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Abstract. We establish a new correspondence between ab-
stract link diagrams, cellularly embedded link diagrams on closed
surfaces, and equivalence classes of virtual link diagrams. This
is analogous to a well-known correspondence among the links
represented by these diagrams, but with a crucial subtlety.

A virtual link diagram is the image of an immersion
⊔
S1 → S2

in which all self-intersections are transverse double-points, some of
which are labeled with over-under information. These labeled points
are called classical crossings, and the other double-points are called
virtual crossings. Traditionally, virtual crossings are marked with
a circle, as in Figure 1. A virtual link is an equivalence class of
such diagrams under generalized Reidemeister moves (“R-moves”),
as shown in Figure 1. There are seven types of such moves, the three
classical moves and four virtual moves.1

An abstract link diagram (S,G) consists of a 4-valent graph G
embedded in a compact orientable surface S, such that G has over-
under information at each vertex, and G is a deformation retract of
S. An abstract link is an equivalence class of such diagrams under
the following equivalence relation ∼: (S1, G1) ∼ (S2, G2) if there are
embeddings φi : Si → S, i = 1, 2, into a surface S, such that φ1(G1)
and φ2(G2) are related by classical R-moves on S.

Suppose Σ is a closed orientable surface and L is a link in the
thickened surface. The pair (Σ, L) is stabilized if, for some simple
closed curve γ ⊂ Σ, L can be isotoped so that it intersects each
component of (Σ × I) \ (γ × I) but not the annulus γ × I; one can
then destabilize the pair (Σ, L) by cutting Σ × I along γ × I and
attaching two 3-dimensional 2-handles in the natural way; the reverse
operation is called stabilization. Equivalently, (Σ, L) is nonstabilized
if every diagram D of L on Σ is cellularly embedded, meaning that D
cuts Σ into disks.

By work of Kauffman [Ka98], Kamada–Kamada [KK00], and Carter–
Kamada–Saito [CKS02], there is a triple bijective correspondence be-
tween (1) virtual links, (2) abstract links, and (3) stable equivalence
classes of links in thickened surfaces. The purpose of this note is

1The move involving two virtual crossings and one classical crossing is some-
times called a mixed move, but we include it as a virtual (non-classical) move.
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Figure 1. Classical (top) and virtual (bottom) Rei-
demeister moves, up to mirror symmetry

to establish a new correspondence between the associated diagrams.
This enables the author to adapt and prove Tait’s flyping conjecture
for virtual links in [Ki23v]. It also leads to a new diagrammatic proof
of the older, well-known correspondence. Nothing here will be partic-
ularly difficult, but there is a hidden subtlety, which is fundamental
to understanding both correspondences and which, to the author’s
knowledge, has not previously been observed in the literature. See
Theorem 5, Remark 6, and Example 7.

Notation 1. Given a virtual link diagram V ⊂ S2, let [V ] denote
the set of all virtual diagrams related to V by planar isotopy and
virtual R-moves.

Our main result is the following correspondence:

Theorem 2. The following define a triple bijective correspondence
between (1) equivalence classes [V ] of virtual link diagrams, (2) ab-
stract link diagrams (up to pairwise homeomorphism (S,G)→ (S′, G′)
that respects crossing information), and (3) cellularly embedded link
diagrams on closed surfaces (up to pairwise homeomorphism (Σ, D)→
(Σ′, D′) that respects crossing information):

1→ 2 : Given an equivalence class [V ] of virtual link diagrams, choose
a representative diagram V ⊂ S2, and construct an abstract
link diagram as follows. First, take a regular neighborhood
νV of V in S2. Second, embed S2 in S3 and modify νV near
each virtual crossing of V as shown in Figure 2. Third, view
the resulting pair abstractly, forgetting the embedding in S3.

2→ 3 : Given an abstract link diagram (S,G), cap off each compo-
nent of ∂S with a disk to obtain a cellularly embedded link
diagram on a closed surface.

To confirm the bijectivity of this correspondence, we will use las-
sos, which are introduced and more fully explored in [Ki23b]:

Definition 3. A lasso for a link diagram D on a closed surface Σ is
a disk X ⊂ Σ that intersects D generically and contains all crossings
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or

Figure 2. Converting the neighborhood of a virtual
link diagram to an abstract link diagram

of D. A lasso for a virtual link diagram V ⊂ S2 is a disk X ⊂ S2

that intersects D generically and contains all classical crossings of
D but no virtual crossings; call V ∩X and V \\X respectively the
classical and virtual parts of V (with respect to X).

