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Please picture, in your mind’s eye, a surface F with nonempty boundary ∂F = K embedded in
3-space R3. If F and K are both compact and connected, then K is embedded circle, called a knot,
and F is said to span K. (If K is disconnected, it is an embedded disjoint union of circles, called
a link; for simplicity I will not mention links again until §5.) I choose to study knots, and to do so
chiefly via spanning surfaces, in part because luck and privilege have allowed me the opportunity,
and in part because I find these objects to be radically accessible on a human level and far-reaching
in their mathematical significance. I describe some of this significance in §5.

In general, math research aims to discover and prove new mathematical facts; yet, proving that
something is true does not always convey why it is true; to justify is not necessarily to illuminate. My
research, however, emphasizes understanding above knowledge. This theme will recur throughout
my statement, which is organized as follows:

• §1 sketches the way that linear algebra arises in my research;
• §2 describes several related problems that nicely capture the spirit of my research; one of

these is a 30 (or 125) year old problem that I recently solved;
• §3 summarizes the results of my 14 completed papers;
• §4 discusses the two Master’s thesis projects that I have co-advised at Wake Forest together

with other possible topics for future undergraduate research; and
• §5 motivates knot theory vis a vis mathematics more broadly.

1. The starring role of linear algebra in my research

Every knot in 3-space has spanning surfaces, lots of them actually. Given a knot K ⊂ R3, take
a generic projection of K to R2, and record over-under information at the self-intersections, or
crossings, to get a diagram D of K. It is always possible to color the regions of R2 −D light and
dark in “checkerboard fashion,” as shown left in Figure 1, so that like-shaded regions abut only
at crossings. If we do this so that the unbounded region is light, then there is a spanning surface
B for K that lies almost entirely in the dark regions of R2 − D, except near crossings, where it
twists; B is called a checkerboard surface. If we instead view K ⊂ S3 (where S3 − {point} is
R3) and project to S2, then there are two checkerboard surfaces B and W , one of which lies almost
entirely in the dark regions of S2 −D, the other in the light ones. See Figure 1, center and right,
which show the same pair of checkerboard surfaces. Different diagrams of the same knot usually
give different checkerboard surfaces.

There is a symmetric bilinear pairing 〈·, ·, 〉 : H1(F )×H1(F )→ Z on the first homology group of
any spanning surface F ,1 first described by Gordon and Litherland [8].2 It is easiest to describe when

1H1(F ) is a free abelian group whose elements are represented by (disjoint unions of) oriented circles embedded
in F ; its rank, denoted β1(F ), counts “how many holes” are in F

2This is my all-time favorite paper, partly because its content, but especially because they prove their results
twice: first, they take a sophisticated approach, involving double-branched covers of the 4-ball (in some sense, this
is the best way to understand the deep significance of their work), and then, restarting from scratch, they take a
down-to-earth approach that uses only elementary tools and thus makes this profound paper remarkably accessible.

Figure 1. Checkerboard surfaces of knot diagrams
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Figure 2. Goeritz matrices for two checkerboard surfaces

F is the dark checkerboard surface of a diagram D ⊂ R2: then H1(F ) has a basis A = (a1, . . . , an)
represented by circles αi, each of which goes counterclockwise around exactly one bounded light
region Ri, and 〈·, ·〉 is represented, with respect to A, by a Goeritz matrix G = (gij),

3 where each
gii counts (with sign) the number of crossings incident to Ri and each gij counts (with opposite
sign) the number of crossings incident to both Ri and Rj . Figure 2 shows two examples. Here are
four key features of Gordon-Litherland pairings 〈·, ·〉 and Goeritz matrices G ∈ Zn×n:

• If α ⊂ F is a circle representing a homology class a, then the self-pairing 〈a, a〉 equals (half
of) the framing of α in F , which measures how much F “twists” along α.
• Since G ∈ Zn×n represents a bilinear mapping, the change-of-basis formula is G→ PGP T ,

where P ∈ Zn×n is invertible (i.e. “unimodular”).

• “Attaching a crosscap” as in Figure 3 changes a Goeritz matrix like this: G′ →
[
G 0
0 ±1

]
.

