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THOMAS KINDRED

Abstract. In 1898, Tait asserted several properties of alter-
nating knot diagrams. These assertions became known as Tait’s
conjectures and remained open until the discovery of the Jones
polynomial in 1985. The new polynomial invariants soon led
to proofs of all of Tait’s conjectures, culminating in 1993 with
Menasco–Thistlethwaite’s proof of Tait’s flyping conjecture.

In 2017, Greene (and independently Howie) answered a long-
standing question of Fox by characterizing alternating links
geometrically. Greene then used his characterization to give
the first geometric proof of part of Tait’s conjectures. We use
Greene’s characterization, Menasco’s crossing ball structures,
and a hierarchy of isotopy and re-plumbing moves to give the
first entirely geometric proof of Menasco–Thistlethwaite’s flyp-
ing theorem.

1. Introduction

P.G. Tait asserted in 1898 that all reduced alternating diagrams of
a given prime link in S3 minimize crossings, have equal writhe, and
are related by flype moves (see Figure 1) [T1898]. Tait’s conjectures
remained unproven until the 1985 discovery of the Jones polynomial,
which quickly led to proofs of Tait’s conjectures about crossing num-
ber and writhe. Tait’s flyping conjecture remained open until 1993,
when Menasco–Thistlethwaite gave its first proof [MT91, MT93],
which they described as follows:

The proof of the Main Theorem stems from an anal-
ysis of the [checkerboard surfaces] of a link diagram,
in which we use geometric techniques [introduced in
[Me84]]... and properties of the Jones and Kauffman
polynomials.... Perhaps the most striking use of poly-
nomials is... where we “detect a flype” by using the
fact that if just one crossing is switched in a reduced
alternating diagram of n crossings, and if the result-
ing link also admits an alternating diagram, then the
crossing number of that link is at most n − 2. Thus,
although the proof of the Main Theorem has a strong
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Figure 1. A flype along an annulus A = νγ ⊂ S2.

geometric flavor, it is not entirely geometric; the ques-
tion remains open as to whether there exist purely geo-
metric proofs of this and other results that have been
obtained with the help of new polynomial invariants.

We answer part of Menasco–Thistlethwaite’s question by giving
the first entirely geometric proof of Tait’s flyping conjecture:

Theorem 5.5 (Tait’s flyping conjecture [MT91, MT93]). All reduced
alternating diagrams of a given prime link L ⊂ S3 are related by flype
moves and planar isotopy.

(The version of Theorem 5.5 that we prove is a slightly stronger
statement.) In the process, we obtain new geometric proofs of other
parts of Tait’s conjectures, which were first proven independently by
Kauffman, Murasugi, and Thistlethwaite using the Jones polynomial,
and were first proved geometrically by Greene:

Theorem 4.7 (Part of Tait’s first conjecture [Gr17, Ka87, Mu87,
Th87, Tu87]). All reduced alternating diagrams of a given link L ⊂ S3

have the same number of crossings.

Theorem 5.6 (Tait’s second conjecture [Gr17, M87ii, T88b]). All re-
duced alternating diagrams of a given link L ⊂ S3 have equal writhe.

Like Menasco–Thistlethwaite’s proof, ours stems from an analysis
of checkerboard surfaces and uses the geometric techniques intro-
duced in [Me84]. The most striking difference between our proof
and the original proof in [MT93] is that we “detect flypes” via re-
plumbing moves. Indeed, any flype move isotopes one checkerboard
surface and re-plumbs the other (see Figure 2); it follows that the
checkerboard surfaces from any flype-related diagrams are related
pairwise by isotopy and such re-plumbing moves. The main idea be-
hind our proof of the flyping theorem is to reverse this reasoning by
establishing this plumb-equivalence geometrically. Thus, our proof
of the flyping theorem is entirely geometric, not just in the formal
sense that it does not use the Jones polynomial, but also in the more
genuine sense that it conveys a geometric way of understanding why
the flyping theorem is true.

To translate the question of flype-equivalence of link diagrams to
a question about plumb-equivalence of spanning surfaces, we extend
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Figure 2. A flype isotopes one checkerboard surface
(here, W ) and re-plumbs the other.

recent insights of Greene and Howie [Gr17, Ho17]1 by establishing a
new correspondence between prime alternating link diagrams on S2

and pairs of essential definite spanning surfaces (see Conventions 2.3
and 2.14 and Definition 2.11):

Theorem 2.30. Suppose B,W and B′,W ′ are the respective checker-
board surfaces of prime alternating diagrams D and D′ of a link
L ⊂ S3. Then D and D′ are equivalent if and only if B and B′ are
isotopic in S3 \ ◦νL, as are W and W ′.

Corollary 2.31. There is a bijective correspondence between equiv-
alence classes of prime alternating link diagrams DB,W on S2 and
pairs B,W of isotopy classes of essential definite surfaces of opposite
signs spanning the same prime link in S3.

Theorem 2.30 does not extend to non-prime or non-alternating
diagrams. For a simple example, consider any two distinct positive
5-crossing diagrams of the unknot: both white checkerboard surfaces
will be disks, and both black surfaces will be isotopic to \5i=1 . See
Example 2.32 for a prime, non-alternating example.

To utilize this correspondence, we use Menasco’s crossing ball
structures in §§3-4 to describe a hierarchy of isotopy moves (Moves
1-9) and re-plumbing moves (Move 10) and prove:

Theorem 4.5. If B, W are the checkerboard surfaces from a prime
alternating diagram D ⊂ S2 of a link L ⊂ S3, then any essential
positive-definite surface F spanning L is plumb-related to B (via
Moves 1-10); likewise for essential negative-definite surfaces and W .

Yet, it is not obvious that the re-plumbing Move 10 is always sort
of re-plumbing move associated with flypes. In §5, however, we will
prove that this is always the case when B′ is in “9-good position,”
meaning that none of Moves 1 − 9 are possible. (This is Theorem
5.4.) Therefore, with the setup from Theorem 2.30 and notation
from Corollary 2.31, D = DB,W and DB′,W are flype-related, as are
DB′,W and DB′,W ′ = D′. For expository reasons, we include some
proofs in §§2-4 but postpone others until §§6-8.

1Those insights answered another longstanding question, this one from Ralph
Fox: “What [geometrically] is an alternating knot [or link]?”
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Thank you to Colin Adams for posing a question about flypes
and checkerboard surfaces during SMALL 2005 which eventually led
to the insight behind Figure 2. Thank you to Hugh Howards, Josh
Howie, and Alex Zupan for helpful discussions. Thank you to Josh
Greene for helpful discussions and especially for encouraging me to
think about this problem.

2. Alternating diagrams and definite surfaces

2.1. Basic definitions. All links are in S3 and all link diagrams are
on S2. We call a link L prime if L is not a trivial link of one or two
components and any connect sum decomposition L = L1#L2 has
L1 =© or L2 =©. We call a link diagram D prime if D has more
than one crossing and any connect sum decomposition D = D1#D2

has D1 =© or D2 =©. Our extra assumptions that L 6=©© and
that D has more than one crossing are unconventional but convenient
because they imply:

Fact 2.1. Every prime link is nontrivial and nonsplit (i.e. the link
complement is irreducible), and every prime link diagram is nontriv-
ial, connected and reduced.2

Let νL be a closed regular neighborhood of a link L with projection
πL : νL → L.3 One can define spanning surfaces F for L in two
ways; in both definitions, F is compact and unoriented (orientable
or not), and each component of F has nonempty boundary. First,
F is an embedded surface in S3 with ∂F = L. Alternatively, F is
properly embedded in the link exterior S3\◦νL such that ∂F intersects
each meridian on ∂νL transversally in one point.4 We use the latter
definition throughout, except where noted otherwise.

The rank β1(F ) of the first homology group of a spanning surface
F counts the number of “holes” in F . When F is connected, β1(F ) =
1−χ(F ) counts the number of cuts along disjoint, properly embedded
arcs required to reduce F to a disk. Thus:

Observation 2.2. If α is a properly embedded arc in a spanning
surface F and F ′ = F \ ◦να, then β1(F

′) − |F ′| = β1(F ) − |F | − 1.5

In particular, if F ′ connected, then β1(F
′) = β1(F )− 1.

Convention 2.3. Isotopies of properly embedded surfaces and arcs
are always taken to be proper isotopies.6 Two properly embedded

2A diagram D is reduced if no crossing is nugatory, i.e. incident to fewer than
four distinct regions of S2 \D.

3νX always denotes a closed regular neighborhood of X, usually taken in S3.
4A meridian on ∂νL is a circle π−1

L (x) ∩ ∂νL for a point x ∈ L.
5|X| denotes the number of connected components of X.
6For example, an isotopy of a spanning surface F ⊂ S3 \ ◦

νL is a homotopy

ht : F → S3 \ ◦
νL, t ∈ I,with h0(F ) = F where each ht(F ) is a spanning surface.
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surfaces or arcs are parallel if they have the same boundary and are
related by an isotopy which fixes this boundary.

A spanning surface F is (geometrically) incompressible if every
simple closed curve in F that bounds a disk in S3\\(F ∪ νL) also
bounds a disk in F ;7 F is ∂-incompressible if every properly em-
bedded arc in F that is parallel into ∂νL in S3\\(F ∪ νL) is also
∂-parallel in F . If F is incompressible and ∂-incompressible, then
F is essential. This geometric notion of essentiality is weaker than
the algebraic notion of π1-essentiality, which holds F to be essential
if inclusion F ↪→ S3 \ ◦νL induces an injective map on fundamental
groups and F is not a möbius band spanning the unknot. A standard
innermost circle argument shows:

Fact 2.4. If an incompressible surface F spans a split link L, then
the boundary of each connected component of F lies in a single split
component of L.

Proposition 2.5. Suppose F± are definite surfaces of opposite signs
spanning a link L and F+ ∩ F− consists only of arcs, none of which
are ∂-parallel in both F+ and F−. If F− is essential, then no arc of
F+ ∩ F− is ∂-parallel in F+.

Proof. If any arcs of F+ ∩ F− are ∂-parallel in F+, choose an outer-
most one, β; it is parallel into ∂νL through a disk X ⊂ F+\\F− ⊂
S3\\(F− ∪ νL). Since F− is essential, β is ∂-parallel in F−. Yet, we
assumed that no arc of F+∩F− is ∂-parallel in both F+ and F−. �

Proposition 2.6. If an essential spanning surface F contains an
arc β which is parallel in S3\\(F ∪νL) to an arc α ⊂ ∂νL\\∂F , then
α is parallel in ∂νL into ∂F .

Proof. It suffices to prove this when L is nonsplit and nontrivial.
Because F is essential, β is parallel in F to an arc α′ ⊂ ∂F . The arcs
α and α′ are both parallel in S3 \ ◦νL to β, hence co-bound a disk in
S3 \ ◦νL, and therefore are parallel in ∂νL. �

7For compact X,Y ⊂ S3, X\\Y denotes the metric closure of X \ Y . We
describe a general construction under the additional assumptions that X and
X \ Y are manifolds of the same dimension. If, for each x ∈ X ∩ Y , a generic
local neighborhood νx has the property that Z ∩ νx is connected or empty for
each component Z of X \Y , then X\\Y is the disjoint union of the closures in S3

of the components of X \ Y (hence, each component of X\\Y embeds naturally
in S3, although X\\Y as a whole need not). More generally, let {(Uα, φα)} be
a maximal atlas for X. About each x ∈ X, choose a chart (Ux, φx) that is tiny

enough that, for each component Z of Ux \Y and a generic local neighborhood νx

of x in Ux, Z ∩ νx is connected or empty; construct Ux\\Y as above, denote the

components of Ux ∩ (Ux\\Y ) by Uα, α ∈ Ix, and denote each natural embedding
fα : Uα → Ux. Then

⋃
x∈X{(Uα, φx ◦ fα)}α∈Ix is an atlas for X\\Y . Gluing all

the maps fα yields a natural map f : X\\Y → X ⊂ S3.
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Figure 3. Constructing checkerboard surfaces;
close-ups near a vertical arc (yellow) at a crossing

Given any diagram D of L, one may a color the complementary
regions of D in the projection sphere S2 black and white in checker-
board fashion.8 See Figure 3. One may then construct spanning
surfaces B and W for L such that B projects to the black regions,
W projects to the white, and B and W intersect in vertical arcs
which project to the the crossings of D. Call the surfaces B and W
the checkerboard surfaces from D.

Fact 2.7. Given a connected alternating diagram D ⊂ S2, the fol-
lowing conditions are equivalent:

(I) D is reduced.
(II) Both checkerboard surfaces B and W from D are essential.

(III) No vertical arc of B ∩W is separating in B nor in W .

Proof. The implications (I) ⇐⇒ (III) and (II) =⇒ (I) are straight-
forward. For (I) =⇒ (II), see e.g. Theorem 9.8 of [Au56], Proposi-
tion 2.3 of [MT93], Theorems 2-3 of [Oz06], Theorem 3.15 of [Ho15],
or Theorem 1.1 of [Ki23b]. �

Remark 2.8. In particular, by Fact 2.7, no vertical arc from a prime
alternating diagram is ∂-parallel in either checkerboard surface.

2.2. Flype-related diagrams.

Definition 2.9. Suppose D ⊂ S2 is a link diagram and γ ⊂ S2 is a
circle that intersects D transversally in three points, exactly one of
them a crossing point c; we call the circle γ a flyping circle for D and
the arc of γ\\D with neither endpoint at c a flyping arc for D. Up to
mirror symmetry, D and γ appear as shown far left in Figure 1; in
particular, D intersects the two disks of S2 \ ◦νγ in tangles T1 and T2.
The move D → D′ shown left in Figure 1 is called a flype: this move
fixes the tangle T1, switches which pair of strands cross within νγ,
and changes T2 by reflecting the underlying projection and reversing

8That is, so that regions of the same color meet only at crossing points.
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Figure 4. An entire flype of a diagram of the knot 817

all crossing information. Two link diagrams on S2 are flype-related
if they are related by a sequence of flype moves and planar isotopy.9

Observation 2.10. If D → D′ is a flype, then D and D′ represent
the same link L and have the same number of crossings. Also, if D
and D′ are oriented then they have the same writhe.10 Further, if D
is alternating (resp. prime), then so is D′.

