
Plumbing essential states in Khovanov
homology

Thomas Kindred

Abstract. We prove that every homogeneously adequate Kauffman
state has enhancements X± in distinct j-gradings whose traces (which
we define) represent nonzero Khovanov homology classes over Z/2Z;
this is also true over Z when all A-blocks’ state surfaces are two-sided.
A direct proof constructs X± explicitly. An alternate proof, reflecting
the theorem’s geometric motivation, applies a plumbing (Murasugi sum)
operation that has been adapted to the context of Khovanov homology.
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1. Introduction

Given a link diagram D ⊂ S2, smooth each crossing in one of two
ways, A←− B−→ . The resulting diagram x is called a Kauffman
state of D and consists of state circles joined by A- and B-labeled arcs,
one from each crossing. Enhance x by assigning each state circle a bi-
nary label: ©1

1←− © 0−→ ©. Taking R to be a ring with unity, the
enhanced states from D form an R-basis for a bi-graded chain complex

CR(D) =
⊕

i,j∈Z C
i,j
R (D), which has a differential d of degree (1, 0). The

resulting (co-)homology groups are link-invariant and are commonly called
the Khovanov homology of the link [K00]. Khovanov homology categori-
fies the Jones polynomial in the sense that the latter is the graded euler
characteristic of the former [J85, K00, V04]. Section 2 reviews Khovanov
homology in more detail.

This paper considers the question: what do nonzero Khovanov homology
classes look like? The simplest examples of such classes come from all-
A states and all-B states which are adequate in the sense that each arc
joins distinct circles: the all-1 enhancement of the all-A state and the all-0
enhancement of the all-B state represent nonzero homology classes with any
coefficients [K00]. (This implies that, if L is an H-thin link with a diagram
whose all-A and all-B states both are adequate, then L is alternating [K03].)
Further, any enhancement of an adequate all-B state with exactly one 1-label
represents a nonzero homology class over any ring in which 2 is not a unit,
and the sum of all enhancements of an adequate all-A state with exactly
one 0-label represents a nonzero homology class over the ring F2 = Z/2Z.

Intriguingly, such states are essential in the sense that (all of) their state
surfaces are incompressible and ∂-incompressible [O11, FKP13]. Indeed,
each of these state surfaces is a plumbing of checkerboard surfaces from
reduced alternating link diagrams; such checkerboards are essential, and
plumbing respects essentiality. With this motivation (rather than Khovanov
homology in the abstract), and letting CR(x) denote the submodule of CR(D)
generated by the enhancements of a state x of D, we ask whether Khovanov
homology detects other essential states, in the same sense that it detects
adequate all-A and all-B states:

Main question. For which essential states x does CR(x) contain a nonzero
homology class?

In order for a state x to be essential, x must necessarily be adequate.
Indeed, suppose some state circle x1 of x contains both endpoints of some
crossing arc. Construct a state surface Fx by capping x1 with a disk on
one side of the projection sphere S2, capping all remaining state circles with
disks on the other side of S2, and joining these disks with half-twist bands,
one at each crossing. The surface Fx is ∂-compressible.

For a sufficient condition, let Gx denote the state graph obtained from
x by collapsing each state circle to a point, while maintaining the A- and
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Figure 1. Left to right: a link diagram D with a homoge-
neously adequate state x, its graph Gx, blocks, and zones.

B-labels on the edges of Gx, which come from the crossing arcs in x. (Thus,
x is adequate iff Gx has no loops.) Cut Gx all at once along its cut ver-
tices (ones whose deletion disconnects Gx); the subsets of x corresponding
to the resulting connected components are called the blocks of x [C89].
The state x decomposes under plumbing (of states) into these blocks, and
the state surface from x decomposes under plumbing (of surfaces) into the
blocks’ state surfaces, each of which is a checkerboard surface for its block’s
underlying link diagram. If each of these checkerboard surfaces comes from
an alternating link diagram—i.e., if no block of x contains both A- and
B-type crossing arcs—x is called homogeneous. (This term first appears
in [C89], where an oriented link is called homogeneous if it has a diagram
whose Seifert state—the Kauffman state determined by the orientation on
the link—is homogeneous in the sense just described.)

If a state x is both adequate and homogeneous, it is called homogeneously
adequate [O11, FKP13, FKP14, BMPW15]. In this case, its state surface
Fx, a plumbing of checkerboard surfaces from reduced alternating link dia-
grams, is essential. Again, the point is that plumbing respects essentiality
[O11, G83]. (An alternate proof that Fx is essential, using normal surface
theory rather than plumbing, appears in [FKP13, FKP14]). Our main result
states that Khovanov homology over F2 = Z/2Z detects all homogeneously
adequate states:

Main theorem. If x is a homogeneously adequate state, then Cix,jx±1F2
(x)

both contain (representatives of) nonzero homology classes. If also GxA is

bipartite, then Cix,jx±1Z (x) contain such classes as well.

Here, ix, jx are integers that depend only on the state x, and xA is the
union of the A-type crossing arcs in x and their incident state circles. (When
x is homogeneous, the components of xA are called the A-zones of x; xB and
B-zones are defined analogously.) Thus, the theorem’s bipartite condition
on GxA is equivalent to the condition that the state surfaces from the A-
blocks of x are all two-sided. In case x is adequate and all-A with Gx = GxA

bipartite, the link L can be oriented so that the diagram D is positive;
if this D is a closed braid diagram, then the main theorem’s class from

Cix,jx−1

Z (x) is Plamenevskaya’s distinguished element ψ(L) [P06]. In general,
the condition of homogeneous adequacy is sensitive to changes in the link
diagram, as are the homology classes from the main theorem, in the sense
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that Reidemeister moves generally do not preserve the fact that these classes
have representatives in some CR(x).

The first half of the paper is fairly straightforward: §2 reviews Khovanov
homology, following Viro [V04]; §3 reviews states, state surfaces, and plumb-
ing; and §4 offers a direct, constructive proof of the main theorem. The rest
of the paper returns to the geometric motivation behind the main theorem:
the zones of a homogeneously adequate state x are adequate all-A and all-B
states, the state surface from x is a plumbing of these zones’ state surfaces,
and Khovanov homology detects them all. With this motivation, §5 adapts
plumbing to the context of Khovanov homology.

Adapting plumbing to Khovanov homology is simple in concept—glue
two enhanced states along a state circle where their labels match so as to
produce a new enhanced state, then extend linearly—but complicated in
execution. The difficulty is that the differential sometimes changes the label
on the state circle along which the two plumbing factors are glued together,
upsetting the compatibility required for the plumbing. The workaround is to
specify, by a rule of trumps, whether the labels on the first plumbing factor
override those on the second or vice versa. The upshot is a useful identity,
which states that plumbing in Khovanov homology behaves roughly like an
exterior product followed by interior multiplication:

(1) d(X ∗ Y ) = dX ∗♦ Y + (−1)| |x X ∗♦ dY.