• |det(G)| depends only on K, not on one’s choice of F or of basis for H1(F ).4

Not only does every knot K have spanning surfaces, it has some, called Seifert surfaces, that are
orientable (i.e. 2-sided). Seifert’s algorithm is a way of constructing such a surface using a diagram
D of K; Figure 4 shows an example. Any Seifert surface F is homeomorphic to a connect sum of
tori with an open disk removed: F ∼=

(
#n
i=1S

1 × S1
)
− (open disk); we call n the genus of F and

write g(F ) = n. The knot genus g(K) is the minimum of g(F ) over all Seifert surfaces F for K.
Any Seifert surface F comes with a bilinear pairing H1(F )×H1(F )→ Z called the Seifert pairing

and is represented by a Seifert matrix A. This pairing carries all the information of the Gordon-
Litherland pairing, as A+AT is a Goeritz matrix for F , but it has something extra: the polynomial

3Given x =
∑n

i=1 xiai and y =
∑n

i=1 yiai in H1(F ) and denoting ~x =

x1...
xn

 and ~y =

y1...
yn

, we have 〈x, y〉 = ~xTG~y.

4The same is also true of the signature of G, albeit with a correction term.

Figure 3. Attaching a crosscap to a spanning surface F is this local operation near ∂F .

Figure 4. Seifert’s algorithm obtains an orientable spanning surface from any knot diagram.
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Figure 5. Four knot diagrams, three of them alternating, two with nugatory cross-
ings (highlighted)

∆K(t) = det(A− tAT ), called the Alexander polynomial of F , depends (up to degree shift) only
on K. Moreover, the degree span or breadth bth(∆K(t)) depends only on K and provides a lower
bound for g(K): bth(∆K(t)) ≤ g(K). More on this polynomial toward the end of §2.

2. Classical knowledge, new understanding

Much of my research concerns alternating knots: a diagram D ⊂ S2 of a knot K ⊂ S3 is
alternating if its crossings alternate between over and under, like the last three diagrams in Figure
5, and K is alternating if it has an alternating diagram; c(D) denotes the number of crossings
in D, and c(K) is the smallest number of crossings among all diagrams of K. (We regard two
knots as equivalent if they are related by a continuous deformation between their embeddings,
called an isotopy.) In general, it is hard to determine the crossing number of an arbitrary knot, or
to determine whether or not a given diagram minimizes crossings, but certainly no diagram that
minimizes crossings can have a “nugatory” crossing, like the two highlighted in Figure 5. A diagram
without nugatory crossings is called reduced, whether or not it minimizes crossings. Interestingly,
if a knot K has a diagram D that is reduced and alternating, then D always minimizes crossings:
c(D) = c(K). Although this fact was first observed empirically by P.G. Tait in 1898 [28], it, and
two related conjectures, remained unproven for almost a century:

Tait’s conjectures. Given a knot K ⊂ S3 and two prime5 alternating diagrams D and D′ of K:

(1) D and D′ have the same number of crossings, which is minimal: c(D) = c(D′) = c(K).
(2) D and D′ have the same writhe:6w(D) = w(D′). 7

(3) D and D′ are related by a sequence of flype moves: see Figure 6.

Tait’s conjectures remained open until the discovery of the Jones polynomial in the mid-1980’s
[13],8 which almost immediately led to three independent proofs of Tait’s first conjecture Jones
polynomial of a knot K: the degree span, or breadth, of VK(t), denoted bth(VK(t)), always provides

5A knot diagram D is prime if D has at least two crossings and, for every circle γ ⊂ S2 that intersects D generically
in two points, all crossings of D lie on the same side of γ; every prime diagram is reduced.

6Orient D arbitrarily. Then every crossing looks like or . The writhe of D is w(D) = | | − | |, where bars
count components. It is independent of the orientation on D.

7Tait’s first two conjectures are true even if D and D′ are not prime, as long as they are reduced.
8Jones described a new way of assigning a polynomial VK(t) ∈ Z[t, t−1] to any knot; different pictures of the same

knot always yield the same polynomial, but different knots “usually” have different Jones polynomials.

T1 T2 T1
T2

Figure 6. Flype moves
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Figure 7. A flype move on a knot diagram corresponds to a re-plumbing move on
one of its checkerboard surfaces (here, the black surface) and an isotopy of the other
surface (here, the white surface).

a lower bound for crossing number, c(K) ≤ bth(VK(t)), and any reduced alternating diagram D of
K satisfies c(D) = bth(VK(t));9 by definition, c(K) ≤ c(D); therefore, c(D) = c(K). qed

Within a decade, the Jones polynomial had led to proofs of all three of Tait’s conjectures. Yet,
these proofs were only somewhat satisfying: why did they work? What was the Jones polynomial
really measuring? In their 1993 proof of Tait’s flyping conjecture, Menasco and Thistlethwaite
spotlighted this remaining gap in our understanding: “the question remains open as to whether
there exist purely geometric proofs of this and other results that have been obtained with the help
of new polynomial invariants.” The aim is not just to know, but to understand. I love that the
mathematical community values this.

