
THE VIRTUAL FLYPING THEOREM

THOMAS KINDRED

Abstract. We extend the flyping theorem to alternating links
in thickened surfaces and alternating virtual links. The proofs
use recent results of Boden and Karimi to adapt the author’s
geometric proof of Tait’s 1898 flyping conjecture (first proved
in 1993 by Menasco–Thistlethwaite). Technical aspects of the
proofs also rely on results from three companion papers of the
author regarding virtual links: one paper addresses two com-
mon but distinct notions of primeness, one addresses a strength-
ened notion of incompressibility of spanning surfaces, and one
establishes a new diagrammatic correspondence.

1. Introduction

P.G. Tait asserted in 1898 that all reduced alternating diagrams
of a given prime nonsplit link in S3 minimize crossings, have equal
writhe, and are related by flype moves (see Figure 1) [Ta1898]. The
first proofs came almost a century later, and all involved the Jones
polynomial [Ka87, Mu87, Mu87ii, Th87, MT91, MT93]. In 2017,
Greene gave the first purely geometric proof of part of the classical
Tait conjectures [Gr17], and in 2020, the author gave the first purely
geometric proof of Tait’s flyping conjecture [Ki23].

Recently, Boden, Chrisman, Karimi, and Sikora extended much of
this to alternating links in thickened surfaces. First, using general-
izations of the Kauffman bracket, Boden–Karimi–Sikora proved that
Tait’s first two conjectures hold for alternating links in thickened sur-
faces [BK18, BKS19].1 Second, Boden–Chrisman–Karimi extended
the Gordon–Litherland pairing to spanning surfaces in thickened sur-
faces [BCK21]. Third, Boden–Karimi applied this pairing to extend
Greene’s characterization of classical alternating links to links L in
thickened surfaces Σ × I, proving that L bounds connected definite
surfaces of opposite signs if and only if L is alternating and (Σ×I, L)
is nonstabilized [BK22].2

1Boden–Karimi proved Tait’s first two conjectures for alternating links in
thickened surfaces, with a few extra conditions [BK18], and with Sikora they ex-
tended those results to adequate links and removed the extra conditions [BKS19].

2See §2.1 for definitions of stabilized, prime, weakly prime, fully alternating,
cellularly embedded, end-essential, definite, and removably nugatory.
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Figure 1. A flype along an annulus A = νγ ⊂ Σ.

The first main result of this paper combines and adapts several of
these recent developments to prove that the flyping theorem extends
to alternating links in (nonstabilized) thickened surfaces.

Theorem 3.5. Let D ⊂ Σ be a weakly prime, fully alternating dia-
gram of a link L in a thickened surface Σ × I.Then any other such
diagram of L is related to D by flypes on Σ.

The approach is parallel to that in [Ki23], and indeed most of
the arguments translate directly. For some, which we mark with the
symbol ^, the statements and proof hold without further comment.
Appendix A lists pertinent cross-referencing information for these
and other results marked with the symbol �. The upshot is a geo-
metric proof of Theorem 3.5 and other generalized Tait conjectures:

Theorem 3.3 (Part of Tait’s extended first conjecture [BK18, BKS19]).
If D,D′ ⊂ Σ are alternating diagrams of a link L ⊂ Σ × I, neither
containing removable nugatory crossings, then D and D′ have the
same number of crossings.

Theorem 3.6 (Tait’s extended second conjecture [BK18, BKS19]).
All weakly prime, fully alternating diagrams of a given link L ⊂ Σ×I
have the same writhe.

Section 4 uses a new diagrammatic correspondence, introduced in
[Ki23d], to extend Theorems 3.3, 3.5, and 3.6 to virtual links:

Theorem 4.8. Any two weakly prime, alternating virtual diagrams3

of a given virtual link L̃ are related by virtual (non-classical) Reide-
meister moves and classical flypes.4

We then obtain two corollaries. The first adapts Theorems 3.3 and
3.6 to virtual diagrams:

Theorem 4.9. All weakly prime, alternating diagrams of a given
virtual link have the same crossing number and writhe.

3A virtual link diagram is alternating if its classical crossings alternate between
over and under.

4A classical flype on a virtual link diagram appears as in Figure 1, where T1

contains no virtual crossings.