Definition 2.11. If the tangle T1 in Figure 1 contains no crossings,
then (up to planar isotopy) the associated flype has the effect of
changing D to its mirror image and reversing all crossings. We call
such a flype an entire flype. One may think of this move as leaving D
unchanged and viewing it from the opposite side of S2 in S3. Figure
4 shows an example. We regard two link diagrams D and D′ as
equivalent, denoted D ≡ D′, if they are related by planar isotopy
and possibly an entire flype.11

2.3. Definite surfaces. Given a(n unoriented) spanning surface F
for an oriented link L, the oriented euler number e(F,L) is the al-
gebraic self-intersection number of the closed surface in the 4-ball
obtained by pushing int(F ) into the 4-ball and capping off ∂F with
a Seifert surface in S3 (using the orientation on L). The unoriented
euler number of F , denoted e(F ), is the average value of e(F,L)
over all orientations of L. Alternatively, −e(F ) can be computed by

9Every arc in S2\\D with endpoints on adjacent edges of D is a flyping arc.
10The writhe wD is the number of positive crossings in D minus the number

of negative crossings . Equivalently, wD is the blackboard framing of D: if one
embeds L in νS2 according to D (see §3.1, e.g.) and takes a co-oriented pushoff

L̂ in either direction normal to S2, then wD = lk(L, L̂).
11 Any entire flype f : D → D′ extends to an orientation-reversing homeo-

morphism S2 → S2. Conversely, given any orientation-reversing homeomorphism
ι : S2 → S2, the diagram D′ obtained from ι(D) by reversing all crossing infor-
mation is related to D by planar isotopy and an entire flype.
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Figure 5. An curve γ on F , with γ̃ = p−1(γ) on F̃ .

summing the component-wise boundary slopes of F .12 We denote
−e(F ) = s(F ) and call this the slope of F .

Given surface F spanning a link L, take νF in the link exterior
S3 \\νL with projection p : νF → F such that p−1(∂F ) = νF ∩∂νL.

Denote the frontier F̃ = ∂νF\\∂νL and13 transfer map τ : H1(F )→
H1(F̃ ).14 The Gordon-Litherland pairing [GL78]

〈·, ·〉 : H1(F )×H1(F )→ Z
is the symmetric, bilinear mapping given by the linking number

〈a, b〉 = lk(a, τ(b)).

Any projective homology class g = [γ] ∈ H1(F )/± has a well-defined
self-pairing

g = 〈g, g〉; the framing of γ in F is given by 1
2

g.
Given an ordered basis B = (a1, . . . , am) for H1(F ), the Goeritz

matrix G = (xij) ∈ Zm×m given by xij = 〈ai, aj〉 represents 〈·, ·〉 with
respect to B.15 The signature of G is called the signature of F and is
denoted σ(F ). Gordon-Litherland showed that the quantity σ(F )−
1
2s(F ) is independent of F , and in fact equals the Murasugi invariant
ξ(L), which is the average signature of L across all orientations.

They also showed that σ(F ) is the signature of the 4-manifold
obtained by pushing the interior of F into the interior of the 4-ball
B4, while fixing ∂F in ∂B4 = S3, and taking the double-branched
cover of B4 along this surface. In particular, when L is a knot, ξ(L)
is the signature of L and of the 4-manifold obtained as a double-
branched cover of B4 along any perturbed Seifert surface.

12If L1, . . . , Lm are the components of ∂F and each L̂i is a co-oriented pushoff
of Li in F , then the boundary slope of F along each Li equals the framing of

Li in F , given by the linking number lk(Li, L̂i), and −e(F ) =
∑m
i=1 lk(Li, L̂i).

Further, denoting L̂ =
⋃m
i=1 L̂i and total linking number lk(L) =

∑
i<j lk (Li, Lj),

we have −e(F,L) = lk(L, L̂) = −e(F ) + 2lk(L).
13Thus, the restriction p : F̃ → F is a 2:1 covering map, F̃ is orientable, and

F̃ is connected if and only if F is connected and nonorientable.
14Given any g ∈ H1(F ), choose an oriented multicurve γ ⊂ int(F ) representing

g, denote γ̃ = ∂(p−1(γ)), and orient γ̃ following γ; then, τ(g) = [γ̃].
15That is, any y =

∑m
i=1 yiai and z =

∑m
i=1 ziai satisfy

〈y, z〉 =
[
y1 · · · ym

]
G
[
z1 · · · zm

]T
.
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A spanning surface F is positive-definite if 〈g, g〉 > 0 for all nonzero
g ∈ H1(F ) [Gr17]. Equivalently, F is positive-definite iff σ(F ) =
β1(F ). Negative-definite surfaces are defined analogously.

Proposition 2.12. If F+ and F− are positive- and negative-definite
spanning surfaces for the same link L, then

s(F+)− s(F−) = 2(β1(F+) + β1(F−)).

Proof. Definiteness implies that β1(F±) = ±σ(F±), and [GL78] gives
s(F±) = 2(σ(F±)− ξ(L)). Thus:

s(F+)− s(F−) = 2(σ(F+)− ξ(L))− 2(σ(F−)− ξ(L))

= 2(β1(F+) + β1(F−)).

Note that this holds even if L is non-prime, since slopes and signa-
tures are additive under connect sum and split union. �

Greene used definiteness to characterize nonsplit alternating links:

Theorem 1.1 of [Gr17]. If B and W are positive- and negative-
definite spanning surfaces for a link L in a homology Z/2Z sphere
with irreducible complement, then L is an alternating link in S3,
and it has an alternating diagram D whose checkerboard surfaces are
isotopic to B and W . Moreover, D is reduced if and only if neither
B nor W has a projective homology class with self-pairing ±1.

The converse of the first sentence of the theorem is also true:

Fact 2.13 (Proposition 4.1 of [Gr17]). A connected link diagram is
alternating if and only if its checkerboard surfaces are definite and of
opposite signs.16

Convention 2.14. If D is a connected alternating link diagram,
then its checkerboard surfacesB,W are labeled such thatB is positive-
definite and W is negative-definite. Likewise for D′, B′, and W ′. We
may abbreviate this setup by denoting D = DB,W and D′ = DB′,W ′ .

Fact 2.4 and definite surfaces’ incompressibility (Corollary 3.2 of
[Gr17]) extend Theorem 1.1 of [Gr17] to split links in S3 as follows:

Fact 2.15. If B and W are positive- and negative-definite spanning
surfaces for a link L, then L has an alternating diagram D ⊂ S2

such that, for each connected component Di of D, denoting the cor-
responding split component of L by Li,

17 each checkerboard surface
of Di (ignoring the rest of D) is isotopic in S3 \ ◦νLi to a connected
component of B or W .

In particular, B and W have the same number of connected com-
ponents, and this equals the number of split components of L.

16Murasugi proved the forward direction for Tait’s second conjecture [M87ii].
17This correspondence follows from Theorem 1 (a) of [Me84].
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Greene used Theorem 1.1 of [Gr17] and lattice flows to give a
geometric proof of part of Tait’s conjectures:

Theorem 1.2 of [Gr17]. All reduced alternating diagrams of a given
link have the same crossing number and writhe.

We will give alternate proofs of both parts of this theorem. The
part about crossing number will follow from Theorem 4.5 and will
serve as an intermediate step in our proof of the flyping theorem.
Later, we will deduce the part about writhe as a corollary of the
flyping theorem, since flypes preserve writhe.

Remark 2.16. Theorem 1.2 of [Gr17] does not imply, a priori, that
a reduced alternating diagram realizes the underlying link’s cross-
ing number, since it does not rule out the possibility that a non-
alternating diagram could have fewer crossings. All existing proofs
of this fact [Ka87, Mu87, Th87, Tu87] use the Jones polynomial.

Problem 2.17. Give an entirely geometric proof that any reduced
alternating diagram realizes the underlying link’s crossing number.

Thistlethwaite proved more generally that any adequate link dia-
gram minimizes crossings. See Corollary 3.4 of [T88a] (or Corollary
5.14 of [Li97] for Lickorish’s simpler proof). Thistlethwaite then de-
duced that any reduced alternating tangle diagram minimizes cross-
ings. See Definition 2.2 and Theorem 3.1 of [Th91].

Problem 2.18. Prove Corollary 3.4 of [T88a] geometrically.

Problem 2.19. Give a geometric proof of Theorem 3.1 of [Th91].

2.4. Intersections between definite surfaces. Let F and F ′ be
spanning surfaces for a link L with F t F ′. Orient L arbitrarily, and
orient ∂F and ∂F ′ so that each is homologous in νL to L.

2.4.1. Standard and non-standard arcs. Given an arc α of F ∩ F ′,
take ν∂α in ∂νL, so that ∂F and ∂F ′ each intersect each disk of ν∂α
in an arc, giving i(∂F, ∂F ′)ν∂α ∈ {0,±2}. Following Howie [Ho17],
we call α standard if i(∂F, ∂F ′)ν∂α = ±2; we call α non-standard if
i(∂F, ∂F ′)ν∂α = 0. One can compute the slope difference s(F )−s(F ′)
by counting the arcs of F ∩ F ′ with signs:

(2.1) s(F )− s(F ′) = i(∂F, ∂F ′)∂νL =
∑

arcs α of F∩F ′
i(∂F, ∂F ′)ν∂α

Procedure 2.20. Let S, T be connected spanning surfaces for a link
L such that S ∩ T consists entirely of standard arcs and |S ∩ T | =
β1(S) + β1(T ). Extend S, T through νL so that ∂S = L = ∂T and
collapse S∪T along each arc of int(S)∩int(T ). This gives a 2-sphere18

18This uses connectedness and the assumption that |S ∩ T | = β1(S) + β1(T ).
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Figure 6. Collapsing S ∪ T along a standard arc

Q on which L collapses to a connected 4-valent graph; recovering
crossing information gives a connected link diagram DS,T ⊂ Q whose
checkerboard surfaces are S and T . See Figure 6.

Remark 2.21. In Procedure 2.20, the initial configuration of S and
T , up to isotopy of S∪T in S3\ ◦νL, uniquely determines the diagram
D (up to planar isotopy and perhaps an entire flype).

Proposition 2.22. Suppose F± are positive- and negative-definite
surfaces spanning a nonsplit link L such that F+ ∩ F− consists only
of arcs α with i(∂F+, ∂F−)ν∂α = +2. Then:

(A) |F+ ∩ F−| = β1(F+) + β1(F−).
(B) F± give an alternating diagram DF+,F− via Procedure 2.20.
(C) If F+ and F− are essential, then D is reduced.

Proof. Fact 2.15 implies that F+ and F− are connected, so the hy-
potheses regarding F+ ∩ F− and Proposition 2.12 imply

|F+ ∩F−| =
1

2
|∂F+ ∩ ∂F−| =

1

2
(s(F+)− s(F−)) = β1(F+) + β1(F−).

Hence, the pair F± determines a connected diagramD of L via Proce-
dure 2.20. The checkerboard surfaces of D are F±, so D is alternating
by Fact 2.13. Fact 2.7 implies (C). �

The proof of Lemma 3.4 of [Gr17] shows:

Fact 2.23. If F+ t F− are definite surfaces of opposite signs span-
ning a link L, then any circle in F+ ∩ F− bounds disks in both F±.

Procedure 2.24. Suppose F± are definite surfaces of opposite signs
spanning a link L with F+ t F−. While fixing F−, isotope F+

according to the following hierarchy of moves:19

(1) If F+ ∩ F− contains circles, then (using Fact 2.23) choose an
innermost one in F−, and let X± denote the disks it bounds
in F±. Using the irreducibility of S3 \L, isotope X+ past X−
as shown in Figure 7. Meanwhile, fix F+ away from X+.

(2) If any arc α of F+∩F− is parallel in F−\\F+ into ∂F− and in
F+\\F− into ∂F+, then remove α as shown in Figure 8, top.

19That is, perform (1) whenever possible, perform (2) whenever possible unless
(1) is possible, and perform (3) whenever possible unless (1) or (2) is possible.
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Figure 7. Removing a circle γ of intersection be-
tween positive- and negative-definite surfaces F+ and
F−. The dashed purple circle bounds a disk in F+.

Figure 8. Removing adjacent points of ∂F+ ∩ ∂F−
of opposite sign

(3) If arcs α+ ⊂ ∂F+\\∂F− and α− ⊂ ∂F−\\∂F+ are parallel in
∂νL, then push F+ near α+ past α− as in Figure 8, bottom.

The reader may be puzzled as to why we include (2) in Procedure
2.24, when the same move can be achieved by (3) followed by (1).
The reason, as we will see in Lemma 2.27, is that, when F+ and F−
are essential, parts (1) and (2) ensure that F+ ∩ F− consists only of
standard arcs, so (3) is ultimately superfluous; nevertheless, we find
(3) useful in the leadup to the proof of Lemma 2.27 in §6.2. This will
allow us to strengthen Remark 2.21 (see Theorem 2.30) by analyzing
how an isotopy of F+ can affect the standard arcs of F+ ∩ F−.

2.4.2. Isotopy of arcs in surfaces. Given checkerboard surfaces B,W
from a prime alternating diagram of a link L and an arbitrary es-
sential positive-definite surface F spanning L, we will later analyze
how isotoping F can affect F ∩B and F ∩W . The next two lemmas
anticipate this analysis. See §6 for their proofs and those of all other
lemmas that appear in §2 without their proofs.

For both lemmas, let X be an abstract connected surface (not
necessarily compact) with χ(X) < 0, and let u, v ⊂ X be systems of
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α′ α
X0

α′ α

X0

α′ α

X0

Figure 9. Isotopic arcs α, α′ ⊂ X cut off a “bigon,”
“triangle,” or “rectangle” X0 ⊂ X \\(α ∪ α′).

v2 ⊂ v \ w

v \ w

u2 ⊂ u \ w
w

X0

λ0 λ1

x y

w w

X0

Figure 10. Permissible triangles and rectangles of
X \\(u ∪ v) in condition (2.2) of Lemma 2.26

properly embedded, non-∂-parallel arcs. Let w denote the union of
the arcs of u that lie in v, and assume that u \ w t v.

Lemma 2.25. If an arc u1 of u \ w is isotopic in X \ w to an arc
v1 of v \ w, then:

(A) Some compact disk X0 of X\\(α ∪ β) is a bigon, triangle, or
rectangle with |∂X0 ∩ α| = 1 = |∂X0 ∩ β|: see Figure 9.

(B) Using only the moves shown in Figure 9, both of which de-
crease |α ∩ β|, one can isotope α in X \ w until α ∩ β = ∅.

(C) If α∩β 6= ∅ and no disk of X \\(α∪β) is a bigon, then each
endpoint of α is incident to exactly one triangle of X\\(α∪β).

Now we consider u and v all together:

Lemma 2.26. Given u, v, w as throughout §2.4.2, if

(2.2)
each disk X0 ⊂ X \\(u ∪ v) with |∂X0 ∩ u| = 1 = |∂X0 ∩ v|

is the sort of triangle or rectangle shown in Figure 10,

and if u \ w and v \ w are isotopic in X \ w,20 then u = v = w.

20Situating the isotopy between u and v in X\w rather than in X\\w prohibits
their endpoints from sliding across w. An equivalent hypothesis is that u and v
are related by a proper isotopy in X which fixes w.
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2.4.3. How definite surfaces of opposite signs intersect.

