THE VIRTUAL FLYPING THEOREM

THOMAS KINDRED

Abstract

We extend the flyping theorem to alternating links in thickened surfaces and alternating virtual links. The proofs use recent results of Boden and Karimi to adapt the author's geometric proof of Tait's 1898 flyping conjecture (first proved in 1993 by Menasco-Thistlethwaite). Technical aspects of the proofs also rely on results from three companion papers of the author regarding virtual links: one paper addresses two common but distinct notions of primeness, one addresses a strengthened notion of incompressibility of spanning surfaces, and one establishes a new diagrammatic correspondence.

1. Introduction

P.G. Tait asserted in 1898 that all reduced alternating diagrams of a given prime nonsplit link in S^{3} minimize crossings, have equal writhe, and are related by flype moves (see Figure 1) [Ta1898]. The first proofs came almost a century later, and all involved the Jones polynomial [Ka87, Mu87, Mu87ii, Th87, MT91, MT93]. In 2017, Greene gave the first purely geometric proof of part of the classical Tait conjectures [Gr17], and in 2020, the author gave the first purely geometric proof of Tait's flyping conjecture [Ki23].

Recently, Boden, Chrisman, Karimi, and Sikora extended much of this to alternating links in thickened surfaces. First, using generalizations of the Kauffman bracket, Boden-Karimi-Sikora proved that Tait's first two conjectures hold for alternating links in thickened surfaces [BK18, BKS19.] Second, Boden-Chrisman-Karimi extended the Gordon-Litherland pairing to spanning surfaces in thickened surfaces BCK21. Third, Boden-Karimi applied this pairing to extend Greene's characterization of classical alternating links to links L in thickened surfaces $\Sigma \times I$, proving that L bounds connected definite surfaces of opposite signs if and only if L is alternating and $(\Sigma \times I, L)$ is nonstabilized (BK22]. ${ }^{2}$

[^0]

Figure 1. A flype along an annulus $A=\nu \gamma \subset \Sigma$.
The first main result of this paper combines and adapts several of these recent developments to prove that the flyping theorem extends to alternating links in (nonstabilized) thickened surfaces.

Theorem 3.5. Let $D \subset \Sigma$ be a weakly prime, fully alternating diagram of a link L in a thickened surface $\Sigma \times I$.Then any other such diagram of L is related to D by flypes on Σ.

The approach is parallel to that in Ki23, and indeed most of the arguments translate directly. For some, which we mark with the symbol II, the statements and proof hold without further comment. Appendix A lists pertinent cross-referencing information for these and other results marked with the symbol Υ. The upshot is a geometric proof of Theorem 3.5 and other generalized Tait conjectures:
Theorem 3.3 (Part of Tait's extended first conjecture [BK18, BKS19]). If $D, D^{\prime} \subset \Sigma$ are alternating diagrams of a link $L \subset \Sigma \times I$, neither containing removable nugatory crossings, then D and D^{\prime} have the same number of crossings.
Theorem 3.6 (Tait's extended second conjecture BK18, BKS19]). All weakly prime, fully alternating diagrams of a given link $L \subset \Sigma \times I$ have the same writhe.

Section 4 uses a new diagrammatic correspondence, introduced in [Ki23d, to extend Theorems 3.3. 3.5, and 3.6 to virtual links:
Theorem 4.8. Any two weakly prime, alternating virtual diagram $\underbrace{3}$ of a given virtual link \widetilde{L} are related by virtual (non-classical) Reidemeister moves and classical flypes ${ }^{4}$

We then obtain two corollaries. The first adapts Theorems 3.3 and 3.6 to virtual diagrams:

Theorem 4.9. All weakly prime, alternating diagrams of a given virtual link have the same crossing number and writhe.

[^1]Corollary 4.10. Given any two non-classical, weakly prime, alternating virtual links V_{1} and V_{2}, there are infinitely many distinct virtual links that decompose as a connect sum of V_{1} and V_{2}.

Before all this, in $\$ 2$, we introduce the required background regarding links in thickened surfaces. Some of this reviews the existing literature, some of it is new, and much of it is somewhere in between. For example, a few new results follow entirely from careful reading of the existing literature.

2. Links and spanning surfaces in thickened surfaces

Convention 2.1. Throughout, Σ is a connected, closed, orientable surface with genus $g(\Sigma)>0.5$ We denote the intervals $[-1,1]$ and $[0,1]$ by I and I_{+}, respectively. In $\Sigma \times I$, we identify Σ with $\Sigma \times\{0\}$ and denote $\Sigma \times\{ \pm 1\}=\Sigma_{ \pm}$. For a pair (Σ, L) or $(\Sigma \times I, L), L$ is a link in $\Sigma \times I$, and for a pair $(\Sigma, D), D$ is a link diagram on Σ.
2.1. Alternating links in thickened surfaces. A pair (Σ, L) is stabilized if, for some circle ${ }^{6} \gamma \subset \Sigma, L$ can be isotoped so that it intersects each component of $(\Sigma \times I) \backslash(\gamma \times I)$ but not the annulus $\gamma \times I$; one can then destabilize the pair (Σ, L) by cutting $\Sigma \times I$ along $\gamma \times I$ and attaching two 3 -dimensional 2 -handles in the natural way (this may disconnect Σ); the reverse operation is called stabilization. Equivalently, (Σ, L) is nonstabilized if every diagram D of L on Σ is cellularly embedded, meaning that D cuts Σ into disks.

A pair (Σ, L) is split if L has a disconnected diagram on Σ. Note that if (Σ, L) is split then it is also stabilized (as we assume that Σ is connected). The converse is false. In fact, the number of split components is an invariant of stable equivalence classes.

Kuperberg's Theorem states that the stable equivalence class of (Σ, L) contains a unique nonstabilized representative; this implies that when (Σ, L) is nonsplit, (Σ, L) is nonstabilized if and only if Σ has minimal genus in this stable equivalence class.

Theorem 2.2 (Theorem 1 of [?]). If (Σ, L) and $\left(\Sigma^{\prime} \times I, L^{\prime}\right)$ are stably equivalent and nonstabilized, then there is a pairwise homeomorphism $(\Sigma \times I, L) \rightarrow\left(\Sigma^{\prime} \times I, L^{\prime}\right)$.

If L is nonsplit and $g(\Sigma)>0$, then $(\Sigma \times I) \backslash L$ is irreducible, as $\Sigma \times I$ is always irreducible, since its universal cover is $\mathbb{R}^{2} \times\left.\mathbb{R}\right|^{7}$ The converse of this, too, is false 8_{8}^{8} due to the next observation, which follows from a standard innermost circle argument:

[^2]Observation 2.3. If $\left(\Sigma_{i} \times I\right) \backslash L_{i}$ is irreducible for $i=1,2$ and $\Sigma=\Sigma_{1} \#_{\gamma} \Sigma_{2}$ with $L=L_{1} \sqcup L_{2} \subset \Sigma \times I$, where the annulus $A=\gamma \times I$ separates L_{1} from L_{2} in $\Sigma \times I$, then $(\Sigma \times I) \backslash L$ is irreducible.

We call (Σ, D) cellularly embedded if D cuts Σ into disks and fully alternating if it is alternating and cellularly embedded. We will use this result of Boden-Karimi and the generalization that follows:

Fact 2.4 (Corollary 3.6 of BK22]). If (Σ, L) has a fully alternating diagram, then (Σ, L) is nonsplit and nonstabilized.

Corollary 2.5. Suppose (Σ, L) has an alternating diagram $D \subset \Sigma$. Then (Σ, L) is nonsplit if and only if D is connected, and (Σ, L) is nonstabilized if and only if D is cellularly embedded.

We call (Σ, D) prime if any pairwise connect sum decomposition $(\Sigma, D)=\left(\Sigma_{1}, D_{1}\right) \#\left(\Sigma_{2}, D_{2}\right)$ has $\left(\Sigma_{i}, D_{i}\right)=\left(S^{2}, \bigcirc\right)$ for either $i=$ 1, 2. Likewise, we call (Σ, L) prime if any every pairwise connect sum decomposition $(\Sigma, L)=\left(\Sigma_{1}, L_{1}\right) \#\left(\Sigma_{2}, L_{2}\right)^{9}$ is trivial: $\left(\Sigma_{i}, L_{i}\right)=$ $\left(S^{2}, \bigcirc\right)$ for either $i=1,2$. Thus, (Σ, L) is prime if and only if, whenever $\gamma \subset \Sigma$ is a separating curve and L is isotoped to intersect the annulus $\gamma \times I$ in two points, γ bounds a disk $X \subset \Sigma$ such that L intersects $X \times I$ in a single unknotted arc. Note that if (Σ, D) is prime then D is connected, and if (Σ, L) is prime then it is nonsplit.

Following Howie-Purcell, we also call (Σ, D) weakly prime if, for every pairwise connect sum decomposition $(\Sigma, D)=\left(\Sigma, D_{1}\right) \#\left(S^{2}, D_{2}\right)$, either $D_{2}=\bigcirc$ is the trivial diagram of the unknot or $\left(\Sigma, D_{1}\right)=$ $\left(S^{2}, \bigcirc\right)$ HP20], and we call (Σ, L) weakly prime if, for every pairwise connect sum decomposition $(\Sigma, L)=\left(\Sigma, L_{1}\right) \#\left(S^{2}, L_{2}\right)$, either $L_{2}=\bigcirc$ is the unknot or $\left(\Sigma, L_{1}\right)=\left(S^{2}, \bigcirc\right)$ HP20. ${ }^{10}$

As in the classical case [Me84], certain diagrammatic conditions constrain an alternating link L as one might wish:

Theorem 2.6 ($(\widehat{\mathrm{Oz} 06}, \overline{\mathrm{BK} 22}$, Aetal19, Ki23b] $)$. If $D \subset \Sigma$ is a fully alternating diagram of a link $L \subset \Sigma \times I$, then L is (i) nullhomologous over $\mathbb{Z} / 2$ and (ii) nonsplit; in particular, $(\Sigma \times I) \backslash L$ is irreducible if $g(\Sigma)>0$. Moreover, (iii) if (Σ, D) is weakly prime, then (Σ, L) is weakly prime, and (iv) if (Σ, D) is prime, then (Σ, L) is prime.

