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Please picture, in your mind’s eye, a surface F' with nonempty boundary 0F = K embedded in
3-space R3. If F and K are both compact and connected, then K is embedded circle, called a knot,
and F' is said to span K. (If K is disconnected, it is an embedded disjoint union of circles, called
a link; for simplicity I will not mention links again until ) I choose to study knots, and to do so
chiefly via spanning surfaces, in part because luck and privilege have allowed me the opportunity,
and in part because I find these objects to be radically accessible on a human level and far-reaching
in their mathematical significance. I describe some of this significance in §4]

In general, math research aims to discover and prove new mathematical facts; yet, proving that
something is true does not always convey why it is true; to justify is not necessarily to illuminate. My
research, however, emphasizes understanding above knowledge. This theme will recur throughout
my statement, which is organized as follows:

° sketches the way that linear algebra arises in my research;

° describes several related problems that nicely capture the spirit of my research; one of
these is a 30 (or 125) year old problem that I recently solved;

e 3] discusses the two Master’s thesis projects that I have co-advised at Wake Forest; and

e 4 motivates knot theory vis a vis mathematics more broadly.

A longer version, available on my website, contains an additional section, which summarizes the
results of my 14 completed papers.

1. THE STARRING ROLE OF LINEAR ALGEBRA IN MY RESEARCH

Every knot in 3-space has spanning surfaces, lots of them actually. Given a knot K C R3, take
a generic projection of K to R2, and record over-under information at the self-intersections, or
crossings, to get a diagram D of K. It is always possible to color the regions of R? — D light and
dark in “checkerboard fashion,” as shown left in Figure [} so that like-shaded regions abut only
at crossings. If we do this so that the unbounded region is light, then there is a spanning surface
B for K that lies almost entirely in the dark regions of R? — D, except near crossings, where it
twists; B is called a checkerboard surface. If we instead view K C S® (where S® — {point} is
R3) and project to S?, then there are two checkerboard surfaces B and W, one of which lies almost
entirely in the dark regions of S? — D, the other in the light ones. See Figure |1} center and right,
which show the same pair of checkerboard surfaces. Different diagrams of the same knot usually
give different checkerboard surfaces.

There is a symmetric bilinear pairing (-,-,) : Hi(F) x H1(F') — Z on the first homology group of
any spanning surface F' El first described by Gordon and Litherland [8] ]| It is easiest to describe when

lh, (F) is a free abelian group whose elements are represented by (disjoint unions of) oriented circles embedded
in F; its rank, denoted B1(F), counts “how many holes” are in F

2This is my all-time favorite paper, partly because its content, but especially because they prove their results
twice: first, they take a sophisticated approach, involving double-branched covers of the 4-ball (in some sense, this
is the best way to understand the deep significance of their work), and then, restarting from scratch, they take a
down-to-earth approach that uses only elementary tools and thus makes this profound paper remarkably accessible.
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F1GURE 1. Checkerboard surfaces of knot diagrams
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FIGURE 2. Goeritz matrices for two checkerboard surfaces

F is the dark checkerboard surface of a diagram D C R?: then H;(F) has a basis A = (a1, ..., ay,)
represented by circles «;, each of which goes counterclockwise around exactly one bounded light
region R;, and (-, -) is represented, with respect to A, by a Goeritz matrix G = (gij)ﬁwhere each
gii counts (with sign) the number of crossings incident to R; and each g¢;; counts (with opposite
sign) the number of crossings incident to both R; and R;. Figure [2shows two examples. Here are
four key features of Gordon-Litherland pairings (-,-) and Goeritz matrices G € Z"*":

e If o C F is a circle representing a homology class a, then the self-pairing (a, a) equals (half
of) the framing of a in F', which measures how much F' “twists” along c.

e Since G € Z™*" represents a bilinear mapping, the change-of-basis formula is G — PGP,
where P € Z™*" is invertible (i.e. “unimodular”).

e “Attaching a crosscap” as in Figure [3| changes a Goeritz matrix like this: G’ —>{

e | det(G)| depends only on K, not on one’s choice of F' or of basis for Hl(F)ﬁ

Not only does every knot K have spanning surfaces, it has some, called Seifert surfaces, that are
orientable (i.e. 2-sided). Seifert’s algorithm is a way of constructing such a surface using a diagram
D of K; Figure {] shows an example. Any Seifert surface F' is homeomorphic to a connect sum of
tori with an open disk removed: F = ( n St x Sl) — (open disk); we call n the genus of F' and
write g(F') = n. The knot genus g(K) is the minimum of g(F') over all Seifert surfaces F' for K.