Lemma 2.27. Suppose F± are positive- and negative-definite sur-
faces spanning a link L, and α is an arc of F+ t F−. Then:

(A) i(∂F+, ∂F−)ν∂α 6= −2.
(B) If α is nonseparating on F−, then i(∂F+, ∂F−)ν∂α = 2.
(C) In particular, if L is prime, both F± are essential, and α is

not ∂-parallel in both F±, then i(∂F+, ∂F−)ν∂α = 2.

Lemma 2.27 (C) implies that, when applying Procedure 2.24 to
two essential surfaces F± whose boundary is prime, move (3) is never
used. This in turn implies:

Fact 2.28. Let F+ t F− be essential definite surfaces of opposite
signs spanning a prime link L. Apply Procedure 2.24 to F±. Let F ′+
denote the surface obtained from F+, and let stF+ and stF ′+ denote

the unions of the standard arcs of F+ ∩ F− and of F ′+ ∩ F−. Then:

(A) stF+ = stF ′+ = F ′+ ∩ F−, and

(B) the alternating diagram DF ′+,F−
associated to F ′+, F− by Propo-

sition 2.22 (B) is determined by the isotopy class of F+∪F−,
regardless of how Procedure 2.24 is carried out.

Lemma 2.29. Suppose F± are essential definite surfaces of opposite
signs spanning a prime link L such that F+ ∩ F− consists only of
standard arcs. If α± ⊂ F±\\F∓ are arcs which are parallel in S3\ ◦νL,
then both endpoints of α± lie on the same arc v0 of F+ ∩ F−, and
each α± is parallel in F± \\F∓ into v0.

Theorem 2.30. Suppose B,W and B′,W ′ are the checkerboard sur-
faces of prime alternating diagrams D and D′ of a link L. Then
D ≡ D′ if and only if B is isotopic to B′ and W is isotopic to W ′.21

See §6.2 for the proof.

Corollary 2.31. There is a bijective correspondence between equiv-
alence classes of prime alternating link diagrams on S2 and pairs of
isotopy classes of essential definite surfaces of opposite signs span-
ning the same prime link in S3.

Example 2.32. The diagrams D = DB,W and D′ = DB′,W ′ of the
(3, 4) torus knot obtained by closing the braid diagrams shown left
and right in Figure 11 are distinct. Yet, their checkerboard sur-
faces are isotopic. By symmetry, it suffices to check this for B and

21A third equivalent condition, which we will not need, is that there is an
orientation-preserving homeomorphism f : S3 → S3 that restricts to homeomor-
phisms B → B′ and W → W ′ (any pairwise homeomorphism of (S3, L) that
respects meridians on ∂νL can be extended to an ambient isotopy).
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∂-compress

twice

∂-compress ∂-compress

B B′′ B′

Figure 11. Both closed-up surfaces B and B′ are
isotopic to B′′ with two negative crosscaps attached.

= ∗

Figure 12. A plumbing cap and its shadow for a
spanning surface, and the associated de-plumbing.

B′. Indeed, each admits a sequence of two positive meridinal ∂-
compressions22 (each ∂-compression disk comes from a yellow region
in the figure) to the black checkerboard surface B′′ shown center-left
in the figure, hence is isotopic to B′′\ \ .

Question 2.33. To what classes of link diagrams does Theorem 2.30
extend?

2.5. Generalized plumbing.

2.5.1. Basic definitions. Let F be a spanning surface for a nonsplit
link L. A plumbing cap for F is an embedded disk V ⊂ S3 \ ◦νL with
V ∩ (F ∪ ∂νL) = ∂V such that:

• ∂V bounds a disk Û ⊂ F ∪ νL,
• Û ∩ F is a disk U called the shadow of V , and
• denoting the 3-balls of S3\\(Û ∪V ) by Y1, Y2, neither subsur-

face Fi = F ∩ Yi is a disk.

If the first two properties hold but the third fails, we call V a fake
plumbing cap for F ; we still call U the shadow of V .

The decomposition F = F1 ∪ F2 is a plumbing decomposition or
de-plumbing of F along U and V , denoted F = F1 ∗ F2. See Figure

22Defined in [AK13], this is a ∂-compression that takes a spanning surface to

a spanning surface; it corresponds to de-summing a .
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Figure 13. Re-plumbing a spanning surface replaces
a plumbing shadow with its cap.

12. The reverse operation, in which one glues F1 and F2 along U to
produce F , is called generalized plumbing or Murasugi sum.

If V is a plumbing cap for F with shadow U , then one can construct
another spanning surface F ′ = (F\\U) ∪ V ; we call the operation of
changing F to F ′ re-plumbing. See Figure 13. Call the analogous
operation along a fake plumbing cap a fake re-plumbing; this is an
isotopy move. Two spanning surfaces are plumb-related if there is
sequence of re-plumbing and isotopy moves between them.

2.5.2. Re-plumbing in S3 and isotopy through B4.

Proposition 2.34. Let L be a link in S3 = ∂B4, let F1, F2 ⊂ S3

be compact embedded surfaces with ∂Fi = L, and let F ′i be properly
embedded surfaces in B4 obtained by perturbing int(Fi), while fixing
∂Fi = L ⊂ S3. If F1 \

◦
νL and F2 \

◦
νL are plumb-related, then:

(A) F ′1 and F ′2 are related by an ambient isotopy of B4 which fixes
S3 ⊃ L pointwise.

(B) There is an isomorphism φ : H1(F1) → H1(F2) satisfying
〈α, β〉F1

= 〈φ(α), φ(β)〉F2
for all α, β ∈ H1(F1).

(C) F1 and F2 have the same slope: s(F1) = s(F2).
23

(D) If F1 is definite, then F2 is definite and of the same sign.
(E) In particular, if F1 is a checkerboard surface from a reduced

alternating diagram, then so is F2.

Proof. Part (A) follows from the observation that any re-plumbing
move can be realized as an isotopy through B4 in which one fixes the
entire surface except the plumbing shadow and pushes the plumbing
shadow through B4 to the plumbing cap. Part (B) follows from (A)
and Theorem 3 of [GL78], which states that the Gordon-Litherland
pairing on Fi corresponds to the intersection pairing on the 2-fold
branched cover of B4 with branch set F ′i . Parts (C)-(E) then follow
immediately, using [Gr17]. �

2.5.3. Flyping caps. Let D be a prime alternating link diagram with
checkerboard surfaces B,W . Say that a plumbing cap V for B is a
flyping cap (relative to W ) if V appears as in Figure 14, left-center.
There is then a corresponding flype move, as shown in Figure 14.
(The resulting link diagram might be equivalent to D.)

23The component-wise slopes may differ, but their sums will be equal.
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Tangle 2

Tangle 1

Tangle2

Tangle 1

Figure 14. A flyping cap and the associated flype move

Figure 15. A link near a crossing ball with S− and S+.

Proposition 2.35. Given D = DB,W , let V be an flyping cap for
B, D → D′ = DB′,W ′ the flype move corresponding to V , and B′′

the surface obtained by re-plumbing B along V . Then B′ and B′′ are
isotopic, as are W ′ and W . Hence, D′ ≡ DB′′,W . 24

Proof. Figure 2 shows the isotopies B′′ → B′ and W →W ′. �

Conversely, if D → D′ is a flype move along a circle γ ⊂ S2, then
B (or W ) has a flyping cap V with V ∩W ⊂ νγ (resp. V ∩B ⊂ νγ).

3. Crossing ball setup and isotopy moves

Given a prime alternating diagram D of a link L and an arbitrary
essential positive-definite F surface spanning L, §3 uses the crossing
ball structures introduced in [Me84] to define and study a hierarchy
of isotopy moves on F relative to D.

3.1. Crossing ball setup. Here is the setup for all of §§3-5, 7-8:

• D is a prime alternating diagram of a link L with crossings
c1, . . . , cn; π : νS2 → S2 denotes projection;25 and (for §3.1
only) Y± are the 3-balls of S3\\S2.
• Insert disjoint closed crossing balls Ct in

◦
νS2, with each Ct

centered at ct. Denote C =
⊔
tCt, and embed L in (S2 \

int(C)) ∪ ∂C by perturbing the arcs of D ∩ C following the
crossing data, so that L appears near each Ct as shown center

24An analogous statement holds for flyping caps for W .
25The assumption that D is prime and alternating implies that D is reduced

and, by Theorem 1 (b) of [Me84], that L is prime, hence nontrivial and nonsplit.
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in Figure 15. For §3.1 only, call the arcs of L ∩ S2 and L ∩
∂C ∩ Y± edges, overpasses and underpasses, respectively.
• Take νL ⊂ ◦

νS2 with projection πL : νL→ L. Denote the two
3-balls of S3\\(S2 ∪ C ∪ νL) by H±, so that each int(H±) =
Y± \ (νL ∪ C). Also denote ∂H± = S±. See Figure 15.
• Denote each vertical arc vt = π−1(ct)∩Ct \

◦
νL; let v =

⋃
t vt.

• For each edge e ⊂ L, call the cylinder E = π−1L (e) ∩ ∂νL
an edge (of ∂νL); the rectangles E± = E ∩ Y± are its top
and bottom. For each over/underpass e± of L, call E± =
π−1L (e±) ∩ ∂νL an over/underpass (of ∂νL); E+ ∩ Y+ and
E+\\Y+ are the top and bottom of the overpass, while E−∩Y−
and E−\\Y− the bottom and top of the underpass. Say that
an edge E and a crossing ball Ct are incident if they intersect;
say that two edges (resp. crossing balls) are adjacent if there
is a crossing ball (resp. an edge) incident to both of them.26

Assume that π−1L (∂(L ∩ ∂C)) = ∂νL ∩ π−1(∂C ∩ S2): then
these meridia, highlighted yellow in Figure 15, cut ∂νL into
its edges, overpasses, and underpasses.
• For each t, ∂Ct ∩ S2 \ ◦νL consists of four arcs, two β1, β2 in

black regions of S2 \D and two ω1, ω2 in white. A core circle
in α∪ β ∪ (∂νL∩Ct) bounds a disk Bt ⊂ Ct such that π(Bt)
is disjoint from the white regions of S2 \D and intersects D
only at ct. Likewise, ω1, ω2 yield a disk Wt ⊂ Ct; note that
Bt ∩Wt = vt. A properly embedded disk X ⊂ Ct \

◦
νL that

contains vt is called a positive (resp. negative) crossing band
if there is an isotopy of (X, ∂X ∩ ∂νL, ∂X ∩ ∂Ct) through
(Ct, ∂νL, ∂Ct) to Bt (resp. Wt). See Figure 3.
• Denote the union of the black and white regions of S2\int(C∪
νL) by B̂ and Ŵ . Then B = B̂ ∪

⋃
tBt and W = Ŵ ∪

⋃
tWt

are the checkerboard surfaces from D. Note that B ∩W = v.
• Denote each:27282930

S0 = S2 \ int(C ∪ νL);

S±E = S± ∩ ∂νL\\(π−1 ◦ π(C));

S±B = B̂ ∪ S±E and S±W = Ŵ ∪ S±E ; and

C±t = S± ∩ (π−1 ◦ π(Ct)) with C± =
⋃
tC
±
t .

26Note that any edge or crossing ball is therefore said to be adjacent to itself.
27The n-punctured sphere S0 equals B̂ t Ŵ = S+ ∩ S−.
28S±E respectively consist of the upper/lower halves of all edges (of ∂νL).
29Each component of S+B is a disk comprised of a disk of B̂ together with the

top halves of all incident edges; similarly for S−B and S±W .
30The top of the overpass at Ct and the two disks of ∂Ct ∩ S+ comprise C+

t .



A GEOMETRIC PROOF OF THE FLYPING THEOREM 19

• F is an essential positive-definite spanning surface for L.31

Each crossing band in F contains an arc of v; denote the
union of such arcs by vF . Let DF,W denote the diagram that
F,W determine via Theorem 2.30.

Remark 3.1. The combinatorial setup established above can also be
constructed from B,W (assuming only that these are essential def-
inite surfaces of opposite signs spanning a prime link L and that
B ∩ W = v is comprised of standard arcs) by taking C to be a
regular neighborhood of v in S3 \\◦νL.

3.2. Fair position, flyping circles, and push-through moves.

Definition 3.2. F is in fair position if:32

(a) F ∩W is comprised entirely of standard arcs;
(b) F is transverse in S3 to B, W , ∂C, and v \ vF ;
(c) ∂F is transverse on ∂νL to each meridian;
(d) whenever ∂F ∩ Ct 6= ∅, F ∩ Ct is a crossing band;
(e) no arc of F ∩ ∂C ∩ S± is parallel in ∂C into ∂C ∩ ∂S0;
(f) B ∪W cuts each component of F ∩ C into disks;
(g) each crossing band in F is disjoint from S+; and
(h) S+ ∪ S− cuts F into disks.

Lemma 3.3. F can be isotoped into fair position.

The proof of Lemma 3.16 appears in §7, as do the proofs of all
lemmas that appear in §3 without their proofs.

Lemma 3.4. If F is in fair position, then:

(A) balls comprise (C \ ◦νL)\\F and H±\\F ;
(B) arcs comprise ∂F ∩ S±, F ∩ S0, and F ∩ ∂C ∩ S±; and
(C) each component X of F ∩ C is either a crossing band or a

saddle disk as in Figure 16.33

Notation 3.5. Assume that F is in fair position.

• Each circle γ ⊂ F ∩ S± bounds a disk Fγ ⊂ F ∩H±.
• The arcs of v ∪ (F ∩W ) induce a cell decomposition of W

under which we may refer to bigons, triangles, etc.

Definition 3.6. A flyping circle for F is a circle γ of F ∩ S+ that
appears as in Figure 17, left, where π(γ) is a flyping circle for D.

31F is connected because L is prime, hence nonsplit; recall Fact 2.4.
32Later, we define increasingly restrictive k-good positions for F , k =

0, 1, . . . , 10, and 0-good position will be equivalent to fair position.
33In particular, X must intersect each of B and W in a single arc. Namely, if

X is a crossing band in a crossing ball Ct, then X ∩ B = vt = X ∩W , and if X
is a saddle disk, then β = X ∩B and ω = X ∩W appear as in Figure 16, right.
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ω

β

Figure 16. Positive (left) and negative (center)
crossing bands and a saddle disk (right) in a surface
F in fair position.

ω

Figure 17. A flyping circle ω gives a flype-type re-plumbing.

Then the arc ω = γ ∩ Ŵ is a flyping arc for F , and there is a flype-
type re-plumbing move F → F ′ as shown in Figure 17, where F ′ is in
fair position and F ′ ∩ S+ = F ∩ S+ \ γ.34

Lemma 3.7. If F is in fair position and F∩S+ contains only flyping
circles, then DF,W is related to D by a sequence of flypes that each
preserve the isotopy class of W .

