

disk Z̃j ⊂ SFρ(j) .

Lemma 5.4. With the setup above, if each ∂Zj is contractible in
Fρ(j), then ∂X is contractible in F .

Proof. Assume there exist continuous maps fj : (D2
j , ∂D

2
j )→ (Fρ(j), ∂Zj)

for each j = 0, . . . , `. Glue the disks D2
j by identifying the arcs

f−1j (βj) and f−1j′ (βj′). The resulting quotient space is a disk,

⊔̀
i=0

D2
j/
(
x ∈ ∂D2

j ∼ x′ ∈ ∂D2
j′ if fj(x) = fj′(x

′)
)
.

Gluing the maps fj along the arcs βj gives a map from this disk and
its boundary to F and ∂X, respectively. Thus, ∂X is contractible in
F . �

Now we are ready to prove the following generalization of Ozawa’s
plumbing theorem.
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Theorem 5.5. If F = F1 ∗F2 is a plumbing of π1-essential spanning
surfaces, then ess(F ) ≥ mini=1,2 ess(Fi) = n.

Proof. Let W be a plumbing cap which decomposes F into F1 and
F2, and let U be its shadow. Choose X ∈ Cape(F ) so as lexicograph-
ically to minimize k = |∂X ∩ L|, ` = |X ∩W |, and m = |∂X ∩ ∂U |,
provided that X t W and ∂U contains no points where ∂X inter-
sects itself or L. If ` = 0, then wlog X is a cap for F1 and ∂X is
not contractible in F1, so ess(F1) ≤ |∂X ∩ L| = ess(F ), and we are
done. Assume instead that ` > 0.

Set up Fi ⊂ Bi∪ B̂i+1, i ∈ Z/2Z, as in §??, along with α1, . . . , α`;
X0, . . . , X`; I1, . . . , I`; β1, . . . , β`; Yi, i ∈ Z/2Z; and Z0, Z1, . . . , Z`.

Decorate ∂X with k + 2` markers as follows. First, mark ∂X
by drawing a dot on each component of ∂X ∩ L. Note that none of
these points is an endpoint of X∩W . Second, observe that near each
endpoint of each arc of X∩W , ∂X runs along U in one direction but
not the other. See Figure 22. Mark ∂X near each of the 2` endpoints
of X ∩W with an arrow that points in the direction where ∂X runs
along U .

There are now k+ 2` markers, each of which lies on the boundary
of exactly one of the disks X0, . . . , X` of X \ W . The number of
markers on each Xj equals the number of points of |∂Zj ∩ L|.

There are now k + 2` markers distributed among the ` + 2 disks
of X \W . We claim that each Xj must have at least two markers.

To see why, suppose Zj has fewer. Then Zj must be a fake cap for
the π1-essential surface Fρ(j), hence must satisfy |∂Zj ∩ L| = 0 (and

not 1) by Observation 5.1. Assume wlog that ρ(j) = 0. Then ∂Z̃j
bounds a disk Ũj ⊂ ∂SF0 . Note that ∂Ũj must intersect p−1F0

(∂U).

Consider an outermost disk Ṽ of Ũj \ p−1F0
(∂U).

Let V = pF0(Ṽ ). Then V is disjoint from L and lies either in
F or W ; its interior is disjoint from X and L; and its boundary
consists of an arc σ ⊂ ∂U and an arc τ which lies in either F or
W . If τ ⊂ F , then pushing X near τ through V past σ decreases
the lexicographically minimized quantity (k, `,m). Assume instead
that τ ⊂ W . Then V ∈ Cap(X) and |V ∩ L| = 0. Surgering X
along V gives two disks Xi with ∂Xi ⊂ F and (∂Xi ∩ L,Xi ∩W ) <
(X ∩ L,X ∩ W ). The lexicographical minimality of this quantity
implies that both ∂Xi must be contractible in F , but this implies
contrary to assumption that ∂X is also contractible in F .

Thus, each of X0, . . . , X` has at least two markers. Since there are
k + 2` markers in total, each of X0, . . . , X` has at most k markers.
If k < n, then each Xj has fewer than n markers; hence each ∂Zj is
contractible in Fρ(j). Therefore, by Lemma 5.4, ∂X is contractible
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Figure 22. Mark ∂X near each endpoint of each
arc of X ∩ W with an arrow that points in the di-
rection where ∂X runs along U .

in F , contrary to the assumption that X ∈ Cape(F ). Therefore,
ess(F ) = |∂X ∩ L| = k ≥ n = mini=1,2 ess(Fi). �

Theorem 5.6. If F = F1∗F2 is a plumbing along a disk U with |∂U∩
L| = n, and if min0,1 min{ess(Fi), essc(Fi)} ≥ n, then essc(F ) = n.

Proof. Let W be the plumbing cap for F with ∂W = ∂U . Then
|∂W ∩ L| = n, so essc(F ) ≤ n. Let essc(F ) = k. We must show
that k ≥ n. Choose a ∂-contractible cap X for F with |∂X ∩ L| = k
which lexicographically minimizes ` = |X ∩W | and m = |∂X ∩ ∂U |,
provided that X tW and ∂U contains no points where ∂X intersects
itself or L. Assume for contradiction that k < n. Decorate ∂X with
k + 2` markers as in the proof of Theorem 5.5. Observe that

k + 2`− n(`+ 1) = (k − n) + `(2− n) < 0,

so some disk Xj of X \ \W must have fewer than n markers. Hence,
Xj extends as in that proof to a disk Zj which is a fake cap for F .
This gives a contradiction as in the middle of the proof of Theorem
5.5. �
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