Parts (i) and (ii) were proven by Ozawa in Oz06] and by BodenKarimi in BK22. Part (iii) was proven by Adams et al in Aetal19.
$\Sigma=\left(\Sigma_{1} \backslash \operatorname{int}\left(X_{1}\right)\right) \cup\left(\Sigma_{2} \backslash \operatorname{int}\left(X_{2}\right)\right)=\Sigma_{1} \# \Sigma_{2}$. Let $L=L_{1} \sqcup L_{2} \subset \Sigma \times I$. Then (Σ, L) is split. Yet, $(\Sigma \times I) \backslash L$ is irreducible by Observation 2.3 .
${ }^{9}$ This pairwise connect sum is sometimes called an annular connect sum.
${ }^{10}$ A third notion of primeness for D on Σ also appears in the literature: Ozawa calls (Σ, D) strongly prime if every circle on Σ (not necessarily separating) that intersects D in two generic points also bounds a disk in Σ which contains no crossings of D Oz06.

Part (iv) is one of the main results of Ki23b, where we also give new proofs of (i)-(iii).
2.1.1. End-essential spanning surfaces. Part (i) of Theorem $2.6 \mathrm{im}-$ plies that L has spanning surfaces: embedded, unoriented, compact surfaces $F \subset \Sigma \times I$ with $\partial F=L$; while we do not require F to be connected, we do require that each component of F has nonempty boundary. By deleting the interior of a regular neighborhood of L from F and $\Sigma \times I$, one may instead view F as a properly embedded surface in the link exterior $(\Sigma \times I) \backslash \grave{\nu} L^{11} \|^{[2]}$ We take this view throughout, except in Definition 2.7, Note 19, and \$2.3.1.

If (Σ, D) is a fully alternating diagram of (Σ, L), then it is possible to orient each disk of $\Sigma \backslash D$ so that, under the resulting boundary orientation, over- and under-strands are oriented respectively toward and away from crossings. Since Σ is orientable, these orientations determine a checkerboard coloring of $\Sigma \backslash \backslash D{ }^{13}$ i.e. a way of shading the disks of $\Sigma \backslash \backslash D$ black and white so that regions of the same shade abut only at crossings. ${ }^{14}$ One can use this checkerboard coloring to construct checkerboard surfaces B and W for L, where B projects into the black regions, W projects into the white, and B and W intersect in vertical arcs which project to the the crossings of D. The main result of [Ki23c] is that these checkerboard surfaces satisfy several convenient properties:

Definition 2.7. Let $F \subset \Sigma \times I$ be a spanning surface for (Σ, L). Denote $M_{F}=(\Sigma \times I) \backslash \backslash F$, and use the natural map $h_{F}: M_{F} \rightarrow$ $\Sigma \times I$ to denote $h_{F}^{-1}(L)=\widetilde{L}, h_{F}^{-1}\left(\Sigma_{ \pm}\right)=\widetilde{\Sigma_{ \pm}}$, and $h_{F}^{-1}(F)=\widetilde{F}$, so that $h_{F}: \widetilde{L} \rightarrow L$ and $h_{F}: \widetilde{\Sigma_{ \pm}} \rightarrow \Sigma_{ \pm}$are homeomorphisms and $h_{F}: \widetilde{F} \backslash \widetilde{L} \rightarrow \operatorname{int}(F)$ is a 2:1 covering map. Then we say that F is:
(a) incompressible if any circle $\gamma \subset \widetilde{F} \backslash \widetilde{L}$ that bounds a disk in M_{F} also bounds a disk in $\widetilde{F} \backslash \widetilde{L}{ }^{15}$
(b) end-incompressible if any circle $\gamma \subset \widetilde{F} \backslash \widetilde{L}$ that is parallel in M_{F} to $\widetilde{\Sigma_{ \pm}}$bounds a disk in $\widetilde{F} \backslash \widetilde{L}$.

[^3](c) ∂-incompressible if, for any circle $\gamma \subset \widetilde{F}$ with $|\gamma \cap \widetilde{L}|=1$ that bounds a disk in $M_{F}, \gamma \backslash \backslash \widetilde{L}$ is parallel in $\widetilde{F} \backslash \backslash \widetilde{L}$ into \widetilde{L}.
(d) essential if F satisfies (a) and (c).
(e) end-essential if F satisfies (b) and (c) ${ }^{16}$

A crossing c of a diagram $D \subset \Sigma$ is removably nugatory if there is a disk $X \subset \Sigma$ such that $\partial X \pitchfork D=\{c\}$; in that case, one can remove c from D via a flype and a Reidemeister 1 move. No cellularly embedded, weakly prime diagram has removable nugatory crossings. Also, any diagram (Σ, D) with a removable nugatory crossing, has at least one ∂-compressible checkerboard surface. Conversely:

Theorem 2.8 (Theorem 1.1 of [Ki23c]). If $D \subset \Sigma$ is a fully alternating diagram without removable nugatory crossings, then both checkerboard surfaces from D are end-essential.

Proposition 2.9. Suppose $F_{ \pm}$are definite surfaces of opposite signs spanning a link $L \subset \Sigma \times I$ and $F_{+} \cap F_{-}$consists only of arcs, none of which are ∂-parallel in both F_{+}and F_{-}. If F_{-}(resp. F_{+}) is ∂-incompressible, then no arc of $F_{+} \cap F_{-}$is ∂-parallel in F_{+}(resp. F_{-}). II

Proposition 2.10. If an essential surface F spanning (Σ, L) contains an arc β which is parallel in $(\Sigma \times I) \backslash \backslash(F \cup \nu L)$ to an arc $\alpha \subset \partial \nu L \backslash \backslash \partial F$, then α is parallel in $\partial \nu L$ to ∂F. II
Observation 2.11. Suppose B, W are the checkerboard surfaces of a fully alternating diagram $D \subset \Sigma$ of a link $L \subset \Sigma \times I$. Any properly embedded arc in W that is disjoint from B and separating in W is either ∂-parallel in W or isotopic in W to a vertical arc of $B \cap W$. Likewise with B and W reversed. Ir

Remark 2.12. Observation 2.11 implies in particular that no vertical arc from a weakly prime, fully alternating diagram is ∂-parallel in either checkerboard surface. II

2.1.2. Flype-related diagrams.

Definition 2.13. If $D \subset \Sigma$ is a link diagram and $\gamma \subset \Sigma$ is an inessential circle that intersects D transversally in three points, exactly one of them a crossing point, c, then we call the circle γ a flyping circle for D. Up to mirror symmetry, D and γ appear as shown far left in Figure 1 (D intersects the disk component of $\Sigma \backslash \dot{\nu} \gamma$ in a tangle T_{2} and intersects the other component in a "higher-genus tangle" T_{1}), so one can flype D along γ as shown: this move fixes T_{1}, switches which pair of strands cross within $\nu \gamma$, and changes T_{2} by reflecting the underlying projection and reversing all crossing information. \uparrow

[^4]

Figure 2. Left: an entire flype of a diagram of the knot 8_{17}. Right: Corollary 3.7 will imply that these links are non-isotopic; see Example 3.8.

Observation 2.14. If $D \rightarrow D^{\prime}$ is a flype, then D and D^{\prime} represent the same link L and have the same number of crossings. If D is oriented then D and D^{\prime} have the same writhe ${ }^{[17}$ If D is fully alternating (resp. weakly prime), then so is $D^{\prime} . \Upsilon$

Remark 2.15. In the classical setting, the tangle T_{1} in Figure 1 might contain no crossings, in which case the flype has the effect of changing D to its mirror image and then reversing all crossings; one may think of this move as leaving D unchanged and viewing it from the opposite side of Σ (in [Ki23], we call such a flype an entire flype). By contrast (by an euler characteristic argument), no cellularly embedded, checkerboard colorable diagram on a surface of positive genus does. Thus, while, as in [Ki23], we regard two diagrams $D, D^{\prime} \subset \Sigma$ as equivalent iff they are related by planar isotopy and possibly an entire flype, the latter possibility will be vacuous.

2.2. Definite surfaces.

2.2.1. Linking numbers and slopes. We adopt the notion of generalized linking numbers which was first defined for arbitrary 3-manifolds with nonempty boundary in [T07] and applied in the context of thickened surfaces in [BCK21, BK22]. The generalized linking number of disjoint multicurves ${ }^{18} \alpha, \beta \subset \Sigma \times I$ is

$$
\begin{equation*}
\mathrm{lk}_{\Sigma}(\alpha, \beta)=\left|\left.\right|^{\top}\right|-\left|\lambda^{\top}\right| . \tag{2.1}
\end{equation*}
$$

This linking pairing, taken relative to Σ_{+}, is asymmetric: denoting intersection number on Σ by \cdot_{Σ} and projection $p_{\Sigma}: \Sigma \times I \rightarrow \Sigma$,

$$
\mathrm{lk}_{\Sigma}(\alpha, \beta)-\mathrm{lk}_{\Sigma}(\beta, \alpha)=p_{\Sigma}(\alpha) \cdot \Sigma p_{\Sigma}(\beta)
$$

If F spans a link $L=\bigsqcup_{i} L_{i} \subset \Sigma \times I$ and each \widehat{L}_{i} is a co-oriented pushoff of L_{i} in F, then we call $s(F)=\sum_{i} \operatorname{lk}\left(L_{i}, \widehat{L_{i}}\right)$ the slope of F.

