HEEGAARD DIAGRAMS CORRESPONDING TO TURAEV SURFACES

CODY ARMOND, NATHAN DRUIVENGA, AND THOMAS KINDRED

Abstract

We describe a correspondence between Turaev surfaces of link diagrams on $S^{2} \subset S^{3}$ and special Heegaard diagrams for S^{3} adapted to links.

1. Introduction

To construct the Turaev surface Σ of a link diagram D on $S^{2} \subset S^{3}$, one pushes the all-A and all-B states of D to opposite sides of S^{2}, connects these two states with a certain cobordism, and caps the state circles with disks. Turaev's original construction [19] streamlined Murasugi's proof [16], based on Kauffman's work [12] on the Jones polynomial [11], of Tait's longstanding conjecture on the crossing numbers of alternating links [17]. See also [18]. More recently, Turaev surfaces have provided geometric means for interpreting Khovanov and knot Floer homologies, as in [3, 5, 6, 9, 10, 14, 20].

Dasbach, Futer, Kalfagianni, Lin, and Stoltzfus showed that the Turaev surface of any connected link diagram D on $S^{2} \subset S^{3}$ is a splitting surface for S^{3} on which D forms an alternating link diagram [8]. When equipped with the type of crossing ball structure developed by Menasco [15], the projection sphere provides natural attaching circles for the two handlebodies of this splitting, completing a Heegaard diagram (Σ, α, β) for S^{3}. By characterizing the interplay between this Heegaard diagram and the original link diagram D, we obtain a correspondence between Turaev surfaces and particular Heegaard diagrams adapted to links. Figure 1 shows a typical example of such a diagram $(\Sigma, \alpha, \beta, D)$.

First, $\S 2$ defines Heegaard splittings and diagrams, link diagrams, crossing ball structures, and Turaev surfaces. Next, $\S 3$ constructs and describes the special, link-adapted Heegaard diagrams $(\Sigma, \alpha, \beta, D)$. Finally, $\S 4$ establishes the following correspondences:

Theorem 4.1. There is a 1-to-1 correspondence between Turaev surfaces of connected link diagrams on $S^{2} \subset S^{3}$ and diagrams $(\Sigma, \alpha, \beta, D)$ with the following properties:

- (Σ, α, β) is a Heegaard diagram for S^{3}, with $\alpha \pitchfork \beta$.
- D is an alternating link diagram on Σ which cuts Σ into disks, with $D \pitchfork \alpha$ and $D \pitchfork \beta$.
- $D \cap \alpha=D \cap \beta=\alpha \cap \beta$, none of these points being crossings of D.
- There is a checkerboard partition $\Sigma \backslash(\alpha \cup \beta)=\Sigma_{\varnothing} \cup \Sigma_{K}$, in which Σ_{\varnothing} consists of disks disjoint from D, in which D cuts Σ_{K} into disks each of whose boundary contains at least one crossing point and at most two points of $\alpha \cap \beta$, and in which $2 g(\Sigma)+\left|\Sigma_{\varnothing}\right|=|\alpha|+|\beta|$.

Theorem 4.2: There is a 1-to-1 correspondence between generalized Turaev surfaces, constructed from dual pairs of states of connected link diagrams on $S^{2} \subset S^{3}$, and diagrams $(\Sigma, \alpha, \beta, D)$ with the properties in Theorem 4.1, except that D need not alternate on Σ.

Figure 1. A link diagram on S^{2}, and the link-adapted Heegaard diagram (Σ, α, β, D) corresponding to its Turaev surface, the torus in Figure 7. As in all figures, the link is black; the crossing balls are white; the attaching circles comprising α and β are red and blue, respectively; and the circles and disks from the all-A state are green, while those from the all-B state are brown.

Acknowledgements: We would like to thank Charlie Frohman, Maggy Tomova, Ryan Blair, Oliver Dasbach, Adam Lowrance, Neal Stoltzfus, and Effie Kalfagianni for helpful conversations.

2. Background

2.1. Heegaard splittings and diagrams. A Heegaard splitting of an orientable 3-manifold M is a decomposition of M into two handlebodies H_{α} and H_{β} with common boundary. The surface $\partial H_{\alpha}=\partial H_{\beta}=\Sigma$ is called a splitting surface for M. In this paper, we address only the case in which $M=S^{3}$.