Any Seifert surface F' comes with a bilinear pairing Hy(F') x H1(F') — Z called the Seifert pairing
and is represented by a Seifert matrix A. This pairing carries all the information of the Gordon-
Litherland pairing, as A+ A7 is a Goeritz matrix for F, but it has something extra: the polynomial

G 0
0 =£1|°

I Y1
3Given z = > xiaiand y = > yias in Hi(F) and denoting & —{ : } and ¥ = { : }, we have (z,y) = 2T GY.
Yn,

Tn

4The same is also true of the signature of GG, albeit with a correction term.
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F1cURE 3. Attaching a crosscap to a spanning surface F' is this local operation near OF.
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FIGURE 4. Seifert’s algorithm obtains an orientable spanning surface from any knot diagram.
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F1GURE 5. Four knot diagrams, three of them alternating, two with nugatory cross-
ings (highlighted)
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Ak (t) = det(A—tAT), called the Alexander polynomial of F, depends (up to degree shift) only
on K. Moreover, the degree span or breadth bth(Ag(t)) depends only on K and provides a lower
bound for g(K): bth(Ag(t)) < g(K). More on this polynomial toward the end of

2. CLASSICAL KNOWLEDGE, NEW UNDERSTANDING

Much of my research concerns alternating knots: a diagram D C S? of a knot K C S is
alternating if its crossings alternate between over and under, like the last three diagrams in Figure
and K is alternating if it has an alternating diagram; c¢(D) denotes the number of crossings
in D, and ¢(K) is the smallest number of crossings among all diagrams of K. (We regard two
knots as equivalent if they are related by a continuous deformation between their embeddings,
called an isotopy.) In general, it is hard to determine the crossing number of an arbitrary knot, or
to determine whether or not a given diagram minimizes crossings, but certainly no diagram that
minimizes crossings can have a “nugatory” crossing, like the two highlighted in Figure[5] A diagram
without nugatory crossings is called reduced, whether or not it minimizes crossings. Interestingly,
if a knot K has a diagram D that is reduced and alternating, then D always minimizes crossings:
¢(D) = ¢(K). Although this fact was first observed empirically by P.G. Tait in 1898 [28§], it, and
two related conjectures, remained unproven for almost a century:

Tait’s conjectures. Given a knot K C S® and two primfﬂ alternating diagrams D and D' of K :

(1) D and D" have the same number of crossings, which is minimal: ¢(D) = ¢(D') = ¢(K).
(2) D and D' have the same writhefw(D) = w(D’). [
(8) D and D' are related by a sequence of flype moves: see Figure @

Tait’s conjectures remained open until the discovery of the Jones polynomial in the mid-1980’s
[13]E| which almost immediately led to three independent proofs of Tait’s first conjecture Jones
polynomial of a knot K: the degree span, or breadth, of Vi (t), denoted bth(Vi (t)), always provides

SA knot diagram D is prime if D has at least two crossings and, for every circle ¥ C S? that intersects D generically
in two points, all crossings of D lie on the same side of «; every prime diagram is reduced.

6Orient D arbitrarily. Then every crossing looks like Xor X. The writhe of D is w(D) = [>X| — [X|, where bars
count components. It is independent of the orientation on D.

"Tait’s first two conjectures are true even if D and D’ are not prime, as long as they are reduced.

8Jones described a new way of assigning a polynomial Vi (t) € Z[t,t™'] to any knot; different pictures of the same
knot always yield the same polynomial, but different knots “usually” have different Jones polynomials.

FIGURE 6. Flype moves



FI1GURE 7. A flype move on a knot diagram corresponds to a re-plumbing move on
one of its checkerboard surfaces (here, the black surface) and an isotopy of the other
surface (here, the white surface).

a lower bound for crossing number, ¢(K) < bth(Vx(t)), and any reduced alternating diagram D of
K satisfies ¢(D) = bth(Vk (¢ ﬂ by definition, ¢(K) < ¢(D); therefore, ¢(D) = ¢(K). QED

Within a decade, the Jones polynomial had led to proofs of all three of Tait’s conjectures. Yet,
these proofs were only somewhat satisfying: why did they work? What was the Jones polynomial
really measuring? In their 1993 proof of Tait’s flyping conjecture, Menasco and Thistlethwaite
spotlighted this remaining gap in our understanding: “the question remains open as to whether
there exist purely geometric proofs of this and other results that have been obtained with the help
of new polynomial invariants.” The aim is not just to know, but to understand. I love that the
mathematical community values this.