Proposition 3.8. If F is in fair position, then every crossing band
in F is positive (as shown left in Figure 16).

Proof. If F has a negative crossing band, say at Ct, then vt is a non-
standard arc of F ∩W violating condition (a) of Definition 3.2. �

Proposition 3.8 and condition (g) in Definition 3.2 require each
crossing band in F to appear as in Figure 16, left. This creates an
asymmetry between F ∩S− versus F ∩S+ which will be strategically
useful. (We will sharpen this asymmetry further when we define
Moves 7-9.) The idea is that pushing F ∩ (S+ ∪ S−) into S− near
crossing bands (where F “looks nice”) increases the likelihood that

34Because flyping circles for F lie in S+ and those for D lie in S2, we will find
no need to distinguish these explicitly in the sequel.
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Figure 18. Left: F is in 9-good position. Right: DF,W .

the circles of F∩S+ will enable simplifying moves on F . This strategy
will eventually bear fruit in the form of the re-plumbing Move 10.
To get a sense of this, consider:

Example 3.9. In Figure 18, left, where F is in fair position,3536 each
of the four (red-purple) circles of F ∩ S+ gives a Move 10, in fact a
flype-type re-plumbing. The diagram on the right is DF,W . Note:

• The circles of F ∩ S+ are more salient than those of F ∩ S−.
• One could isotope the arc β of ∂F ∩S− past ∂B into S+, thus

decreasing |F∩S0|, but then the circles of F∩S+ would be less
illuminating. We will carefully define Moves 1-9, especially
Moves 5 and 7, so as not to include this tempting move.
• The top-right flype could be achieved by means of isotopy,

but this isotopy would not fix vF . We prefer to define Moves
1-9 so that each fixes vF (where F “looks nice”).

Definition 3.10. Suppose F is in fair position and α is a properly
embedded arc in S±\\F such that

(a) both endpoints of α lie on the same circle γ of F ∩ S±,
(b) α lies in a disk Y of S±B or S±W ,
(c) |α ∩ S0| = 1,
(d) α’s endpoints lie on the interiors of arcs γ′, γ′′ of γ ∩Y \\∂S0,
(e) no arc of γ ∩ S0 intersects both γ′ and γ′′,37 and
(f) π(α) ∩ π(∂F ∩ S∓) = ∅.

Suppose a properly embedded arc β ⊂ Fγ with ∂β = ∂α is parallel
to α through a properly embedded disk X ⊂ H± \\F .38 Isotope F
near β through X past α. We call this a push-through move.

There are three possible pictures of the situation, depending on
how many endpoints of α lie in S0 versus on ∂νL; see Figure 19.

Proposition 3.11. If F admits a push-through move along α ⊂ S±W
and ∂α ⊂ ∂νL, then the endpoints of α lie on the same edge.

Proof. Such a move creates two non-standard arcs of F ∩W . Lemma
2.27 (C) implies that these arcs, and thus α ∩ S0, are ∂-parallel in
W . The result follows because D is prime. �

35In fact, F is in 9-good position; see §3.3.
36Color guide: F ∩ S0, F ∩ S+ \ S0, F ∩ S− \ S0, F ∩ C.
37In particular, γ′ ∩ γ′′ = ∅.
38Lemma 3.4 (A) guarantees the existence of β and X.
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β

α

β

α

β

α

Figure 19. Push-through moves (Moves 7, 8, and 9)

Definition 3.12. If F is in fair position, then we define the following
measures of complexity for F :F1 = |v\\F | =

∣∣∣∣crossing balls without
crossing bands

∣∣∣∣+

∣∣∣∣saddle
disks

∣∣∣∣ ,F2 = |F ∩ S0|,F3 = |F ∩ S0| − 2|F ∩ S+|.

(3.1)

3.3. Hierarchy of isotopy moves on F . In §§3.3-4.1 we describe
several moves on F , denoted Move 1 through Move 10, subject to
the following rule of hierarchy, which will ensure that each move
preserves fair position:3940

Convention 3.13. For each Move k defined in the sequel, 1≤ k ≤10,
we perform Move k only if F is in fair position and admits none of
Moves 1, . . . , k − 1.

Definition 3.14. For 0 ≤ k ≤ 10, F is in k-good position (relative
to B,W ) if F is in fair position and admits no Move ` with ` ≤ k.

Moves 1-9 will serve two main purposes. First, Moves 1-6 will
simplify how the arcs of F ∩ W interact with v. (They will also
simplify F ∩ B.) Second, Moves 7-9 will increase the number of
circles of F ∩S+ and thus simplify these circles individually. In fact,
we will see that in 9-good position each innermost circle of F ∩ S+

39Moves 1-9, defined in §3.3, are isotopies; Move 10 in §4.1 is a re-plumbing.
40Unlike the hierarchy described in Procedure 2.24, where it turns out that all

(1)’s always precede all (2)’s which (vacuously) precede all (3)’s, we will see that
there are situations where some Move k enables a previously impossible Move `
for some ` < k. Lemma 3.25 will somewhat constrain this behavior.
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α+

α−

Figure 20. Move 1

β
β+

β′+

β−

β′−

σ+

σ−β−

β′−

Figure 21. Move 2

enables a re-plumbing (Move 10), which we will eventually discover
is always a flype-type re-plumbing.

Move 1. Suppose α ⊂ S0 is an arc with α∩F = ∂α = {x, y}, where
x, y lie on distinct arcs of F ∩S0 but on the same circles γ+ ⊂ F ∩S+
and γ− ⊂ F ∩ S−; suppose α± ⊂ Fγ± are properly embedded arcs
with ∂α± = {x, y} such that the circle γ = α+ ∪ α− bounds a disk
X ⊂ S3 \ ◦νL with X ∩F = ∂X and X ∩S0 = α.41 Then X is parallel
in S3\\(F ∪ νL) to a disk F0 ⊂ F ; isotope F near F0 past X.42

Figure 20 shows the effect of Move 1 near α. The next property
motivates conditions (e)-(f) in Definition 3.10:

Observation 3.15. If F is in 1-good position and F → F ′ is a
push-through move, then F ′ is in fair position.

Move 2. If F ∩ Ŵ contains an arc whose endpoints are both on the
same crossing ball, then take ω to be an outermost such arc in Ŵ ,
and denote the circles of F ∩ S± containing ω by γ±. Each γ± ∩ ∂C
consists of two arcs incident to ω, each of which is incident to an arc
of γ±∩ B̂; let β± and β′± denote these arcs of γ±∩ B̂. Choose + or −
so that β± 6= β′±,43 construct a properly embedded arc σ± ⊂ B̂\\F
with one endpoint on each of β± and β′±, and perform a push-through
move along σ±, as shown in Figure 21.

41Lemma 3.4 (A) guarantees the existence of α± and X.
42Recall that F is incompressible and S3 \ L is irreducible.
43We may have β+ = β′+ or β− = β′− but not both, by 1-good position.
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α

β

Figure 22. Move 3
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Figure 23. Move 4

Lemma 3.16. With F in fair position, the following are equivalent:

(I) No arc of F ∩ Ŵ is parallel in Ŵ into ∂C.
(II) No arc of F ∩W\\v is parallel in W\\v into v.44

(III) F is in 2-good position.

Lemma 3.17. If F is in 2-good position, then F admits no push-
through move along any arc α ⊂ Ŵ .

Move 3. Suppose an arc α of F ∩ S0 is parallel in S0\\F to an
arc α′ ⊂ ∂νL. Proposition 2.6 implies that α′ is parallel on ∂νL to
an arc β ⊂ ∂F . If int(β) ∩ ∂S0 6= ∅, then push (Fα∪β, β) through
(H±, ∂νL) past (S0, α

′) as shown in Figure 22.

Proposition 3.18. If F is in 3-good position, then each circle γ of
F ∩ S+ satisfies |γ ∩ S0| ≥ 2, so

F3 ≥ 0.

Proof. Assume instead that |γ ∩ S0| < 2. Then Lemma 3.4 (B)-(C)
implies that γ ∩ ∂C = ∅ and γ 6⊂ S0. Further, since D is connected
and nontrivial, γ 6⊂ ∂νL. Therefore, F appears near γ as in Figure
22 and, contrary to assumption, admits a Move 3 near γ. �

Lemma 3.19. Given that F is in 2-good position, F is in 3-good
position if and only if no arc of F ∩ B̂ is ∂-parallel in B.

Move 4. Suppose an arc α of F ∩ Ŵ is incident to (i) an arc λ of
∂F ∩ S± that traverses the over/underpass at a crossing Ct and (ii)
an arc ρ of F ∩ S± ∩ ∂Ct (at the same crossing).45 Isotope F nearby
as shown in Figure 23.

44That is, there are no bigons in W \\(F ∪ v).
45Note that the endpoint x shared by α and λ satisfies i(∂F, ∂W ) = +1.
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Figure 25. Move 6.

Move 5. Suppose that an arc α of ∂F ∩ S± lies entirely on an edge
E and is parallel in E into ∂B, and that one of the arcs α′ of ∂F ∩S∓
incident to α lies entirely in E and is incident to an arc ω of F ∩ Ŵ
whose other endpoint lies either:

• on a crossing ball incident to E or
• on an edge E′ adjacent to E46 at a crossing Ct with vt 6⊂ F .

Isotope F near α as shown in Figure 24.

Lemma 3.20. If F is in 5-good position and an arc α′ of F ∩W \vF
is isotopic in W \ vF into Ŵ ∪ v, then α′ ⊂ Ŵ .47

Lemma 3.21. If F is in 5-good position and admits a push-through
move along an arc α ⊂ S±\\F , then α intersects B, not W .

Lemma 3.22. If F is in 5-good position and γ ⊂ F ∩S+ is a flyping
circle which traverses the overpass at Ct, then |F ∩ Ct| 6= 1.48

46Lemma 3.19 implies that E′ 6= E.
47Note: in W \ vF , α′ is isotopic into Ŵ ∪ v if and only if it is isotopic into Ŵ .
48In fact, F ∩ Ct = ∅, but we will not need this.
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Move 6. Suppose an arc α of F ∩ Ŵ is incident to arcs of ∂F ∩ S+
and ∂F ∩ S− that traverse the overpass and underpass at the same
crossing. Isotope F near α as shown in Figure 25.

Lemma 3.23. With F in fair position, the following are equivalent:

(I) No arc of F ∩ B̂ is ∂-parallel in B, and no arc of F ∩ Ŵ :
(a) is parallel in S0 into ∂C,
(b) has endpoints on a crossing ball and incident edge, nor
(c) has endpoints on edges that are adjacent at a crossing

ball where F does not have a crossing band.
(II) No disk of B\\(v∪F ) is a bigon, and no disk X of W \\(v∪F )

satisfies |∂X ∩ v| = 1 = |∂X ∩ F |.49
(III) F is in 6-good position.

Move 7. Perform a push-through move along an arc α ⊂ B̂\\F
whose endpoints lie on the same circle of F ∩ S+.

Move 8. Perform a push-through move along an arc α ⊂ S+B\\F
whose endpoints x ∈ B̂ and y ∈ ∂νL lie on the same circle of F ∩S+.

Move 9. Perform a push-through move along an arc α ⊂ S+B\\F
whose endpoints x, y ∈ ∂νL lie on the same circle of F ∩ S+.

When F is in 9-good position, circles of F ∩ S− may admit push-
through moves, but those of F ∩ S+ must not, due to Lemma 3.21.

Lemma 3.24. Moves 1-9 all preserve fair position and fix or de-
crease

F1, Moves 1-7 each lead to a lexicographical decrease in
(
F1 ,

F2 ,
F3),

50 and Moves 8-9 both decrease
F3.

Lemma 3.25. Suppose that F is in 2-good position, and F = F0 →
· · · → Fr is a sequence of Moves 1-9. Then:

(A) Neither Move 1 nor Move 2 appears in the sequence.
(B) The isotopy F0 → Fr restricts to an isotopy F0∩W → Fr∩W

in W which fixes vF0 ⊂ vFr .
(C) If F is in 6-good position, then the sequence F0 → Fr fixes

F ∩W and involves only Moves 3 and 7-9.
(D) If F is in 7-good position, then F0 → Fr uses only Moves 8-9.

Lemma 3.26. Any sequence of Moves 1-9 terminates, giving an
isotopy F → F ′ where F ′ is in 9-good position with

F ′1
≤
F1.

49Such X is either a bigon, triangle, or rectangle.
50Namely, Move 1 decreases

F1 (and
F2); Move 2 fixes

F1 andF2 and leads to Move 1 (that is, although Move 2 itself fixes complexity, it is
always possible to follow Move 2 either with a Move 1 or with a second Move 2 and
then a Move 1, and in either case, this sequence of moves decreases complexity);
Moves 4 and 6 decrease

F1; Moves 3 and 5 fix
F1 and decrease

F2;
and Move 7 fixes

F1 and
F2 while decreasing

F3.
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4. Plumb-equivalence of essential positive-definite
surfaces

In §§4-5, we will discover that when F is in 9-good position, F ∩S+
consists entirely of flyping circles; this collection of circles instantly
reveals the sequence of flype moves that takes D to DF,W . Our path
to this discovery is indirect. In §4, we analyze innermost circles of
F ∩ S+ when F is in 9-good position and discover that any such
circle enables a re-plumbing, which we define as Move 10. A priori,
Move 10 can be much more complicated than flype-type re-plumbing.
Nevertheless, Move 10 allows us to deduce that F and B are plumb-
related; this gives a new proof of part of Tait’s first conjecture and
helps set the stage for the proof of our main result in §5. Section 8
contains the proofs of all lemmas that appear without their proofs
in §4.

4.1. Innermost circles in 9-good position. In §4.1, keeping the
setup from §3.1, we assume that F is in 9-good position with F∩S+ 6=
∅ and consider an arbitrary innermost disk T+ of S+\\F . Denote
∂T+ = γ0 and orient γ0 so that it runs counterclockwise around T+
when viewed from H+, and denote T− = S− ∩ (π−1 ◦ π(T+)).

Lemma 4.1. Consider an arc ρ of γ0∩∂C, denote the incident arcs
of γ0 ∩ B̂ and γ0 ∩ Ŵ by β and ω. Let Ct denote the crossing ball
containing ρ, B0 and W0 the disks of B̂ and Ŵ containing β and ω,
E the edge incident to B0, W0, and Ct, and Cs the other crossing
ball incident to E. Then β ∪ ρ ∪ ω appears as in Figure 26, left:

(A) γ0 ∩ C+
t = ρ,51

(B) γ0 ∩ E = ∅,
(C) Cs lies in Y1 and contains a crossing band in F , and
(D) both endpoints of β ∪ ρ ∪ ω lie on ∂νL.