One can describe a handlebody H by identifying on its boundary $\partial H=\Sigma$ a collection of disjoint, simple closed curves $\alpha_{1}, \ldots, \alpha_{k}$, such that each α_{i} bounds a disk $\hat{\alpha}_{i}$ in H, and such that these disks together cut H into a disjoint union of balls. The α_{i} are called attaching circles for H. Some conventions require that the $\hat{\alpha}_{i}$ together cut H into a single ball, hence $k=g(\Sigma)$; though not requiring this, our definition does imply that $k \geq g(\Sigma)$.

A Heegaard diagram (Σ, α, β) combines these ideas to blueprint a 3 -manifold. The diagram consists of a splitting surface $\Sigma=\partial H_{\alpha}=\partial H_{\beta}$, together with a union $\alpha=\bigcup \alpha_{i}$ of attaching circles for H_{α} and a union $\beta=\bigcup \beta_{i}$ of attaching circles for H_{β}. If (Σ, α, β) is a Heegaard diagram for S^{3}, then the circles of α and β together generate $H_{1}(\Sigma)$. The Appendix provides an easy proof of this fact, using Seifert surfaces.

Figure 2. Each crossing in a link diagram is labeled in one of two ways. The label tells one how to adjust the link after inserting a crossing ball.

Figure 3. The A-smoothing (left) and B-smoothing (right) of a crossing.
2.2. Link diagrams and crossing balls. A link diagram D on a closed surface $F \subset S^{3}$ is the image, in general position, of an immersion of one or more circles in F; each arc at any crossing point is labeled with a direction normal to F near that point, so that underand over-crossings have been identified. By inserting small, mutually disjoint crossing balls $C=\bigcup C_{i}$ centered at the crossing points of D and pushing the two intersecting arcs of each $D \cap C_{i}$ off F to the appropriate hemisphere of $\partial C_{i} \backslash F$, as in Figure 2, one obtains a configuration of a link $K \subset(F \backslash C) \cup \partial C \subset S^{3}$. Call this a crossing ball configuration of the link K corresponding to the link diagram D.

Conversely, given mutually disjoint crossing balls $C=\bigcup C_{i}$ centered at points on a closed surface $F \subset S^{3}$, and a link $K \subset(F \backslash C) \cup \partial C$ in which each crossing ball appears as in Figure 2, one may obtain a corresponding link diagram as follows. Consider a regular neighborhood of F that contains C and is parameterized by an orientation-preserving homeomorphism with $F \times[-1,1]$ which identifies F with $F \times\{0\}$. If $\pi: F \times[-1,1] \rightarrow F$ denotes the natural projection, the link diagram corresponding to the crossing ball configuration $K \subset(F \backslash C) \cup \partial C \subset S^{3}$ is the projected image $\pi(K) \subset F$ with appropriate crossing labels.

In such a crossing ball configuration, each arc of $K \cap \partial C$ lies either in $F \times[-1,0]$ or in $F \times[0,1]$. The former arcs are called under-passes, and the latter are called over-passes. A link diagram D is said to be alternating if each arc of $K \backslash C$ in a corresponding crossing ball configuration joins an under-pass with an over-pass. A link $K \subset S^{3}$ is alternating if it has an alternating diagram on S^{2}.

In particular, any Heegaard diagram (Σ, α, β) for S^{3} provides an embedding of the closed surface Σ in S^{3}. One may therefore superimpose a link diagram D on the Heegaard diagram to obtain a new type of diagram $(\Sigma, \alpha, \beta, D)$. This new diagram describes a Heegaard splitting of S^{3} in which the splitting surface contains a link diagram.
2.3. Turaev surfaces. Each crossing in a link diagram D on a surface F can be smoothed in two different ways, by inserting a crossing ball C_{i} and replacing $D \cap C_{i}$ with one of the two pairs of arcs of $\left(\partial C_{i} \cap F\right) \backslash D$ opposite to another. Figure 3 shows the two possibilities, called the A-smoothing and the B-smoothing of the crossing. Making a choice of smoothing for each crossing in the diagram produces a disjoint union of circles on F, called a state of the diagram D. Two states of D are dual if they have opposite smoothings at each crossing.

Figure 4. The all-A (left) and all-B (right) states for a link diagram.

Figure 5. The cobordism between the all-A and all-B states from Figure 4.

Given a link diagram D on S^{2}, the two extreme states - the all-A and the all-B - are of particular interest, due in part to the bounds they give on the maximum and minimum degrees of the Jones polynomial. Kauffman's proof [12] that these bounds are sharp for reduced, alternating diagrams provided the impetus for Murasugi [16], Thistlethwaite [18], and Turaev [19] to prove Tait's conjecture on the crossing numbers of alternating links. Cromwell [7], Lickorish and Thistlethwaite [13] then extended these results to adequate link diagrams. Figure 4 shows the all-A and all-B states for the link diagram from Figure 1.

