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Abstract. We describe a correspondence between Turaev surfaces of link diagrams on
S2 ⊂ S3 and special Heegaard diagrams for S3 adapted to links.

1. Introduction

To construct the Turaev surface Σ of a link diagram D on S2 ⊂ S3, one pushes the
all-A and all-B states of D to opposite sides of S2, connects these two states with a certain
cobordism, and caps the state circles with disks. Turaev’s original construction [19] stream-
lined Murasugi’s proof [16], based on Kauffman’s work [12] on the Jones polynomial [11],
of Tait’s longstanding conjecture on the crossing numbers of alternating links [17]. See
also [18]. More recently, Turaev surfaces have provided geometric means for interpreting
Khovanov and knot Floer homologies, as in [3, 5, 6, 9, 10, 14, 20].

Dasbach, Futer, Kalfagianni, Lin, and Stoltzfus showed that the Turaev surface of any
connected link diagram D on S2 ⊂ S3 is a splitting surface for S3 on which D forms
an alternating link diagram [8]. When equipped with the type of crossing ball structure
developed by Menasco [15], the projection sphere provides natural attaching circles for the
two handlebodies of this splitting, completing a Heegaard diagram (Σ, α, β) for S3. By
characterizing the interplay between this Heegaard diagram and the original link diagram
D, we obtain a correspondence between Turaev surfaces and particular Heegaard diagrams
adapted to links. Figure 1 shows a typical example of such a diagram (Σ, α, β,D).

First, §2 defines Heegaard splittings and diagrams, link diagrams, crossing ball structures,
and Turaev surfaces. Next, §3 constructs and describes the special, link-adapted Heegaard
diagrams (Σ, α, β,D). Finally, §4 establishes the following correspondences:

Theorem 4.1. There is a 1-to-1 correspondence between Turaev surfaces of connected
link diagrams on S2 ⊂ S3 and diagrams (Σ, α, β,D) with the following properties:

• (Σ, α, β) is a Heegaard diagram for S3, with α t β.

• D is an alternating link diagram on Σ which cuts Σ into disks, with D t α and D t β.

• D ∩ α = D ∩ β = α ∩ β, none of these points being crossings of D.

• There is a checkerboard partition Σ \ (α∪ β) = Σ∅ ∪ΣK , in which Σ∅ consists of disks
disjoint from D, in which D cuts ΣK into disks each of whose boundary contains at least
one crossing point and at most two points of α ∩ β, and in which 2g(Σ) + |Σ∅| = |α|+ |β|.

Theorem 4.2: There is a 1-to-1 correspondence between generalized Turaev surfaces,
constructed from dual pairs of states of connected link diagrams on S2 ⊂ S3, and diagrams
(Σ, α, β,D) with the properties in Theorem 4.1, except that D need not alternate on Σ.
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Figure 1. A link diagram on S2, and the link-adapted Heegaard diagram
(Σ, α, β,D) corresponding to its Turaev surface, the torus in Figure 7. As in
all figures, the link is black; the crossing balls are white; the attaching circles
comprising α and β are red and blue, respectively; and the circles and disks
from the all-A state are green, while those from the all-B state are brown.

Acknowledgements: We would like to thank Charlie Frohman, Maggy Tomova, Ryan
Blair, Oliver Dasbach, Adam Lowrance, Neal Stoltzfus, and Effie Kalfagianni for helpful
conversations.

2. Background

2.1. Heegaard splittings and diagrams. A Heegaard splitting of an orientable 3-manifold
M is a decomposition of M into two handlebodies Hα and Hβ with common boundary. The
surface ∂Hα = ∂Hβ = Σ is called a splitting surface for M . In this paper, we address only
the case in which M = S3.

One can describe a handlebody H by identifying on its boundary ∂H = Σ a collection of
disjoint, simple closed curves α1, . . . , αk, such that each αi bounds a disk α̂i in H, and such
that these disks together cut H into a disjoint union of balls. The αi are called attaching
circles for H. Some conventions require that the α̂i together cut H into a single ball, hence
k = g(Σ); though not requiring this, our definition does imply that k ≥ g(Σ).

A Heegaard diagram (Σ, α, β) combines these ideas to blueprint a 3-manifold. The di-
agram consists of a splitting surface Σ = ∂Hα = ∂Hβ, together with a union α =

⋃
αi

of attaching circles for Hα and a union β =
⋃
βi of attaching circles for Hβ. If (Σ, α, β)

is a Heegaard diagram for S3, then the circles of α and β together generate H1(Σ). The
Appendix provides an easy proof of this fact, using Seifert surfaces.
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Figure 2. Each crossing in a link diagram is labeled in one of two ways.
The label tells one how to adjust the link after inserting a crossing ball.