Section 5 develops the notion of plumbing on Khovanov chains far enough to
obtain an alternate proof of the main theorem, in which plumbing extends
the all-A and all-B cases inductively to the homogeneously adequate case
in general, thus fulfilling the theorem’s geometric motivation. A discussion
at the end of §5 describes how the natural property given by (1) extends to
the entire chain complex CR(D) when the plumbing is a connect sum, but
is more localized in general. Section 6 then concludes as follows. First, two
easy examples show that CR(x) may contain nonzero homology classes even
when x is inessential. Second, a class of non-homogeneous essential states
y indicates that the main question becomes more complicated beyond the
homogeneously adequate case. Finally, we pose several questions.

Thank you to the referee for suggesting many improvements to this
paper’s details and overall structure.

Notation: For a diagram Z of any sort and any feature � which may
appear in such diagram, |�|Z denotes the number of �’s in Z. For example,
if D is a link diagram, then | |D counts the crossings in D.

2. Khovanov homology of a link diagram, after Viro

2.1. Enhanced states. Let D be a link diagram. Index its crossings as
c1, . . . , c| |D , and make a binary choice at each crossing: A←− B−→ .
The resulting diagram x ⊂ S2 is called a Kauffman state of D and consists
of | © |x state circles joined by A− and B− labeled arcs, one from each



PLUMBING ESSENTIAL STATES IN KHOVANOV HOMOLOGY 5

crossing. Index the state circles of x as x1, . . . , x|©|x , and enhance x by

making a binary choice at each state circle, xr: ©1
ar=1←− © ar=0−→ ©. Let R

be a ring with unity—we focus on R = F2 and R = Z, although all results
over Z hold over any ring in which 2 is not a unit—and define CR(x) to be
the R-module generated by the enhancements of x. Let V = R[q]/(q2), and

associate CR(x) with V ⊗|©|x by identifying each enhancement of x with the
simple tensor qa1 ⊗ · · · ⊗ qa|©|x . Define:

CR(D) =
⊕

states x of D

CR(x) =
⊕

states x of D

V ⊗|©|x .

2.2. Grading. The writhe of an oriented link diagram D is wD = | |D −
| |D. For each state x of D, let σx = | |x − | |x and ix = 1

2(wD − σx). For
any enhancement X of x, define τX = |©1 |X−|©|X and jX = wD+ix−τX .

The R-module CR(D) carries a bi-grading CR(D) =
⊕

i,j C
i,j
R (D), where each

Ci,jR (D) is generated by the enhancements Y of states y of D with i = iy and
j = jY . The Jones polynomial VL(q) of an oriented link L, unnormalized
such that Vunknot(q) = q + q−1, is given by Kauffman’s state sum formula
[J85, K87]. Enhancement expands the terms in this sum in order to express
the Jones polynomial as the graded euler characteristic of CR(D) (c.f. Figure
2) [V04]:

VL(q) = qwD
∑

states x

(−q)ix
(
q + q−1

)|©|x
=

∑
enhancements X of states x

(−1)ix qjX

=
∑
i,j∈Z

(−1)i qj rk(Ci,jR (D)).

2.3. Homology. Taking X ∈ Ci,jR (D) to be an enhanced state, define its
differential dctX at each crossing ct of D by the incidence rules in Figure
3. (If x has a B-smoothing at ct, then dctX = 0.) Sum over all crossings

to define the differential dX =
∑

t(−1)| |
t
XdctY ∈ C

i+1,j
R (D), where | |tX

is the number of crossings cs with s < t at which X has an A−smoothing.
When R = F2, the differential is simply dX =

∑
t dctX. Extend R-linearly

to obtain the differential map d : CR(D) → CR(D), which has degree
(1, 0) and obeys d ◦ d ≡ 0, giving CR(D) the structure of a (co-)chain
complex. The quotients KhR(D) = ker(d)/image(d) are link-invariant, and
are commonly called the Khovanov homology of the link, even though this
is really set up as a cohomology theory [K00].

A subset B ⊂ CR(D) is called primitive if, whenever r ∈ R, X ∈ CR(D),
and rX ∈ B, also uX ∈ B for some unit u ∈ R; for example, any collection
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Figure 2. The Jones polynomial VL(q) = q + q3 + q5 − q9
of the RH trefoil via Khovanov chains.
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Figure 3. Incidence rules for the differential, d: q ⊗ q 7→ 0;
1⊗ q, q ⊗ 1 7→ q; 1⊗ 1 7→ 1; q 7→ q ⊗ q; 1 7→ q ⊗ 1 + 1⊗ q.

of enhanced states is primitive, as is its R-span. If B ⊂ CR(D) is primitive,
then the projection map πB : CR(D) → CR(D) is the R-linear map that
sends each chain X to itself when X is in the R-span of B and to 0 otherwise.
The augmentation map ε : CR(D)→ R is the R-linear map that sends each
enhanced state X to 1. Maps of the form ε ◦ πB ◦ d : CR(D) → R will be
useful for proving that the main theorem’s cycles are not exact.

2.4. Reduced homology. Let D be a link diagram, R a ring with unity,
and p a point on D away from crossings. For each state x of D, define
CR,1(x) and CR,0(x) to be the submodules of CR(x) generated by those en-
hancements of x in which the state circle containing the point p has the in-
dicated label. Also define CR,1(D) =

⊕
x CR,1(x) and CR,0(D) =

⊕
x CR,0(x).



PLUMBING ESSENTIAL STATES IN KHOVANOV HOMOLOGY 7

(After natural modifications of the differential map and shifts in the j-
grading, these chain complexes yield a (co-)homology theory, which is com-
monly called the reduced Khovanov homology of the link; reduced Kho-
vanov homology with integer coefficients is known to detect the unknot,
and its graded euler characteristic equals the normalized Jones polynomial,
VL(q)/(q+q−1) [K00, KM11].) Section 5 will use the decomposition of chain
groups CR(D) = CR,1(D) ⊕ CR,0(D) to adapt the operation of plumbing to
the context of Khovanov homology.

3. Further background

Recall the notions of blocks, zones, homogeneity, and adequacy from §1:
given a state x, construct its state graph Gx by collapsing state circles to
points, while retaining A- and B-labels on arcs. Cut components of Gx

correspond to blocks of x. A state x is adequate if Gx has no loops, and x
is homogeneous if no block contains both A- and B-type arcs. In general,
the subset xB ⊂ x is the union of all B-type crossing arcs and their incident
state circles; xA is defined analogously. In case x is homogeneous, xA and
xB are the respective unions of the A- and B-blocks of x, and the connected
components of xA and xB are called the A- and B-zones of x, respectively
(c.f. Figure 1).