Figure 3. A multicurve $\gamma \subset F$ and $\widetilde{\gamma} \subset \widetilde{F}:[\widetilde{\gamma}]=\tau[\gamma]$.
2.2.2. The Gordon-Litherland pairing. Given a surface F spanning a $\operatorname{link} L \subset \Sigma \times I$, take νF in the link exterior $(\Sigma \times I) \backslash \dot{\nu} L$ with projection $p: \nu F \rightarrow F$, such that $p^{-1}(\partial F)=\nu F \cap \partial \nu L$, and denote the frontier $\widetilde{F}=\partial \nu F \backslash \backslash \partial \nu L$ and transfer map $\tau: H_{1}(F) \rightarrow H_{1}(\widetilde{F})$ (see Figure 3). Following Boden-Chrisman-Karimi, the (generalized) GordonLitherland pairing (relative to Σ_{+}) is the symmetric bilinear mapping $\langle\cdot, \cdot\rangle_{F}: H_{1}(F) \times H_{1}(F) \rightarrow \mathbb{Z}$ given by [GL78, BCK21:

$$
\langle a, b\rangle_{F}=\frac{1}{2}\left(\mathrm{lk}_{\Sigma}(\tau a, b)+\mathrm{lk}_{\Sigma}(\tau b, a)\right) .
$$

Given a multicurve $\gamma \subset F$ representing $g \in H_{1}(F)$, we denote $\langle g, g\rangle_{F}=|g|_{F}$ and call $\frac{1}{2}|g|_{F}$ the framing of γ in F. Given a basis $\mathcal{B}=\left(a_{1}, \ldots, a_{n}\right)$ for $H_{1}(F)$, the Goeritz matrix $G=\left(x_{i j}\right) \in \mathbb{Z}^{n \times n}$, $x_{i j}=\left\langle a_{i}, a_{j}\right\rangle_{F}$, represents $\langle\cdot, \cdot\rangle_{F}$ with respect to \mathcal{B}. Denoting the signature of G by $\sigma(F)$, the quantity

$$
\begin{equation*}
\sigma_{F}(L)=\sigma(F)-\frac{1}{2} s(F), \tag{2.2}
\end{equation*}
$$

depends only on the S^{*} equivalence class of F; whenever (Σ, L) is nonsplit with diagram (Σ, D) there are exactly two such classes, each represented by a checkerboard surface of D [BCK21]. ${ }^{19}$

[^5]2.2.3. Definiteness characterizes alternating links. A spanning surface F is positive- (resp. negative-) definite if $\langle\alpha, \alpha\rangle_{F}>0$ (resp. $\langle\alpha, \alpha\rangle_{F}<0$) for all nonzero $\alpha \in H_{1}(F)$ Gr17. ${ }^{2}{ }^{2 / 1}$

Adapting work of Greene from the classical setting [Gr17], BodenKarimi characterized nonstabilized alternating links in (and diagrams on) thickened surfaces in terms of definite surfaces:

Fact 2.16 (Proposition 3.8 of [BK22]). A cellularly embedded, checkerboard colorable link diagram $D \subset \Sigma$ is alternating if and only if its checkerboard surfaces are definite and of opposite signs.

Theorem 2.17 (Theorem 4.8 of [BK22]). Suppose (Σ, L) is nonstabilized ${ }^{22}$ Then L is alternating if and only if it has connected ${ }^{23}$ spanning surfaces of opposite signs.

The proof in BK22 of Theorem 2.17 shows moreover that if L has connected spanning surfaces of opposite signs, then there is a closed surface S in $\Sigma \times I$ on which L has a fully alternating diagram whose checkerboard surfaces are isotopic to the given surfaces; further, if (L, Σ) is nonstabilized, then S is isotopic to Σ. Formally:

Corollary 2.18. If (Σ, L) is nonstabilized and B and W are connected spanning surfaces of opposite signs spanning L, then L has a fully alternating diagram on Σ whose checkerboard surfaces are isotopic to B and W.

Convention 2.19. The checkerboard surfaces B and W of any fully alternating diagram are labeled such that B is positive-definite and W is negative-definite. Likewise for checkerboard surfaces B^{\prime} and $W^{\prime}\left(\right.$ resp. B_{i} and $\left.W_{i}\right)$ from such a diagram $D^{\prime}\left(\right.$ resp. $\left.D_{i}\right)$.

Lemma 2.20 (c.f. BK22] Lemma 3.7). The checkerboard surfaces B and W of any fully alternating diagram of a link (Σ, L) satisfy \int^{24}

$$
\sigma_{B}(L)-\sigma_{W}(L)=2 g(\Sigma)
$$

Moreover, much of Boden-Karimi's proof of Theorem 2.17 goes through even if the spanning surfaces of opposite signs for L are disconnected or if ($\Sigma, L)$ is stabilized, or both. In particular, if L has spanning surfaces (not necessarily connected) of opposite signs, then there is a closed surface S (not necessarily connected) in $\Sigma \times I$

[^6]

Figure 4. Collapsing $S \cup T$ along a standard arc
on which L has a fully alternating diagram D whose checkerboard surfaces are isotopic to the given surfaces; further, each component of S either is parallel to Σ or is a 2 -sphere. In particular:

Fact 2.21. If $F_{ \pm}$are definite surfaces of opposite signs spanning a link $L \subset \Sigma \times I$, then for some (possibly empty) disjoint union of 2spheres $\Sigma^{\prime} \subset(\Sigma \times I) \backslash \Sigma$, L has a fully alternating diagram $D \subset \Sigma \cup \Sigma^{\prime}$ whose checkerboard surfaces are isotopic to $F_{ \pm}$. Thus:
(A) F_{+}and F_{-}have the same number of connected components, and this equals the number of split components of L.
(B) L has at most one non-local component.
2.2.4. Intersections between definite surfaces. Let F and F^{\prime} be spanning surfaces for (Σ, L) with $F \pitchfork F^{\prime}$. Orient L arbitrarily, and orient ∂F and ∂F^{\prime} so that each is homologous in νL to L. Given an $\operatorname{arc} \alpha$ of $F \cap F^{\prime}$, take $\nu \partial \alpha$ in $\partial \nu L$. Following Howie Ho18, we call α standard if $i\left(\partial F, \partial F^{\prime}\right)_{\nu \partial \alpha}= \pm 2$ and non-standard if $i\left(\partial F, \partial F^{\prime}\right)_{\nu \partial \alpha}=0$.

$$
\begin{equation*}
s(F)-s\left(F^{\prime}\right)=i\left(\partial F, \partial F^{\prime}\right)_{\partial \nu L}=\sum_{\operatorname{arcs} \alpha \text { of } F \cap F^{\prime}} i\left(\partial F, \partial F^{\prime}\right)_{\nu \partial \alpha} \tag{2.3}
\end{equation*}
$$

Procedure 2.22. Let (Σ, L) be non-stabilized with connected spanning surfaces S, T such that $S \cap T$ consists entirely of standard arcs and $|S \cap T|=\beta_{1}(S)+\beta_{1}(T)+2 g(\Sigma)$. Then extending S, T through νL so that $\partial S=L=\partial T$ and collapsing $S \cup T$ along each arc of $\operatorname{int}(S) \cap \operatorname{int}(T)$ gives a closed surface Q isotopic to Σ^{25} on which L collapses to a connected 4 -valent graph; recovering crossing information gives a connected link diagram $D \subset Q$ for which S and T are checkerboard surfaces. The initial configuration of S and T, up to isotopy of $S \cup T$ in $(\Sigma \times I) \backslash \stackrel{ }{\nu} L$, uniquely determines D up to isotopy. See Figure 4 ?
Proposition 2.23. If (Σ, L) is local and has positive- and negativedefinite connected spanning surfaces F_{+}and F_{-}, then

$$
s\left(F_{+}\right)-s\left(F_{-}\right)=2\left(\beta_{1}\left(F_{+}\right)+\beta_{1}\left(F_{-}\right)\right) .
$$

Proof. Because L is local, the surfaces F_{+}and F_{-}are S^{*}-equivalent, so $\sigma_{F_{+}}(L)=\sigma_{F_{-}}(L)$, and the result follows from 2.2).

[^7]

Figure 5. Removing a circle γ of intersection between positive- and negative-definite surfaces F_{+}and F_{-}. The dashed purple circle bounds a disk in F_{+}.

Proposition 2.24 (c.f. Propositions 2.12 and 2.22 of (Ki23]). If (Σ, L) is non-stabilized and has positive- and negative-definite connected spanning surfaces F_{+}and F_{-}, then

$$
s\left(F_{+}\right)-s\left(F_{-}\right)=2 \beta_{1}\left(F_{+}\right)+2 \beta_{1}\left(F_{-}\right)+4 g(\Sigma) .
$$

Further, if $F_{+} \cap F_{-}$is comprised of arcs α with $i\left(\partial F_{+}, \partial F_{-}\right)_{\nu \partial \alpha}=+2$:
(A) $\left|F_{+} \cap F_{-}\right|=\beta_{1}\left(F_{+}\right)+\beta_{1}\left(F_{-}\right)+2 g(\Sigma)$,
(B) $F_{ \pm}$yield an alternating diagram D via Procedure 2.22, and
(C) if F_{+}and F_{-}are ∂-incompressible, then D has no removable nugatory crossings.