Figure 3. The A-smoothing (left) and B-smoothing (right) of a crossing.

2.2. Link diagrams and crossing balls. A link diagram D on a closed surface F ⊂ S3

is the image, in general position, of an immersion of one or more circles in F ; each arc at
any crossing point is labeled with a direction normal to F near that point, so that under-
and over-crossings have been identified. By inserting small, mutually disjoint crossing balls
C =

⋃
Ci centered at the crossing points of D and pushing the two intersecting arcs of

each D ∩ Ci off F to the appropriate hemisphere of ∂Ci \ F , as in Figure 2, one obtains a
configuration of a link K ⊂ (F \ C) ∪ ∂C ⊂ S3. Call this a crossing ball configuration of
the link K corresponding to the link diagram D.

Conversely, given mutually disjoint crossing balls C =
⋃
Ci centered at points on a

closed surface F ⊂ S3, and a link K ⊂ (F \ C) ∪ ∂C in which each crossing ball appears
as in Figure 2, one may obtain a corresponding link diagram as follows. Consider a regular
neighborhood of F that contains C and is parameterized by an orientation-preserving home-
omorphism with F × [−1, 1] which identifies F with F ×{0}. If π : F × [−1, 1]→ F denotes
the natural projection, the link diagram corresponding to the crossing ball configuration
K ⊂ (F \C)∪ ∂C ⊂ S3 is the projected image π(K) ⊂ F with appropriate crossing labels.

In such a crossing ball configuration, each arc of K ∩ ∂C lies either in F × [−1, 0] or in
F × [0, 1]. The former arcs are called under-passes, and the latter are called over-passes.
A link diagram D is said to be alternating if each arc of K \ C in a corresponding crossing
ball configuration joins an under-pass with an over-pass. A link K ⊂ S3 is alternating if it
has an alternating diagram on S2.

In particular, any Heegaard diagram (Σ, α, β) for S3 provides an embedding of the closed
surface Σ in S3. One may therefore superimpose a link diagram D on the Heegaard diagram
to obtain a new type of diagram (Σ, α, β,D). This new diagram describes a Heegaard
splitting of S3 in which the splitting surface contains a link diagram.

2.3. Turaev surfaces. Each crossing in a link diagram D on a surface F can be smoothed
in two different ways, by inserting a crossing ball Ci and replacing D ∩ Ci with one of the
two pairs of arcs of (∂Ci ∩F ) \D opposite to another. Figure 3 shows the two possibilities,
called the A-smoothing and the B-smoothing of the crossing. Making a choice of smoothing
for each crossing in the diagram produces a disjoint union of circles on F , called a state of
the diagram D. Two states of D are dual if they have opposite smoothings at each crossing.
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Figure 4. The all-A (left) and all-B (right) states for a link diagram.

Figure 5. The cobordism between the all-A and all-B states from Figure 4.

Given a link diagram D on S2, the two extreme states – the all-A and the all-B – are
of particular interest, due in part to the bounds they give on the maximum and minimum
degrees of the Jones polynomial. Kauffman’s proof [12] that these bounds are sharp for
reduced, alternating diagrams provided the impetus for Murasugi [16], Thistlethwaite [18],
and Turaev [19] to prove Tait’s conjecture on the crossing numbers of alternating links.
Cromwell [7], Lickorish and Thistlethwaite [13] then extended these results to adequate link
diagrams. Figure 4 shows the all-A and all-B states for the link diagram from Figure 1.

Following Turaev [19], one can construct a cobordism between the all-A and all-B states
as follows. Parameterize a bi-collaring of S2 as in §2.2, and push the all-A and all-B states
off S2 to S2 × {1} and S2 × {−1}, respectively, such that each state circle sweeps out an
annulus to one side of S2. Assume that these annuli are mutually disjoint, and that they
are disjoint from the crossing balls C =

⋃
Ci used to construct the all-A and all-B states.

Gluing together these annuli and the disks of S2 ∩ C produces the cobordism between the
two states. (See Figure 5.) Near each crossing, the cobordism has a saddle, as in Figure 6.
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Figure 6. Turaev’s cobordism between the all-A and all-B states has a
saddle near each crossing, shown here with and without a crossing ball.