3.1. Equivalences and traces. Define the equivalence relations ∼A, ∼B

on enhanced states to be generated by 1 ∼A
1 and

1 ∼B 1
, respectively,

so that X ∼A Y (resp. X ∼B Y ) iff X can be changed to Y by a sequence
of moves, each of which switches the labels on two state circles joined by an
A-type (resp. B-type) crossing arc. Let [X]A, [X]B denote the associated

equivalence classes. Note that [X]A, [X]B ⊂ Cix,jXR (x).

Proposition 3.1. If X enhances a homogeneous state, [X]A∩ [X]B = {X}.
Proof. Given a homogeneous state x, each circle of xA ∩ xB abuts at least
one A-zone and at least one B-zone. Assign heights to the circles of xA∩xB
as follows. A circle of xA ∩ xB has height 0 if it is the only circle of xA ∩ xB
in any of the zones it abuts; and recursively a circle of xA ∩ xB has height
n if its height is not less than n and if, in any of the incident zones of x, all
other circles of xA ∩ xB have height less than n.

Suppose X and Y both enhance x. If X ∼A Y , then X and Y must
be identical in x \ xA, and each A-zone of x must have equal numbers of
0-labeled circles in X and in Y . Likewise, if X ∼B Y , then X and Y are
identical in x \ xB, and each B-zone of x has equal numbers of 0-labeled
state circles in X and in Y . Hence, if Y ∈ [X]A ∩ [X]B, then X and Y are
identical in all of (x \ xA) ∪ (x \ xB) = x \ (xA ∩ xB) and have the same
number of 0-labeled state circles in each zone of x. This implies that X
and Y assign the same label to each circle of xA ∩ xB with height 0. That,
in turn, implies that X and Y also assign the same label to each circle of
xA ∩ xB with height 1. Continuing inductively completes the proof. �
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BA

Figure 4. Use crossing balls C =
⊔
Ct to embed a link and

its states’ circles in (S2 \ C) ∪ ∂C.

Let X be an enhancement of an arbitrary state, x. With coefficients in
F2, define the trace of X to be trF2X =

∑
Y∼AX Y . (The term is chosen in

rough analogy with the field trace.) To extend this notion to R = Z, suppose
every non-bipartite component of xA is either all-1 or all-0 in X. Then, for
each Y ∼A X, define sgn(X,Y ) to be 1 or −1 according to whether an even
or odd number of 1 ↔ 1 moves take X to Y . Define the trace over Z of
such an enhanced state X to be trZX =

∑
Y∼AX sgn(X,Y )Y . (The trace

trZX is undefined if there is a non-bipartite component of xA with both 0-
and 1-labels in X.) This notion of trace is generic to the main question in
the following sense:

Proposition 3.2. Over R = F2 (resp. R = Z), every cycle of the form
X ∈ CR(x) is an R-linear combination of traces, X =

∑
r krtrRXr, in which

every component of xA in each Xr is adequate and either all-1 or (bipartite)
with exactly one 0-label.

Proof. Recall the incidence rules for the differential (c.f. Figure 3). Suppose
that X0 enhances x, and that c is a crossing at which x has an A-type arc α.
Observe that (i) if α joins two state circles with opposite labels, then dcX0 =
dcXs for exactly two enhancementsXs of x, namelyX0 and the enhancement
obtained from X0 by reversing the labels on the two circles incident to α;
and (ii) if α joins two 0-labeled circles of X0 or joins the same circle of X0

to itself, then dcX0 6= 0 and dcX0 6= dcXs for any enhancement Xs 6= X0

of x. Deduce from (i) that any cycle X ∈ CR(x) is an R-linear combination
of traces. Deduce from (ii) that each component of xA is adequate with at
most one 0-label in each summand of X. �

3.2. State surfaces. Given a link diagram D on S2 ⊂ S3, embed the
underlying link L in S3 by inserting tiny, disjoint balls

⊔
Ct = C at the

crossing points ct and pushing the two arcs of D ∩ Ct to the hemispheres
of ∂Ct \ S2 indicated by the over-under information at ct [M84]. In this
setup, the states x of D correspond to the closed 1-manifolds S2 ∩ L ⊂
x′ ⊂ S2 ∩ (L ∪ ∂C): deleting the crossing arcs from x gives x′. Observe
that x′ ∪L is a trivalent spatial graph which intersects each ∂Ct in a circle.
Cap each such circle with a disk in Ct, called a crossing band, and cap the
components of x′ with disks whose interiors are disjoint from one another
and from S2∪C. The resulting unoriented surface Fx spans L, meaning that
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g:

Figure 5. A gluing map g : (S2, x)t (S2, y)→ (S2, z) for a
plumbing of states x ∗ y = z.

∂Fx = L, and is called a state surface from x. When L is a knot, its linking
number with a co-oriented pushoff L̂ in Fx is called the boundary slope of Fx

and equals 2ix. When L =
⊔

r Lr is an oriented link with components Lr,
2ix is the sum of the component-wise boundary slopes of Fx, which do not
depend on the orientation on L, and twice the link components’ pairwise
linking numbers, which do:

2ix =
∑
r

lk(Lr, L̂r) + 2
∑
r<s

lk(Lr, Ls).

3.3. Plumbing. In the context of 3-manifolds, plumbing, or Murasugi sum,
is an operation on states, links, and spanning surfaces [M63]. Plumbing two
states x, y simply involves gluing these states along a single state circle
in such a way that the resulting diagram is also a state, z. A plumbing
of states can be described externally by taking x and y to be states on
separate projection spheres and gluing them by a map g : (S2, x)t(S2, y)→
(S2, z) (c.f. Figure 5). Such a plumbing can also be described internally by
identifying x with g(x) and y with g(y), so that x and y are seen as subsets
of z, and writing x ∗ y = z. We will use the internal notion of plumbing
rather than the external notion, in order to simplify notion. Be careful,
though: unlike the free product for groups, plumbing is not a well-defined
binary operation on states. Rather, plumbing depends on a gluing map,
which the notation x ∗ y = z suppresses.

If x∗y = z is a plumbing of states, then there are associated plumbings
of link diagrams, Dx ∗Dy = Dz, and of the underlying links (c.f. Figure 6).
There is also an associated plumbing of state surfaces, Fx ∗Fy = Fz; here is
how this works. Let U be the disk that the state circle x ∩ y bounds in the
state surface Fz. There is a disk W on the opposite side of the projection
sphere S2 with W ∩ F = ∂W = ∂U . The sphere Q = U ∪W is transverse
to S2, but not to Fz: Q ∩ S2 = x ∩ y, Q ∩ Fz = U . Let Bx, By denote the
(closed) balls into which Q cuts S3, such that x ⊂ Bx, y ⊂ By. The surfaces
Fx := Fz ∩ Bx, Fy := Fz ∩ By are the state surfaces for x, y, respectively,
and plumbing these surfaces along Q produces Fx ∗ Fy = Fz.