Proof. Isotope $F_{ \pm}$so that each component α of $F_{+} \cap F_{-}$is an arc with $i\left(\partial F_{+}, \partial F_{-}\right)_{\nu \partial \alpha}=+2$. Now

$$
\left|F_{+} \cap F_{-}\right|=\frac{1}{2}\left|\partial F_{+} \cap \partial F_{-}\right|=\frac{1}{2}\left(s\left(F_{+}\right)-s\left(F_{-}\right)\right),
$$

which equals $\beta_{1}\left(F_{+}\right)+\beta_{1}\left(F_{-}\right)+2 g(\Sigma)$ by (2.2) and Lemma 2.20 Therefore, the pair $F_{ \pm}$determines a connected diagram D of L via Procedure 2.22. The checkerboard surfaces of D are $F_{ \pm}$, so D is alternating by Fact 2.16 Part (C) follows easily.

Fact 2.25 (c.f. Fact 2.23 of [Ki23], Lemma 3.4 of Gr17]). If $F_{+} \pitchfork F_{-}$ are definite surfaces of opposite signs spanning a link $L \subset \Sigma \times I$, then any circle $\gamma \subset F_{+} \cap F_{-}$bounds disks in both F_{+}and F_{-}.

Procedure 2.26. Suppose $F_{+} \pitchfork F_{-}$are definite surfaces of opposite signs spanning a link $L \subset \Sigma \times I$. Fixing F_{-}, isotope F_{+}via the following hierarchy of moves ${ }^{26}$
(1) If $F_{+} \cap F_{-}$contains circles, then (using Fact 2.25) choose an innermost one γ in $F_{+} ; \gamma$ bounds disks $X_{ \pm} \subset F_{ \pm}$. Using the

[^8]

Figure 6. Removing adjacent points of $\partial F_{+} \cap \partial F_{-}$ of opposite sign

Figure 7. Adding positive twists to a spanning surface
irreducibility of $(\Sigma \times I) \backslash L$, isotope X_{+}past X_{-}as shown in Figure 5. Meanwhile, fix F_{+}away from X_{+}.
(2) If any arc α of $F_{+} \cap F_{-}$is parallel in $F_{-} \backslash \backslash F_{+}$to ∂F_{-}and in $F_{+} \backslash \backslash F_{-}$to ∂F_{+}, then remove α as shown in Figure 6, top.
(3) If arcs $\alpha_{+} \subset \partial F_{+} \backslash \backslash \partial F_{-}$and $\alpha_{-} \subset \partial F_{-} \backslash \backslash \partial F_{+}$are parallel in $\partial \nu L$, then push α_{+}past α_{-}as in Figure 6, bottom. \uparrow

We also recall:
Fact 2.27. If α is a system of disjoint properly embedded arcs in a definite surface F, then $F \backslash \stackrel{\circ}{\nu} \alpha$ is definite. r

Fact 2.28. If F^{\prime} is obtained by adding positive twists to a positivedefinite surface F as in Figure 7, then F^{\prime} is positive-definite. 27

Fact 2.29. If $F_{ \pm}$are definite surfaces of opposite signs spanning (Σ, L) and α is a non-standard arc of $F_{+} \cap F_{-}$, then denoting $F_{+}^{\prime}=$ $F_{+} \backslash \grave{\nu} \alpha, L^{\prime}=\partial F_{+}^{\prime}$, and $F_{-}^{\prime}=F_{-} \backslash \grave{\nu} \alpha$, the following are equivalent:
(I) α is separating on F_{+};
(II) α is separating on F_{-};
(III) L' has one more split component than L. \uparrow

The next two facts differ notably from their classical analogs:

[^9]Fact 2.30 (c.f. Proposition 6.6 of (Ki23]). Let F be a positive-definite surface spanning a weakly prime alternating link L, and let K be the kernel of the map $H_{1}(F) \rightarrow H_{1}(\Sigma \times I)$ induced by inclusion $F \hookrightarrow \Sigma \times I$. Then F is end-essential if and only if every nonzero $a \in K$ satisfies $\langle a, a\rangle_{F} \geq 2{ }^{28}$
Proof. Take an end-essential negative-definite spanning surface W for L with $W \pitchfork F$, and let D be an alternating diagram of L associated to F, W (via Procedure 2.26 and then 2.22). If D is weakly prime, then both conditions are satisfied, the first by Theorem 2.8 and the second by an argument analogous to the proof of Lemma 4 of Ki23a. Conversely, if D admits a removable nugatory crossing c, then neither condition holds, because W is end-essential.
Proposition 2.31 (c.f. Proposition 6.7 of Ki23]). Let F be a positive-definite surface spanning a weakly prime alternating link L, and let $\alpha \subset F$ be a properly embedded arc such that $F^{\prime}=F \backslash \stackrel{\nu}{\nu}$ spans a weakly prime alternating link L^{\prime}. If F is end-essential, then F^{\prime} is also end-essential.

Proof. Letting K and K^{\prime} denote the kernels of the maps $H_{1}(F) \rightarrow$ $H_{1}(\Sigma \times I)$ and $H_{1}\left(F^{\prime}\right) \rightarrow H_{1}(\Sigma \times I)$ induced by inclusion, Fact 2.30 tells us that every nonzero $c \in K$ satisfies $\langle c, c\rangle_{F} \geq 2$, and Fact 2.27 implies that F^{\prime} is positive-definite. Therefore every nonzero $c \in K^{\prime}$ satisfies $\langle c, c\rangle_{F} \geq 2$, and so Fact 2.30 implies that F^{\prime} is end-essential.

Proposition 2.32. As a result of Procedure 2.26, $F_{+} \cap F_{-}$consists only of standard positive arcs. 4^{29}

Proposition 2.33. If $F_{ \pm}$are definite surfaces of opposite signs spanning a link $L \subset \Sigma \times I$ and α is an arc of $F_{+} \cap F_{-}$that is ∂-parallel in both F_{+}and F_{-}, then α is non-standard. Ir

Lemma 2.34 (c.f. Lemma 2.30 of [Ki23]). Suppose $F_{ \pm}$are positiveand negative-definite surfaces spanning a non-stabilized link $L \subset \Sigma \times$ I, and α is an arc of $F_{+} \pitchfork F_{-}$. Then:
(A) $i\left(\partial F_{+}, \partial F_{-}\right)_{\nu \partial \alpha} \neq-2$.
(B) If α is nonseparating on F_{-}, then $i\left(\partial F_{+}, \partial F_{-}\right)_{\nu \partial \alpha}=2$.
(C) In particular, if L is weakly prime, both $F_{ \pm}$are essential, and α is not ∂-parallel in both $F_{ \pm}$, then $i\left(\partial F_{+}, \partial F_{-}\right)_{\nu \partial \alpha}=2$.

Proof. The argument is largely the same as in Ki23]. For (A) and (B), we just describe the differences: if $\left(\Sigma, L^{\prime}\right)$ is nonstabilized, then replacing $\beta_{1}\left(F_{+}\right)+\beta_{1}\left(F_{-}\right)$with $\beta_{1}\left(F_{+}\right)+\beta_{1}\left(F_{-}\right)+2 g(\Sigma)$ in (6.1) and

[^10](6.2) of Ki23 contradicts Proposition 2.24 (A); if $\left(\Sigma, L^{\prime}\right)$ is stabilized, then Fact 2.21 (A) (and, for (B), the assumption that α is nonseparating on F_{-}) implies that L^{\prime} is local, so Proposition 2.23 gives:
\[

$$
\begin{align*}
& -2=\left(s\left(F_{+}\right)-s\left(F_{-}\right)\right)-\left(s\left(F_{+}^{\prime}\right)-s\left(F_{-}^{\prime}\right)\right) \\
& -2=2\left(\beta_{1}\left(F_{+}\right)+\beta_{1}\left(F_{-}\right)+2 g(\Sigma)\right)-2\left(\beta_{1}\left(F_{+}^{\prime}\right)+\beta_{1}\left(F_{-}^{\prime}\right)\right) \tag{2.4}\\
& -1=g(\Sigma)
\end{align*}
$$
\]

We prove (C) by contradiction. Apply Procedure $2.26 F_{+}=F_{0} \rightarrow$ $F_{1} \rightarrow \cdots \rightarrow F_{t}$ until it terminates, and consider the last move (3) $F_{s} \rightarrow F_{s+1}$ in the sequence, which involves two arcs α_{1}, α_{2} of $F_{s} \cap F_{-}$ and one arc α of $F_{s+1} \cap F_{-}$; perturb α_{1} in F_{-}so that it is disjoint from F_{s}. Parts (A) and (B) imply without loss of generality that α_{1} is non-standard, so $F_{-} \backslash \nu \alpha_{1}$ and $F_{s} \backslash \nu \alpha_{1}$ are definite surfaces of opposite sign spanning the same link L^{\prime}. Observe that, for all $i=s+1, \ldots, t$ (c.f. (6.3) of (Ki23), and each arc α^{\prime} of $F_{-} \backslash \backslash F_{i}$ that separates F_{-}, either α^{\prime} is ∂-parallel in F_{-}or $\partial\left(F_{-} \backslash \nu \alpha^{\prime}\right)$ is split with no local components. The latter "possibility" uses the assumption that L is weakly prime; it also contradicts Fact 2.21 (B). Therefore, α_{1} is ∂-parallel in F_{-}, which contradicts the hierarchy of the moves in Procedure 2.26.