Figure 7. This torus is the Turaev surface of the link diagram in Figures
1 and 4, seen from the ambient space. To provide a window to the far side
of the surface, one of the three disks of the all-A state is only partly shown.

Having constructed the cobordism, one caps the all-A and all-B states with mutually
disjoint disks to form a closed surface Σ, called the Turaev surface of the original link
diagram D on S2. Since Σ contains a neighborhood of S2 around each crossing point, the
crossing information of D on S2 translates to crossing information on the Turaev surface.
Thus, D forms a link diagram on Σ. A crossing ball configuration corresponding to this
link diagram is K ⊂ (Σ \ C) ∪ ∂C, with under- and over-passes defined as in §2.2.

Observe that D cuts Σ into disks, each of which contains exactly one state disk, and that
S2 ∩Σ = S2 ∩ (C ∪K) = Σ∩ (C ∪K). Note also that if D is alternating on S2, then Σ is a
sphere which can be isotoped to S2 while fixing D. Figure 7 shows a less trivial example.
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The construction of the Turaev surface generalizes to any pair of states s and s̃ dual to one
another. By pushing s and s̃ to opposite sides of S2 to sweep out annuli on opposite sides of
S2, gluing in disks near the crossings to obtain a cobordism between s and s̃, and capping
off with disks, one obtains a closed surface Σ on which D forms a link diagram [1, 19]. Call
this surface Σ the generalized Turaev surface of the dual states s and s̃.

3. Construction of Heegaard diagrams for Turaev surfaces

Given a connected link diagram D on S2 ⊂ S3 and its Turaev surface Σ, this section
constructs a link-adapted Heegaard diagram (Σ, α, β,D). Theorem 3.4 then characterizes
this diagram, providing one direction of the correspondence to come in Theorem 4.1.

Let K ⊂ (S2\C)∪∂C be a crossing ball structure corresponding to D, and let Hα and Hβ

be the two components of S3\Σ. Define α̂ := (S2\(C∪K))∩Hα and β̂ := (S2\(C∪K))∩Hβ

to be the two checkerboard classes of S2 \ (C ∪K), with α := ∂α̂ and β := ∂β̂. From this
setup, three modifications will complete the construction of the diagram (Σ, α, β,D). During
these changes, Σ, D, S2, C, and K will remain fixed.

First, perturb α and β through the cobordism as follows, carrying along the disks of α̂
and β̂. Let X = {x1, . . . , xn} consist of one point on each arc of K \ C which joins two
under-passes on S2, and let Y = {y1, . . . , yn} consist of one point on each arc of K \ C
which joins two over-passes on S2. Each arc of α \ (X ∪ Y ) runs along a circle from either
the all-A state or the all-B state. Isotope α through the cobordism so as to push arcs of
the former type to S2 × (0, 1) and arcs of the latter type to S2 × (−1, 0), giving α ∩C = ∅
and α∩D = X ∪Y . Next, isotope β in the same manner, after which α and β will both be
disjoint from C, while α, β, and D will be pairwise transverse and will intersect exclusively
at triple points: α ∩ β = α ∩D = β ∩D = X ∪ Y .

To further simplify the picture, push the state circles through the cobordism to align
with α ∪ β, so that each state disk becomes a component of Σ \ (α ∪ β). This causes the
neighborhood of each arc of K \ C to appear as in Figure 8, possibly with red and blue
reversed. Note that the state disks’ interiors remain disjoint from D, in fact from S2.

To complete the construction, remove any attaching circles that are disjoint from D.
Also remove the corresponding disks of α̂ and β̂, and let α, β, α̂ and β̂ retain their names.
Because each removed circle lies in some disk of Σ \D, each removed disk is parallel to Σ.

Lemma 3.1 (DFKLS [8]). The Turaev surface Σ of any connected link diagram D on
S2 ⊂ S3 is a splitting surface for S3.

Proof. Observe that S2 ∪ C cuts S3 into two balls, which Σ cuts into smaller balls. Also,
S3 \ (S2 ∪ C ∪ Σ) = (Hα \ (S2 ∪ C)) ∪ (Hβ \ (S2 ∪ C)), where Hα and Hβ are the two
components of S3 \Σ. Hence, Hα \C and Hβ \C are handlebodies, as are Hα and Hβ. �

The proof of Lemma 3.1 implies that (Σ, α, β) was a Heegaard diagram for S3 when α

and β were first defined. The fact that each removed disk of α̂ and of β̂ was parallel to Σ
implies that (Σ, α, β) is a Heegaard diagram for S3 in the finished construction as well.
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Figure 8. Up to reversing red and blue, these are the possible configurations
of the Turaev surface Σ between two adjacent crossings, shown at the stage
of the construction in which the boundary of each state disk lies in α ∪ β.