Following Turaev [19], one can construct a cobordism between the all-A and all-B states as follows. Parameterize a bi-collaring of S^{2} as in $\S 2.2$, and push the all-A and all-B states off S^{2} to $S^{2} \times\{1\}$ and $S^{2} \times\{-1\}$, respectively, such that each state circle sweeps out an annulus to one side of S^{2}. Assume that these annuli are mutually disjoint, and that they are disjoint from the crossing balls $C=\bigcup C_{i}$ used to construct the all-A and all-B states. Gluing together these annuli and the disks of $S^{2} \cap C$ produces the cobordism between the two states. (See Figure 5.) Near each crossing, the cobordism has a saddle, as in Figure 6.

Figure 6. Turaev's cobordism between the all-A and all-B states has a saddle near each crossing, shown here with and without a crossing ball.

Figure 7. This torus is the Turaev surface of the link diagram in Figures 1 and 4 , seen from the ambient space. To provide a window to the far side of the surface, one of the three disks of the all-A state is only partly shown.

Having constructed the cobordism, one caps the all-A and all-B states with mutually disjoint disks to form a closed surface Σ, called the Turaev surface of the original link diagram D on S^{2}. Since Σ contains a neighborhood of S^{2} around each crossing point, the crossing information of D on S^{2} translates to crossing information on the Turaev surface. Thus, D forms a link diagram on Σ. A crossing ball configuration corresponding to this link diagram is $K \subset(\Sigma \backslash C) \cup \partial C$, with under- and over-passes defined as in $\S 2.2$.

Observe that D cuts Σ into disks, each of which contains exactly one state disk, and that $S^{2} \cap \Sigma=S^{2} \cap(C \cup K)=\Sigma \cap(C \cup K)$. Note also that if D is alternating on S^{2}, then Σ is a sphere which can be isotoped to S^{2} while fixing D. Figure 7 shows a less trivial example.

The construction of the Turaev surface generalizes to any pair of states s and \tilde{s} dual to one another. By pushing s and \tilde{s} to opposite sides of S^{2} to sweep out annuli on opposite sides of S^{2}, gluing in disks near the crossings to obtain a cobordism between s and \tilde{s}, and capping off with disks, one obtains a closed surface Σ on which D forms a link diagram [1, 19]. Call this surface Σ the generalized Turaev surface of the dual states s and \tilde{s}.

3. Construction of Heegaard diagrams for Turaev surfaces

Given a connected link diagram D on $S^{2} \subset S^{3}$ and its Turaev surface Σ, this section constructs a link-adapted Heegaard diagram $(\Sigma, \alpha, \beta, D)$. Theorem 3.4 then characterizes this diagram, providing one direction of the correspondence to come in Theorem 4.1.

Let $K \subset\left(S^{2} \backslash C\right) \cup \partial C$ be a crossing ball structure corresponding to D, and let H_{α} and H_{β} be the two components of $S^{3} \backslash \Sigma$. Define $\hat{\alpha}:=\left(S^{2} \backslash(C \cup K)\right) \cap H_{\alpha}$ and $\hat{\beta}:=\left(S^{2} \backslash(C \cup K)\right) \cap H_{\beta}$ to be the two checkerboard classes of $S^{2} \backslash(C \cup K)$, with $\alpha:=\partial \hat{\alpha}$ and $\beta:=\partial \hat{\beta}$. From this setup, three modifications will complete the construction of the diagram $(\Sigma, \alpha, \beta, D)$. During these changes, Σ, D, S^{2}, C, and K will remain fixed.

First, perturb α and β through the cobordism as follows, carrying along the disks of $\hat{\alpha}$ and $\hat{\beta}$. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ consist of one point on each arc of $K \backslash C$ which joins two under-passes on S^{2}, and let $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ consist of one point on each arc of $K \backslash C$ which joins two over-passes on S^{2}. Each arc of $\alpha \backslash(X \cup Y)$ runs along a circle from either the all-A state or the all-B state. Isotope α through the cobordism so as to push arcs of the former type to $S^{2} \times(0,1)$ and arcs of the latter type to $S^{2} \times(-1,0)$, giving $\alpha \cap C=\varnothing$ and $\alpha \cap D=X \cup Y$. Next, isotope β in the same manner, after which α and β will both be disjoint from C, while α, β, and D will be pairwise transverse and will intersect exclusively at triple points: $\alpha \cap \beta=\alpha \cap D=\beta \cap D=X \cup Y$.