The first partial answer came in 2017 from Greene in a paper where he answered another long-
standing question, this one from Ralph Fox: “What [geometrically] is an alternating knot?” First,
Greene observed that, if B and W are the checkerboard surfaces from an alternating knot diagram
and Gp and Gy are their Goeritz matrices, then Gp is positive-definite and Gy is negative-
definite, or vice-versa: “B and W are definite and of opposite signs.”El Second, Greene proved that
alternating knots are the only ones with a two such surfaces. In fact, he proved that if F, and
F_ are definite spanning surfaces of opposite signs for the same knot K, then K has an alternat-
ing diagram whose checkerboard surfaces are “the same as” (are isotopic to) F} and F_. Greene
was then able to translate Tait’s conjectures into non-diagrammatic statements and give the first
“purely geometric” proofs of Tait’s second conjecture and part of his first: any reduced alternating
diagrams D and D’ of the same knot satisfy ¢(D) = ¢(D') and w(D) = w(D’) [9)[]

Recently, I gave the first purely geometric proof of Tait’s “flyping” conjecture. The first key
insight (see Figure E[) was that flyping a diagram D changes one of its checkerboard surfaces by
isotopy and the other, F', by a geometric operation I call re-plumbing, which replaces a disk U C F
(shown green, left) with another disk V' (shown half yellow and half blue, center) that is disjoint
from F' except along its boundary 0V = 0U. Figure[§] left, shows another example of re-plumbing.
This insight translates Tait’s diagrammatic conjecture to a geometric statement about spanning
surfaces. Then the real work begins. I would love to tell you that story; please ask me about it
some time.

Around the time I proved Tait’s flyping conjecture, Boden-Karimi extended Greene’s insights
about definite surfaces in S3 to the context of thickened surfaces, like S* x S x [~1,1] [1]. I

9The converse is also (nearly) true: any prime diagram D of any knot K satisfies ¢(D) = bth(Vk (t)) if and only
if D is alternating.

0G5 € 7™ is positive-definite iff #7 GpZ > 0 for every nonzero & € Z".

L1t remains an open problem to give a purely geometric proof of Tait’s full first conjecture, since Greene’s insights
are less useful regarding the possibilities of non-alternating diagrams of an alternating knot. I have some ideas....
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FIGURE 8. Left: A replumbing move. Right: a de-plumbing.
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used their innovations to extend Tait’s flyping conjecture to that context. Many of the arguments
adapted directly, but a few technical points required special attention, several of which led to
fundamental revelations about virtual knots, which correspond to knots in thickened surfaces [K10),
K11l K13, K12).

Another recent project of mine regards a different seminal result in knot theory that, like Tait’s
flyping conjecture, was first proven in the Annals. Again, I wanted to understand why the result
was true. Here is the background.

In general, a Seifert surface resulting from Seifert’s algorithm need not have minimal genus, but
when Seifert’s algorithm is applied to an alternating diagram, the resulting surface F' always has
minimal genus: g(F) = g(K). Gabai gave a short, elegant, purely geometric, proof of this fact
in 1986 [6]. The original proofs, however, due independently to Crowell and Murasugi in 1958-59
[3,122], had something extra, regarding the Alexander polynomial Ag (¢). Recall from §2] that every
knot K satisfies bth(Ag(t)) < g(K). Crowell and Murasugi proved that when F' is obtained via
Seifert’s algorithm from an alternating diagram, we have g(F) = 2bth(Ag(t)). Since g(K) < g(F)
by definition, it follows that g(F') = g(K) = bth(Ag(t)) < g(K). When I taught a topics course at
UNL in 2021, T wanted to understand, and then share, why this was true. This led me to discover
a new, short, extremely satisfying proof of the Crowell-Murasugi theorem [K8]. It involves all
my favorite characters: checkerboard surfaces, plumbing operations, and linear algebra. Here is a
sketch:

First, to prove that g(F) = g(K) = 1bth(Ag(t)), I showed that it suffices to prove that the
Seifert matrix A from F' is invertible. Second, I showed that this is true if /' happens to be a
checkerboard surface (from an alternating diagram). Third, the surfaces obtained via Seifert’s
algorithm from alternating diagrams are always plumbings of alternating checkerboard surfaces,
so it suffices to prove that if F' is a plumbing of surfaces F; and F> which have invertible Seifert
matrices A1 and Ay, then F' also has an invertible Seifert matrix. Finally, I showed that, indeed,

F has a Seifert matrix of the form A :E;l 122}; applying the pigeonhole principle to the formula
detai;]iy = D yes, [1i=1 Gio(i) thus confirms that det(A) = det(A;) - det(Az) # 0.