Using Lemma 2.34, the same reasoning as in [Ki23] leads to:
Theorem 2.35. Suppose (Σ, D) and $\left(\Sigma, D^{\prime}\right)$ are weakly prime, fully alternating diagrams of (Σ, L) with checkerboard surfaces B, W and B^{\prime}, W^{\prime}. Then D and D^{\prime} are equivalent if and only if B and B^{\prime} are isotopic in $(\Sigma \times I) \backslash \stackrel{\circ}{\nu} L$, as are W and W^{\prime}. II

Corollary 2.36. There is a bijective correspondence between equivalence classes of weakly prime, fully alternating link diagrams on Σ and pairs of isotopy classes of essential definite surfaces of opposite signs spanning the same weakly prime, nonstabilized link in $\Sigma \times I .7^{30}$
2.3. Plumbing. A plumbing cap for a surface F spanning (Σ, L) is an embedded disk $V \subset(\Sigma \times I) \backslash{ }_{\nu} L$ with $V \cap(F \cup \partial \nu L)=\partial V$ where:

- ∂V bounds a disk $\widehat{U} \subset F \cup \nu L$,
- $\widehat{U} \cap F$ is a disk U called the shadow of V, and
- denoting the components of $(\Sigma \times I) \backslash \backslash(\widehat{U} \cup V)$ by Y_{1}, Y_{2}, neither subsurface $F_{i}=F \cap Y_{i}$ is a disk.
If the first two properties hold but the third fails, we call V a fake plumbing cap for $F{ }^{31}$ If V is a plumbing cap for F with shadow U,

[^11]

Figure 8. Re-plumbing a spanning surface replaces a plumbing shadow with its cap.
then the operation $F \rightarrow(F \backslash U) \cup V$ is called re-plumbing. See Figure 8. The same operation along a fake plumbing cap, a "fake re-plumbing," is an isotopy move. Two spanning surfaces are plumbrelated if they are related by re-plumbing and isotopy moves.

2.3.1. The 4-dimensional perspective.

Proposition 2.37 (c.f. Proposition 2.36 of Ki23]). Given surfaces F_{1}, F_{2} spanning (Σ, L), let F_{i}^{\prime} be properly embedded surfaces in $\Sigma \times$ $I \times I_{+}$obtained by perturbing $\operatorname{int}\left(F_{i}\right)$, while fixing $\partial F_{1}=L=\partial F_{2}$. If $F_{1} \backslash \stackrel{\nu}{\nu}$ and $F_{2} \backslash \grave{\nu} L$ are plumb-related, then:
(A) F_{1}^{\prime} and F_{2}^{\prime} are related by an ambient isotopy of $\Sigma \times I \times I_{+}$ which fixes $\Sigma \times I \supset L$;
(B) there is an isomorphism $\phi: H_{1}\left(F_{1}\right) \rightarrow H_{1}\left(F_{2}\right)$ satisfying $\langle\alpha, \beta\rangle_{F_{1}}=\langle\phi(\alpha), \phi(\beta)\rangle_{F_{2}}$ for all $\alpha, \beta \in H_{1}\left(F_{1}\right)$;
(C) if F_{1} is definite, then F_{2} is definite of the same sign;
(D) in particular, if F_{1} is a checkerboard surface from an alternating diagram of L on Σ, then so is F_{2};
(E) F_{1} and F_{2} are S^{*} equivalent, and thus $\sigma_{F_{1}}(L)=\sigma_{F_{2}}(L)$.

Proof. Part (A) is the same as in Ki23]. For (B), construct the desired isomorphism $\phi: H_{1}\left(F_{1}\right) \rightarrow H_{1}\left(F_{2}\right)$ as follows. Given $a \in$ $H_{1}\left(F_{1}\right)$, take a multicurve $\alpha \subset F_{i}$ representing a, replace each arc of $\alpha \cap U$ with an arc in V (with the same initial and terminal points), and denote the resulting multicurve by α^{\prime}; set $\phi(a)=\left[\alpha^{\prime}\right]$. This immediately gives (C) and (D), and (E) now follows from the observation that $\left[F_{1}\right]+\left[F_{2}\right]=0 \in H_{2}(\Sigma \times I, L ; \mathbb{Z} / 2)$, since the union of any plumbing cap and its shadow is nullhomologous.

Next, we extend Theorem 3 of GL78] to the context of thickened surfaces. Let F be a spanning surface of a link $L \subset \Sigma \times I$. Isotope F so that $F \subset(\Sigma \backslash i x) \times I$ for some point $x \in \Sigma{ }^{32}$ Let F^{\prime} be a properly embedded surface in $(\Sigma \backslash \stackrel{\nu}{\nu}) \times I \times I_{+}$obtained by perturbing the interior of F while fixing ∂F. One can construct the doublebranched cover $M_{\widehat{F}}$ of $(\Sigma \backslash \grave{\nu} x) \times I \times I_{+}$along F^{\prime} by cutting $\Sigma \times$ $I \times I_{+}$along the trace of this isotopy, taking two copies, and gluing. Yet, these two copies are homeomorphic to $\Sigma \times I \times I_{+}$, and the gluing region corresponds to a regular neighborhood N of F in $\Sigma \times I$.

[^12]Therefore, one may instead construct $M_{\widehat{F}}$ as follows. Let $\iota: N \rightarrow N$ be involution given by reflection in the fiber, take two copies Σ_{1}^{4} and Σ_{2}^{4} of $(\Sigma \backslash \stackrel{\circ}{\nu} x) \times I \times I_{+}$, and define

$$
M_{\widehat{F}}=\left(\Sigma_{1}^{4} \cup \Sigma_{2}^{4}\right) /\left(y \in N \subset \partial \Sigma_{1}^{4} \sim \iota(y) \in N \subset \partial \Sigma_{2}^{4}\right) .
$$

Consider the Mayer-Vietoris sequence for $M_{\widehat{F}}$:
$0=H_{2}\left(\Sigma_{1}^{4}\right) \oplus H_{2}\left(\Sigma_{2}^{4}\right) \rightarrow H_{2}\left(M_{\widehat{F}}\right) \xrightarrow{\varphi} H_{1}(N) \xrightarrow{\psi} H_{1}\left(\Sigma_{1}^{4}\right) \oplus H_{1}\left(\Sigma_{2}^{4}\right) \rightarrow \cdots$
If $g(\Sigma)=0$, as in [GL78], then both Σ_{i}^{4} are 4-balls, so φ is an isomorphism; Gordon-Litherland then use the inverse map to compare the intersection form • on $M_{\widehat{F}}$ with their pairing \mathcal{G}_{F} on F. After restricting appropriately, the same ideas work here:

Theorem 2.38 (c.f. Theorem 3 of [GL78]). With the setup above, let $i_{*}: H_{1}(F) \rightarrow H_{1}(N)$ be the isomorphism induced by inclusion, and denote $K=i_{*}^{-1}(\operatorname{ker}(\psi))$. Then there is an isomorphism S : $\left(K, \mathcal{G}_{F}\right) \rightarrow\left(H_{2}\left(M_{\widehat{F}}^{*}\right), \cdot\right)$.
Proof. Consider the following map $S: K \rightarrow H_{2}\left(M_{\widehat{F}}\right)$. Given $A \in K$, choose a multicurve $\alpha \subset F$ with $[\alpha]=A$. Then α bounds properly embedded oriented surfaces $s_{i} \subset \Sigma_{i}^{4}$ for $i=1,2$. Define $S(A)=$ $\left[s_{1}\right]-\left[s_{2}\right] \in H_{2}\left(M_{\widehat{F}}\right)$.

To see that this is the required isomorphism $\left(K, \mathcal{G}_{F}\right) \rightarrow\left(H_{2}\left(M_{\widehat{F}}\right), \cdot\right)$, let $A, B \in K$, represented respectively by multicurves $\alpha, \beta \subset F$. Then α and $\widetilde{\beta}$ are disjoint multicurves in N with $[\widetilde{\alpha}]=2 A,[\widetilde{\beta}]=2 B$, $\iota(\alpha)=\alpha$, and $\iota(\widetilde{\beta})=\widetilde{\beta}$. Hence:

$$
\begin{aligned}
S(A) \cdot S(B) & =\frac{1}{4}(S([\widetilde{\alpha}]) \cdot S([\beta])+S([\widetilde{\beta}]) \cdot S([\alpha])) \\
& =\frac{1}{4}\left(\mathrm{lk}_{\Sigma}(\widetilde{\alpha}, \beta)+\mathrm{l}_{\Sigma}(\iota \widetilde{\alpha}, \iota \beta)+\mathrm{l}_{\Sigma}(\widetilde{\beta}, \alpha)+\mathrm{l}_{\Sigma}(\iota \widetilde{\beta}, \iota \alpha)\right) \\
& =\frac{1}{2}\left(\mathrm{lk}_{\Sigma}(\widetilde{\alpha}, \beta)+\mathrm{k}_{\Sigma}(\widetilde{\beta}, \alpha)\right) \\
& =\mathcal{G}_{F}(A, B) .
\end{aligned}
$$

2.3.2. Flyping caps. Let $D \subset \Sigma$ be a weakly prime, fully alternating link diagram with checkerboard surfaces B, W. Say that a plumbing cap V for B is a flyping cap if V appears as in Figure 10, left-center. There is then a corresponding flype move as shown in Figures 10 and 9. Namely, denoting the shadow of V by U, the flype move proceeds along an annular neighborhood of a circle $\gamma \subset \Sigma$ comprised of the arc $V \cap W$ together with an arc in $U \cup \nu L$. (The resulting link diagram might be equivalent to D.) More formally:

Proposition 2.39 (c.f. Proposition 2.37 of (Ki23]). Let V be an flyping cap for $B, D \rightarrow D^{\prime}$ the flype move corresponding to V, B^{\prime} and W^{\prime} the checkerboard surfaces from D^{\prime}, and $B^{\prime \prime}$ the surface obtained

Figure 9. A flype move corresponds to an isotopy of one checkerboard surface (here, W) and a replumbing of the other.