To further simplify the picture, push the state circles through the cobordism to align with $\alpha \cup \beta$, so that each state disk becomes a component of $\Sigma \backslash(\alpha \cup \beta)$. This causes the neighborhood of each arc of $K \backslash C$ to appear as in Figure 8, possibly with red and blue reversed. Note that the state disks' interiors remain disjoint from D, in fact from S^{2}.

To complete the construction, remove any attaching circles that are disjoint from D. Also remove the corresponding disks of $\hat{\alpha}$ and $\hat{\beta}$, and let $\alpha, \beta, \hat{\alpha}$ and $\hat{\beta}$ retain their names. Because each removed circle lies in some disk of $\Sigma \backslash D$, each removed disk is parallel to Σ.

Lemma 3.1 (DFKLS [8]). The Turaev surface Σ of any connected link diagram D on $S^{2} \subset S^{3}$ is a splitting surface for S^{3}.

Proof. Observe that $S^{2} \cup C$ cuts S^{3} into two balls, which Σ cuts into smaller balls. Also, $S^{3} \backslash\left(S^{2} \cup C \cup \Sigma\right)=\left(H_{\alpha} \backslash\left(S^{2} \cup C\right)\right) \cup\left(H_{\beta} \backslash\left(S^{2} \cup C\right)\right)$, where H_{α} and H_{β} are the two components of $S^{3} \backslash \Sigma$. Hence, $H_{\alpha} \backslash C$ and $H_{\beta} \backslash C$ are handlebodies, as are H_{α} and H_{β}.

The proof of Lemma 3.1 implies that (Σ, α, β) was a Heegaard diagram for S^{3} when α and β were first defined. The fact that each removed disk of $\hat{\alpha}$ and of $\hat{\beta}$ was parallel to Σ implies that (Σ, α, β) is a Heegaard diagram for S^{3} in the finished construction as well.

Figure 8. Up to reversing red and blue, these are the possible configurations of the Turaev surface Σ between two adjacent crossings, shown at the stage of the construction in which the boundary of each state disk lies in $\alpha \cup \beta$.

Lemma 3.2 (DFKLS [8]). Any connected link diagram D on $S^{2} \subset S^{3}$ forms an alternating link diagram on its Turaev surface Σ.

Proof. Recall from $\S 2.3$ that D forms a link diagram on Σ. On S^{2}, each arc κ of $K \backslash C$ joins either two over-passes, two under-passes, or one of each. Figure 8 shows the three possible configurations of Σ near κ, prior to the removal of attaching circles, up to reversal of α and β. In all three cases, the two arcs of $K \cap \partial C$ incident to κ lie to opposite sides of Σ, so that one is an over-pass on Σ and the other is an under-pass on Σ.

One defines the Turaev genus $g_{T}(K)$ of a link $K \subset S^{3}$ to be the minimum genus among the Turaev surfaces of all diagrams of K on S^{2}. The resulting invariant, surveyed in [4], measures how far a link is from being alternating. See also [2]. In particular, Turaev genus provides the crux of Turaev's proof of Tait's conjecture:
Corollary 3.3 (Turaev [19], DFKLS [8]). A link K is alternating if and only if $g_{T}(K)=0$.

Figure 9. Given a diagram $(\Sigma, \alpha, \beta, D)$ with the properties in Theorems 3.4, 4.1, or 4.2 , removing the disks of Σ_{\varnothing} from Σ and gluing in the disks of $\hat{\alpha}$ and $\hat{\beta}$ produces a sphere on which D forms a link diagram. Near each point of $\alpha \cap \beta$, this surgery appears as shown, up to mirroring.

Theorem 3.4. From the Turaev surface Σ of a connected link diagram D on $S^{2} \subset S^{3}$, the construction in this section produces a diagram $(\Sigma, \alpha, \beta, D)$ with the following properties:

- (Σ, α, β) is a Heegaard diagram for S^{3}, with $\alpha \pitchfork \beta$.
- D is an alternating link diagram on Σ which cuts Σ into disks, with $D \pitchfork \alpha$ and $D \pitchfork \beta$.
- $D \cap \alpha=D \cap \beta=\alpha \cap \beta$, none of these points being crossings of D.
- There is a checkerboard partition $\Sigma \backslash(\alpha \cup \beta)=\Sigma_{\varnothing} \cup \Sigma_{K}$, in which Σ_{\varnothing} consists of disks disjoint from D, in which D cuts Σ_{K} into disks each of whose boundary contains at least one crossing point and at most two points of $\alpha \cap \beta$, and in which $2 g(\Sigma)+\left|\Sigma_{\varnothing}\right|=|\alpha|+|\beta|$.