THE VIRTUAL FLYPING THEOREM 3

Corollary 4.10. Given any two non-classical, weakly prime, alter-
nating virtual links V1 and V2, there are infinitely many distinct vir-
tual links that decompose as a connect sum of V1 and V2.

Before all this, in §2, we introduce the required background re-
garding links in thickened surfaces. Some of this reviews the existing
literature, some of it is new, and much of it is somewhere in between.
For example, a few new results follow entirely from careful reading
of the existing literature.

2. Links and spanning surfaces in thickened surfaces

Convention 2.1. Throughout, Σ is a connected, closed, orientable
surface with genus g(Σ) > 0.5 We denote the intervals [−1, 1] and
[0, 1] by I and I+, respectively. In Σ× I, we identify Σ with Σ×{0}
and denote Σ × {±1} = Σ±. For a pair (Σ, L) or (Σ × I, L), L is a
link in Σ× I, and for a pair (Σ, D), D is a link diagram on Σ.

2.1. Alternating links in thickened surfaces. A pair (Σ, L) is
stabilized if, for some circle6 γ ⊂ Σ, L can be isotoped so that it
intersects each component of (Σ × I) \ (γ × I) but not the annulus
γ× I; one can then destabilize the pair (Σ, L) by cutting Σ× I along
γ × I and attaching two 3-dimensional 2-handles in the natural way
(this may disconnect Σ); the reverse operation is called stabilization.
Equivalently, (Σ, L) is nonstabilized if every diagram D of L on Σ is
cellularly embedded, meaning that D cuts Σ into disks.

A pair (Σ, L) is split if L has a disconnected diagram on Σ. Note
that if (Σ, L) is split then it is also stabilized (as we assume that
Σ is connected). The converse is false. In fact, the number of split
components is an invariant of stable equivalence classes.

Kuperberg’s Theorem states that the stable equivalence class of
(Σ, L) contains a unique nonstabilized representative; this implies
that when (Σ, L) is nonsplit, (Σ, L) is nonstabilized if and only if Σ
has minimal genus in this stable equivalence class.

Theorem 2.2 (Theorem 1 of [?]). If (Σ, L) and (Σ′×I, L′) are stably
equivalent and nonstabilized, then there is a pairwise homeomorphism
(Σ× I, L)→ (Σ′ × I, L′).

If L is nonsplit and g(Σ) > 0, then (Σ × I) \ L is irreducible, as
Σ× I is always irreducible, since its universal cover is R2 ×R.7 The
converse of this, too, is false,8 due to the next observation, which
follows from a standard innermost circle argument:

5[Ki23b, Ki23c] also allow Σ to be disconnected with components of any genus.
6We use “circle” as shorthand for “simple closed curve.”
7For more detail, see Proposition 12 of [BK22]; the proof cites [CSW14].
8If (Σi× I, Li) is nonsplit (implying that Σi× I \Li is irreducible) for i = 1, 2,

then choose disks Xi ⊂ Σi with (Xi× I)∩Li = ∅ and construct the connect sum
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Observation 2.3. If (Σi × I) \ Li is irreducible for i = 1, 2 and
Σ = Σ1#γΣ2 with L = L1tL2 ⊂ Σ×I, where the annulus A = γ×I
separates L1 from L2 in Σ× I, then (Σ× I) \ L is irreducible.

We call (Σ, D) cellularly embedded if D cuts Σ into disks and fully
alternating if it is alternating and cellularly embedded. We will use
this result of Boden–Karimi and the generalization that follows:

Fact 2.4 (Corollary 3.6 of [BK22]). If (Σ, L) has a fully alternating
diagram, then (Σ, L) is nonsplit and nonstabilized.

Corollary 2.5. Suppose (Σ, L) has an alternating diagram D ⊂ Σ.
Then (Σ, L) is nonsplit if and only if D is connected, and (Σ, L) is
nonstabilized if and only if D is cellularly embedded.