Lemma 3.2 (DFKLS [8]). Any connected link diagram D on S2 ⊂ S3 forms an alternating
link diagram on its Turaev surface Σ.

Proof. Recall from §2.3 that D forms a link diagram on Σ. On S2, each arc κ of K \C joins
either two over-passes, two under-passes, or one of each. Figure 8 shows the three possible
configurations of Σ near κ, prior to the removal of attaching circles, up to reversal of α and
β. In all three cases, the two arcs of K ∩ ∂C incident to κ lie to opposite sides of Σ, so that
one is an over-pass on Σ and the other is an under-pass on Σ. �

One defines the Turaev genus gT (K) of a link K ⊂ S3 to be the minimum genus among
the Turaev surfaces of all diagrams of K on S2. The resulting invariant, surveyed in [4],
measures how far a link is from being alternating. See also [2]. In particular, Turaev genus
provides the crux of Turaev’s proof of Tait’s conjecture:

Corollary 3.3 (Turaev [19], DFKLS [8]). A link K is alternating if and only if gT (K) = 0.
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Figure 9. Given a diagram (Σ, α, β,D) with the properties in Theorems
3.4, 4.1, or 4.2, removing the disks of Σ∅ from Σ and gluing in the disks of α̂

and β̂ produces a sphere on which D forms a link diagram. Near each point
of α ∩ β, this surgery appears as shown, up to mirroring.

Theorem 3.4. From the Turaev surface Σ of a connected link diagram D on S2 ⊂ S3, the
construction in this section produces a diagram (Σ, α, β,D) with the following properties:

• (Σ, α, β) is a Heegaard diagram for S3, with α t β.

• D is an alternating link diagram on Σ which cuts Σ into disks, with D t α and D t β.

• D ∩ α = D ∩ β = α ∩ β, none of these points being crossings of D.

• There is a checkerboard partition Σ \ (α∪ β) = Σ∅ ∪ΣK , in which Σ∅ consists of disks
disjoint from D, in which D cuts ΣK into disks each of whose boundary contains at least
one crossing point and at most two points of α ∩ β, and in which 2g(Σ) + |Σ∅| = |α|+ |β|.

Proof. We have already established the first three properties. Let Σ∅ consist of the interiors
of all adjusted state disks whose boundary contains at least one point of α ∩ β, i.e. those
whose boundary still lies in α∪β after the removal of the attaching circles disjoint from D.
These state disks are disjoint from D and constitute a checkerboard class of Σ \ (α ∪ β).
See Figure 9.

Let ΣK denote the other checkerboard class of Σ \ (α ∪ β). Each component of ΣK \D
is also a component of (Σ \D) \ (α ∪ β), and each attaching circle intersects D; therefore,
D cuts ΣK into disks. Further, each arc of K \C contains at most one point of α ∩ β, and
each arc of (α∪ β) \D is parallel through Σ to D; consequently, the boundary of each disk
of ΣK \D contains at least one crossing point and at most one arc of (α ∪ β) \D, hence at
most two points of α ∩ β.

Finally, to see that 2g(Σ) + |Σ∅| = |α|+ |β|, consider Euler characteristic in light of the

observation that removing the disks of Σ∅ from Σ and gluing in the disks of α̂ and β̂ yields
a sphere isotopic to S2. Near each point of α ∩ β, this surgery appears as in Figure 9. �
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4. Correspondence between Heegaard diagrams and Turaev surfaces

4.1. Main correspondence. From the Turaev surface of a connected link diagram on
S2 ⊂ S3, we have constructed a link-adapted Heegaard diagram (Σ, α, β,D) with several
properties. We will now see that any such diagram corresponds to the Turaev surface of
some link diagram on the sphere.

Theorem 4.1. There is a 1-to-1 correspondence between Turaev surfaces of connected link
diagrams on S2 ⊂ S3 and diagrams (Σ, α, β,D) with the following properties:

• (Σ, α, β) is a Heegaard diagram for S3, with α t β.

• D is an alternating link diagram on Σ which cuts Σ into disks, with D t α and D t β.

• D ∩ α = D ∩ β = α ∩ β, none of these points being crossings of D.