Proof. We have already established the first three properties. Let Σ_{\varnothing} consist of the interiors of all adjusted state disks whose boundary contains at least one point of $\alpha \cap \beta$, i.e. those whose boundary still lies in $\alpha \cup \beta$ after the removal of the attaching circles disjoint from D. These state disks are disjoint from D and constitute a checkerboard class of $\Sigma \backslash(\alpha \cup \beta)$. See Figure 9.

Let Σ_{K} denote the other checkerboard class of $\Sigma \backslash(\alpha \cup \beta)$. Each component of $\Sigma_{K} \backslash D$ is also a component of $(\Sigma \backslash D) \backslash(\alpha \cup \beta)$, and each attaching circle intersects D; therefore, D cuts Σ_{K} into disks. Further, each arc of $K \backslash C$ contains at most one point of $\alpha \cap \beta$, and each arc of $(\alpha \cup \beta) \backslash D$ is parallel through Σ to D; consequently, the boundary of each disk of $\Sigma_{K} \backslash D$ contains at least one crossing point and at most one arc of $(\alpha \cup \beta) \backslash D$, hence at most two points of $\alpha \cap \beta$.

Finally, to see that $2 g(\Sigma)+\left|\Sigma_{\varnothing}\right|=|\alpha|+|\beta|$, consider Euler characteristic in light of the observation that removing the disks of Σ_{\varnothing} from Σ and gluing in the disks of $\hat{\alpha}$ and $\hat{\beta}$ yields a sphere isotopic to S^{2}. Near each point of $\alpha \cap \beta$, this surgery appears as in Figure 9 .

4. Correspondence between Heegaard diagrams and Turaev surfaces

4.1. Main correspondence. From the Turaev surface of a connected link diagram on $S^{2} \subset S^{3}$, we have constructed a link-adapted Heegaard diagram $(\Sigma, \alpha, \beta, D)$ with several properties. We will now see that any such diagram corresponds to the Turaev surface of some link diagram on the sphere.

Theorem 4.1. There is a 1-to-1 correspondence between Turaev surfaces of connected link diagrams on $S^{2} \subset S^{3}$ and diagrams $(\Sigma, \alpha, \beta, D)$ with the following properties:

- (Σ, α, β) is a Heegaard diagram for S^{3}, with $\alpha \pitchfork \beta$.
- D is an alternating link diagram on Σ which cuts Σ into disks, with $D \pitchfork \alpha$ and $D \pitchfork \beta$.
- $D \cap \alpha=D \cap \beta=\alpha \cap \beta$, none of these points being crossings of D.
- There is a checkerboard partition $\Sigma \backslash(\alpha \cup \beta)=\Sigma_{\varnothing} \cup \Sigma_{K}$, in which Σ_{\varnothing} consists of disks disjoint from D, in which D cuts Σ_{K} into disks each of whose boundary contains at least one crossing point and at most two points of $\alpha \cap \beta$, and in which $2 g(\Sigma)+\left|\Sigma_{\varnothing}\right|=|\alpha|+|\beta|$.

Proof. Theorem 3.4 provides one direction of this correspondence. It remains to prove the converse.

Assume that the diagram $(\Sigma, \alpha, \beta, D)$ is as described. Remove the disks of Σ_{\varnothing} from Σ and glue in the disks of $\hat{\alpha}$ and $\hat{\beta}$ to obtain a closed surface. (See Figure 9.) Because D is connected and $2 g(\Sigma)+\left|\Sigma_{\varnothing}\right|=|\alpha|+|\beta|$, this surface is a sphere - call it S^{2}. Moreover, D, being disjoint from Σ_{\varnothing} and having its crossing points in Σ_{K}, forms a link diagram on S^{2}. We claim, up to isotopy, that Σ is the Turaev surface of the link diagram D on S^{2}.

The property that D cuts Σ_{K} into disks implies that D intersects each attaching circle, cutting α and β into arcs. Because the boundary of each disk of $\Sigma_{K} \backslash D$ contains at most two points of $\alpha \cap \beta$, each of these arcs is parallel through one of these disks to D. The property that the boundary of each disk of $\Sigma_{K} \backslash D$ contains at least one crossing point then implies that there is at most one point of $\alpha \cap \beta$ on D between any two adjacent crossings.