The first partial answer came in 2017 from Greene in a paper where he answered another long-
standing question, this one from Ralph Fox: “What [geometrically] is an alternating knot?” First,
Greene observed that, if B and W are the checkerboard surfaces from an alternating knot diagram
and GB and GW are their Goeritz matrices, then GB is positive-definite and GW is negative-
definite, or vice-versa: “B and W are definite and of opposite signs.”10 Second, Greene proved that
alternating knots are the only ones with a two such surfaces. In fact, he proved that if F+ and
F− are definite spanning surfaces of opposite signs for the same knot K, then K has an alternat-
ing diagram whose checkerboard surfaces are “the same as” (are isotopic to) F+ and F−. Greene
was then able to translate Tait’s conjectures into non-diagrammatic statements and give the first
“purely geometric” proofs of Tait’s second conjecture and part of his first: any reduced alternating
diagrams D and D′ of the same knot satisfy c(D) = c(D′) and w(D) = w(D′) [9].11

Recently, I gave the first purely geometric proof of Tait’s “flyping” conjecture. The first key
insight (see Figure 7) was that flyping a diagram D changes one of its checkerboard surfaces by
isotopy and the other, F , by a geometric operation I call re-plumbing, which replaces a disk U ⊂ F
(shown green, left) with another disk V (shown half yellow and half blue, center) that is disjoint
from F except along its boundary ∂V = ∂U . Figure 8, left, shows another example of re-plumbing.
This insight translates Tait’s diagrammatic conjecture to a geometric statement about spanning
surfaces. Then the real work begins. I would love to tell you that story; please ask me about it
some time.

Around the time I proved Tait’s flyping conjecture, Boden-Karimi extended Greene’s insights
about definite surfaces in S3 to the context of thickened surfaces, like S1 × S1 × [−1, 1] [1]. I

9The converse is also (nearly) true: any prime diagram D of any knot K satisfies c(D) = bth(VK(t)) if and only
if D is alternating.

10GB ∈ Zn×n is positive-definite iff ~xTGB~x > 0 for every nonzero ~x ∈ Zn.
11It remains an open problem to give a purely geometric proof of Tait’s full first conjecture, since Greene’s insights

are less useful regarding the possibilities of non-alternating diagrams of an alternating knot. I have some ideas....

= ∗

Figure 8. Left: A replumbing move. Right: a de-plumbing.
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Figure 9. An spanning surface is geometrically essential if it admits none of these
simplifying moves.

used their innovations to extend Tait’s flyping conjecture to that context. Many of the arguments
adapted directly, but a few technical points required special attention, several of which led to
fundamental revelations about virtual knots, which correspond to knots in thickened surfaces. See
§3.

Another recent project of mine regards a different seminal result in knot theory that, like Tait’s
flyping conjecture, was first proven in the Annals. Again, I wanted to understand why the result
was true. Here is the background.

In general, a Seifert surface resulting from Seifert’s algorithm need not have minimal genus, but
when Seifert’s algorithm is applied to an alternating diagram, the resulting surface F always has
minimal genus: g(F ) = g(K). Gabai gave a short, elegant, purely geometric, proof of this fact
in 1986 [6]. The original proofs, however, due independently to Crowell and Murasugi in 1958-59
[3, 22], had something extra, regarding the Alexander polynomial ∆K(t). Recall from §2 that every
knot K satisfies bth(∆K(t)) ≤ g(K). Crowell and Murasugi proved that when F is obtained via
Seifert’s algorithm from an alternating diagram, we have g(F ) = 1

2bth(∆K(t)). Since g(K) ≤ g(F )
by definition, it follows that g(F ) = g(K) = bth(∆K(t)) ≤ g(K). When I taught a topics course at
UNL in 2021, I wanted to understand, and then share, why this was true. This led me to discover
a new, short, extremely satisfying proof of the Crowell-Murasugi theorem [K8]. It involves all
my favorite characters: checkerboard surfaces, plumbing operations, and linear algebra. Here is a
sketch:

First, to prove that g(F ) = g(K) = 1
2bth(∆K(t)), I showed that it suffices to prove that the

Seifert matrix A from F is invertible. Second, I showed that this is true if F happens to be a
checkerboard surface (from an alternating diagram). Third, the surfaces obtained via Seifert’s
algorithm from alternating diagrams are always plumbings of alternating checkerboard surfaces,
so it suffices to prove that if F is a plumbing of surfaces F1 and F2 which have invertible Seifert
matrices A1 and A2, then F also has an invertible Seifert matrix. Finally, I showed that, indeed,

F has a Seifert matrix of the form A =
[
A1 0
B A2

]
; applying the pigeonhole principle to the formula

det[aij ]
n
i=1 =

∑
σ∈Sn

∏n
i=1 aiσ(i) thus confirms that det(A) = det(A1) · det(A2) 6= 0.