Figure 10. A flyping cap and the associated flype move
by re-plumbing B along V. Then B^{\prime} and $B^{\prime \prime}$ are isotopic, as are W^{\prime} and W. Hence, D^{\prime} is equivalent to the diagram determined by $B^{\prime \prime}, W$ via Theorem 2.35$] 33$

Proof. As in Ki23], Figure 9 demonstrates the isotopies.
Conversely, if γ is a flyping circle for (Σ, D), then there is an flyping cap V for B (or W) with $V \cap W \subset \nu \gamma$ (resp. $V \cap B \subset \nu \gamma$).

3. The flyping theorem in thickened surfaces

The arguments in §§3-5 and 7-8 of [Ki23] have been revised so that they apply directly in the context of this paper (with the obvious replacements of S^{3} with $\Sigma \times I, S^{2}$ with Σ): B, W are the checkerboard surfaces from a weakly prime, fully alternating diagram $D \subset \Sigma$ of a link $L \subset \Sigma \times I, F$ is an end-essential positive-definite surface spanning L, v_{F} is comprised of the vertical arcs at the crossings where F has crossing bands, and $D_{F, W}$ is the diagram determined via Theorem 2.35 by F, W. One then implements Menasco's crossing ball setup, isotopes F into fair position, and performs a sequence of isotopy and re-plumbing moves according to a hierarchy: one only performs each move k if F is in $(k-1)$-good position, meaning that F is in fair position and none of Moves 1 through $k-1$ are possible. See Ki23] for the notations $C, v, \widehat{W}, S_{ \pm}$etc. associated with the crossing ball setup and for the precise definitions of fair position and Moves 1-10.

[^13]Moves 1-9, all of which are isotopy moves, appear in Figure 11. Move 10 is a re-plumbing move and is more complicated; see Ki23.

A few details are worth noting. First, one must be more careful with push-through moves (see Definition 3.10 of [Ki23]) in thickened surfaces than in S^{3}. The definition is the same (because it was written with this paper in mind!), but in addition to the three pictures shown top in Figure 19 of $\overline{\mathrm{Ki} 23}$, three more pictures are possible. See Figure 12. In any case, if we wish to perform (or observe the possibility of) a push-through move along an arc α whose endpoints lie on a circle γ, we must now check that α is parallel in S_{+}into γ; in [Ki23], this was free. Importantly, however, this is always the case ${ }^{34}$

Second, whereas in Ki23] every circle of $F \cap S_{ \pm}$was inessential in $S_{ \pm} \approx S^{2}$, this property holds here only because the assumption that F is end-incompressible allows us to require that $S_{+} \cup S_{-}$cuts F into disks (c.f. Definition 3.2 (h) and Lemma 3.3 of Ki23]).

Third, Sublemma 5.2 of [Ki23] implies there that the circles of $F \cap S_{+}$are mutually nested, but this is less clear here. The proof of Lemma 5.3 of Ki23] is thus written with this paper in mind, and is slightly more complicated as a result.

Adapting the arguments from $\S \S 3-5,7-8$ of $[$ Ki23] thus gives:
Theorem 3.1. If $D=D_{B, W}$ is a weakly prime, fully alternating diagram of (Σ, L), then any end-essential, positive definite surface F spanning L is plumb-related to B; likewise for end-essential negativedefinite surfaces and W.r

Corollary 3.2. With F and D as in Theorem 3.1, $\beta_{1}(B)=\beta_{1}(F)$ and $s(B)=s\left(F^{\prime}\right) \cdot r^{35}$
Theorem 3.3 (Part of Tait's extended first conjecture Gr17, Ka87, Mu87, Th87, Tu87). If $D, D^{\prime} \subset \Sigma$ are alternating diagrams of a link $L \subset \Sigma \times I$, neither containing removable nugatory crossings, then D and D^{\prime} have the same number of crossings ${ }^{36}$
Theorem 3.4. If F is in 9-good position, then F contains no saddle disks: $F \cap C=v_{F}$; hence, every circle γ of $F \cap S_{+}$is a flyping circle, and $D_{F, W}$ is related to D by a sequence of flypes that preserve the isotopy class of W.r

Theorem 3.5 (Tait's extended flyping conjecture). All weakly prime, fully alternating diagrams $D=D_{B, W}$ and $D^{\prime}=D_{B^{\prime}, W^{\prime}}$ of the same

[^14]

Figure 11. Moves 1-9

Figure 12. Push-through moves in $\Sigma \times I$ need not appear as in Figure 19 of Ki23].
link $L \subset \Sigma \times I$ are related by a sequence of flypes $D \rightarrow \cdots \rightarrow D^{\prime \prime} \rightarrow$ $\cdots \rightarrow D^{\prime}$ in which $D \rightarrow \cdots \rightarrow D^{\prime \prime}$ preserves the isotopy class of W and $D^{\prime \prime} \rightarrow \cdots \rightarrow D^{\prime}$ preserves the isotopy class of B^{\prime}.

Since writhe is invariant under flypes (recall Observation 2.14) and additive under diagrammatic connect sum and disjoint union, we obtain a new geometric proof of Tait's second conjecture:

Theorem 3.6 (Tait's extended second conjecture [BK18, BKS19]). All weakly prime, fully alternating diagrams of a given link $L \subset \Sigma \times I$ have the same writhe.

Theorem 3.5 implies that, unlike a classical link and a link in $S^{2} \times I$, a link in a thickened surface of positive genus is not necessarily isotopic to the link obtained by reflecting horizontally (in the projection surface) and then vertically. More precisely, let $D \subset \Sigma$ be a weakly prime, fully alternating diagram of a link $L \subset \Sigma \times I$; let $\phi: \Sigma \rightarrow \Sigma$ be an orientation-reversing involution; let $D^{\prime} \subset \Sigma$ be the diagram obtained from $\phi(D)$ by reversing all crossing information; and let $L^{\prime} \subset \Sigma \times I$ be the link represented by D^{\prime}. Note that L^{\prime} is the image of L under the map $\Sigma \times I \rightarrow \Sigma \times I$ given by $(x, t) \mapsto(\phi(x),-t)$.

Corollary 3.7. With the setup above, if D is weakly prime and fully alternating, then the links L and L^{\prime} are isotopic in $\Sigma \times I$ if and only if the diagrams D and D^{\prime} are flype-related on Σ. In particular, this is always true if $g(\Sigma)=0$, but not necessarily if $g(\Sigma)>0$.
Example 3.8. The diagrams on T^{2} shown right in Figure 2 admit no non-trivial flypes and are non-isotopic; thus, by Corollary 3.7, they represent non-isotopic links in $T^{2} \times I$.

4. The flyping theorem for virtual links

A virtual link diagram is the image of an immersion $\bigsqcup S^{1} \rightarrow S^{2}$ in which all self-intersections are transverse double-points, some of

Figure 13. Classical (top) and virtual (bottom) Reidemeister moves
which are labeled with over-under information. These labeled points are called classical crossings, and the other double-points are called virtual crossings. Traditionally, virtual crossings are marked with a circle, as in Figure 13. A virtual link is an equivalence class of such diagrams under generalized Reidemeister moves, as shown in Figure 13. There are seven types of such moves, the three classical moves and four virtual moves ${ }^{37}$

Notation 4.1. Given a virtual link diagram $V \subset S^{2}$, let $[V]$ denote the set of all virtual diagrams related to V by planar isotopy and virtual Reidemeister moves.

The main result of Ki23d establishes a bijective correspondence between such equivalence classes $[V]$ and pairwise homeomorphism classes of cellularly embedded link diagrams on thickened surfaces, (Σ, D). In fact, this is a triple bijective correspondence, also involving abstract link diagrams, which we will not need. There is also an older, well-known triple correspondence between equivalence classes of the (virtual) links represented by these diagrams Ka98, KK00, CKS02, which we will not need here. The salient part is captured in the following theorem, where we view $S^{3}=\left(S^{2} \times \mathbb{R}\right) \cup\{ \pm \infty\}$, denote $\widehat{S^{3}}=S^{3} \backslash\{ \pm \infty\}$ with projection $\pi: \widehat{S^{3}} \rightarrow S^{2}$.

Theorem 4.2 (Theorem 5 of [Ki23d]). There is a bijective correspondence between (1) equivalence classes [V] of virtual diagrams and (2) pairwise homeomorphism classes of cellularly embedded link diagrams (Σ, D) :
$(1) \rightarrow(2)$ Given $[V]$, choose a representative $V \subset S^{2}$, take a regular neighborhood νV of V in S^{2}, modify νV near each virtual crossing of V as shown in Figure 14, and (abstractly) cap off each boundary component of the resulting surface with a disk.

[^15]

Figure 14. Converting the neighborhood of a virtual link diagram to an abstract link diagram
$(2) \rightarrow(1)$ Given (Σ, D), choose any embedding $\phi: \Sigma \rightarrow \widehat{S^{3}}$ such that (i) for each crossing point $c \in D, \phi(c)$ lies on the front of Σ and (ii) all self-intersections in $\pi \circ \phi(G)$ are transverse doublepoints. Then let $V=\pi \circ \phi(D)$, with over-under information matching D.