Next, we describe how γ0 gives a re-plumbing move F → F ′ such
that

F ′1
<
F1. We then deduce that all essential positive-

definite spanning surfaces for L are plumb-equivalent.
Take an annular neighborhood A of π(γ0) in S2, such that A in-

tersects only the crossing balls that π(γ0) intersects, ∂A ∩ C = ∅,
and each arc of F ∩ S0 ∩ A lies on γ0 or has an endpoint on ∂C.
Denote ∂A = γ1 ∪ γ2 where γ1 ⊂ π(T+), denote S2\\A = S1 t S2
with each ∂Si = γi, denote each ball π−1(Si) = Ŷi, and denote the

annular prism π−1(A) = P̂ .
Viewing νS2 ≡ S2 × [−1, 1], choose 0 < r < R < 1 such that

C ∪ νL ⊂ S2 × [−r, r], and denote P = P̂ ∩ (S2 × [−R,R]) and Yi =

Ŷi ∩ (S2× [−R,R]), i = 1, 2. While fixing F ∩ (S+ ∪S− ∪C), isotope
Fγ0 into

(
π−1 ◦ π(T+)

)
∩
(
S2 × [0, R]

)
so that π|Fγ0 is injective; adjust

51In particular, γ0 does not traverse the overpass at Ct.
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Figure 26. F near ρ ⊂ γ0∩C (arrows point into T+;
the sign of β’s endpoint on ∂νL is unspecified).

all other disks X of F ∩H+ so that X ∩ Y1 = ∅, X ∩P ⊂ π−1(∂X),
and π|X\\P is injective; and adjust each disk X of F ∩ H− so that

X ⊂ S2 × [−R, 0] and π|X is injective.52

Denote the arcs of γ0 ∩ Ŵ by ω1, . . . , ωm, indexed following γ0’s
orientation. Each ωi has a dual arc αi ⊂ A ∩ Ŵ .53 Denote the
rectangles of A\\(α1∪ · · · ∪αm) by A1, . . . , Am with each ∂Ai ⊃ αi∪
αi+1, taking indices modulo m. Denote each prism π−1(Ai)∩P = Pi.

Lemma 4.2. With the setup above, each prism Pi intersects F in
one of the three ways indicated in the left column of Figure 27.54

For each i, let Fi denote the component of F ∩Pi which intersects
γ0. Observe that each Fi is a disk, and that Fi and Fj intersect
in an arc when i ≡ j ± 1 (mod m) and are disjoint when i 6≡ j, j ±
1 (mod m). Denote FA = F1∪· · ·∪Fm. The disk Fγ0∩Y1 attaches to
FA along its boundary; therefore, FA is an annulus, and the following
subsurface of F is a disk:

U = (Fγ0 ∩ Y1) ∪ FA.

52We do this so Figure 27 will be generic; some of the complication is for the
benefit of [Ki23b].

53The arc αi has one endpoint on γ1 and one on γ2, with |ωi ∩ αi| = 1.
54 The green arcs top-left describe a disk Xi ⊂ Pi \ νL (∂Xi is shown thick,

and Xi ∩ S+ is shown thin) which is parallel through a ball Zi ⊂ Pi into π−1(γ2)
(Zi contains the overpass in Pi); F intersects Pi as shown and in an arbitrary
number of additional disks in Zi, each containing a saddle disk.
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Figure 27. Move 10 within each prism Pi.

There is a properly embedded disk V ⊂ ◦
νS2\\(F∪νL) which inter-

sects Y1 in a disk (in H−) and intersects each prism Pi as indicated in
the right column of Figure 27. Note that ∂V ∩F = ∂U∩F ⊂ π−1(∂A)
and that (∂V ∩ ∂νL) ∪ (∂U ∩ ∂νL) is a system of meridia and
inessential circles on ∂νL.55 Thus V is a(n a priori possibly fake)
plumbing cap for F , and U is its shadow, so F is plumb-related to
F ′ = (F\\U) ∪ V .56

Move 10. With the setup above, replace F with F ′ = (F\\U) ∪ V .
In each prism Pi, this changes F → F ′ as shown in Figure 27.

Note that when F is in 9-good position any flype-type re-plumbing
F → F ′ is a Move 10.

4.2. Properties of Move 10.

Lemma 4.3. Any Move 10 F → F ′ leaves F ′ in fair position.

Proposition 4.4. Given any sequence F → F ′ of Moves 1-10 that
involves at least one Move 10, we have

F1 >
F ′1

. Hence,

any sequence F → F ′ of Moves 1-10 terminates.

Proof. By Lemmas 3.24 and 4.3, Moves 1-10 all preserve fair position,
and none of Moves 1-9 increase

F1. Further, Move 10 removes a
saddle disk or creates a crossing band in each prism Pi, hence strictly
decreases

F1. The second claim follows immediately. �

In §5, we will prove that when F is in 9-good position F ∩ S+
contains only flyping circles; hence, Move 10 is always a flype-type
re-plumbing, and thus (by Lemma 3.7) DF,W is flype-related to D.
A symmetric argument will then complete our proof of the flyping
theorem. For now, though, only this conclusion is at hand:

Theorem 4.5. If B, W are the checkerboard surfaces from a prime
alternating diagram D ⊂ S2 of a link L, then any essential positive-
definite surface F spanning L is plumb-related to B (via Moves 1-10);
likewise for essential negative-definite surfaces and W .

Proof. Put F in fair position and apply Moves 1-10. By Proposition
4.4, this terminates, giving a sequence of isotopy and re-plumbing
moves from F to B. �

Proposition 2.34 and Theorem 4.5 imply:

55Inessential circles arise only in prisms of type II.
56In each prism Pi of type I, we have F ′∩Zi = F∩Zi, using Note 54’s notation.
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Corollary 4.6. If B and B′ are essential definite surfaces of the
same sign spanning L, then β1(B) = β1(B

′) and s(B) = s(B′).

Facts 2.7 and 2.13, Lemma 2.27, Theorem 4.5, and Corollary 4.6
give a new proof of part of Tait’s first conjecture:

Theorem 4.7 (Part of Tait’s first conjecture [Gr17, Ka87, Mu87,
Th87, Tu87]). All reduced alternating diagrams of any link L ⊂ S3

have the same number of crossings.

Proof. Assume first that L is prime. Consider two reduced alternat-
ing diagrams Di of L, i = 1, 2, with checkerboard surfaces Bi,Wi.
Each arc α of Bi ∩Wi satisfies i(∂Bi, ∂Wi)ν∂α = +2. Also, s(B1) =
s(B2) and s(W1) = s(W2). Thus,

2c(D1) = i(∂B1, ∂W1) = s(B1)− s(W1) = s(B2)− s(W2) = 2c(D2).

The general case now follows, as the number of crossings is additive
under diagrammatic connect sum and disjoint union. �

Lemma 4.8. If F0 → F1 is a Move 10, then:

(A) F1 is in 3-good position; and
(B) if no prism is of type I, then F1 is in 9-good position.

Proof. Recall that F1 is in fair position by Lemma 4.3, so applying
Lemma 3.23 to F0 and Lemmas 3.16 and 3.19 to F1 confirms (A)
(see Figure 27). Part (B) follows from Lemmas 3.23 and 4.2. �

In any sequence of Moves 1-10 that uses Move 10 at least once and
ends in 10-good position, the final move in the sequence is a Move
10 with no prisms of type I, i.e. a flype-type re-plumbing:

Lemma 4.9. If F = F0 → F1 is a Move 10 along γ0 and F1 → F2

is a sequence of Moves 1-9 leaving F2 in 10-good position, then:

(A) no prism in the Move 10 is of type I,
(B) γ0 is the only circle of F ∩ S+, and
(C) γ0 is a flyping circle.

Therefore, if F is in 9-good position with no saddle disks, then
DF,W and D are flype-related:

Lemma 4.10. If F is in 9-good position and F ∩C = vF , then every
circle γ of F ∩ S+ is a flyping circle; thus DF,W is related to D by a
sequence of flypes that preserve the isotopy class of W .

Proof. Lemma 4.8 (B) implies that any sequence F = F0 → · · · → Fr
of Moves 1-10 uses only Move 10. Each Move 10 Fi → Fi+1 fixes each
circle of Fi ∩S+ except the one it removes, and we may perform this
sequence so that γ is the last remaining circle. Lemma 4.9 (C) now
confirms the first claim. Lemma 3.7 then confirms the rest. �
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5. Main results

We will show that 9-good position prohibits F ∩C from containing
saddle disks, i.e. forces F ∩ C = vF . Lemma 4.10 will then imply
that DF,W and D are flype-related. The proof of the flyping theorem
will then follow.

5.1. Bad position. Assuming by way of contradiction that F is in
9-good position and F ∩C 6= vF , Lemma 3.20 implies that F ∩W \vF
is not isotopic in W \ vF into Ŵ ; we will prove that there must then
be an innermost circle γ0 of F ∩S+ such that, even after we perform
Move 10 F → F ′ along γ0, F

′∩W \vF ′ still is not isotopic in W \vF ′
into Ŵ . This will imply, however, that by performing Moves 1-10
such that each Move 10 proceeds along such a circle γ0, we will
never reach 10-good position, contradicting Proposition 4.4. This
strategy motivates the following definition.

Definition 5.1. Say that F is in bad position if F is in 9-good
position, F ∩ C 6= vF , and, after each possible Move 10 F → F ′,
F ′ ∩W \ vF ′ is isotopic in W \ vF ′ into Ŵ .

Sublemma 5.2. Suppose F is in bad position and γ0 is an innermost
circle of F ∩ S+. Then:

(A) For every arc α0 of F ∩W \vF , either α0 is isotopic in W \vF
into Ŵ or α0 has an endpoint on γ0;

(B) Each arc α of F ∩ Ŵ has ∂α ⊂ ∂C or ∂α ⊂ ∂νL or lies on
an innermost circle of F ∩ S+.

(C) γ0 ∩ ∂C 6= ∅;
(D) |F ∩ S+| ≥ 3; and

Proof. For (A), if α0 is not isotopic in W \vF into Ŵ , then the Move
10 along γ0 must change α0. Recalling Lemma 4.2 and Figure 27,
this requires α0 and γ0 to intersect, which further requires α0 to have
an endpoint on γ0. Part (A) implies (B).

For (C), if γ0∩∂C 6= ∅, then the Move 10 F → F ′ along γ0 has no
type I prisms, hence fixes every arc of F ∩W that intersects v and,
by Lemma 4.8 (B), leaves F ′ in 9-good position. This contradicts
the assumption of bad position. Part (D) follows from (C), using
Lemmas 3.4 (C) and 4.1 (A). �

Lemma 5.3. F cannot be in bad position.

Proof. Assume otherwise. Choose a circle γ1 of F ∩ S+ and a disk
X of S+ \\γ1 for which int(X) ∩ F = γ0 is a nonempty collection of
innermost circles of F ∩S+.57 We claim that γ1∩C = ∅. If not, take

57Here, Sublemma 5.2 (A) implies that the circles of F∩S+ are mutually nested
and thus that γ0 is a single innermost circle, but this is less clear in [Ki23b].
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Figure 28. γ0 and γ1 near Ct in the proof of Lemma 5.3

an arc ω of γ1 ∩ Ŵ incident to C, so that ∂ω ⊂ ∂C by Sublemma
5.2 (C)-(D). Consider the crossing ball Ct and arc ρ of γ1 ∩ ∂Ct,
both incident to ω, for which an arrow pointing from ρ into X points
toward the overpass at Ct. See Figure 28. Since |γ0 ∩ ∂Ct| ≤ |γ0| by
Lemma 4.1 (A), F admits a push-through move near Ct along an arc
α ⊂ S+W , violating Lemma 3.21. This confirms that γ1 ∩ C = ∅.

Bad position requires γ0 to intersect some disk C+
s of C+, and γ1

must traverse the overpass at Cs, due to Lemma 4.1 (A) and the fact
that γ1∩∂C = ∅. Ergo, |F ∩Cs| = 1, contradicting Lemma 3.22. �

Theorem 5.4. If F is in 9-good position, then F ∩C = vF . Hence,
F ∩ S+ contains only flyping circles, so DF,W is related to D by a
sequence of flypes (that preserve the isotopy class of W ).

Proof. By Lemma 4.10, it suffices to prove that F ∩C = vF . Suppose
instead that at least one arc of F ∩W \ vF intersects C; by Lemma

3.20, no such arc is isotopic in W \ vF into Ŵ ∪ v. By Lemma 5.3
there is a Move 10 F = F0 → F1 after which F1 ∩W \ vF1 still is

not isotopic in W \ vF1 into Ŵ ∪ v. By Lemma 3.26, there is then a
sequence F1 → F2 of Moves 1-9 for which F2 is in 9-good position,
and by Lemmas 4.8 (A) and 3.25 (B), this sequence restricts to an

isotopy F1∩W → F2∩W inW which fixes vF1 . Thus, F2∩W 6⊂ Ŵ∪v,
so F2 ∩ C 6= vF2 . Therefore, repeating this process gives an infinite
sequence of Moves 1-10, contradicting Proposition 4.4. �

5.2. Proof of Tait’s conjectures. Using Convention 2.14 and the
notation introduced there, we have:

Theorem 5.5 (Tait’s flyping conjecture [MT91, MT93]). Any two
reduced alternating diagrams D = DB,W and D′ = DB′,W ′ of the
same prime link L ⊂ S3 are related by a sequence of flypes D →
· · · → D′′ → · · · → D′ in which D → · · · → D′′ preserves the isotopy
class of W and D′′ → · · · → D′ preserves the isotopy class of B′.

Proof. Denote D′′ = DB′,W . Use Lemmas 3.3 and 3.26 to isotope B′

into 9-good position relative to B,W ; Theorem 5.4 gives the needed
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sequenceD → D′′. IsotopeW ′ into 9-good position relative to B′,W ;
Theorem 5.4 gives the needed sequence D′′ → D′. �

Since writhe is invariant under flypes (recall Observation 2.10)
and additive under diagrammatic connect sum and disjoint union,
we obtain a new geometric proof of Tait’s second conjecture:

Theorem 5.6 (Tait’s second conjecture [Gr17, M87ii, T88b]). All re-
duced alternating diagrams of a given link L ⊂ S3 have equal writhe.

We again remark that Problems 2.17-2.19 remain open.

6. Proofs of technical lemmas from §2

It remains to prove several results from §§2-4. We prove those
from §2 in this section, those from §3 in §7, and those from §4 in §8.

6.1. Operations on definite surfaces. We will prove Lemmas
2.25, 2.26, 2.27 and 2.29 and Theorem 2.30 in §6.2. First, in §6.1, we
lay some groundwork.

Proposition 6.1. If F1 and F2 are definite surfaces of the same
sign, and F = F1\F2, then F is definite and of the same sign.