3. Papers

Here are synopses of my fourteen completed papers, in reverse chronological order:

3.1. The essence of a spanning surface [K14]. A spanning surface F for a knot K ⊂ S3

is geometrically essential if it admits neither of the simplifying moves shown in Figure 9, and
is π1-essential if F is neither nor and the inclusion map of the interior of F into the
knot complement S3 −K induces an injective map on fundamental groups. Essential surfaces are
fundamental to our understanding of the topology and geometry of 3-manifolds, but the two notions
of “essential” were rarely mentioned in the 20th century, largely because they are equivalent for
orientable spanning surfaces. For example, Gabai proved in 1983 that any plumbing of essential
Seifert surfaces is essential, no qualifier needed [5]. In 2011, however, when Ozawa extended Gabai’s
result to all spanning surfaces, regardless of orientability, he needed to specify that his surfaces were
π1-essential [24]. The question remained open whether plumbing likewise respects the property of
being geometrically essential. My first main result answers this question in the negative via the
example in Figure 10. The only hard part of the proof is showing that the surface on the left
is indeed geometrically essential; I develop a new technique to do this. The second main result
extends Ozawa’s result in another direction. I introduce a quantity that measures “how essential”
a spanning surface F is. I call it the essence of F , denoted ess(F ); F is π1-essential if and only if
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plumbing

isotopy

Figure 10. Plumbing does not always respect the property of being geometrically essential.

ess(F ) ≥ 2. I extend Ozawa’s theorem by proving that if F is a plumbing of π1-essential surfaces
F1 and F2, then ess(F ) ≥ mini=1,2 ess(Fi).

3.2. The virtual flyping theorem [K13]. As described in §2, I extended Tait’s flyping conjecture
to knots in thickened surfaces. In the process, I encountered some interesting subtleties, leading to
three spin-off projects.

3.3. What is a virtual link diagram? [K12]. Under a long-known correspondence, any knot
K in a thickened surface Σ × [−1, 1] corresponds to a unique virtual knot [15, 14, 2]. Figure 11
shows the rough idea:12 take a diagram D of K on Σ, embed Σ in S3, and project to S2 to get
a virtual knot diagram V . Each crossing from D gives a “classical” crossing in V , but there are
often other self-intersections in V , called virtual crossings, which are instead marked with a circle.
Presumably, for this correspondence to make sense, different embeddings of Σ must all give the
same virtual knot.13 Yet, I found simple examples where this did not seem to be the case: the
three virtual diagrams shown bottom-right in Figure 11 all represent different virtual links. What
was I misunderstanding?

It turns out that there was a hidden subtlety: one must embed Σ in S3 so that all crossings of D
lie on its front of Σ. The early papers about virtual knots had not needed to mention this explicitly,
because they never went straight from a diagram D ⊂ Σ to a virtual diagram V ; instead, they
used an intermediate step, called an abstract link diagram. Everything they did was correct, but
this subtlety remained hidden. And so it remained, to my knowledge, for 20 years (which featured
roughly 300 published papers about virtual knots and links), until now.

12I am suppressing a detail here about “stable equivalence.”
13A virtual knot is defined to be an equivalence class of virtual diagrams; the equivalence relation is generated by

seven diagrammatic moves.

D

V

or

D′ D′′D

Figure 11. Left: A knot diagram D on a torus and a corresponding virtual diagram
V . Center: To recover D from V , change each virtual crossing in V like this and
(abstractly) cap off the resulting surface. Right: the caveat.
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Figure 12. Menasco’s crossing ball structures

Figure 13. How to construct infinitely many distinct connect sums of the virtual
knots shown left and right

3.4. End-essential spanning surfaces for links in thickened surfaces [K11]. If D ⊂ S2 is a
reduced, alternating diagram of a knot K ⊂ S3, then one can use D to embed K near S2: near each
crossing of D, insert a tiny bubble C and push the two strands inside C to opposite hemispheres
of C according to the over-under information. See Figure 12. Then, given a spanning surface F
for K, if F is (geometrically and π1) essential, one can continuously deform F (while fixing its
boundary) so that it intersects “nicely” with the projection sphere S2 and all the inserted bubbles
C. In particular, one can insist that S2 and these bubbles cut F into disks; if not, then, because it
is essential, F admits a certain simplifying move.