The link diagram D cuts S^{2} into disks admitting a checkerboard partition. Because S^{2} appears near each point of $\alpha \cap \beta$ as in Figure 9 , one of the checkerboard classes contains $\hat{\alpha}$, and the other contains $\hat{\beta}$. Yet, some disks of $S^{2} \backslash D$ may be entirely contained in Σ_{K}, hence disjoint from α and β. Construct an attaching circle in the interior of each such disk, and incorporate it into either α or β according to the checkerboard pattern, letting α and β retain their names. Span each new circle of α by a new disk of $\hat{\alpha}$ on the same side of Σ as the other disks of $\hat{\alpha}$, and similarly span each new circle of β by a new disk of $\hat{\beta}$.

The components of $\Sigma \backslash(\alpha \cup \beta)$ still admit a checkerboard partition, $\Sigma \backslash(\alpha \cup \beta)=\Sigma_{\varnothing} \cup \Sigma_{K}$, in which Σ_{\varnothing} consists of disks disjoint from D, though D no longer need cut Σ_{K} into disks. The preceding modification of $\alpha, \beta, \hat{\alpha}$, and $\hat{\beta}$ corresponds to an isotopy of S^{2}, which again may be obtained from Σ by removing the disks of Σ_{\varnothing} and gluing in the disks of $\hat{\alpha}$ and $\hat{\beta}$.

Let $K \subset(\Sigma \backslash C) \cup \partial C$ be a crossing ball configuration corresponding to the link diagram D on Σ, with $C \cap \alpha=\varnothing=C \cap \beta$. Note that $K \subset\left(S^{2} \backslash C\right) \cup \partial C$ is also a crossing ball configuration corresponding to the link diagram D on S^{2}.

Currently Σ and S^{2} are non-transverse, even away from C, as both Σ and S^{2} contain Σ_{K}. Rectify this by perturbing S^{2} as follows, fixing $\Sigma, \alpha, \beta, \hat{\alpha}, \hat{\beta}, D, \Sigma_{\varnothing}, \Sigma_{K}, C$, and K in the process. (We initially constructed S^{2} by gluing together $\hat{\alpha}, \hat{\beta}$, and Σ_{K}, but now we are pushing S^{2} off of them.) Each disk of $S^{2} \backslash(C \cup K)$ currently contains a disk of either $\hat{\alpha}$ or $\hat{\beta}$; push the disk of $S^{2} \backslash(C \cup K)$ off Σ in the corresponding direction, while fixing its boundary, which lies in $\Sigma \cap(K \cup \partial C)$. This isotopy makes S^{2} disjoint from α and β, except at the points of $\alpha \cap \beta$. In fact, this isotopy gives $S^{2} \cap \Sigma=S^{2} \cap(C \cup K)=\Sigma \cap(C \cup K)$, as was the case in $\S 2.3$. (Recall Figure 6.)

Because D is alternating on Σ, the disks of $\Sigma \backslash(C \cup K)$ admit a checkerboard partition - the boundaries of the disks in the two classes are the all-A and all-B state circles for the link diagram D on Σ. Further, each of these state circles on Σ encloses precisely one disk of Σ_{\varnothing}. Color green each disk of Σ_{\varnothing} enclosed by a circle from the all-A state, and color brown each disk of Σ_{\varnothing} enclosed by a circle from the all-B state. Near each arc of $K \backslash C, \Sigma$ now appears as in Figure 8 (possibly with red and blue reversed). As a final adjustment, slightly perturb the green and brown disks so that they become disjoint from α, β, and D.

Removing the green and brown disks from Σ leaves a cobordism between their boundaries. Cutting this cobordism along $S^{2} \cap(K \cup \partial C)$ yields the disks of $S^{2} \backslash C$, together with annuli lying to either side of S^{2}, through which the boundaries of the green and brown disks are respectively parallel to the all-A and all-B states of the link diagram D on S^{2}. As claimed, Σ is therefore the Turaev surface of the link diagram D on S^{2}.
4.2. Generalization to arbitrary dual states. As noted at the end of $\S 2.3$, the construction of the Turaev surface from the all-A and all-B states of a link diagram D on S^{2} generalizes to any pair of states of D which are dual to one another, having opposite smoothings at each crossing. The correspondence developed in $\S 3$ and $\S 4.1$ between linkadapted Heegaard diagrams $(\Sigma, \alpha, \beta, D)$ and Turaev surfaces extends to these generalized Turaev surfaces, the only difference being that D no longer need alternate on Σ.