• There is a checkerboard partition Σ \ (α∪ β) = Σ∅ ∪ΣK , in which Σ∅ consists of disks
disjoint from D, in which D cuts ΣK into disks each of whose boundary contains at least
one crossing point and at most two points of α ∩ β, and in which 2g(Σ) + |Σ∅| = |α|+ |β|.

Proof. Theorem 3.4 provides one direction of this correspondence. It remains to prove the
converse.

Assume that the diagram (Σ, α, β,D) is as described. Remove the disks of Σ∅ from Σ

and glue in the disks of α̂ and β̂ to obtain a closed surface. (See Figure 9.) Because D is
connected and 2g(Σ) + |Σ∅| = |α|+ |β|, this surface is a sphere – call it S2. Moreover, D,
being disjoint from Σ∅ and having its crossing points in ΣK , forms a link diagram on S2.
We claim, up to isotopy, that Σ is the Turaev surface of the link diagram D on S2.

The property that D cuts ΣK into disks implies that D intersects each attaching circle,
cutting α and β into arcs. Because the boundary of each disk of ΣK \D contains at most
two points of α ∩ β, each of these arcs is parallel through one of these disks to D. The
property that the boundary of each disk of ΣK \D contains at least one crossing point then
implies that there is at most one point of α ∩ β on D between any two adjacent crossings.

The link diagram D cuts S2 into disks admitting a checkerboard partition. Because S2

appears near each point of α ∩ β as in Figure 9, one of the checkerboard classes contains
α̂, and the other contains β̂. Yet, some disks of S2 \D may be entirely contained in ΣK ,
hence disjoint from α and β. Construct an attaching circle in the interior of each such disk,
and incorporate it into either α or β according to the checkerboard pattern, letting α and
β retain their names. Span each new circle of α by a new disk of α̂ on the same side of Σ
as the other disks of α̂, and similarly span each new circle of β by a new disk of β̂.

The components of Σ\(α∪β) still admit a checkerboard partition, Σ\(α∪β) = Σ∅∪ΣK ,
in which Σ∅ consists of disks disjoint from D, though D no longer need cut ΣK into disks.

The preceding modification of α, β, α̂, and β̂ corresponds to an isotopy of S2, which again
may be obtained from Σ by removing the disks of Σ∅ and gluing in the disks of α̂ and β̂.

Let K ⊂ (Σ \C)∪ ∂C be a crossing ball configuration corresponding to the link diagram
D on Σ, with C ∩ α = ∅ = C ∩ β. Note that K ⊂ (S2 \ C) ∪ ∂C is also a crossing ball
configuration corresponding to the link diagram D on S2.
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Currently Σ and S2 are non-transverse, even away from C, as both Σ and S2 contain
ΣK . Rectify this by perturbing S2 as follows, fixing Σ, α, β, α̂, β̂, D, Σ∅, ΣK , C, and K

in the process. (We initially constructed S2 by gluing together α̂, β̂, and ΣK , but now we
are pushing S2 off of them.) Each disk of S2 \ (C ∪K) currently contains a disk of either

α̂ or β̂; push the disk of S2 \ (C ∪K) off Σ in the corresponding direction, while fixing its
boundary, which lies in Σ∩ (K ∪ ∂C). This isotopy makes S2 disjoint from α and β, except
at the points of α ∩ β. In fact, this isotopy gives S2 ∩Σ = S2 ∩ (C ∪K) = Σ ∩ (C ∪K), as
was the case in §2.3. (Recall Figure 6.)

Because D is alternating on Σ, the disks of Σ \ (C ∪K) admit a checkerboard partition
– the boundaries of the disks in the two classes are the all-A and all-B state circles for the
link diagram D on Σ. Further, each of these state circles on Σ encloses precisely one disk of
Σ∅. Color green each disk of Σ∅ enclosed by a circle from the all-A state, and color brown
each disk of Σ∅ enclosed by a circle from the all-B state. Near each arc of K \ C, Σ now
appears as in Figure 8 (possibly with red and blue reversed). As a final adjustment, slightly
perturb the green and brown disks so that they become disjoint from α, β, and D.

Removing the green and brown disks from Σ leaves a cobordism between their boundaries.
Cutting this cobordism along S2 ∩ (K ∪∂C) yields the disks of S2 \C, together with annuli
lying to either side of S2, through which the boundaries of the green and brown disks are
respectively parallel to the all-A and all-B states of the link diagram D on S2. As claimed,
Σ is therefore the Turaev surface of the link diagram D on S2. �

4.2. Generalization to arbitrary dual states. As noted at the end of §2.3, the con-
struction of the Turaev surface from the all-A and all-B states of a link diagram D on
S2 generalizes to any pair of states of D which are dual to one another, having opposite
smoothings at each crossing. The correspondence developed in §3 and §4.1 between link-
adapted Heegaard diagrams (Σ, α, β,D) and Turaev surfaces extends to these generalized
Turaev surfaces, the only difference being that D no longer need alternate on Σ.