Proof. If Gi be a Goeritz matrix for Fi, i = 1, 2, then G =
[
G1 0
0 G2

]
is

a Goeritz matrix for F with σ(G) = σ(G1) + σ(G2). �

Proposition 6.2. If S is a compact subsurface of a definite surface
F and every component of F \ S intersects ∂F , then S is definite.58

Proof. We will prove that the map j∗ : H1(S) → H1(F ) induced by
inclusion is injective. Let g ∈ H1(S) with j∗(g) = 0 ∈ H1(F ). Choose
an oriented multicurve γ ⊂ int(S) representing g. Then γ = ∂F ′ for
some orientable subsurface F ′ ⊂ F . If F ′ ⊂ S, then g = 0 ∈ H1(S)
and we are done. If not, then F ′ intersects a component F1 of F \S; in
fact, F ′ ⊃ F1, because γ ⊂ S. This gives the following contradiction:

∅ = ∂F ′ \ γ = F ′ ∩ ∂F ⊃ F1 ∩ ∂F 6= ∅. �

In particular, Proposition 6.2 immediately implies:

Sublemma 6.3. If α is a system of disjoint properly embedded arcs
in a definite surface F , then F \ ◦να is definite.

Next, consider the operation of adding (half) twists, shown in Fig-
ure 29. It works like this. Let F be a spanning surface for a link
L, α ⊂ F a properly embedded arc, and m an integer. Let A be an
unknotted annulus or möbius band whose core circle has framing m

2 ,
and let α′ ⊂ A be a co-core. Construct F\A in such a way that α and

58This extends Lemma 3.3 of [Gr17]: If S is a compact subsurface of a definite
surface F and ∂S is connected, then S is definite.
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Figure 29. Adding twists to a spanning surface

α′ are glued at their endpoints to form an arc α′′ ⊂ F\A. Depending
on the sign of m, the surface F ′ = (F\A)\ ◦να′′ is said to be obtained
from F by adding

∣∣m
2

∣∣ positive or negative twists along α.

Proposition 6.4. If F ′ is obtained by adding positive twists to a
positive-definite surface F , then F ′ is positive-definite.59

Indeed, if G is a positive-definite symmetric matrix and G′ is ob-
tained by increasing a diagonal entry of G, then G′ is also positive-
definite. Alternatively, here is a geometric proof:

Proof. Let A be an unknotted annulus or möbius band with m half-
twists for some m > 0. Then A is also positive-definite, as are F\A
and F ′, by Proposition 6.1 and Sublemma 6.3. �

Proposition 6.5. Suppose F± are definite surfaces of opposite signs
spanning a link L and α is a non-standard arc of F+ ∩ F−. Denote
F ′+ = F+ \

◦
να, L′ = ∂F ′+, and F ′− = F− \

◦
να. Then the following are

equivalent:

(I) α is separating on F+;
(II) α is separating on F−;

(III) L′ has one more split component than L.

Proof. Sublemma 6.3 implies that F ′+ and F ′− are definite spanning
surfaces of opposite sign, and both span L′ because α is non-standard
(see Figure 31, bottom), so L′ is alternating by the first part of Fact
2.15. The conclusion now follows from the last part of Fact 2.15. �

Proposition 6.6. A positive-definite surface F spanning a prime
alternating link L is essential if and only if every nonzero a ∈ H1(F )
satisfies 〈a, a〉 ≥ 2.

Proof. Take an essential negative-definite spanning surface W for
L, and let D = DF,W . If D is reduced, then both conditions are
satisfied, the first by Fact 2.7 and the second by Corollary 5.2 of
[Gr17].60 Conversely, if D has a nugatory crossing c, then, since W

59Likewise for adding negative twists to a negative-definite surface.
60The proof of Lemma 4 of [Ki23a] gives an alternate, self-contained proof

that the second condition holds.
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Figure 30. Left: options for Y ⊂ (I × I) \\(A∪ V ).
Right: transverse, isotopic arcs α, α′ cutting off no
bigon lie in a pair of pants.

is essential, c is incident to distinct disks of W\\F , hence to a single
disk of F\\W , and so neither condition is satisfied. �

Proposition 6.7. Let F be a positive-definite surface spanning a
prime alternating link L, and let α ⊂ F be a properly embedded arc
such that F ′ = F \ ◦να spans a prime alternating link L′. If F is
essential, then F ′ is also essential.

Proof. By Sublemma 6.3, F ′ is positive-definite. By Proposition 6.6,
all nonzero c ∈ H1(F ) satisfy 〈c, c〉 ≥ 2; thus, so do all nonzero
c ∈ H1(F

′). Ergo, by Proposition 6.6 (as L′ is prime and alternating),
F ′ is essential. �

6.2. How definite surfaces of opposite signs intersect.

Proposition 6.8. After one completes Procedure 2.24, each compo-
nent α of F+ ∩ F− is an arc with i(∂F+, ∂F−)ν∂α = +2.61

Proof. Procedure 2.24 (1) removes all circles of F+ ∩ F−, and (2)
and (3) ensure that any remaining points x, y ∈ ∂F+ ∩ ∂F− on the
same component ∂νLi of ∂νL have the same sign, i(∂F+, ∂F−)νx =
i(∂F+, ∂F−)νy. This sign must be positive, since definiteness gives:∂F+ ∩ ∂νLi

 ≥ 0 ≥
∂F− ∩ ∂νLi . �

Proposition 6.9. If F± are definite surfaces of opposite signs span-
ning a link L and α is an arc of F+ ∩ F− that is ∂-parallel in both
F+ and F−, then α is non-standard.

Proof. Procedure 2.24 eventually removes α via move (2), and just
before it does, α is non-standard, but none of the prior moves in the
construction change α, so α is non-standard initially too. �

61Procedure 2.24 terminates, as (1)-(3) all decrease |F+ ∩ F−|+ |∂F+ ∩ ∂F−|.
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Proof of Lemma 2.25. Let 0 < ε � 1 and take a proper isotopy
ft : I → X \ w, −ε ≤ t ≤ 1 + ε, such that, denoting each ft(I) = αt,
we have α0 = u1 and α1 = v1. Denote f : I × [−ε, 1 + ε] → X
where each restriction f |I×{t} ≡ ft. Assume that f is generic in

the sense that f−1(u1) = A′ and f−1(v1) = V ′ are 1-submanifolds of
I×[−ε, 1+ε] with A′ t V ′. Denote A = A′∩(I×(0, 1]) and V = V ′∩
(I × [0, 1)), let AH and VH denote the set of points in A and V with
horizontal tangent lines, assume that f has been chosen (subject to
the preceding requirements) to minimize the lexicographical quantity
(|A|+ |V |, |AH |+ |VH |). Then A (resp. V ) is comprised of arcs, each
with at least one endpoint on I ×{1} (resp. I ×{0}), and AH (resp.
VH) consists of one point on each arc of A (resp. V ) whose endpoints
both lie on I ×{1} (resp. I ×{0}). Taking outermost disks carefully
twice gives a disk Y of (I × I) \\(A ∪ V ) with |∂Y ∩ A′| = 1 =
|∂Y ∩ V ′| (see Figure 30, left). Setting X0 = f(Y ) then confirms
(A); this implies (B). The existence part of (C) follows by induction
on |u1∩v1|, using (B) (see Figure 30, right); uniqueness follows from
the assumption that no arc of v is ∂-parallel. �

Proof of Lemma 2.26. Assume that the arcs of u and v are indexed
so that the isotopy from u \ w to v \ w in F \ w sends each ui
to vi. Suppose by way of contradiction that u 6= v. Choose an
arc u1 of u \ w. Lemma 2.25 (A) provides a compact disk X1 of
(X \w)\\(u1∪v1) with |∂X1∩u1| = 1 = |∂X1∩v1|. Since X1 ⊂ X \w
is compact, (2.2) implies that u∩ int(X1) = ∅ and, taking a disk X0

of X1 \\v with |∂X0∩u| = 1 = |∂X0∩v|, that X appears near X0 as
in Figure 10 with u1 ≡ u2. In particular, X1 is not a bigon, nor is any
disk of X \\(u1∪v1). Further, the arcs labeled u2 and v2 in the figure
must correspond under the isotopy in X \ w, so both u1 ≡ u2 and
v1 ≡ v2. Denote x ∈ ∂u2 ≡ ∂u1, y ∈ ∂v2 ≡ ∂v1, and λ0, λ1 ⊂ ∂X as
in Figure 10. Since no disk of X \\(u1 ∪ v1) is a bigon, Lemma 2.25
(C) implies that x abuts a compact disk X2 of (X \ w) \\(u1 ∪ v1)
with |∂X2 ∩ u1| = 1 = |∂X2 ∩ v1|. Hence, λ0 ⊂ ∂X2. Yet, λ0 6⊂ ∂X0,
so X0 6= X2, violating the uniqueness in Lemma 2.25 (C) at y. �

Proof of Lemma 2.27. Apply moves (1)-(2) of Procedure 2.24 to F+

and F− until neither move is possible. Either this fixes F+ and F−
near α, or it removes α. In the latter case, α was ∂-parallel in both
F+ and F−, so i(∂F+, ∂F−)ν∂α = 0 by Proposition 6.9, confirming
the first claim; the second and third claims then hold vacuously.

Instead, we may assume for the rest of the proof that F+ and F−
admit neither move (1)-(2) of Procedure 2.24. Denote F ′+ = F+ \

◦
να

and ∂F ′+ = L′. Then F ′+ is positive-definite with β1(F+) − |F+| =
β1(F

′
+) + 1− |F ′+| by Sublemma 6.3 and Observation 2.2.

Suppose, contrary to (A), that i(∂F+, ∂F−)ν∂α = −2. Construct
a surface F ′− by adding one negative half-twist to F− along α; see
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→

→

Figure 31. A positive-definite surface F+ cannot in-
tersect a negative-definite surface F− along an arc α
with i(∂F+, ∂F−)ν∂α = −2 nor along a nonseparating
arc α with i(∂F+, ∂F−)ν∂α = 0.

Figure 31, top. Then F ′− also spans L′ with β1(F
′
−) = β1(F−), and

F ′− is negative-definite by Proposition 6.4; hence, L′ is alternating,
by Fact 2.15. Moreover, since |F ′−| = |F−|, Proposition 6.5 implies
that |F+| = |F ′+|, hence β1(F+) = β1(F

′
+) + 1, and thus:

s(F ′+)− s(F ′−) = s(F+)− s(F−) + 2 using (2.1)

= 2(β1(F+) + β1(F−)) + 2 by Prop. 2.12(6.1)

= 2(β1(F
′
+) + β1(F

′
−)) + 4.

This contradicts Proposition 2.12.
For (B), assume by way of contradiction that α is nonseparating on

F− and i(∂F+, ∂F−)ν∂α = 0. The argument here is identical to the
first case, except that we define F ′− = F−\

◦
να (see Figure 31, bottom).

The assumption that |F ′−| = |F−| then gives β1(F
′
−) = β1(F−) − 1,

which again contradicts Proposition 2.12:

s(F ′+)− s(F ′−) = s(F+)− s(F−)

= 2(β1(F+) + β1(F−))(6.2)

= 2(β1(F
′
+) + β1(F

′
−)) + 2.

For (C), assume for contradiction that that L is prime (hence
nonsplit), F± are essential, i(∂F+, ∂F−)ν∂α 6= 2, and α is not ∂-
parallel in both F±. Part (A) implies that i(∂F+, ∂F−)ν∂α = 0.
Hence, by Proposition 6.8, when we apply Procedure 2.24 to F± until
it terminates, the resulting sequence F+ = F0 → F1 → · · · → Ft
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α+

α−

Figure 32. If arcs α± ⊂ F± with ∂α+ = ∂α− ⊂
F+ ∩ F− are not isotopic in F± to F+ ∩ F−, then
α+ ∪ α− is isotopic in S3 \ ◦νL to a meridian on ∂νL.

features move (3) at least once. Consider the last move (3) Fs →
Fs+1 in this sequence. Observe that the following property holds
for i = t (because Ft, F− determine an alternating link diagram, by
Proposition 2.22, and this diagram is prime by Theorem 1 (b) of
[Me84]) and therefore holds for all i = s + 1, . . . , t (since moves (1)
and (2) from Procedure 2.24 do not affect this property):

(6.3) Each arc in F−\\Fi that separates F− is ∂-parallel in F−.

The step Fs → Fs+1 involves two arcs α1, α2 of Fs ∩ F− and one arc
α3 of Fs+1 ∩ F−. The first two parts of this lemma imply without
loss of generality that α1 is non-standard and thus separating in
F−. Perturb α1 in F− so that it is disjoint from Fs+1. Then α1 ⊂
F−\\Fs+1 is separating on F−, hence ∂-parallel in F− by (6.3), but
this contradicts the hierarchy of the moves in Procedure 2.24. �

Proof of Lemma 2.29. Fact 2.15 implies that L is alternating. Since
L is also nonsplit, both F± are connected by Fact 2.4. Moreover,
Lemma 2.27 (A) implies that every arc α of F+∩F−, being standard,
satisfies i(∂F+, ∂F−)ν∂α = +2. Thus, by Proposition 2.22, the pair
F± determines a connected alternating diagram D of L, which is
prime by Theorem 1 (b) of [Me84].

Note that each component of each F±\\F∓ is a disk, corresponding
to a checkerboard region of S2\\D. Thus, if the endpoints of α± lie
on the same arc of F+ ∩ F−, then each α± is parallel in F±\\F∓ to
this arc. Assume instead that the endpoints of α± lie on distinct arcs
of F+∩F−. Denote the disks of F±\\F∓ containing α± by X±. Then
X+ and X− correspond to two oppositely colored disks of S2\\D, and
since D is prime these disks meet in at most one edge hence at most
two crossings: X+∩X− = v0∪ v1. Therefore, as shown in Figure 32,
α+ ∪α− is isotopic in S3 \ ◦νL to a meridian on ∂νL, contrary to the
assumption that α+ and α− are parallel in S3 \ ◦νL. �
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(c) (d)

Figure 33. (c) and (d) in the proof of Proposition 6.11

Fact 2.28 and Lemma 2.29 imply:

Fact 6.10. If F± are essential definite surfaces of opposite signs
spanning a prime link L and α± ⊂ F±\\F∓ are arcs which are parallel
in S3\ ◦νL and whose endpoints lie on distinct components of F+∩F−,
then at most one of these endpoints lies on a standard arc of F+∩F−.

Proposition 6.11. Suppose F− is an essential negative-definite sur-
face spanning a prime link L and ft : F+ → S3 \ ◦νL, t ∈ I, is an
isotopy of essential positive-definite spanning surfaces for L. De-
note each ft(F+) = Ft. Assume generically that Ft t F− for all but
finitely many t = t1, . . . , tr, where 0 = t0 < t1 < · · · < tr < tr+1 = 1,
that there is only one non-transverse point pi in each Fti ∩ F−, and
that each pi is non-degenerate. For each t 6= t1, . . . , tr, denote the
union of the standard arcs of Ft ∩ F− by stFt. Then stF0 and stF1

are isotopic in F−.