Once F is set up this way, all sorts of combinatorial arguments are possible. This technique,
introduced by Menasco [17], is vital to several of my papers [K1, K4, K9, K13, K14]. In the context
of a thickened surface, however, being essential is not quite enough to insist that F gets cut into
disks in this way. In this paper, I introduced a slightly strengthened notion of essential surfaces,
adapted to this context, and proved that if F is “end-essential,” then the projection surface and
crossing bubbles always cut it into disks, as needed. I also proved that, just as both checkerboard
surfaces from any reduced alternating diagram on S2 are essential in S3, both checkerboard surfaces
from any reduced alternating on a closed surface Σ diagram are end-essential in Σ× I.

3.5. Primeness of alternating virtual links [K10]. A knot K ⊂ S3 or knot diagram D ⊂ S2

is prime if it cannot be written as a trivial connect sum. For virtual knots and their diagrams,
however, things are somewhat more complicated. In fact, I realized that there were two common,
but different notions of primeness for virtual knots, and likewise for their diagrams. In addition
to articulating this distinction, I proved that, given an alternating virtual diagram, one can tell
by inspection whether or not the link it represents is prime in either sense. This distinction
is particularly important for the virtual flyping theorem which holds for alternating virtual link
diagrams that are “weakly prime”, whether or not they are “prime” (in the stronger sense). As a
corollary, it follows that, given any two non-classical alternating virtual knots, there are infinitely
many distinct ways to take their connect sum; see Figure 13.

3.6. A geometric proof of the flyping theorem [K9]. As described in §2, I gave the first purely
geometric proof of Tait’s flyping conjecture, resolving an open question of 30 (or 125) years [18, 20].

3.7. A simple proof of the Crowell-Murasugi theorem [K8]. As described in §2, I gave a
short, elementary proof of the theorem, due to Crowell-Murasugi, that any surface F obtained
by applying Seifert’s algorithm to an alternating diagram of a knot K satisfies g(F ) = g(K) =
1
2bth(∆K(t)).

3.8. Efficient multisections of odd-dimensional tori [K7]. This is my one paper, so far, that
has nothing to do with knots. Its main result is a construction regarding piecewise-linear, or PL,
manifolds, but most of the hard work in the paper is combinatorial. In arbitrary odd dimension
n = 2` − 1, I described a symmetric, efficient multisection of the n-torus Tn = S1 × · · · × S1 (n
copies): this is a decomposition into ` simple pieces Xi, i ∈ Z/`Z with the following intersection
property: for each I ⊂ Z`, the dimension and complexity of XI =

⋂
i∈I Xi depend only on |I|
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(namely, dim(XI) = n + 1 − |I|, and XI can be built from a ball of that dimension d by gluing
on “h-handles” Bh × Bd−h along Sh−1 × Bd−h for 1 ≤ h ≤ |I|).14 In particular, each Xi is an
n-dimensional 1-handlebody, homeomorphic to a “thickened up” wedge of some number, g, of
circles;15 g is called the genus of Xi.

Rubinstein and Tillmann had introduced multisections shortly before this [27], as a natural
generalization of an important construction in 3-, and more recently 4-dimensions [7]. They proved
that every PL manifold of arbitrary (finite) dimension has a multisection. Yet, their construction
tends to produce handlebodies of very large genus, even for simple manifolds. By contrast, the
multisections that I constructed for Tn were efficient in the sense that each Xi has genus n, which
I proved is minimal. Each multisection is also symmetric with respect to both the permutation
action of Sn on the indices and the Z` translation action along the main diagonal. I also constructed
a related trisection of T 4, lifted all symmetric multisections of tori to certain cubulated manifolds,
and obtained two combinatorial identities as corollaries. For example, for any n = 2`− 1, we have:

`n−1 =
n∑

i0=2

(
n

i0

) n−i0∑
i2=4−i0

(
n− i0
i1

) n−i0−i1∑
i3=6−i0−i1

(
n− i0 − i1

i2

)
· · ·

n−
∑`−3

j=0 ij∑
i`−2=2`−2−

∑`−3
j=0 ij

(
n−

∑`−3
j=0 ij

i`−1

)
,

which also equals the number of spanning trees of the complete bipartite graph K`,` [23].