For general interest, we briefly describe two notions of (de-)plumbing
for spanning surfaces. These notions are more general than the notion of
plumbing of states. The simplest reason is that some spanning surfaces (e.g.
any surface whose complement is not a handlebody) cannot be realized as
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Figure 6. Plumbings of link diagrams, states, and surfaces.

state surfaces. In general, characterizing all the ways to de-plumb a given
spanning surface is an interesting and difficult problem.

First, suppose F spans a link L ⊂ S3, and Q ⊂ S3 is a sphere which
intersects F (non-transversally) in a disk U = Q ∩ F . If B0, B1 are the
(closed) balls into which Q cuts S3 and F0 = B0 ∩ F , F1 = B1 ∩ F , so that
F0 ∩ F1 = F ∩B0 ∩B1 = F ∩Q = U , then the sphere Q is said to de-plumb
F as F = F0 ∗ F1.

A second notion of plumbing, which is better suited for iteration, views
a regular neighborhood of int(F ) in the link complement S3 \ L in terms of
a line bundle ρ : N → int(F ). Now F de-plumbs along a sphere Q which is
transverse in S3 to L and which intersects N in a disk U that is (the image
of) a local section of ρ. Denoting the balls into which Q cuts S3 by B0, B1,
the resulting plumbing factors are ρ(N ∩B0), ρ(N ∩B1).

4. Direct proof of the main theorem

Throughout this section, fix a homogeneously adequate state x of a link
diagram D.

Here is the plan. Propositions 4.1-4.3 will give two conditions on an en-
hancement X of x which together guarantee that trF2X represents a nonzero
class in Khovanov homology: each A-zone must contain at most one 0-
labeled circle, and each B-zone must contain at most one 1-labeled circle.
These conditions also suffice over R = Z when GxA is bipartite. The direct
proof of the main theorem will then explicitly construct enhancements X±

of x which satisfy these conditions.

Proposition 4.1. If X enhances x with at most one 0-labeled circle in
each A-zone, then d(trF2X) = 0. Further, if trZX is defined (i.e. if every
non-bipartite A-zone of x is all-1 in X), then d(trZX) = 0.

Proof. Let c be an arbitrary crossing of the link diagram D; it will suffice
to show that dc(trRX) = 0 for R = F2, and for R = Z if trZX is defined.
Assume that x has an A-type crossing arc at c, or else we are done. Partition
the enhanced states in [X]A as follows. Let one equivalence class consist
of all enhancements for which both state circles incident to c are labeled 1;



PLUMBING ESSENTIAL STATES IN KHOVANOV HOMOLOGY 11

dc(X
′) = 0 for each X ′ in this class. Partition any remaining enhanced states

in [X]A into pairs {Xs, Xs′} which are identical except with opposite labels
on the two state circles incident to c. For each such pair, dc(Xs) = dc(Xs′)
over both R = F2 and R = Z; also, sgn(X,Xs) = −sgn(X,Xs′) in case
R = Z. Conclude in both cases R = F2 and R = Z:

dc (trRX) =
∑

X′∈[X]A

sgn(X,X ′)dcX
′

=
∑

pairs {Xs, Xs′}

sgn(X,Xs) (dcXs − dcXs′) = 0. �

Proposition 4.2. If X enhances x so that no B-zone contains more than
one 1-labeled circle, then

ε ◦ π[X]B ◦ d : CR(D)→ 2R.

Proof. Let W be any enhanced state from D. If π[X]B ◦d(W ) 6= 0, then the
underlying state w of W must differ from x at precisely one crossing, c, at
which w must have an A-smoothing with one incident state circle. This circle
must be labeled 0 in W because each X ′ ∈ [X]B has at most one 1-labeled
circle in each component of xB. Thus, π[X]B ◦d(W ) = dc(W ) = ±(Xs+Xs′),
where Xs, Xs′ are identical except with opposite labels on the two state
circles of x incident to c. In particular, ε◦π[X]B ◦d(W ) = ±(1+1) ∈ 2R. �

Proposition 4.3. If X enhances x with at most one 0-labeled state cir-
cle in each A-zone and at most one 1-labeled state circle in each B-zone,
then trF2X represents a nonzero homology class. Further, if every A-zone
containing a 0-labeled circle in X is bipartite, then trZX also represents a
nonzero homology class.

Proof. Such trF2X, trZX are cycles by Proposition 4.1. If trRX were exact
over R = F2 or R = Z, say trRX = dW , then Propositions 3.1 and 4.2 would
imply that 2 is a unit in R:

1 = ε(X) = ε

 ∑
X′∈[X]A∩[X]B

sgn(X,X ′)X ′


= ε ◦ π[X]B (trRX) = ε ◦ π[X]B ◦ dW ∈ 2R. �

In particular, the chains described in §1 behave as advertised:

Corollary 4.4. Let x be an adequate, all-A state, and let y be an adequate,
all-B state. The all-1 enhancement of x represents a nonzero homology class
over both R = F2, Z, as does any enhancement of y with no more than one
1-labeled circle. Moreover, if X enhances x and has exactly one 0-labeled
circle, then trF2X always represents a nonzero homology class; the trace
trZX does too, if it is defined.
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Figure 7. Constructing X± ∈ CF2(x), as in the direct proof
of the main theorem.

Combining Propositions 4.1–4.3 proves the main theorem, which states
in part that Khovanov homology over F2 detects every homogeneously ad-
equate state x in two distinct gradings, (ix, jx ± 1), where:

jx = wD + ix + |©|xB
− |©|xA

−#(B-zones of x) + #(A-zones of x).

This proof and the one in §5 will establish the following, which is slightly
stronger than the version from §1.

Main theorem. If x is a homogeneously adequate state, then for any p ∈ x
away from crossing arcs, x has enhancements X− ∈ CR,1(x), X+ ∈ CR,0(x),
identical away from p, such that both trF2X

± represent nonzero classes in

Khix,jx±1F2
(x). If also GxA is bipartite, then both trZX

± represent nonzero

classes in Khix,jx±1Z (x).

Proof. Construct X± as follows (c.f. Figure 7). First, label the state circle
containing p: 1 for X−, 0 for X+. Second, for both X− and X+, label all
remaining state circles in the zone(s) containing p: 1 for any state circle in
an A-zone, 0 for B-. Repeat in this manner, progressing by adjacency of
zones until every circle of x is labeled: in each zone which abuts a labeled
one, label all remaining circles 1 or 0, according to the type (A- or B-,
respectively) of the zone.