Proof of Theorem 2. We first describe the reverse constructions (3)→
(2) and (2) → (1). The former is easy: given a link diagram D on
a closed surface Σ, take a regular neighborhood νD of D in Σ; the
pair (νD,D) is the associated abstract link diagram.

For (2) → (1), consider an abstract link diagram (S,G). View

S3 = (S2×R)∪{±∞}, denote Ŝ3 = S3\{±∞}, and denote projection

π : Ŝ3 → S2. Choose any embedding φ : S → Ŝ3 such that π|φ(S) has
no critical points and all self-intersections in π ◦ φ(G) are transverse
double-points with neighborhoods as suggested in Figure 2. Now
take the 4-valent graph π ◦ φ(G) ⊂ S2, and, for each crossing point
c of G, label the double-point π ◦ φ(c) with the matching over-under
information. (Thus, the double points of V coming from the crossings
of D comprise the classical crossings of V , and the remaining double-
points comprise the virtual crossings.) See Figure 3.

It remains to justify that this triple correspondence is indeed bi-
jective. For (2)↔ (3), this is immediate.

For (1)↔ (2), note that in the construction (1)→ (2), the pairwise
homeomorphism type of the resulting abstract link diagram is well-
defined and is unchanged by virtual R-moves on V . It thus remains

only to show that the choice of embedding φ : S → Ŝ3 described
above for (2) → (1) does not affect the equivalence class [V ] of the
resulting virtual diagram V .

Choose a spanning tree T for G, and take a regular neighborhood

U of G in S. Now take two embeddings φi : S → Ŝ3, i = 1, 2, as
described for (2) → (1). Construct φ1 such that π ◦ φ1(U) contains
all classical crossings of the virtual diagram V1 = π ◦ φ1(G) and
no classical crossings2. Then the disk π ◦ φ2(U) ⊂ S2 is a lasso
for the virtual diagram V2 = π ◦ φ2(G), and π ◦ φ2 restricts to a
pairwise homeomorphism of (U,G ∩ U). Let φ2 be arbitrary, and
denote the virtual diagram V2 = π ◦ φ2(G). Also denote π ◦ φi = fi
and fi(U) = Ui for i = 1, 2.

2That is, construct φ1 so that π−1 ◦ π ◦ φ1(U) ∩ φ1(G) = φ1(G ∩ U).
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Figure 3. A link diagram on the torus and a corre-
sponding virtual diagram

It will suffice to show that V1 and V2 are related by virtual R-
moves. If U2 ∩ f2(G \ U) = ∅, then U2 is a lasso for V2, and the
classical parts of V2 and V1 match, as do the combinatorics of the
virtual parts, and so V2 and V1 are related by virtual R-moves.

Assume instead that U2 ∩ f2(G \ U) 6= ∅. Consider any (smooth)
arc α of U2 ∩ f2(G \ U) in U2. Note that α contains no classical
crossings. Denote one of the disks of U2 \\f2(G \ U) by U ′

2. Then
∂U ′

2 = α ∪ β for some arc β ⊂ ∂U2 \\f2(G \U). Since α contains no
classical crossings, there is a virtual pass move, as shown in Figure 4,
which takes α through U ′

2 past β; such a move can be performed via
a sequence of virtual R-moves, since α contains no virtual crossings.

Perform such virtual pass moves successively on the arcs of U2 ∩
f2(G \ U) until U2 ∩ f2(G \ U) = ∅. Then U2 is a lasso for the
resulting diagram, whose classical part matches that of V1; the com-
binatorics of the virtual parts of these diagrams also match, and so
these diagrams are related by virtual R-moves, as therefore are V1

and V2. �

This gives a new diagrammatic perspective on a well-known cor-
respondence:

Theorem 4 ([Ka98, KK00, CKS02]). There is a triple bijective cor-
respondence between (1) virtual links, (2) abstract links, and (3) sta-
ble equivalence classes of links in thickened surfaces. Namely, choose
any representative diagram and apply the diagrammatic correspon-
dence from Theorem 2.

There is an important caveat in correspondences described in The-
orems 2 and 4 which is worth noting explicitly. Namely, recall the
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Figure 4. A virtual pass move; the red arc on the
left may also contain virtual crossings with itself.

requirement in part (2)→ (1) of the proof of Theorem 2 that π|φ(S)

must have no critical points. This ensures that φ(S) has no “back
side.” If one wishes to construct a virtual link diagram directly from
diagram D on a closed surface Σ, however, this is too much to re-
quire, any embedding of Σ will have a front and a back: given an

embedding φ : Σ → Ŝ3, a regular point of π|φ(Σ) lies on the front
or back of φ(Σ) depending on whether an even or odd number of
points of φ(Σ) lie directly above it. The salient point is that one
must choose an embedding φ of Σ under which all crossings of D lie
on the front of φ(Σ):

Theorem 5. There is a bijective correspondence between (1) equiva-
lence classes [V ] of virtual diagrams and (2) cellularly embedded link
diagrams (Σ, D) up to pairwise homeomorphism. Namely:

(1)→ (2) Given [V ], choose a representative V ⊂ S2, take a regular
neighborhood νV of V in S2, modify νV near each virtual
crossing of V as shown in Figure 2, and (abstractly) cap off
each boundary component of the resulting surface with a disk.