3. ADVISING

I proved in [K6] that any two checkerboard surfaces F; and F5 (from any two diagrams) for a
given knot K are related by a sequence of “crosscapping moves” (Figure|3)), which change a Goeritz

matrix like this, G <—>{g fl]; also, change of basis changes a Goeritz matrix like this: G < PGPT

and G H{g fl]. This raises the following practical question: given F; and Fb, how to find such

a sequence of moves between them? Maybe, I thought, a good approach would be to forget the
surfaces altogether and just focus on the linear algebra: if G; and Gy are the Goeritz matrices
for F1 and Fy, then any sequence of crosscapping moves between F} and Fh gives a sequence of

moves like G < PGPT and G < {g iOJ from G to Go. Last spring, I posed this question to a

student, John, in my topology topics course as we walked together from our classroom back to the
math building. The question quickly grew into a Master’s thesis project, which I now co-advise
with Hugh Howards and Frank Moore. In particular, John discovered that not every move like
s &
Stepping a little further into linear algebra and away from topology, John wondered whether every
positive-definite integer matrix is “naively kink equivalent” to a negative-definite integer matrix.
(Were it not for fake unkinking moves, there would be no chance of this.) A couple months later,
John answered this question in the negative. I would love to tell you more about this and the other
half of John’s Master’s thesis project (also about Goeritz matrices, but from a completely different
perspective).

The previous two years, Hugh Howards and I advised a Master’s thesis about Khovanov homol-
ogy. In general, this is not the first topic I would recommend for a Master’s or undergraduate
thesis, but Emma’s best friend growing up was the daughter of a mathematician specializing in
Khovanov homology, and she had a burning desire to know what this was all about, so we went for
it! We spent the first year learning about Khovanov homology works; then we got to a research

— G can be realized geometrically. We called this phenomenon a “fake unkinking move.”
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question. Emma explored examples and ended up discovering something surprising. The longer
version of my research statement has details.

I have been incredibly fortunate to have five excellent, and very different, research advisors, and
my experiences with them inform a variety of different modes in which I can interact with research
advisees. Sometimes it makes sense to give advisees more structure. Sometimes, the best thing to
do is let them take the lead, but stay actively involved. Sometimes, it is best to really step back and
just listen until they ask a question. Sometimes, advisees will benefit most from a complete change
in the topic of conversation, either to another area of math or something else entirely. My research
advisors remain among the most important influences in my development as a mathematician and
a human being. The advisor—advisee relationship enables a unique depth of intellectual connection.
It is a privilege now to be on both sides of these relationships.

4. WHY STUDY KNOTS AND LINKS?

Perhaps the best reason to study knots and links (especially via spanning surfaces) is the accessi-
bility of these objects and open questions about them. This is thanks in part to my undergraduate
advisor, Colin Adams, and his undergraduate-level text, The Knot Book, which conveys the es-
sential nature of knot theory without assuming any knowledge of algebraic, differential, or even
point-set topology.

In addition to being accessible and fun, knot theory is worth studying for deep mathematical
reasons:

(1) Every closedlﬂ 3-manifold can be obtained by integral Dehn surgery on S2, so framed links
in S3 carry the information of all 3-manifolds

(2) Every closed smooth 4-manifold can be described by a Kirby diagram, as can any smooth 4-
manifold with no 3-handles, so framed links in connect sums of S* x S? carry the information
of all such 4-manifolds. Smooth 4-manifolds are perhaps the most active topic of study
in low-dimensional topology today, in part because several fundamental problems remain
unsolved [

(3) The Jones polynomial was originally discovered via Von Neumann algebras and later reinter-
preted in terms of Feynmann path integrals (among other ways). This connection between
knot theory and the mathematics of quantum mechanics largely remains mysterious.

(4) “Almost every” knot complement admits a hyperbolic geometric structure (with constant
sectional curvature -1). Moreover, such a hyperbolic structure is always unique; in partic-
ular, almost every knot has a well-defined hyperbolic volume. Empirical evidence strongly
suggests that this volume equals a certain limit from the Jones polynomial and its offshoots.
Yet, it remains an open question whether this equality always holds, let alone why. More-
over, because 3-dimensional hyperbolic geometry arises naturally in physics as the geometry
of any timelike slice of spacetime, there seems to be a deep connection, via knot theory,
between the mathematics of quantum mechanics and the math of relativity. Could a future
revelation in knot theory unlock the mathematics suited to describe a unified model of the
four fundamental forces?
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