The resulting enhancements X± are identical away from p and satisfy the
hypotheses of Proposition 4.3. Therefore, both of trF2X

± represent nonzero
homology classes, as do trZX

± if they are defined. �

5. Plumbing Khovanov chains

Following the main theorem’s geometric motivation, this section adapts
plumbing to Khovanov homology and develops this notion far enough to
obtain an inductive proof of the main theorem, extending the adequate all-
A and all-B cases (c.f. Corollary 4.4) to homogeneously adequate states
in general. The geometric motivation is this: a homogeneously adequate
state x is a plumbing of adequate all-A and all-B states, which Khovanov
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homology detects, and whose state surfaces are essential. Plumbing respects
the essentiality of these state surfaces; perhaps plumbing operates similarly
in Khovanov homology.

All results in §5, except the main theorem, pertain to plumbings of arbi-
trary states, not just homogeneously adequate ones.

5.1. Plumbing Khovanov chains. Let x∗y = z be a plumbing of states,
and let Dx∗Dy = Dz be the associated plumbing of link diagrams. Index the
crossings ctz of Dz so that the crossings from Dx precede those from Dy: let

ctz = ctx for 1 ≤ t ≤ | |x, and let ctz = c
t−| |x
y for 1 + | |x ≤ t ≤ | |x + | |y.

Likewise, index the state circles zr of z so that the state circles from x precede
the state circles from y: let zr = xr for 1 ≤ r ≤ |©|x, and let zr = yr+1−|©|x
for | © |x ≤ r ≤ |© |x + | © |y − 1. Note that z|©|x = x|©|x = y1 = x ∩ y.

With this indexing, let X, Y enhance x, y, and write X = qa1⊗· · ·⊗qa|©|x ,

Y = qb1 ⊗ · · · ⊗ qb|©|y , with each ar, br ∈ {0, 1} according to whether the
associated state circle is labeled 0 or 1, as in §2. Define the plumbing of
the chains X and Y (associated to the plumbing of states x ∗ y = z) to be
the enhancement of x ∗ y which matches X on the state circles from x and
which matches Y on those from y, if such an enhancement exists:

X∗Y =

{
qa1 ⊗ · · · ⊗ qa|©|x−1 ⊗ qb1 ⊗ qb2 ⊗ · · · ⊗ qb|©|y if a|©|x = b1,

undefined if a|©|x 6= b1.

Extend this plumbing of chains R-linearly to obtain the following isomor-
phism of R-modules:

∗ : (CR,1(x)⊗ CR,1(y))⊕ (CR,0(x)⊗ CR,0(y))→ CR(x ∗ y),

X ⊗ Y 7→ X ∗ Y.(2)

5.2. Differentials of plumbings. Let x ∗ y = z be a plumbing of states
with the indexing of crossings and state circles from §5.1, and let x′, y′ be
arbitrary states of the underlying link diagrams Dx, Dy. Whether or not
x′, y′ contain the state circle x∩y, let x′∗y denote the state of Dx ∗Dy = Dz

whose smoothings match those of x′ and y, and let x∗y′ denote the state of
Dz whose smoothings match those of x and y′. Note that x∗y′ is a plumbing
of x and y′ if and only if y′ ⊃ x ∩ y, and x′ ∗ y is a plumbing of x′ and y
if and only if x′ ⊃ x ∩ y. Regardless of whether these states are bona fide
plumbings, however, they are well-defined and will prove convenient.

Suppose further that X, X ′, Y , Y ′ respectively enhance the states x, x′,
y, y′. Define the left-trump plumbing X ′ ∗♦ Y and the right-trump plumbing

X∗♦Y ′ as follows: X ′ ∗♦ Y is the enhancement of x′∗y which assigns each

state circle of x′ the same label that X ′ does, and which assigns each state
circle of y—except possibly x∩ y, which need not be a state circle of x′ ∗ y—
the same label that Y does. Likewise, X∗♦Y ′ is the enhancement of x ∗ y′
which assigns each state circle of x, except possibly x ∩ y, the same label
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1
∗ 1 1 = 11

Figure 8. If x∗y is a plumbing of states and X ∈ CR(x),
Y ∈ CR(y) are cycles with X ∗ Y ∈ CR(x ∗ y), then X ∗ Y is
also a cycle (c.f. Proposition 5.1).

that X does, and which assigns each state circle of y′ the same label that
Y ′ does. That is, X ′ ∗♦ Y and X∗♦Y ′ are the respective enhancements of

x′ ∗ y and x ∗ y′ which match X ′, Y and X, Y ′ away from x∩ y; along x∩ y,
the labels from X ′ trump the labels from Y in X ′ ∗♦ Y , and the labels from

Y ′ trump those from X in X∗♦Y ′. Extending R-linearly gives R-module
homomorphisms:

∗♦ : CR(Dx)⊗ CR(y)→ CR (Dx∗Dy)

X ′ ⊗ Y 7→ X ′ ∗♦ Y,
(3)

∗♦ : CR(x)⊗ CR(Dy)→ CR (Dx∗Dy)

X ⊗ Y ′ 7→ X ∗♦ Y ′.
(4)

In general, neither map extends to all of CR(Dx)⊗ CR(Dy). In the simplest
case, however, it does (c.f. §5.6).

Proposition 5.1. If X∗Y enhances a plumbing of states x ∗ y, then d(X ∗
Y ) = dX ∗♦ Y + (−1)| |xX ∗♦ dY . In particular, if X and Y are cycles and
X ∗ Y is defined, then X ∗ Y is also a cycle.

Proof. Let Dx ∗Dy = Dz be the plumbing of link diagrams associated to
the plumbing of states x ∗ y = z. Index the crossings as in §5.1, and let
| |tz denote the number of crossings crz in Dz with r < t at which z has
an A-smoothing. Defining | |tx and | |ty analogously, note that | |tz = | |tx
when t ≤ | |Dx , and that

| |tz = | |x + | |t−| |Dx
y

when t > | |Dx . Thus:

d
(
X∗Y

)
=

| |Dx∑
t=1

(−1)| |
t
z dctz(X∗Y ) +

| |Dx+| |Dy∑
t=1+| |Dx

(−1)| |
t
z dctz

(
X∗Y

)

=

| |Dx∑
t=1

(−1)| |
t
x dctxX ∗♦ Y + (−1)| |x

| |Dy∑
s=1

(−1)| |
s
y X ∗♦ dcsyY

= dX ∗♦ Y + (−1)| |x X ∗♦ dY. �
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1 1 1 1 1

Figure 9. If x∗y is a plumbing of states and X, X ′, Y +Y ′

are cycles, with X,X ′ ∈ CR(x) identical away from x∩ y and
X ∗ Y + X ′ ∗ Y ′ ∈ CR(x ∗ y), then X ∗ Y + X ′ ∗ Y ′ is also a
cycle (c.f. Proposition 5.3).