Proof. Choose some positive ε� min{ti+1− ti}r+1
i=1 . Near each point

(pi, ti) ∈ (S3 \ ◦νL) × (0, 1), ft changes Fti−ε ∩ F− to Fti+ε ∩ F− via
one of the following moves or its inverse:

(1) removing a simple closed curve (Figure 33, left);
(2) removing an arc that is ∂-parallel in both F± (Figure 8, top);
(3) merging two arcs near ∂νL (Figure 8, bottom);
(4) (the sort of “saddle point” shown right in Figure 33).

We must check that each of these gives an isotopy in F− from stFti−ε
to stFti+ε . For (1) this is trivial; likewise for (2), using Proposition

6.9. For (3), the two endpoints involved have opposite signs, so at
least one of the un-merged arcs is non-standard, hence ∂-parallel in
F− by Lemma 2.27 (C); hence, the other un-merged arc is isotopic
in F− to the merged arc, and the former is standard if and only if
the latter is.

For (4), let U ⊂ S3\ ◦νL denote the local neighborhood shown right
in Figure 33. Note that the arcs of Ft ∩F− ∩U lie on distinct arcs of
Ft ∩ F− either for both t = ti ± ε or for neither. In the former case,
Fact 6.10 and Lemma 2.27 (C) imply, for both t = ti±ε, that at least
one of these arcs of Ft ∩ F− is non-standard and thus ∂-parallel in
F−; hence, the second arcs of Fti±ε∩F− that intersect U are isotopic
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in F− to each other. In the latter case, this move either creates or
removes a simple closed curve of Fti±ε∩F−. By Fact 2.23, this curve
bounds a disk X ⊂ F−, which guides the needed isotopy. �

Proof of Theorem 2.30. The forward implication is straightforward.
For the converse, apply Procedure 2.24 to B′ and W to get an isotopy
B′ → B′′ in S3 \ ◦νL after which B′′ ∩W consists only of standard
arcs. Proposition 6.11 gives an isotopy f : B ∩ W → B′′ ∩ W in
W , and since W cuts B and B′′ into disks, f extends to an isotopy
B ∪W → B′′ ∪W in S3 \ ◦νL. Remark 2.21 and Fact 2.28 imply
that the pairs B,W (and B′′,W ) and B′,W determine equivalent
reduced alternating diagrams of L: D = DB,W ≡ DB′,W . The same
reasoning shows that DB′,W ≡ DB′,W ′ = D′, so D ≡ D′. �

7. Proofs of technical lemmas from §3

In §7, we adopt all setup from §3.1. We will prove Lemmas 3.3,
3.4, and 3.7 in §7.1, Lemmas 3.16 and 3.19 in §7.2, Lemmas 3.20 and
3.21 in §7.3, and Lemmas 3.23, 3.24, 3.25, and 3.26 in §7.4.

7.1. Fair position.

Proof of Lemma 3.3. Applying Procedure 2.24 to F,W gives (a).
Perturbing F generically relative to B,W while fixing vF and taking
C to be a thin regular neighborhood of v in S3 \\◦νL as described in
Remark 3.1 gives (b)-(f), and adjusting F near C gives (g) also.

One may then isotope F as follows, while preserving (a)-(g), until
S+ ∪ S− cuts F into disks. If S+ ∪ S− does not cut F into disks,
then by a standard innermost circle argument, there is a circle γ ⊂
F \ (S+ ∪ S−) that bounds a disk X ⊂ (S3 \ (νL ∪ S+ ∪ S−))\\F
but bounds no disk in F \ (S+ ∪ S−).62 Since F is incompressible, γ
bounds a disk F0 ⊂ F , and since L is nonsplit and int(X) ∩ F = ∅,
the 2-sphere X ∪ F0 bounds a ball Y in (S3 \ νL)\\F . Isotope F
near F0 through Y past X. This isotopy fixes (F \ F0) ∩ (S+ ∪ S−)
and removes all of F0 ∩ (S+ ∪ S−) 6= ∅, hence preserves (a)-(g)
and decreases |F ∩ (S+ ∪ S−)|. Ergo, any sequence of such moves
terminates, and when it does, F is in fair position. �

Proof of Lemma 3.4. By Definition 3.2 (h), F intersects C \ ◦νL in
disks, hence cuts it into balls; likewise with H±. This proves (A).

For (B), each component of ∂F ∩S± is an arc because D is prime,
hence nontrivial and connected; and no component γ of F ∩ S0 nor

62Choose a component X ′ of F\\(S+ ∪ S−) that is not a disk; then choose
any component of ∂X ′ and take a parallel copy γ′ of it in int(X ′). Note that γ′

bounds no disk in X ′. Yet, γ′ does bound a disk Z in S3 \ (S+ ∪S− ∪νL), and γ′

is 0-framed in F , so we may require that Z t F is comprised of circles, no arcs.
Among all such choices for Z (given γ′), choose one which minimizes |Z ∩ F |.
Now choose an innermost disk X ⊂ Z\\F and take ∂X = γ.
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F ∩ ∂C ∩ S± is a circle, or else, by (h), γ would bound disks in F
in both incident components of S3\\(S+ ∪ S− ∪ νL), but F being a
spanning surface, has no closed components.

For (C), consider a crossing ball Ct where F does not have a cross-
ing band, and let γ be a component of F ∩∂Ct. By (d), ∂F ∩Ct = ∅,
so γ is a circle; (B) and (e) imply that ∂S0 cuts γ into arcs, each of
whose endpoints are on distinct arcs of ∂Ct ∩ S0. Since each disk of
∂Ct∩S± contains only two arcs of ∂Ct∩S0, γ is uniquely determined
up to isotopy of (γ, γ∩∂S0) in (∂Ct \νL, ∂S0). In particular, by (h),
γ bounds a saddle disk of F ∩ Ct. �

Proof of Lemma 3.7. Ordering the r circles of F∩S+ arbitrarily gives
a sequence of flype-type re-plumbings F = F0 → F1 → · · · → Fr
where Fr is disjoint from S+, hence (by fair position) isotopic to
B. Theorem 2.30 implies that DFr,W ≡ D. Putting the sequence
in reverse, each Fi is obtained by re-plumbing Fi+1 along a flyping
cap (relative to W ), so by Proposition 2.35 each DFi,W is related to
DFi+1,W by a flype which preserves the isotopy class of W . Ergo,
DF,W and D are related by a sequence of such flypes. �

7.2. Properties of 1-, 2-, and 3-good position.

Proposition 7.1. If F is in fair position and no arc of F ∩ Ŵ is
parallel in Ŵ into ∂C, then no arc of F ∩ B̂ is parallel in B̂ into ∂C.

Proof. Assume instead that some arc β of F ∩ B̂ is parallel in B̂ into
∂C. Taking β to be an outermost such arc in B̂, let γ denote the
circle of F ∩ S+ containing β, and let ω, ω′ denote the arcs of γ ∩ Ŵ
incident to the arcs of γ∩C that are incident to β; see Figure 34, left.
Construct properly embedded arcs σ ⊂ Ŵ \\F and σ+ ⊂ Fγ with
the same endpoints, one of each of ω, ω′. Then σ and σ+ are parallel
in S3 \ ◦νL, so Lemma 2.29 implies that σ is parallel through a disk
W0 ⊂W \\F to F∩W . The disk W0 must intersect v because ω 6= ω′.
Consider an outermost disk W1 of W0 \\v: the arc α = ∂W1 ∩ ∂W0

is an arc of F ∩W \\v which is parallel in W into v, so contrary to

assumption α ∩ Ŵ is parallel in Ŵ into ∂C. �

Proposition 7.2. Suppose F is in fair position and no arc of F ∩
W \\v is parallel in W into v. If X ⊂ S3\\(F ∪ νL) is a properly
embedded disk such that ∂X ⊂ F \ C intersects S0 in a nonempty
collection of points on mutually distinct arcs of F ∩ S0, then ∂X
intersects both B and W .

Proof. Denote ∂X = γ and assume that X t B,W . Incompressibil-
ity implies that γ bounds a disk F0 ⊂ int(F ). If γ ∩W = ∅, then
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Figure 34. The situations in the proofs of Proposi-
tions 7.1 and 7.4

F0 ∩W is nonempty63 and comprised of circles, violating Definition
3.2 (a). Assume instead that γ ∩ B = ∅. Then F0 ∩ B is nonempty
and comprised of circles. Choose an innermost disk F1 of F0\\B in
F0. Lemma 3.4 (B) implies that F1 ∩ v 6= ∅; choose an outermost
disk F2 of F1\\v. Then ∂F2 ∩ ∂F1 is an arc of F ∩ B\\v with both
endpoints on the same vertical arc, violating Proposition 7.1. �

Proof of Lemma 3.16. The contrapositive of (III) =⇒ (I) is clear,
as is (I) ⇐⇒ (II), by fair position. Finally, if (I) and (II) hold, then
these prohibit Move 2 and Proposition 7.2 prohibits Move 1. �

Proof of Lemma 3.17. Suppose otherwise. Then, using Definition
3.2 (a) to apply Lemma 2.29, α is parallel through a disk W0 ⊂W \\F
to an arc ω ⊂ F ∩W . Condition (e) of Definition 3.10 implies that
ω ∩ v 6= ∅. Taking an outermost disk W1 ⊂W0\\F , ∂W1 consists of
an arc of F ∩W\\v and an arc in v which are parallel through W\\v.
This violates the 2-good position of F , due to Lemma 3.16. �

Proposition 7.3. If F is in 2-good position and F → F ′ is a push-
through move, then F ′ is in 2-good position.

Proof. By Observation 3.15, F ′ is in fair position. By Lemma 3.16,
no arc of F ∩ Ŵ is parallel in Ŵ into ∂C, and it suffices to prove
that the same holds for F ′. This is clear if the arc α guiding the
push-through move lies in S±B (as F ′ ∩ Ŵ = F ∩ Ŵ ) or has at least

one endpoint on ∂νL (as all arcs of (F ′ ∩ Ŵ ) \ (F ∩ Ŵ ) have an

endpoint on ∂νL), and Lemma 3.17 implies that α 6⊂ Ŵ . �

Proposition 7.4. Suppose F is in 3-good position, E is an edge, γ
is a circle of F ∩S±, and α ⊂ int(E±)\\∂F is an arc with ∂α ⊂ γ, so
that (by Proposition 2.6) α is parallel in E\\∂F to an arc α′ ⊂ ∂F .
Then either α′ intersects both ∂B and ∂W or it intersects neither.

63Otherwise, each arc α of F0 ∩ B would lie in a single arc of F0 ∩ S0, which
would contain both endpoints of α, contrary to assumption.
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Proof. Assume by way of contradiction that α ⊂ S−, α′ ∩ ∂W 6= ∅,
and α′ ∩ ∂B = ∅; the proofs with α ⊂ S+ and with ∂B and ∂W
reversed are analogous. Denote the arcs of F ∩ S0 incident to α′ by
β1, . . . , β2m, indexed by their order along α′ as in Figure 34, right,
and note that β1, . . . , β2m are distinct, because F admits no Move
3. For each i = 1, . . . , 2m, construct a properly embedded arc τi in
the disk Fi of F ∩H± incident to βi−1 and βi, taking indices modulo
2m; do this so that each τi shares an endpoint with each τi±1. The
circle τ =

⋃
i τi ⊂ F bounds a disk X ⊂ S3\\(F ∪ νL) disjoint from

B; yet, τ ∩ S0 consists of one point on each of the mutually disjoint
arcs β1, . . . , β2m, contradicting Proposition 7.2. �

Proof of Lemma 3.19. One direction is trivial. For the other, sup-
pose F is in 3-good position, but such an arc exists; choose one, β,
which is outermost in B̂. Then β is parallel in S0\\F to an arc α of
∂B\\∂F , and ∂α are the endpoints of an arc α′ ⊂ ∂F ∩E. Denoting
α′′ = α′ \ ◦ν∂α, α′′ ∩ ∂B = ∅, as β is outermost, but α′′ ∩ ∂W 6= ∅,
as F admits no Move 3. This contradicts Proposition 7.4.64 �

7.3. Properties of 5-good position.

Sublemma 7.5. If F is in 5-good position, then no arc of F ∩ Ŵ
has endpoints on a crossing ball Ct and incident edge E.

Proof. Suppose otherwise. Then there is an arc α of F ∩ W for
which some arc α0 of α\\v cuts off a triangle of W \\(F ∪v). Denote
∂α0 = {x, y} where x ∈ vt and y ∈ E. Since no Move 4 is possible,
the arc λ of ∂F∩E\\{y} incident to Ct must intersect ∂S0. Moreover,
int(λ)∩ ∂S0 ⊂ ∂B (because α cuts off a triangle), and Definition 3.2
(a) gives i(∂F, ∂W )νy = +1, which implies that |int(λ) ∩ ∂S0| ≥ 2
(compare with Figure 23). Ergo, contrary to assumption, F admits
Move 5 between y and Ct. �

Proposition 7.6. If a properly embedded arc α′ ⊂W with α′ t v 6=
∅ is isotopic in W to an arc α ⊂ Ŵ , then some arc α′0 of α′\\v cuts
off a bigon or triangle of W \\(v ∪ α′).65

Proof. Isotope (α, ∂α) in (Ŵ , ∂Ŵ ∩ ∂W ) to minimize |α t α′|. Now
by Lemma 2.25 (A), there is a disk W0 of W\\(α ∪ α′) such that
∂W0 ∩ α and ∂W0 ∩ α′ each consist of a single arc. The minimality
of α∩α′ and the assumption that α′∩v 6= ∅ imply that W0∩v 6= ∅;
since α ∩ v = ∅ it follows that there is an outermost disk W1 of
W0\\v with ∂W1 ∩ α = ∅. Take α′0 = ∂W1 ∩ α′. �

64Alternatively, this contradicts Definition 3.2 (a) directly, since i(α′′, ∂W ) =
0. We will actually need to use Proposition 7.4 in the proof of Proposition 7.7.

65That is, one endpoint of α′0 lies on a vertical arc v0 ⊂ v and the other lies
either on v0 or on an arc of ∂W\\∂v incident to v0.
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Proof of Lemma 3.20. By Proposition 7.6, either α′ ⊂ Ŵ or an arc
of α′∩Ŵ has a form prohibited by Lemma 3.16 or Sublemma 7.5. �

Proposition 7.7. If F is in 5-good position, then no circle γ of
F ∩ S± intersects any edge E in more than one arc.