Theorem 4.2. There is a 1-to-1 correspondence between generalized Turaev surfaces of connected link diagrams on $S^{2} \subset S^{3}$, and diagrams $(\Sigma, \alpha, \beta, D)$ with the following properties:

- (Σ, α, β) is a Heegaard diagram for S^{3}, with $\alpha \pitchfork \beta$.
- D is a link diagram on Σ which cuts Σ into disks, with $D \pitchfork \alpha$ and $D \pitchfork \beta$.
- $D \cap \alpha=D \cap \beta=\alpha \cap \beta$, none of these points being crossings of D.
- There is a checkerboard partition $\Sigma \backslash(\alpha \cup \beta)=\Sigma_{\varnothing} \cup \Sigma_{K}$, in which Σ_{\varnothing} consists of disks disjoint from D, in which D cuts Σ_{K} into disks each of whose boundary contains at least one crossing point and at most two points of $\alpha \cap \beta$, and in which $2 g(\Sigma)+\left|\Sigma_{\varnothing}\right|=|\alpha|+|\beta|$.

Proof. Given the generalized Turaev surface Σ for dual states s and \tilde{s} of a connected link diagram D on $S^{2} \subset S^{3}$, reverse some collection of the crossings of D to obtain a new link diagram D^{\prime} for which s and \tilde{s} are the all-A and all-B states. Construct the corresponding diagram $\left(\Sigma, \alpha, \beta, D^{\prime}\right)$ as in $\S 3$. Finally, switch back the reversed crossings of D^{\prime} to obtain the required diagram $(\Sigma, \alpha, \beta, D)$.

Conversely, suppose that $(\Sigma, \alpha, \beta, D)$ is as described. The proof of Theorem 4.1 extends almost verbatim. The only concern, as D need not alternate on Σ, is whether or not the disks of $\Sigma \backslash D$ admit a checkerboard partition; it suffices to show that they do.

The condition that $D \cap \Sigma_{\varnothing}=\varnothing$ implies that one endpoint of each arc of $(\alpha \cup \beta) \backslash D$ appears as in Figure 9, and the other appears as the mirror image. Thus, each attaching circle intersects D in an even number of points. The fact that the attaching circles generate $H_{1}(\Sigma)$ then implies that any simple closed curve on Σ in general position with respect to D must intersect D in an even number of points, and hence that the disks of $\Sigma \backslash D$ admit a checkerboard partition.
4.3. Conclusion. Up to isotopy, each link diagram on $S^{2} \subset S^{3}$ has a unique Turaev surface. Theorem 4.1 thus establishes - via Turaev surfaces - a 1-to-1 correspondence between link diagrams on $S^{2} \subset S^{3}$ and alternating, link-adapted Heegaard diagrams (Σ, α, β, D).

Similarly, Theorem 4.2 establishes - via generalized Turaev surfaces constructed from dual states - a 2-to-1 correspondence between states of link diagrams on $S^{2} \subset S^{3}$ and link-adapted Heegaard diagrams $(\Sigma, \alpha, \beta, D)$ for S^{3} in which D need not alternate on Σ.

5. Appendix

Let (Σ, α, β) be a Heegaard diagram for S^{3}, and let $\gamma \subset \Sigma$ be an oriented, simple closed curve. The following construction yields an expression for $[\gamma] \in H_{1}(\Sigma)$ in terms of the homology classes of the oriented attaching circles, proving that the latter generate $H_{1}(\Sigma)$.

Because $H_{1}\left(S^{3}\right)$ is trivial, γ bounds a Seifert surface $S \subset S^{3}$, on which γ induces an orientation. Fixing γ, isotope S so that its interior intersects Σ transversally - along simple closed curves and along arcs with endpoints on γ.