In particular, if X ∗ Y enhances a plumbing of states x ∗ y, then with
coefficients in F2:

(5) d(X ∗ Y ) = dX ∗♦ Y +X ∗♦ dY.

5.3. Cycles. In the context of a plumbing x = x ∗ © of a state x with
the state © of the trivial diagram, let p be a point on the state circle
© ⊂ x and away from crossing arcs. Observe that two chains X ∈ CR,1(x),
X ′ ∈ CR,0(x) are identical away from p if and only if X ∗♦© = X ′, or

equivalently X ′ ∗♦©1 = X. Further:

Observation 5.2. If X,X ′ ∈ CR(x) are identical away from p, and if x∗y =
z is a plumbing of states with p ∈ x ∩ y, then X ∗♦ Y = X ′ ∗♦ Y for any
Y ∈ CR(Dy).

Proposition 5.3. If x∗y is a plumbing of states and X, X ′, Y + Y ′ are
cycles with X ∈ CR,1(x), X ′ ∈ CR,0(x) identical away from p ∈ x ∩ y and
Y ∈ CR,1(y), Y ′ ∈ CR,0(y), then X ∗ Y +X ′ ∗ Y ′ is also a cycle.

Proof. Observation 5.2 implies that X ∗♦ dY ′ = X ′ ∗♦ dY ′. This and
Proposition 5.1 yield:

d
(
X∗Y +X ′∗Y ′

)
= dX ∗♦ Y + dX ′ ∗♦ Y ′ + (−1)| |x

(
X ∗♦ dY +X ′ ∗♦ dY ′

)
= (−1)| |x

(
X ∗♦ dY +X ∗♦ dY ′

)
= (−1)| |x

(
X ∗♦ d(Y + Y ′)

)
= 0. �

Observation 5.4. Let x = x ∗© be a plumbing of a state x with the trivial
state ©. If ©∩ xA = ∅, so that the state circle © abuts no A-type arcs in
x, then for each X ∈ CR(x):

d(X∗♦©1 ) = dX∗♦©1 and d(X∗♦©) = dX∗♦©.

In particular, if X is a cycle with ©∩ xA = ∅, then X ∗♦ ©1 and X ∗♦©
are both cycles.

The point is that, because the state circle © ⊂ x is incident to no A-
type crossing arcs, every enhanced state W ∈ CR(Dx) with πRW ◦ dX 6= 0
contains © and assigns it the same label that X does.
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Proposition 5.5. Let z = x∗y be a plumbing of states in which x∩y ⊂ y\yA.
If X, Y enhance x, y such that both trRX and trRY are cycles and X ∗ Y
is defined, then trR(X ∗ Y ) is also a cycle.

Proof. Proposition 3.2 implies that each component of xA, yA is adequate
and has at most one 0-labeled circle in X, Y . Using the indexing from §5.1,
so that the state circles in z from x precede those from y, with x∩y = x|©|x =

y1, write X =
⊗|©|x

r=1 q
ar , Y =

⊗|©|y
r=1 q

br . Define Y ′ := 1 ⊗
⊗|©|y

r=2 q
br ,

Y ′′ := q ⊗
⊗|©|y

r=2 q
br , so that Y ′, Y ′′ are identical away from y1, and one

of Y ′, Y ′′ equals Y . Thus, one of trRY
′, trRY

′′ equals trRY , which is a
cycle. The assumption that x ∩ y ⊂ y \ yA further implies that trRY

′ and
trRY

′′ are both cycles, by Observation 5.4. Taking p to be a point on the
circle x ∩ y and away from crossing arcs, write trRX = X ′ + X ′′, where
X ′ ∈ CR,1(x) and X ′′ ∈ CR,0(x). Proposition 5.3 now implies that the chain
trR(X ∗ Y ) = X ′∗trRY ′ +X ′′∗trRY ′′ is a cycle, as claimed. �

5.4. Boundaries. Consider the following chains from Figure 2:

1
1 , 1 − 1 , ,

1
.

All four are closed; are they exact? The first three cannot be exact, because
their B-type crossing arcs, if there are any, join distinct 0-labeled circles
(c.f. Figure 3); this holds over both R = F2,Z. To see that X :=

1
is

not exact over R = F2,Z, consider the map ε ◦ π[X]B ◦ d : CR(D) → R. If
W is an enhanced state from D = with ε ◦ π[X]B ◦ d(W ) 6= 0, then W
is one of
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, and ε ◦ π[X]B ◦ d(W ) = 1 + 1 ∈ 2R. Together with the
homogeneity of and Proposition 3.1, this implies that X = trRX is not
exact:

Proposition 5.6. If X enhances a state x of a diagram D such that [X]A∩
[X]B = {X} (e.g. if x is homogeneous), and if ε ◦ π[X]B ◦ d : CR(D) → 2R

with 2R $ R, then trRX is not exact.

Proof. If trRX were exact, say trRX = dW , W ∈ CR(D), then, contrary
to assumption:

1 = ε(X) = ε ◦ π[X]B (trRX) = ε ◦ π[X]B ◦ d(W ) ∈ 2R. �

Thus, trRX = X =
1

is not exact because [X]A ∩ [X]B = {X} and
ε ◦ π[X]B ◦ d : CR(D)→ 2R. Plumbing respects homogeneity, which implies
the former property, by Proposition 3.1. The next proposition states that,
with an extra condition, plumbing also respects the latter property.

Proposition 5.7. Let x∗y = z be a plumbing of states with x∩ y ⊂ x \ xB.
If X, Y enhance x, y with ε ◦ π[X]B ◦ d : CR(Dx) → 2R, ε ◦ π[Y ]B ◦ d :
CR(Dy)→ 2R and X ∗ Y = Z, then ε ◦ π[Z]B ◦ d : CR(Dz)→ 2R.
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Proof. Observe the following consequence of the incidence rules for the
differential. Suppose W enhances a state w of a diagram D. Then ε ◦
π[W ]B ◦d : CR(D)→ 2R if and only if each component of wB is adequate and
contains at most one 1-labeled circle. The proposition follows immediately
from this observation. �

5.5. The main theorem via plumbing. Two examples will show how
plumbing is used to build up the main theorem’s homology classes. First,
with either R = F2 or R = Z, consider:

X1 = 1 , X2 = 1

1

1

, X3 = 1 .