(2)→ (1) Given (Σ, D), choose any embedding φ : Σ→ Ŝ3 such that (i)
for each crossing point c ∈ D, φ(c) lies on the front of Σ and
(ii) all self-intersections in π ◦ φ(G) are transverse double-
points. Then let V = π ◦ φ(D), with over-under information
matching D.

Remark 6. The requirement in Theorem 5 that all crossings lie on the

front of φ(Σ) is necessary; otherwise, different embeddings Σ → Ŝ3

may yield distinct virtual links. See Example 7.

Example 7. Let D be a minimal diagram of the RH trefoil on a

2-sphere Σ, and embed Σ in Ŝ3 such that the critical locus of π|Σ
is a simple closed curve and D lies entirely on the front of Σ. The
corresponding virtual diagram V is also a minimal diagram of the
classical RH trefoil. Now isotope D on Σ as shown in Figure 5, so
that a crossing passes across the critical circle of π|Σ. Denote the
resulting diagram on Σ by D′. The virtual diagram V ′ = π ◦ φ(D′)
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D D′D′′

Figure 5. Given D ⊂ Σ, one obtains V ⊂ S2 by
embedding Σ in S3 and projecting, but all crossings
of D must remain on the front of Σ.

represents the virtual knot 3.5, which is distinct from the classical
RH trefoil [Ka98], even though D and D′ are isotopic on Σ.

Interestingly, the virtual knot 3.5 has the same Jones polynomial
as the RH trefoil, but the two can be distinguished using the in-
volutory quandle, also called the fundamental quandle. Indeed, by
Lemma 5 of [Ka98], the virtual knot 3.5 has the same involutory
quandle as the unknot, which is distinct from that of the RH trefoil,
since the former is trivial and the latter is not [Jo82].

We note too that the diagram D′′ in Figure 5 represents the virtual
knot 3.7, which has trivial Jones polynomial.

We close by noting a consequence of Theorem 2 and Kuperberg’s
Theorem. Recall:

Theorem 8 (Theorem 1 of [Ku03]). If (Σ, L) and (Σ′, L′) are stably
equivalent and nonstabilized, then there is a pairwise homeomorphism
(Σ× I, L)→ (Σ′ × I, L′).

Given a virtual diagram V of, say, a nonsplit virtual link, one may
define the genus g(V ) to be the genus g(Σ), where (Σ, D) corresponds
to [V ] under Theorem 2. Note that g([V ]) is well-defined. Say that
V has minimal genus if g(V ) ≤ g(V ′) for all diagrams V ′ of the same
virtual link. In general, given diagrams V and V ′ of the same link, it
is possible that all sequences V = V0 → · · · → Vn = V ′ have some Vi
with g(Vi) � max{g(V ), g(V ′)}. A priori, this seems plausible even
when V and V ′ have minimal genus, but:
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Corollary 9. All minimal genus diagrams of a nonsplit virtual link
are related by minimal-genus-preserving generalized R-moves.

Proof. Let V and V ′ be two such virtual diagrams, let (Σ, D) and
(Σ′, D′) be the diagrams corresponding to [V ], [V ′] under Theorem
2, and let L ⊂ Σ×I and L′ ⊂ Σ′×I be the links they represent. The
minimal genus condition ensures that L and L′ are nonstabilized, so
by Kuperberg’s Theorem there is a pairwise homeomorphism (Σ ×
I, L)→ (Σ′× I, L′). Therefore, there is a sequence D = D0 → · · · →
Dn of R-Moves on Σ such that there is a pairwise homeomorphism
(Σ, Dn)→ (Σ′, D′). Applying Theorem 2 to the sequence (Σ, D0)→
· · · → (Σ, Dn) gives a sequence [V ] = [V0]→ · · · → [Vn] = [V ′] where
each g([Vi]) is minimal and each pair [Vi], [Vi+1] have representatives
that differ by a single classical R-move; refining this sequence with
virtual R-moves gives the desired sequence of generalized R-moves
taking V to V ′. �
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