3.9. Nonorientable spanning surfaces for knots [K6]. In this short, mainly expository, chap-
ter, I also proved two new theorems, extending the well-known fact that all Seifert surfaces for a
knot are related by attaching and deleting tubes and the related fact, proven by Yasuhara, that
all spanning surfaces for a given knot (or link) are related by attaching and deleting tubes and
crosscaps [30]. (These are the moves shown in Figure 9 and their inverses.) One new result was
that, given a knot K, all checkerboard surfaces from all diagrams of K are related by attaching
and deleting crosscaps, no tubing moves needed. More on this in §4

3.10. Crosscap numbers of alternating knots via unknotting splices [K5]. The crosscap
number of a knot K is cc(K) = min{β1(F ) : F is 1-sided and spans K}.16 While an earlier paper
I wrote with Colin Adams (see §3.14) had determined the crosscap number of every alternating
knot in theory, the problem remained open as to how best to compute these in practice. In
2018, Ito and Takimura defined a new diagrammatic knot invariant u−(K) which I later called the
splice-unknotting number and proved that every knot satisfies cc(K) ≤ u−(K). For alternating
knots K, I used tangle decompositions to prove the reverse inequality, giving cc(K) = u−(K) (Ito-
Takimura independently proved this as well [11, 12]). Then I learned Python and wrote two different
programs, each of which used this new result to compute crosscap numbers of all alternating knots
through 13 crossings. See §4 for more detail on the computational aspect of this project.

3.11. Alternating links have representativity 2. [K4]. Gromov defined the distortion δ(γ)
of a rectifiable curve γ ⊂ R3 by considering how many times farther apart two points are along the
curve than in space:

δ(γ) = sup
p,q∈γ

dγ(p, q)

dR3(p, q)

Gromov asked whether knots have arbitrarily large distortion [10]. To show that they do, Pardon
established a lower bound for distortion, 160δ(L) ≥ r(L), in terms of what is now called the
representativity of L [26]:

r(L) = max
F∈FL

min
X∈XF

|∂X ∩ L|.

Here, FL is the set of positive genus closed surfaces containing L, and XF is the set of compressing
disks for F . Ozawa computed the representativity of certain pretzel links and all torus and 2-bridge
links, and conjectured that alternating links have representativity 2 [25]. I used Menasco’s crossing
ball structures to confirm Ozawa’s conjecture:

14Notation: Bh = {~x ∈ Rh : |~x| ≤ 1} and Sh−1 = ∂Bh = {~x ∈ Rh : |~x| = 1}.
15A wedge of g circles is the space obtained from a disjoint union of g circles by choosing one point on each circle

and identifying the chosen points to a single point.
16Recall that β1(F ) denotes the rank of H1(F ) and counts “how many holes” are in F .

https://oeis.org/A068087
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Figure 14. The Jones polynomial of this knot K is VK(q) = q + q3 + q5 − q9.

Theorem 3.1. If L ⊂ S3 is an alternating link and F is a closed surface that contains L (without
crossings), then F has a compressing disk whose boundary intersects F in at most two points.

3.12. Plumbing essential states in Khovanov homology [K3]. Earlier, I mentioned the Jones
polynomial, but so far I have not said anything about what it is, or how it is computed. Here
is one perspective. Given a diagram D of a knot K, “smooth” each crossing in one of two ways,

A←− B−→ . The resulting diagram x is called a (Kauffman) state of D and consists of state
circles joined by A- and B-labeled arcs, one from each crossing. “Enhance” x by assigning each
state circle a binary label: ©1

1←− © 0−→ ©. Then use the number of A- versus B-smoothings
leading to each state and the number of blue versus green circles in each enhancement to assign each
“enhanced state” X a bigrading (iX , jX), and use this bigrading to arrange the enhanced states
in a grid; Figure 14 shows an example.17 For each pair (i, j), let Ci,j(D) be the free Z-module
generated by those enhanced states X with (iX , jX) = (i, j). Then the Jones polynomial of K is

VK(q) =
∑
j

qj
∑
i

(−1)irank(Ci,j(D)).18

Amazingly, VK(q) does not depend on D. Even more amazingly, Khovanov described “(co)-
boundary maps” d : Ci,j(D) → Ci+1,j(D) such that the resulting (co)homology groups also are
independent of D [16, 29]. All of this works over any commutative ring R with 1 6= 0; I will focus
on R = Z and R = Z/2Z.

When I first learned about Khovanov homology, I worked a few simple examples, all coming
from alternating diagrams, and noticed that many of the nonzero Khovanov homology classes were
represented by states that described essential surfaces (in a sense that I will explain in §3.14). In
some cases, these essential surfaces were checkerboard surfaces, and in others they were obtained by
plumbing checkerboard surfaces. Moreover, any “diagrammatic plumbing” of alternating checker-
board states gives what is called a homogeneously adequate state, and these always describe
essential surfaces [24]. I proved that such states always correspond to nonzero Khovanov homology
classes, at least over Z/2Z:

17The other consideration in the bigrading is the writhe of D; see Note 6.
18The version of the Jones polynomial described in §2 is obtained from this version by dividing by q + q−1 and

making a change of variable q2 = t.
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Figure 15. An example of how to construct a Turaev surface

Theorem 3.2. If x is a homogeneously adequate state, then x gives nonzero Khovanov homology
classes over Z/2Z in two gradings. If a certain graph GxA is bipartite19, then this is also true with
integer coefficients.