Each of trRX1 = X1, trRX2 = X2, trRX3 = X3 −
1

is a cycle; also each

[Xr]A∩ [Xr]B = {Xr}, and ε◦π[Xr]B ◦d maps to 2R; Proposition 5.6 implies
that trRX1, trRX2, trRX3 represent nonzero homology classes. Propositions
5.5–5.7 further imply that

trR(X1 ∗X2) = X1 ∗X2 =
1

1
1

also represents a nonzero homology class, as does

trR (X1 ∗X2 ∗X3) = 1

1
1

1 − 1

1

1

1 .

While the previous example holds over both F2, Z, the next example works
over F2 only. Let

Y1 =
1

, Y2 =
1

1

, Y3 = 1 .

By the same reasoning as the last example, trF2Y1 = Y1, trF2Y2 = Y2 +
1

1 + 1

1
, and trF2Y3 = Y3 +

1

represent nonzero homology classes; so do

trF2(Y1 ∗ Y2) and trF2 (Y1 ∗ Y2 ∗ Y3), which respectively equal

1

1

1 + 1
1

1

+ 1

1

1

and

1

1

1
1

+ 1

11

1
+ 1

1

1

1

+ 1

1 1

1 + 1

1

1
1

+
1

11

1 .

Main theorem. If z is a homogeneously adequate state, then for any p ∈ z
away from crossing arcs, z has enhancements Z− ∈ CR,1(z), Z

+ ∈ CR,0(z),
identical away from p, such that both trF2Z

± represent nonzero classes in

Khiz ,jz±1F2
(z). If also GzA is bipartite, then both trZZ

± represent nonzero

classes in Khiz ,jz±1Z (z).
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Proof. For both R = F2,Z, we argue by induction on the number of zones
in z that z has enhancements Z+ ∈ CR,0(z), Z

− ∈ CR,1(z), identical away
from p, such that both traces trRZ

± are cycles, and 2R contains the images
of ε ◦ π[Z±]B ◦ d, implying that neither trRZ

± is exact, by Proposition 5.6.
When z has a single zone, it is adequate and either all-A or all-B, and

the theorem holds with Z± as described in the introduction, by Corollary
4.4. For the inductive step, de-plumb z = x ∗ y such that x ∩ y ⊂ xA ∩ yB
or x ∩ y ⊂ xB ∩ yA, i.e. such that the state circle x ∩ y is incident only to
A-type arcs in x and to B-type arcs in y, or vice versa. Both x and y have
fewer zones than z does.

If p ∈ x ∩ y, then apply the inductive hypothesis to x and y to obtain
X+ ∈ CR,0(x), X− ∈ CR,1(x), identical away from p, and Y + ∈ CR,0(y),
Y − ∈ CR,1(y), identical away from p, such that all four of trRX

±, trRY
±

are cycles, and such that 2R contains the images of all four of ε ◦π[X±]B ◦ d,

ε ◦ π[Y ±]B ◦ d. Let Z− := X−∗Y −, Z+ := X+∗Y +. Then Z− and Z+ are

identical away from p; trRZ
− and trRZ

+ are cycles by Proposition 5.5; and
2R contains the images of ε◦π[Z−]B ◦d and ε◦π[Z+]B ◦d by Proposition 5.7.

Assume instead that p /∈ x∩y; without loss of generality, p ∈ x\y. Apply
the inductive hypothesis to obtain X+ ∈ CR,0(x), X− ∈ CR,1(x), identical
away from p, such that trRX

± are cycles and 2R contains the images of
ε ◦ π[X±]B ◦ d. Let b be a point in x ∩ y away from crossing arcs. Apply

the inductive hypothesis to obtain Y + ∈ CR,0(y), Y − ∈ CR,1(y) (with the
subscript indicating the label at b), identical away from b, such that trRY

±

are cycles and 2R contains the images of both ε ◦ π[Y ±]B ◦ d. Since X± are

identical away from p, which is not on x∩y, X± assign the same label to the
circle x∩ y. If this label is 1, then let Z± := X± ∗Y −; if this label is 0, then
let Z± := X± ∗ Y +. Either way, Z± are identical away from p, trRZ

± are
cycles by Proposition 5.5, and 2R contains the images of both ε ◦ π[Z±]B ◦ d
by Proposition 5.7. �

5.6. Connect sums of chains. A state z is a connect sum z = x#y if
x, y ⊂ z are states intersecting in exactly one circle and there is a simple
closed curve γ ⊂ S2 which intersects z in two points, both of them on the
circle x ∩ y and away from crossing arcs, so that γ separates the crossing
arcs in y from those in x. If Dx, Dy, Dz are the underlying link diagrams
for x, y, z, then the connect sum x#y = z also gives connect sums of link
diagrams, Dx#Dy = Dz and of links, as well as a boundary-connect-sum of
the associated state surfaces Fx\Fy = Fz. (The Khovanov homology groups
for Dx#Dy = Dz can be described using a long-exact sequence [K00].)
Also, these three link diagrams can always be oriented coherently, so that
component-wise boundary slope is additive under \ and in particular ix+iy =
iz; this is not always possible for plumbings of states.

More importantly (for the purposes of plumbing), each state z′ of Dz

decomposes (along γ) as a connect sum z′ = x′#y′, where x′ is a state of
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Dx and y′ is a state of Dy, although the state circle x′∩y′ will not generally
equal x ∩ y. As noted in §5.2, this fact does not extend to plumbings of
states in general.

If Z ′ enhances z′ = x′#y′, then Z ′ restricts on x′, y′ to enhancements X ′,
Y ′, whose labels match at p: either both are 1 (in which case jZ = jX+jY +1)
or both are 0 (in which case jZ = jX + jY − 1). This extends (2), in the
case of connect sum x#y = z, to the following R-module isomorphism:

# : (CR,1(Dx)⊗ CR,1(Dy))⊕ (CR,0(Dx)⊗ CR,0(Dy))→ CR(Dx#Dy)

X ′ ⊗ Y ′ 7→ X ′#Y ′.
(6)

If X ∈ CF2,1(Dx) and Y ∈ CF2,1(Dy), then X#Y is defined and d(X#Y ) =
dX#Y + X#dY : this follows straight from the definition of the differ-
ential (c.f. Figure 3). Describing d(X#Y ) in case X ∈ CF2,0(Dx) and
Y ∈ CF2,0(Dy), however, requires connect sums in left-trumps #♦ and right-
trumps #♦.

These operations are defined analogously to ∗♦ and ∗♦, except taking the
domain to be all of CR(Dx)⊗ CR(Dy). This extension of domain is possible
because, with γ decomposing the connect sum of states z = x#y and link
diagrams Dz = Dx#Dy, γ decomposes any other state of Dz as z′ = x′#y′

such that x′ ∩ y′ consists of a single state circle. The maps (3) and (4) thus
extend in the case of connect sum to:

#♦ : CR(Dx)⊗ CR(Dy)→ CR (Dx#Dy)

X ′ ⊗ Y ′ 7→ X ′ #♦ Y ′,

#♦ : CR(Dx)⊗ CR(Dy)→ CR (Dx#Dy)

X ′ ⊗ Y ′ 7→ X ′#♦Y
′.