Given a component $S_{\alpha, i}$ of $S \cap H_{\alpha}$, one may obtain an expression for $\left[\partial S_{\alpha, i}\right] \in H_{1}(\Sigma)$ in terms of the $\left[\alpha_{j}\right]$ by surgering $S_{\alpha, i}$ along successive outermost disks of $\hat{\alpha} \backslash S_{\alpha, i}$ until $\partial S_{\alpha, i}$ lies entirely in the punctured sphere $\Sigma \backslash \alpha$, at which point the expression is evident. An analogous procedure expresses the homology class of each component of $S \cap H_{\beta}$ in terms of the $\left[\beta_{j}\right]$. Summing over all components of $S \backslash \Sigma$ gives the desired expression for $[\gamma] \in H_{1}(\Sigma)$:

$$
\begin{gathered}
{[\gamma]=[\partial S]=\sum_{\substack{\text { Components } \\
S_{\alpha, i} \text { of } S \cap H_{\alpha}}}\left[\partial S_{\alpha, i}\right]+\sum_{\substack{\text { Components } \\
S_{\beta, i} \text { of } S \cap H_{\beta}}}\left[\partial S_{\beta, i}\right]=\sum_{i, j} a_{i, j}\left[\alpha_{j}\right]+\sum_{i, j} b_{i, j}\left[\beta_{j}\right]} \\
\end{gathered}
$$

Conversely, if (Σ, α, β) is a Heegaard diagram for a 3 -manifold M with nontrivial first homology, then the oriented attaching circles do not generate $H_{1}(\Sigma)$, since inclusion $\Sigma \hookrightarrow M$ induces a surjective map $H_{1}(\Sigma) \rightarrow H_{1}(M)$, whose kernel contains all the $\left[\alpha_{j}\right]$ and $\left[\beta_{j}\right]$.

References

[1] Y. Bae, H.R. Morton, The spread and extreme terms of Jones polynomials, J. Knot Theory Ramifications 12 (2003), 359-373.
[2] C.L.J. Balm, Topics in knot theory: On generalized crossing changes and the additivity of the Turaev genus, Thesis (Ph.D.) - Michigan State University (2013).
[3] A. Champanerkar, I. Kofman, Spanning trees and Khovanov homology, Proc. Amer. Math. Soc. 137 (2009), no. 6, 2157-2167.
[4] A. Champanerkar, I. Kofman, A survey on the Turaev genus of knots, arXiv:1406.1945, preprint.
[5] A. Champanerkar, I. Kofman, N. Stoltzfus, Graphs on surfaces and Khovanov homology, Algebr. and Geom. Topol. 7 (2007), 1531-1540.
[6] A. Champanerkar, I. Kofman, N. Stoltzfus, Quasi-tree expansion for the Bollobás-Riordan-Tutte polynomial, Bull. Lond. Math. Soc. 43 (2011), no. 5, 972-984.
[7] P.R. Cromwell, Homogeneous links, J. London Math. Soc. (2) 39 (1989), no. 3, 535-552.
[8] O.T. Dasbach, D. Futer, E. Kalfagianni, X.-S. Lin, N. Stoltzfus, The Jones polynomial and graphs on surfaces, J. Combin. Theory Ser. B 98 (2008), no. 2, 384-399.
[9] O.T. Dasbach, A. Lowrance, Turaev genus, knot signature, and the knot homology concordance invariants, Proc. Amer. Math. Soc. 139 (2011), no. 7, 2631-2645.
[10] O.T. Dasbach, A. Lowrance, A Turaev surface approach to Khovanov homology, arXiv:1107.2344v2.
[11] V.F.R. Jones, A polynomial invariant for knots via Von Neumann algebras, Bull. Amer. math. Soc. (N.S.) 12 (1985), no. 1, 103-111.
[12] L.H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395-407.
[13] W.B.R. Lickorish and M.B. Thistlethwaite, Some links with non-trivial polynomials and their crossing numbers, Comment. Math. Helv. 63 (1988), no. 4, 527-539.
[14] A. Lowrance, On knot Floer width and Turaev genus, Algebr. Geom. Topol. 8 (2008), no. 2, 1141-1162.
[15] W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), no. 1, 37-44.
[16] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187-194.
[17] P.G. Tait, On Knots I, II, and III, Scientific papers 1 (1898), 273-347.
[18] M.B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297-309.
[19] V.G. Turaev, A simple proof of the Murasugi and Kauffman theorems on alternating links, Enseign. Math. (2) 33 (1987), no. 3-4, 203-225.
[20] S. Wehrli, A spanning tree model for Khovanov homology, J. Knot Theory Ramifications 17 (2008), no. 12, 1561-1574.

Department of Mathematics, University of Iowa, Iowa City, IA 52242-1419, USA
E-mail address: cody-armond@uiowa.edu
Department of Mathematics, University of Iowa, Iowa City, IA 52242-1419, USA
E-mail address: nathan-druivenga@uiowa.edu
Department of Mathematics, University of Iowa, Iowa City, IA 52242-1419, USA
E-mail address: thomas-kindred@uiowa.edu