Proof. Suppose otherwise. Then there is an arc α ⊂ S±E\\∂F whose
endpoints lie on distinct arcs of γ∩E. Proposition 2.6 implies that α
is parallel through a disk E0 ⊂ E into ∂F . By assumption, E0 must
intersect ∂B or ∂W , so Proposition 7.4 implies that E0 ∩ ∂W 6= ∅;
yet, the endpoints of any outermost arc of E0 ∩ ∂W are points of
∂F ∩ ∂W of opposite sign, violating Definition 3.2 (a). �

Proof of Lemma 3.21. Assume for simplicity that the circle γ ⊂ F ∩
S± that contains ∂α lies in F ∩ S+, and assume for contradiction

that α ⊂ S+W . Lemma 3.17 implies that ∂α 6⊂ Ŵ , while Definitions
3.10 (e)-(f) and 3.2 (a) imply that ∂α 6⊂ ∂νL. Hence, one endpoint
of α lies on an arc γ′ of γ ∩ ∂νL, while the other endpoint lies on an
arc γ′′ of γ ∩ Ŵ ; see Figure 35, left.

The push-through move F → F ′ along α introduces two oppositely
signed points x± of ∂F ′ ∩∂W , and Lemma 2.27 (C) implies that the
negative point x− is an endpoint of an arc ω of F ′∩W that cuts off a
diskW0 fromW ; denote ∂ω = {x−, z}. Note thatW0∩v 6= ∅ because
γ′ ∩ γ′′ = ∅ by Definition 3.10 (e), so there is an outermost disk W1

of W0\\v with x− /∈ ∂W1. Denoting ω1 = ∂W1 ∩ω, Lemma 3.16 and
Remark 2.8 imply that ω1 cuts off a triangle of W \\(v ∪ ω), and
Sublemma 7.5 implies that ω1 is one of the two arcs of (F ′ ∩W \\v)
not in (F ∩W \\v). Since z ∈ ω1 and x− /∈ ω1, it follows that z = x+.
Yet, this implies that ∂ω = {x+, x−} and thus that ω comes from a
circle of F ∩W , violating Definition 3.2 (a). �

Proof of Lemma 3.22. Suppose otherwise. Then, because γ1 is a fly-
ping circle and |F ∩ Ct| is a single saddle disk X, there are at most
two circles of F ∩ S− that intersect both disks of S− \ (π−1 ◦ π(γ0)),
and one must both abut X and traverse the underpass at Ct. Yet, as
shown right in Figure 35, this implies that F admits a push-through
move near Ct along an arc in S−W , contradicting Lemma 3.21. �

7.4. Properties of 6-good position.

Proof of Lemma 3.23. The equivalence of (I) and (II) is straightfor-
ward (using Proposition 7.1), so it suffices to prove that (I) and (III)

are equivalent. If (I) holds, then (a), the condition on F ∩ B̂, and
Lemmas 3.16 and 3.19 prohibit Moves 1-3, while (b) and (c) prohibit
Moves 4-6. Conversely, if F is in 6-good position, then Definition 3.2
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α

γ′′ γ′

x+

x−

ω
W0

γ1

X

Figure 35. The situations in the proofs of Lemmas
3.21 and 3.22

(a) and Lemmas 3.16 and 3.19 give (a) and the condition on F ∩ B̂,
and Sublemma 7.5 gives (b); (c) is then straightfoward.66 �

Proof of Lemma 3.24. For the claim regarding fair position, but Propo-
sition 7.3 takes care of Moves 7-9 and the other moves are easy to
check (we rely here on Convention 3.13). The remaining claims are
straightforward: note that a push-through move on a circle of F ∩S+
via an arc α ⊂ S+\\F changes

F3 by |∂α ∩ ∂νL| − 2 ≤ 0. �

Proof of Lemma 3.25. By Lemma 3.16, no arc of F0 ∩ Ŵ is parallel
in Ŵ into ∂C; we claim that the same holds for F1. This is obvious if
F0 → F1 is Move 3, 4, 6, 8, or 9, and since any Move 5 has the same
effect as a push-through move followed by a Move 3, Proposition
7.3 confirms our claim if F0 → F1 is Move 5 or Move 7. Thus,
by Lemma 3.16, F1 is in 2-good position. Moreover, any Move 3-9
F0 → F1 restricts to an isotopy F0 ∩W → F1 ∩W in W which fixes
vF0 ⊂ vF1 . Repeating this argument confirms (A) and (B).

For (C), observe that any Move 7, 8, or 9 Fi → Fi+1 fixes Fi∩W =
Fi+1∩W and, by (A), preserves 2-good position. Hence, such a move
gives rise to no arc of type (a) nor (b) nor (c) from Lemma 3.23 (I).

The same reasoning applies to a Move 3 along an arc in B̂. For (D),
observe also that by Definition 3.10 (e) no Move 8 nor 9 Fi → Fi+1

can create an arc of Fi+1 ∩ B̂ that is ∂-parallel in B. �

66If an arc α of F ∩ Ŵ has endpoints x, y on edges E,E′ which are adjacent at
a crossing ball Ct where F has no crossing band, then denote the arcs of ∂F ∩S±
traversing the over/underpass at Ct by λ±, and consider the disk W0 of Ŵ\\α
with ∂W0 ⊂ α ∪ E ∪ E′ ∪ ∂Ct. Any arc of F ∩ int(W0) is isotopic in W0 to α,
so by passing to an outermost arc we may assume that F ∩ int(W0) = ∅. If α is
incident to both λ+ and λ− then F admits Move 6; otherwise F admits Move 5.
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γ0 γ0

γ0

γ0

γ0
γ0

δ δ δ

Figure 36. The three types of arc δ of F ∩ int(T−)

Proof of Lemma 3.26. Proposition 3.18 implies that the lexicograph-
ical quantity (

F1 ,
F2 ,

F3) is always at least (0, 0, 0), and
so Lemma 3.24 implies that any sequence of Moves 1-7 terminates.
Thus, any maximal sequence of Moves 1-9 (terminating only in 9-
good position) has the form F → · · · → F1 → · · · , where F1 is in
7-good position with

F1
3 ≥ 0. By Lemma 3.25 (D), the remain-

ing sequence F1 → · · · uses only Moves 8-9; both decrease
·3. �

8. Proofs of technical lemmas from §4

In §8, set up as in §3.1, we prove Lemmas 4.2, 4.3, and 4.9.

8.1. Innermost circles in 9-good position. In §8.1, we adopt all
setup from in §4.1, assuming in particular that F is in 9-good position
with F ∩ S+ 6= ∅, and that T+ is an innermost disk of S+\\F with
∂T+ = γ0 and T− = S− ∩ (π−1 ◦ π(T+)).

Proof of Lemma 4.1. For (A), if |γ0 ∩C+
t | ≥ 1, then, as shown right

in Figure 26, there would be a push-through move along a nearby arc
α ⊂ S+W , violating Lemma 3.21. For (B), Sublemma 7.5 implies that
ω ∩ E = ∅, and this implies that γ ∩ E = ∅: otherwise, F would
admit a push-through move along an arc in S+W , again violating
Lemma 3.21. Part (B) implies that γ0 does not traverse the overpass
at Cs; parts (C)-(D) now follow from (A), Lemma 3.4 (C), and the
facts that γ0 is innermost and D is alternating. �

As we prepare to prove Lemma 4.2, note that each circle of F ∩
int(T−) is disjoint from S0 and intersects C− only where it abuts

crossing bands, hence is isotopic in T− \\S0 into ∂B̂; in particular,
each such circle is innermost on S−. Likewise, and more importantly:

Observation 8.1. Let δ be an arc of F ∩ int(T−). Then δ is properly

isotopic in T− \\S0 to an arc β of T−∩∂B̂, and β is parallel through

a disk B0 ⊂ B̂ ∩ T− into γ0; hence, δ is outermost in int(T−).

Proposition 8.2. Every arc δ of F ∩ int(T−) has one of the three
types of local neighborhoods shown in Figure 36.
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γ0

δ

γ0

γ0

δ

location description
δ− ∈ C− π(δ−) = π(w) for w ∈ γ0 ∩ ∂F
δ− ∈ C− π(z) = π(w) for w ∈ γ0 on saddle
δ− ∈ ∂B i(∂F, ∂B)νδ− = 1
δ− ∈ ∂W i(∂F, ∂W )νδ− = −1
δ+ ∈ ∂B i(∂F, ∂B)νδ+ = −1
δ+ ∈ ∂W i(∂F, ∂W )νδ+ = 1

Figure 37. The possible types of endpoints of an
arc δ of F ∩ int(T−).
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Figure 38. δ cannot have exactly one endpoint on ∂B.

Proof. Orient δ so that the disk B0 described in Observation 8.1 lies
to the right of δ, when viewed from H+. Denote the initial and
terminal points of δ by δ− and δ+. Definition 3.2 (a) gives δ− /∈ ∂W ,
so there are three possibilities for δ− and two for δ+; see Figure 37.

Comparing Figures 36 and 37, it now suffices to prove that δ− ∈
∂B if and only if δ+ ⊂ ∂B. Suppose otherwise. There are three cases
to consider. These appear above the dashed lines in Figure 38; in
each case, we must have the full configuration shown in the figure,
or else F would admit Move 7 or 8 (along an arc α shown in the
figure). Hence, in each case, F admits a push-through move along
an arc ω ⊂ S−W , contradicting Lemma 3.21.67 �

Proposition 8.3. If F is in 7-good position and an arc α of ∂F ∩S+
lies on a single edge, then α has one endpoint on ∂B̂ and one on ∂Ŵ .

Proof. If both endpoints of α were in ∂Ŵ , then one of these endpoints
would be negative, violating Definition 3.2 (a). If both endpoints of

α were in ∂B̂, then F would admit either Move 3 or Move 7. �

67To check that these moves satisfy Definition 3.10 (e), we also use Lemma
3.19 (left in Figure 38), Definition 3.2 (a) and the assumption that D is reduced
(center), and Sublemma 7.5 (right).
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Proof of Lemma 4.2. Given a prism Pi, consider the endpoint xi of
ωi that lies in Pi. If xi ∈ ∂C, then Pi is of type I, by Lemma 4.1
and Proposition 8.2. Otherwise, let λ1 denote the arc of γ0 ∩ ∂νL
incident to xi. If λ1 traverses an overpass, then Pi is of type II, due
to Proposition 8.2. Otherwise, by Proposition 8.2, λ1 is incident to
a non-standard arc β of γ ∩ B̂, which is incident to a second arc λ2
of γ ∩ ∂νL as shown left in Figure 36. This arc λ2 must traverse an
overpass, due to Proposition 8.3, alternatingness, and Definition 3.2
(a), so Proposition 8.2 implies that Pi is of type III. �

8.2. Properties of Move 10. Observation 8.1 implies:

Observation 8.4. For each disk X of F ∩H− ∩Y1, |∂X ∩∂Y1| ≤ 1.

Proposition 8.5. If F → F ′ = (F \\U)∪ V is a Move 10 along γ0,
then the arcs of γ0 ∩S0 abut mutually disjoint disks of F ∩H−, each
of which contains at most one arc of F ∩H− ∩ ∂Y2.

Proof. Suppose instead that distinct arcs α1, α2 of γ0 ∩ S0 abut the
same disk X of F ∩H−. Choose points xi ∈ αi. By Observation 8.4
and Lemma 4.2, we may construct a properly embedded arc α− ⊂
X for which π(α−) ∩ π(T+) = ∂α− = {xi, xj}. Also construct a
properly embedded arc α+ ⊂ Fγ0 with ∂α+ = {xi, xj}. Then the
circle α+ ∪ α− ⊂ F is 0-framed but not nullhomologous, contrary to
definiteness. The last part then follows, using Lemma 4.2. �

Proof of Lemma 4.3. Adopt the notation preceding the definition of
Move 10, so that F ′ = (F\\U) ∪ V , and recall Figure 27. Applying
Lemma 3.23 to F , Lemma 4.2 implies that arcs comprise F ′∩S0 and
that no disk of W \\(F ′ ∪ v) is a bigon.

We check that F ′ satisfies conditions (a) and (h) of Definition 3.2,
as (b)-(g) are then straightforward. For (a), if F ′∩W contains circles,
then each one bounds a disk in W by Fact 2.23, and an innermost
one γ bounds a disk W0 in W disjoint from F ′; W0 must intersect v,
or else γ would be a circle of F ′ ∩ S0; yet, an outermost disk W1 of
W0\\v is a bigon of W \\(F ′ ∪ v). Thus, F ′ ∩W contains no circles.
To complete the proof of (a), note that each point x of ∂F ′ ∩ ∂W
either is an endpoint of an arc of F ∩W or lies in P , and in either
case is positive: i(∂F ′, ∂W )νx = +1 (see Figure 27).

For (h), each component of F ′ ∩ H+ is also a component of F ∩
H+, hence a disk. Likewise, each component of F ′ ∩ C is either a
component of F ∩ C or a crossing band. Regarding F ′− = F ′ ∩H−,
each component of F ′− ∩ Y1 \ V is also a component of F ∩H− ∩ Y1,
hence a disk, and likewise for F ′− ∩ Y2. Observation 8.4 and the last
part of Proposition 8.5 further imply that each of these disks abuts
∂P in at most one arc. It thus suffices to observe in Figure 27 that
each component of F ′ ∩ P is a disk. �
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γ0

γ0 γ0

W0

Figure 39. A triangle W0 arising via Move 10

Proposition 8.6. If F0 → F1 is a Move 10 and F1 → F2 is a
sequence of Moves 1-9 leaving F2 in 10-good position, then the isotopy
F1 → F2 restricts to to an isotopy F1∩W \ vF1 → v \ vF1 in W \ vF1.

Proof. By Lemma 4.3, F1 is in fair position. Now apply Lemma 3.25
(B); note that vF2 = v, by 10-good position. �

Proof of Lemma 4.9. By Lemma 3.23, no disk X of W \\(F ∪ v)
satisfies |∂X ∩ v| = 1 = |∂X ∩ F |, so any disks W0 of W \\(F ′ ∪ v)
with |∂W0 ∩ v| = 1 = |∂W0 ∩ F ′| are triangles that arise near type I
prisms as shown in Figure 39. Thus, using Proposition 8.6, Lemma
2.26 implies that F1 ∩W = vF1 . This confirms (A). Lemma 4.8 (B)
thus implies that F1 is in 9-good position; hence, by hypothesis, F1

is in 10-good position, giving (B): F ∩ S+ = γ0.
Therefore (c.f. Observation 8.1), in each prism Pi, the points

labeled yi, zi in Figure 27 lie on the boundary of the same disk of
F ∩H−. This nearly contradicts Proposition 8.5; the only possibility

is that there is only one prism, i.e. |γ0 ∩ Ŵ | = 1. The prism cannot
be of type I by (A), nor of type (B) because D is prime, so it is of
type III. Hence, γ0 is a flyping circle. �
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