Proposition 5.1 further implies that whenever X#Y is defined,

(7) d(X#Y ) = dX #♦ Y + (−1)| |X X#♦dY.

Let ı : (CR,1(Dx)⊗ CR,1(Dy))⊕ (CR,0(Dx)⊗ CR,0(Dy)) ↪→ CR(Dx)⊗ CR(Dy)
denote inclusion and #−1 the inverse of the isomorphism from (6). With
coefficients in F2, (7) states that the following diagram commutes:

CF2(Dx#Dy) CF2(Dx#Dy)

CF2(Dx)⊗ CF2(Dy)

d

ı ◦#−1 #♦ ◦ (1⊗ d) + #♦ ◦ (d⊗ 1)

Compare this with the case of plumbing in general, where a similar natural
property holds, albeit on a more restricted domain. Namely, let x ∗ y be a
plumbing of states, with Dx ∗Dy the associated plumbing of link diagrams,



20 THOMAS KINDRED

X =
1

1 1 D =

B =

{
1

1 1

,

1

1

1
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1 1
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1 1
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1 1

1

}

Figure 10. Over F2, this enhancement X of an inessential
state x of D represents a nonzero homology class, since dX =

0 and ε ◦ πB ◦ d ≡ 0, where B is an F2-basis for Cix,jXF2
(D).

and let S denote the collection of states from Dx ∗ Dy that contain the
state circle x ∩ y. Thus, each z ∈ S decomposes as a plumbing of states
z = x′ ∗ y′ where x′, y′ are states of Dx, Dy with x ∩ y = x′ ∩ y′. Also
let ı : (CR,1(Dx) ⊗ CR,1(Dy)) ⊕ (CR,0(Dx) ⊗ CR,0(Dy)) ↪→ CR(Dx) ⊗ CR(Dy)
denote inclusion and ∗−1 the inverse of the isomorphism from (2). With
coefficients in F2, (5) states that the following diagram commutes:⊕

z∈S CF2(z) CF2(Dx ∗Dy)

CF2(Dx)⊗ CF2(Dy)

d

ı ◦ ∗−1 ∗♦ ◦ (1⊗ d) + ∗♦ ◦(d⊗ 1)

6. Remarks and questions

A state x need not be essential in order for CF2(x) to contain a (represen-
tative of a) nonzero homology class; indeed, x need not even be adequate.
Consider two examples. First, for the trivial diagram of two components,
©©, the homology groups are

Kh0,−2F2
= F2·©1 ©1 , Kh0,0F2

= (F2 · ©1 ©)⊕(F2 · ©©1 ) , Kh0,2F2
= F2·©©.

Now perform a Reidemeister-2 move to get the connected diagram . Each
of the four homology generators can still be taken to be the trace of an
enhancement of a single state, namely or . Yet, these states are not
essential, since their state surfaces are connected and span a split link.

Second, consider the state x = from D = , with X = 1

1 1

(c.f. Figure 10). This enhanced state X is a cycle with any coefficients.

Moreover, taking B to be an F2-basis for Cix,jXF2
(D), the map ε ◦ πB ◦ d is

identically zero. Thus, X represents a nonzero homology class in Khix,jXF2
(D),

even though it enhances an inessential Kauffman state x.
Next, here is an idea for extending the main theorem: establish a class

of essential checkerboard states which represent nonzero Khovanov homol-
ogy classes in two distinct j-gradings, say over F2, and seek to extend by
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1

11 − 1

1

1

− 1

1

1 + 1

1

1 ,
1

1

1

1

Figure 11. Doubling crossings yields essential states whose
behavior is less obvious than in the adequate case, even in
the case of the two cycles shown above-right.

plumbing. The easiest class of essential checkerboard states consists of those
which are reduced and alternating; plumbing these gives the homogeneously
adequate states. To construct another class of essential checkerboard states,
consider any non-alternating link diagram D which admits no (n, 0)-pass
moves [HTW98]. This means that, whenever α ⊂ D is a smooth arc whose
endpoints are away from crossings and whose interior contains n overpasses
and no underpasses, or vice versa, every arc β ⊂ S2 with the same endpoints
as α intersects D in its interior. Construct either checkerboard surface F
for D, and replace each of its half-twist crossing bands with a band that has
(at least) a full twist in the same sense.

The resulting link diagram D′ has twice as many crossings as D, and
the resulting surface F ′ is an essential, two-sided checkerboard surface with
the same euler characteristic as F . (To prove essentiality, use Menasco’s
crossing ball structures, hypothesize a compressing disk ∆ for F ′ which
intersects the crossing ball structure minimally, characterize the outermost
disks of ∆ \ (S2 ∪ C), and observe that the only viable configuration for a
height one component of ∆ ∩ (S2 ∪ C) implies that D admitted an (n, 0)-
pass move, contrary to assumption.) Does Khovanov homology detect the
essential checkerboard states from this construction?

The simplest non-alternating diagram admitting no (n, 0)-pass moves is
a 4-crossing diagram of the trefoil. Following Figure 11, construct an 8-
crossing diagram D from this one in the manner just described, and consider
the traces of two enhancements of the state x = : X =

1

11 and Y =
1

1

1

1 ,
with trRX =

1

11 − 1

1

1
− 1

1

1 + 1

1

1 and trRY = Y .
Both traces are cycles over R = F2 and R = Z, but exactness is not so

easy. We have seen, when considering the exactness of a cycle trRZ from
an enhancement Z of a homogeneously adequate state z of a link diagram
D, that it suffices to consider π[Z]B ◦ d, rather than, say, the entire map

d : Ciz−1,jZF2
(D) → Ciz ,jZF2

(D). In this example, although the map πCZ(x) ◦ d
carries enough information to prove that trZX is not exact, testing trF2X
and Y (over F2 and Z) for exactness is more complicated, especially com-
pared to the paper-and-pencil complexity of the methods that suffice in
the homogeneously adequate case. We conclude by posing three questions.
(Question 6.3 is quite similar to [FKP13, Question 10.10]; also see [FKP14,
Remark 1.5].)

Question 6.1. If x is an essential state, does CF2(x) always contain a
nonzero homology class?
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Question 6.2. Is there a general method for distinguishing those Khovanov
homology classes that correspond to essential states from those that do not?

Question 6.3. Does every link have a diagram with an essential state? A
homogeneously adequate state?
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