Remark 4.3. The requirement in Theorem 4.2 that all crossings lie on the front of $\phi(\Sigma)$ is necessary; otherwise, different embeddings $\Sigma \rightarrow \widehat{S^{3}}$ may yield distinct virtual links. See Example 7 of Ki23d.

Definition 4.4. Let V be a virtual link diagram, and let (Σ, D) be the cellularly embedded link diagram corresponding to [V]. Say that V is split if Σ is connected. Say that V is prime (resp. weakly prime) if (Σ, D) is prime (resp. weakly prime).

Remark 4.5. This definition of primeness for virtual knot is traditional and is well motivated by Gauss codes Ka98] Namely, suppose V comes from a Gauss code G. Then V is nonprime if and only if, after some cyclic permutation, G has the form $\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{\ell}\right)$ where $b_{i} \neq-a_{j}$ for all i, j. The distinction between weak and pairwise primeness is at the heart of the companion paper [Ki23b].
Definition 4.6. A virtual link \widetilde{L} is nonsplit (resp. prime, weakly prime) if the unique nonstabilized representative (Σ, L) of the corresponding stable equivalence class is nonsplit (resp. prime, weakly prime).

Theorem 2.6 Oz06, BK22, Aetal19, Ki23b gives the following generalization of Menasco's classical results that a link is split or non-prime if and only if obviously so in a given reduced alternating diagram Me84]:
Theorem 4.7. Let V be an alternating diagram of a virtual link \widetilde{L}.

- If V is nonsplit, then \widetilde{L} is nonsplit.
- If V is weakly prime, then \widetilde{L} is weakly prime.
- If V is prime, then \widetilde{L} is prime.

[^16]The trouble is that, unlike with classical diagrams and diagrams on surfaces, it may be challenging to tell by direct inspection whether or not a given virtual diagram is split, weakly prime, or prime. Also, the converses to the second and third statements are false, because of possible nugatory crossings, which we have yet to address. Theorem 4.15 of Ki23b uses lassos to rectify all this, giving necessary and sufficient conditions for an alternating virtual diagram to represent a nonsplit, prime, or weakly prime virtual link. See Ki23b for details.

Theorem 4.8. Any two weakly prime, alternating diagrams of a given virtual link \widetilde{L} are related by virtual Reidemeister moves and (classical) flypes.
Proof. Let V and V^{\prime} be two such diagrams, and let (Σ, D) and ($\Sigma^{\prime}, D^{\prime}$) be the associated pairs under Theorem 4.2. By Kuperburg's theorem, we may identify $\Sigma \equiv \Sigma^{\prime}$, and by Theorem 3.5, there is a sequence of flype moves on Σ taking D to D^{\prime} :

$$
D=D_{0} \rightarrow D_{1} \rightarrow \cdots \rightarrow D_{n}=D^{\prime} .
$$

We will show for each $i=1, \ldots, n$ that there are virtual diagrams V_{i-1}^{2} and V_{i}^{1} which correspond to $\left(\Sigma, D_{i-1}\right)$ and $\left(\Sigma, D_{i}\right)$ and which are related by a flype. This will produce a sequence of virtual diagrams

$$
V=V_{0}^{1} \rightarrow V_{0}^{2} \rightarrow V_{1}^{1} \rightarrow V_{1}^{2} \rightarrow \cdots \rightarrow \rightarrow V_{n}^{1} \rightarrow V_{n}^{2}=V^{\prime}
$$

where each $V_{i}^{1} \rightarrow V_{i}^{2}$ comes from a sequence of virtual R-moves and each $V_{i-1}^{2} \rightarrow V_{i}^{1}$ comes from a flype.

Consider a flype $D_{i-1} \rightarrow D_{i}$; it is supported within a disk $X \subset$ $\Sigma{ }^{39}$ Denote the quotient map $q: \Sigma \rightarrow \Sigma / X \equiv \Sigma$, and denote the underlying graph of D_{i-1} by G. Choose a spanning tree T for the 4 -valent graph $q(G) \subset \Sigma / X$, and take a regular neighborhood νT. Denote $U=q^{-1}(\nu T)$, and observe that U is a disk in Σ that contains X and all crossings of $D_{i-1}{ }^{40}$

Choose an embedding $\phi: \Sigma \rightarrow \widehat{S^{3}}$ such that $\left.\pi\right|_{\phi(U)}$ has no critical points and $\pi \circ \phi(U) \cap \pi \circ \phi(D \backslash U)=\varnothing$. Denote $f=\pi \circ \phi$ and $f\left(D_{i-1}\right)=V_{i-1}^{2}$. Observe that $\left.f\right|_{X}$ is a homeomorphism onto its image, and so the disk $f(X)$ supports a flype $V_{i-1}^{2} \rightarrow V_{i}^{1}$ where V_{i}^{1} corresponds to (Σ, D_{i}).

Thus, as needed, each $V_{i-1}^{2} \rightarrow V_{i}^{1}$ comes from a flype. To complete the proof, we note that each $V_{i}^{1} \rightarrow V_{i}^{2}$ comes from a sequence of virtual R-moves, due to Theorem 4.2, since both V_{i}^{1} and V_{i}^{2} correspond to the same cellularly embedded diagram D_{i} on Σ.

Since crossing number and writhe are invariant under flypes, we can also extend more parts of Tait's conjectures to virtual links:

[^17]

Figure 15. There are infinitely many different ways to take the connect sum of any two non-classical alternating knots.

Theorem 4.9. All weakly prime, alternating diagrams of a given virtual link have the same crossing number and writhe.

Finally, we have an additional corollary regarding connect sums of virtual knots. It has long been known that connect sum is not a well-defined operation for virtual knots. In general, connect sums of virtual knots depend on choices of diagram and basepoint. For example, Kauffman-Manturov cite an example due to Kishino-Satoh of a non-trivial connect sum of two trivial virtual knots [KS04, KM05]. Their summands, viewed as links in thickened surfaces, are both stabilized, but the connect sum operation causes the resulting link to intersect what were the destabilizing annuli. We offer a different (and larger) class of examples illustrating this non-uniqueness. In particular, our summands are always nonstabilized, and each pair gives infinitely many distinct connect sums:

Corollary 4.10. Given any two non-classical, weakly prime, alternating virtual links V_{1} and V_{2}, there are infinitely many distinct virtual links that decompose as a connect sum of V_{1} and V_{2}.

This follows immediately from Theorem 4.9, using the construction suggested in Figure 15. We conjecture that the same construction works more generally:

Conjecture 4.11. Given any two non-classical, weakly prime virtual links V_{1} and V_{2}, there are infinitely many distinct virtual links that decompose as a connect sum of V_{1} and V_{2}.

Appendix A: Cross-referencing with Ki23]

References

[Aetal19] C. Adams, C. Albors-Riera, B. Haddock, Z. Li, D. Nishida, B. Reinoso, L. Wang, Hyperbolicity of links in thickened surfaces, Topology Appl. 256 (2019), 262-278.
[AK13] C. Adams, T. Kindred, A classification of spanning surfaces for alternating links, Alg. Geom. Topol. 13 (2013), no. 5, 2967-3007.
[BCK21] H. Boden, M. Chrisman, H. Karimi, The Gordon-Litherland pairing for links in thickened surfaces, arXiv:2107.00426.

here	in Ki23]	here	in Ki23]
Prop. 2.9	Prop. 2.5	Prop. 2.10	Prop. 2.6
Obs. 2.11	Fact 2.7	Rem. 2.12	Rem. 2.8
Def. 2.13	Def. 2.9	Obs. 2.14	Obs. 2.10
Proc. 2.22	Proc. 2.23	Proc. 2.26	Proc. 2.24
Fact 2.27	Subl. 6.3	Fact 2.28	Subl. 6.4
Fact 2.29	Prop. 6.5	Prop. 2.32	Prop. 6.8
Prop. 2.33	Prop. 6.9	Thm. 2.35	Thm. 2.35
Cor. 2.36	Cor. 2.36	Thm. 3.1	Thm. 4.5
Cor. 3.2	Cor. 4.6	Thm. $\overline{3.4}$	Thm. 5.4