After proving the theorem, I wanted to better understand the role of plumbing in Khovanov
homology, at least in this class of examples. Had this gluing operation led me to a naive conjecture,
which just turned out to be true, or was plumbing structurally important? I sought to express the
nonzero classes from my theorem in terms of plumbing. Developing plumbing into an operation
in Khovanov homology required a new rule of “trumps,” (to indicate when the label on one circle
overrides the label on another) with which plumbing behaves roughly like interior multiplication
composed with an exterior product,

d(X ∗ Y ) = dX ∗♦ Y + (−1)| |x X ∗♦ dY,
leading to an alternate, inductive proof of the main theorem. (My first, simpler proof was con-
structive.) More recently, I co-advised a Master’s thesis about Khovanov homology; see §4.

3.13. Heegaard diagrams corresponding to Turaev surfaces (with Cody Armond and
Nathan Druivenga) [K2]. One builds a Turaev surface from a link diagram D on S2 ⊂ S3 by
pushing the all-A and all-B states of D (see Figure 15, left) to opposite sides of S2, joining them
with a cobordism whose saddle points occur precisely at the crossings of D (center), and capping
off each state circle with a disk (right). Figure 15 shows an example. Dasbach, Futer, Kalfagianni,
Lee, and Stolzfus showed that the resulting surface Σ is a Heegaard surface for S3, on which D
forms an alternating diagram [4]. Our main theorem proved a converse to this fact, providing a
correspondence between Turaev surfaces and certain link-adapted Heegaard diagrams [K2].

3.14. A classification of spanning surfaces for alternating links (with Colin Adams)
[K1]. My first research project began in 2005, at Williams’ REU, SMALL, where Colin Adams and
I generalized Seifert’s algorithm in order to construct many spanning surfaces from a given knot
diagram. At the time, the construction was new; the surfaces we constructed have since become
known as state surfaces. We continued the project in an independent study, at SMALL 2006,
and in my senior thesis.

Using Menasco’s crossing ball technique, we classified spanning surfaces for alternating knots
(and links) up to homeomorphism type and boundary slope. That is, we solved the geography
problem in the alternating case: given a knot K, the problem is to list all pairs (s(F ), β1(F ))
realized by spanning surfaces F for K. The geography problem remains open for most classes of
knots and is a fertile area for future research.

As an immediate corollary, our classification gives the crosscap number and overall genus20

for all alternating links; previously, these were known only for 2-bridge links and certain pretzel
knots. We also gave the first proof that all spanning surfaces for alternating links are connected and
the first example of a knot whose overall genus can be realized by a 1-sided surface or by 2-sided
surface. We explicitly computed the crosscap numbers of all alternating knots through 10 crossings
and described an algorithm for computing the overall genus of an arbitrary alternating link.

19This corresponds to the A-smoothed part of x being a Seifert state.
20The crosscap number of K is cc(K) = min{β1(F ) : F is 1-sided and spans K}, and the overall genus is

Γ(K) = min{β1(F ) : F spans K}.
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4. Advising

Recall from §§1 and 3.9 that any two checkerboard surfaces F1 and F2 (from any two diagrams)
for a given knot K are related by a sequence of “crosscapping moves” (Figure 3), which change

a Goeritz matrix like this, G ↔
[
G 0
0 ±1

]
; also, change of basis changes a Goeritz matrix like this:

G↔ PGP T and G↔
[
G 0
0 ±1

]
. This raises the following practical question: given F1 and F2, how to

find such a sequence of moves between them? Maybe, I thought, a good approach would be to forget
the surfaces altogether and just focus on the linear algebra: if G1 and G2 are the Goeritz matrices
for F1 and F2, then any sequence of crosscapping moves between F1 and F2 gives a sequence of

moves like G ↔ PGP T and G ↔
[
G 0
0 ±1

]
from G1 to G2. Last spring, I posed this question to

a student, John, in my topology topics course as we walked together from our classroom back to
the math building. The question quickly grew into a Master’s thesis project, which I co-advise
with Hugh Howards and Frank Moore. In particular, we soon discovered that not every move like[
G 0
0 ±1

]
→ G can be realized geometrically. We called this phenomenon a “fake unkinking move.”

Stepping a little farther into linear algebra and further from topology, John wondered whether every
positive-definite integer matrix is “naively kink equivalent” to a negative-definite integer matrix.
(Were it not for fake unkinking moves, there would be no chance of this.) A couple months later,
John answered this question in the negative. I would love to tell you more about this project, and
the other half of John’s Master’s thesis project (also about Goeritz matrices, but from a completely
different perspective). Please ask me about these some time.