Theorem 4.2. There is a 1-to-1 correspondence between generalized Turaev surfaces of
connected link diagrams on S2 ⊂ S3, and diagrams (Σ, α, β,D) with the following properties:

• (Σ, α, β) is a Heegaard diagram for S3, with α t β.

• D is a link diagram on Σ which cuts Σ into disks, with D t α and D t β.

• D ∩ α = D ∩ β = α ∩ β, none of these points being crossings of D.

• There is a checkerboard partition Σ \ (α∪ β) = Σ∅ ∪ΣK , in which Σ∅ consists of disks
disjoint from D, in which D cuts ΣK into disks each of whose boundary contains at least
one crossing point and at most two points of α ∩ β, and in which 2g(Σ) + |Σ∅| = |α|+ |β|.

Proof. Given the generalized Turaev surface Σ for dual states s and s̃ of a connected link
diagram D on S2 ⊂ S3, reverse some collection of the crossings of D to obtain a new link
diagram D′ for which s and s̃ are the all-A and all-B states. Construct the corresponding
diagram (Σ, α, β,D′) as in §3. Finally, switch back the reversed crossings of D′ to obtain
the required diagram (Σ, α, β,D).
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Conversely, suppose that (Σ, α, β,D) is as described. The proof of Theorem 4.1 extends
almost verbatim. The only concern, as D need not alternate on Σ, is whether or not the
disks of Σ \D admit a checkerboard partition; it suffices to show that they do.

The condition that D ∩ Σ∅ = ∅ implies that one endpoint of each arc of (α ∪ β) \ D
appears as in Figure 9, and the other appears as the mirror image. Thus, each attaching
circle intersects D in an even number of points. The fact that the attaching circles generate
H1(Σ) then implies that any simple closed curve on Σ in general position with respect to
D must intersect D in an even number of points, and hence that the disks of Σ \D admit
a checkerboard partition. �

4.3. Conclusion. Up to isotopy, each link diagram on S2 ⊂ S3 has a unique Turaev surface.
Theorem 4.1 thus establishes – via Turaev surfaces – a 1-to-1 correspondence between link
diagrams on S2 ⊂ S3 and alternating, link-adapted Heegaard diagrams (Σ, α, β,D).

Similarly, Theorem 4.2 establishes – via generalized Turaev surfaces constructed from
dual states – a 2-to-1 correspondence between states of link diagrams on S2 ⊂ S3 and
link-adapted Heegaard diagrams (Σ, α, β,D) for S3 in which D need not alternate on Σ.

5. Appendix

Let (Σ, α, β) be a Heegaard diagram for S3, and let γ ⊂ Σ be an oriented, simple closed
curve. The following construction yields an expression for [γ] ∈ H1(Σ) in terms of the
homology classes of the oriented attaching circles, proving that the latter generate H1(Σ).

Because H1(S
3) is trivial, γ bounds a Seifert surface S ⊂ S3, on which γ induces an

orientation. Fixing γ, isotope S so that its interior intersects Σ transversally – along simple
closed curves and along arcs with endpoints on γ.

Given a component Sα,i of S ∩Hα, one may obtain an expression for [∂Sα,i] ∈ H1(Σ) in
terms of the [αj ] by surgering Sα,i along successive outermost disks of α̂ \ Sα,i until ∂Sα,i
lies entirely in the punctured sphere Σ \ α, at which point the expression is evident. An
analogous procedure expresses the homology class of each component of S ∩Hβ in terms of
the [βj ]. Summing over all components of S \Σ gives the desired expression for [γ] ∈ H1(Σ):

[γ] = [∂S] =
∑

Components

Sα,i of S ∩Hα

[∂Sα,i] +
∑

Components

Sβ,i of S ∩Hβ

[∂Sβ,i] =
∑
i,j

ai,j [αj ] +
∑
i,j

bi,j [βj ]

Conversely, if (Σ, α, β) is a Heegaard diagram for a 3-manifold M with nontrivial first
homology, then the oriented attaching circles do not generate H1(Σ), since inclusion Σ ↪→M
induces a surjective map H1(Σ)→ H1(M), whose kernel contains all the [αj ] and [βj ].
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