Table 1. Cross-listing information with Ki23]
[BK18] H. Boden, H. Karimi, The Jones-Krushkal polynomial and minimal diagrams of surface links, Ann. Inst. Fourier (Grenoble) 72 (2022), no. 4, 1437-1475.
[BK22] H. Boden, H. Karimi, A characterization of alternating links in thickened surfaces, Proc. Roy. Soc. Edinburgh Sect. A, 1-19. doi:10.1017/prm.2021.78
[BKS19] H. Boden, H. Karimi, A. Sikora, Adequate links in thickened surfaces and the generalized Tait conjectures, arXiv:2008.09895.
[CKS02] J.S. Carter, S. Kamada, M. Saito, Stable equivalence of knots on surfaces and virtual knot cobordisms, J. Knot Theory Ramifications, 11 (2002), no. 3, 311-322.
[CSW14] J.S. Carter, D.S. Silver, S.G. Williams, Invariants of links in thickened surfaces, Alg. Geom. Topol. 14 (2014), no. 3, 1377-1394.
[CT07] D. Cimasoni, V. Turaev, A generalization of several classical invariants of links, Osaka J. Math. 44 (2007), 531-561.
[GL78] C. McA. Gordon, R.A. Litherland, On the signature of a link, Invent. Math. 47 (1978), no. 1, 53-69.
[Gr17] J. Greene, Alternating links and definite surfaces, with an appendix by A. Juhasz, M Lackenby, Duke Math. J. 166 (2017), no. 11, 2133-2151.
[Ho18] J. Howie, A characterisation of alternating knot exteriors, Geom. Topol. 21 (2017), no. 4, 2353-2371.
[HP20] J. Howie, J. Purcell, Geometry of alternating links on surfaces, Trans. Amer. Math. Soc. 373 (2020), no. 4, 2349-2397.
[Jo82] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982), no. 1, 37-65.
[KK00] N. Kamada, S. Kamada, Abstract link diagrams and virtual knots, J. Knot Theory Ramifications 9 (2000), no. 1, 93-106.
[Ka87] L.H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395-407.
[Ka98] L.H. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663-690.
[KM05] L.H. Kauffman, V.O. Manturov, Virtual knots and links, arXiv:math/0502014.
[Ki23a] T. Kindred, A simple proof of the Crowell-Murasugi theorem, to appear in Alg. Geom. Topol.
[Ki23] T. Kindred, A geometric proof of the flyping theorem, arXiv:2008.06490.
[Ki23b] T. Kindred, Primeness of alternating virtual links, arXiv:2210.03225.
[Ki23c] T. Kindred, End-essential spanning surfaces for links in thickened surfaces, arXiv:2210.03218.
[Ki23d] T. Kindred, What is a virtual link diagram?, preprint.
[KS04] T. Kishino, S. Satoh, A note on non-classical virtual knots, J. Knot Theory Ramifications, 13 (2004), no. 7, pp. 845-856.
[Me84] W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984), no. 1, 37-44.
[MT91] W. Menasco, M. Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 403-412.
[MT93] W. Menasco, M. Thistlethwaite, The classification of alternating links, Ann. of Math. (2) 138 (1993), no. 1, 113-171.
[Mu87] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187-194.
[Mu87ii] K. Murasugi, Jones polynomials and classical conjectures in knot theory II, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 2, 317-318.
[Oz06] M. Ozawa, Nontriviality of generalized alternating knots, J. Knot Theory Ramifications 15 (2006), no. 3, 351-360.
[Ta1898] P.G. Tait, On Knots I, II, and III, Scientific papers 1 (1898), 273-347.
[Th87] M.B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297-309.
[T88b] M.B. Thistlethwaite, Kauffman's polynomial and alternating links, Topology 27 (1988), no. 3, 311-318.
[Tu87] V.G. Turaev, A simple proof of the Murasugi and Kauffman theorems on alternating links, Enseign. Math. (2) 33 (1987), no. 3-4, 203-225.

Department of Mathematics \& Statistics, Wake Forest University, Winston-Salem North Carolina, 27109

Email address: thomas.kindred@wfu.edu
URL: www.thomaskindred.com

[^0]: ${ }^{1}$ Boden-Karimi proved Tait's first two conjectures for alternating links in thickened surfaces, with a few extra conditions BK18, and with Sikora they extended those results to adequate links and removed the extra conditions BKS19.
 ${ }^{2}$ See 2.1 for definitions of stabilized, prime, weakly prime, fully alternating, cellularly embedded, end-essential, definite, and removably nugatory.

[^1]: ${ }^{3}$ A virtual link diagram is alternating if its classical crossings alternate between over and under.
 ${ }^{4}$ A classical flype on a virtual link diagram appears as in Figure 1 where T_{1} contains no virtual crossings.

[^2]: ${ }^{5}$ Ki23b, Ki23c also allow Σ to be disconnected with components of any genus.
 ${ }^{6}$ We use "circle" as shorthand for "simple closed curve."
 ${ }^{7}$ For more detail, see Proposition 12 of BK22; the proof cites CSW14.
 ${ }^{8}$ If $\left(\Sigma_{i} \times I, L_{i}\right)$ is nonsplit (implying that $\Sigma_{i} \times I \backslash L_{i}$ is irreducible) for $i=1,2$, then choose disks $X_{i} \subset \Sigma_{i}$ with $\left(X_{i} \times I\right) \cap L_{i}=\varnothing$ and construct the connect sum

[^3]: ${ }^{11}$ Throughout, given a manifold X and a submanifold $Y \subset X, \nu Y$ denotes a closed regular neighborhood of Y in X.
 ${ }^{12} \mathrm{We}$ also assume that ∂F is transverse on $\partial \nu L$ to each meridian, where a meridian is the preimage of a point in L under the bundle map $\nu L \rightarrow L$.
 ${ }^{13}$ For compact $X, Y \subset \Sigma \times I, X \backslash Y$ denotes the metric closure of $X \backslash Y$; see Note 7 of Ki23 for a precise definition.
 ${ }^{14}$ Interestingly, fully alternating link diagrams on nonorientable surfaces are never checkerboard colorable.
 ${ }^{15} F$ is incompressible if and only if F is π_{1}-injective, meaning that inclusion $\operatorname{int}(F) \hookrightarrow(\Sigma \times I) \backslash L$ induces an injection of fundamental groups (for all possible choices of basepoint).

[^4]: ${ }^{16}$ Note that any end-essential surface is essential. Observe moreover that the converse is true when Σ is a 2 -sphere.

[^5]: ${ }^{17}$ The writhe of D is $w_{D}=|\boldsymbol{\aleph}|-\left|\lambda^{*}\right|$.
 ${ }^{18}$ We call a disjoint union of embedded, oriented circles a multicurve.
 ${ }^{19} S^{*}$ equivalence is generated by attaching and deleting tubes and crosscaps GL78 and thus respects relative homology classes. The checkerboard surfaces F and F^{\prime} of D satisfy $[F]+\left[F^{\prime}\right]=[\Sigma]$ in $H_{2}(\Sigma \times I, L ; \mathbb{Z} / 2)$, so $[F] \neq\left[F^{\prime}\right]$; hence, F and F^{\prime} are not S^{*} equivalent. For the converse, following the classical approach of Yasuhara [?], put an arbitrary spanning surface in disk-band form, attach tubes to make it a checkerboard surface for some diagram, and then perform Reidemester moves (requiring more tubing and crosscapping moves).

[^6]: ${ }^{20} F$ is positive-definite iff $\sigma(F)=\beta_{1}(F)$ or equivalently iff each multicurve in F either has positive framing in F or bounds an orientable subsurface of F.
 ${ }^{21}$ When $|\partial F| \leq 2$, every primitive $g \in H_{1}(F)$ is represented by an oriented circle, but this is not true in general: e.g. take F to be an oriented pair of pants and g the sum of two boundary components, one with the boundary orientation.
 ${ }^{22}$ Recall that this implies that $L \subset \Sigma \times I$ is a nonsplit link.
 ${ }^{23}$ Spanning surfaces are assumed to be connected throughout BK22.
 ${ }^{24}$ For an arbitrary diagram on $\Sigma,\left|\sigma_{W}(L)-\sigma_{B}(L)\right| \leq 2 g(\Sigma)$.

[^7]: ${ }^{25}$ Connectedness and $|S \cap T|=\beta_{1}(S)+\beta_{1}(T)$ imply that $g(Q)=g(\Sigma)$. This and the assumption that (Σ, L) is non-stabilized imply that Q is isotopic to Σ.

[^8]: ${ }^{26}$ That is, perform (1) whenever possible, perform (2) whenever possible unless (1) is possible, and perform (3) whenever possible unless (1) or (2) is possible.

[^9]: ${ }^{27}$ Likewise for adding negative twists to a negative-definite surface.

[^10]: ${ }^{28}$ Definiteness implies that F is end-incompressible.
 ${ }^{29}$ Note that Procedure 2.26 always terminates because each move decreases $\left|F_{+} \cap F_{-}\right|+\left|\partial F_{+} \cap \partial F_{-}\right|$.

[^11]: ${ }^{30}$ Example 2.37 of Ki23] shows that Theorem 2.35 and Corollary 2.36 become false if one removes "weakly prime" or "fully alternating."
 ${ }^{31}$ The decomposition $F=F_{1} \cup F_{2}$ is a de-plumbing of F along U and V, denoted $F=F_{1} * F_{2}$. The reverse operation, in which one obtains F by gluing F_{1} and F_{2} along U, is called generalized plumbing or Murasugi sum.

[^12]: ${ }^{32}$ To see that this is always possible, consider isotoping F into disk-band form.

[^13]: ${ }^{33} \mathrm{An}$ analogous statement holds for flyping caps for W.

[^14]: ${ }^{34}$ In [Ki23], see the definition of Move 2 and the proofs of Lemmas 3.22, 4.1, and 5.3 and of Propositions 8.2 and 8.3.
 ${ }^{35}$ This is also true if L is non-stabilized and/or weakly prime.
 ${ }^{36}$ When D and D^{\prime} are weakly prime and fully alternating, Fact 2.16 . Theorems 2.8 and 3.1 and Corollary 3.2 immediately imply this. The general case then follows, as the number of crossings is additive under (de)stabilization, diagrammatic connect sum, and split union.

[^15]: ${ }^{37}$ The move involving two virtual crossings and one classical crossing is sometimes called a mixed move, but we include it as a virtual (non-classical) move.

[^16]: ${ }^{38} \mathrm{~A}$ Gauss code is a permutation of the tuple $(-n, \ldots,-1,1, \ldots, n), n \in \mathbb{Z}$. Some Gauss codes describe classical knot diagrams, but all Gauss codes describe virtual knot diagrams.

[^17]: ${ }^{39}$ That is, take X to be the oval-shaped disk shown left in Figure 1
 ${ }^{40}$ Thus, U is a lasso for $\left(\Sigma, D_{i-1}\right)$.