The previous two years, Hugh Howards and I advised a Master’s thesis about Khovanov homol-
ogy. In general, for a Master’s or undergraduate thesis, I would recommend almost any other area
of my research interest above this topic above Khovanov homology. But I do have a couple specific
projects in mind, and so I included the topic in a list of four or five possibility when Hugh and I
first met with our new advisee, Emma. It turns out that Emma’s best friend growing up was the
daughter of a mathematician specializing in Khovanov homology, and she had a burning desire to
know what this was all about. So we went for it! We spent the first year learning about Khovanov
homology works; then we got to a research question. Recall from §3.12 that some Khovanov homol-
ogy classes come entirely from single states. The question was what happens when we change the
underlying diagram, say by adding or removing a crossing via a simple kink (called an R1 move). I
suspected that such a simple move would preserve all the important features of Khovanov homology
classes and their representatives. Surprisingly, though, Emma discovered that sometimes adding
a crossing via an R1 move could make things nicer. For example, in a 3-crossing diagram of the
trefoil, there is a Khovanov homology class that doesn’t have a “nice” representative (coming from
a single state), but after certain R1 moves, this homology class has a nice representative.

In general, knot theory is famously well-suited to undergraduate research. I have several more
ideas of projects, which I would love to tell you about. Some involve constructing knots and
surfaces from line segments and polygons. Some are computational, using a way of representing
any n-crossing knot diagram as a 2n-tuple of integers, described by the first knot theorist, Gauss:
pick a basepoint and orient the knot; then walk along the knot, recording each new crossing with
the next unused integer and each repeated crossing with the corresponding integer.21 See Figure 4.

I have been incredibly fortunate to have five excellent, and very different, research advisors, and
my experiences with them inform a variety of different modes in which I can interact with research
advisees. Sometimes it makes sense to give advisees more structure. Sometimes, the best thing to
do is let them take the lead, but stay actively involved. Sometimes, it is best to really step back and
just listen until they ask a question. Sometimes, advisees will benefit most from a complete change
in the topic of conversation, either to another area of math or something else entirely. My research
advisors remain among the most important influences in my development as a mathematician and
a human being. The advisor–advisee relationship enables a unique depth of intellectual connection.
It is a privilege now to be on both sides of these relationships.

21In general, one uses the over/under information at the crossings to attache signs to these integers; when the
diagram alternates between over- and under-crossings, this is unnecessary, subject to the convention that the first
crossing is an over-crossing.
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Figure 16. An alternating knot diagram. Using the indicated basepoint and
orientation, the Gauss code is (1, 2, 3, 1, 4, 5, 6, 3, 2, 4, 7, 6, 5, 7).

5. Why study knots and links?

Perhaps the best reason to study knots and links (especially via spanning surfaces) is the accessi-
bility of these objects and open questions about them. This is thanks in part to my undergraduate
advisor, Colin Adams, and his undergraduate-level text, The Knot Book, which conveys the es-
sential nature of knot theory without assuming any knowledge of algebraic, differential, or even
point-set topology.

In addition to being accessible and fun, knot theory is worth studying for deep mathematical
reasons:

(1) Every closed22 3-manifold can be obtained by integral Dehn surgery on S3, so framed links
in S3 carry the information of all 3-manifolds.23

(2) Every closed smooth 4-manifold can be described by a Kirby diagram, as can any smooth 4-
manifold with no 3-handles, so framed links in connect sums of S1×S2 carry the information
of all such 4-manifolds. Smooth 4-manifolds are perhaps the most active topic of study
in low-dimensional topology today, in part because several fundamental problems remain
unsolved.24

(3) The Jones polynomial was originally discovered via Von Neumann algebras and later reinter-
preted in terms of Feynmann path integrals (among other ways). This connection between
knot theory and the mathematics of quantum mechanics largely remains mysterious.

(4) “Almost every” knot complement admits a hyperbolic geometric structure (with constant
sectional curvature -1). Moreover, such a hyperbolic structure is always unique; in partic-
ular, almost every knot has a well-defined hyperbolic volume. Empirical evidence strongly
suggests that this volume equals a certain limit from the Jones polynomial and its offshoots.
Yet, it remains an open question whether this equality always holds, let alone why. More-
over, because 3-dimensional hyperbolic geometry arises naturally in physics as the geometry
of any timelike slice of spacetime, there seems to be a deep connection, via knot theory,
between the mathematics of quantum mechanics and the math of relativity. Could a future
revelation in knot theory unlock the mathematics suited to describe a unified model of the
four fundamental forces?
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