We call (Σ, D) prime if any pairwise connect sum decomposition
(Σ, D) = (Σ1, D1)#(Σ2, D2) has (Σi, Di) = (S2,©) for either i =
1, 2. Likewise, we call (Σ, L) prime if any every pairwise connect
sum decomposition (Σ, L) = (Σ1, L1)#(Σ2, L2)9is trivial: (Σi, Li) =
(S2,©) for either i = 1, 2. Thus, (Σ, L) is prime if and only if,
whenever γ ⊂ Σ is a separating curve and L is isotoped to intersect
the annulus γ × I in two points, γ bounds a disk X ⊂ Σ such that
L intersects X × I in a single unknotted arc. Note that if (Σ, D) is
prime then D is connected, and if (Σ, L) is prime then it is nonsplit.

Following Howie-Purcell, we also call (Σ, D) weakly prime if, for
every pairwise connect sum decomposition (Σ, D) = (Σ, D1)#(S2, D2),
either D2 = © is the trivial diagram of the unknot or (Σ, D1) =
(S2,©) [HP20], and we call (Σ, L) weakly prime if, for every pair-
wise connect sum decomposition (Σ, L) = (Σ, L1)#(S2, L2), either
L2 =© is the unknot or (Σ, L1) = (S2,©) [HP20].10

As in the classical case [Me84], certain diagrammatic conditions
constrain an alternating link L as one might wish:

Theorem 2.6 ([Oz06, BK22, Aetal19, Ki23b]). If D ⊂ Σ is a fully
alternating diagram of a link L ⊂ Σ×I, then L is (i) nullhomologous
over Z/2 and (ii) nonsplit; in particular, (Σ× I) \L is irreducible if
g(Σ) > 0. Moreover, (iii) if (Σ, D) is weakly prime, then (Σ, L) is
weakly prime, and (iv) if (Σ, D) is prime, then (Σ, L) is prime.

Parts (i) and (ii) were proven by Ozawa in [Oz06] and by Boden-
Karimi in [BK22]. Part (iii) was proven by Adams et al in [Aetal19].

Σ = (Σ1 \ int(X1)) ∪ (Σ2 \ int(X2)) = Σ1#Σ2. Let L = L1 t L2 ⊂ Σ × I. Then
(Σ, L) is split. Yet, (Σ× I) \ L is irreducible by Observation 2.3.

9This pairwise connect sum is sometimes called an annular connect sum.
10A third notion of primeness for D on Σ also appears in the literature: Ozawa

calls (Σ, D) strongly prime if every circle on Σ (not necessarily separating) that
intersects D in two generic points also bounds a disk in Σ which contains no
crossings of D [Oz06].
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Part (iv) is one of the main results of [Ki23b], where we also give
new proofs of (i)-(iii).

2.1.1. End-essential spanning surfaces. Part (i) of Theorem 2.6 im-
plies that L has spanning surfaces: embedded, unoriented, compact
surfaces F ⊂ Σ × I with ∂F = L; while we do not require F to be
connected, we do require that each component of F has nonempty
boundary. By deleting the interior of a regular neighborhood of L
from F and Σ × I, one may instead view F as a properly embed-
ded surface in the link exterior (Σ × I) \ ◦νL1112 We take this view
throughout, except in Definition 2.7, Note 19, and §2.3.1.

If (Σ, D) is a fully alternating diagram of (Σ, L), then it is possible
to orient each disk of Σ \ D so that, under the resulting boundary
orientation, over- and under-strands are oriented respectively toward
and away from crossings. Since Σ is orientable, these orientations
determine a checkerboard coloring of Σ \\D,13 i.e. a way of shading
the disks of Σ\\D black and white so that regions of the same shade
abut only at crossings.14 One can use this checkerboard coloring to
construct checkerboard surfaces B and W for L, where B projects
into the black regions, W projects into the white, and B and W
intersect in vertical arcs which project to the the crossings of D.
The main result of [Ki23c] is that these checkerboard surfaces satisfy
several convenient properties:

Definition 2.7. Let F ⊂ Σ × I be a spanning surface for (Σ, L).
Denote MF = (Σ × I) \\F , and use the natural map hF : MF →
Σ × I to denote h−1

F (L) = L̃, h−1
F (Σ±) = Σ̃±, and h−1

F (F ) = F̃ ,

so that hF : L̃ → L and hF : Σ̃± → Σ± are homeomorphisms and

hF : F̃ \ L̃→ int(F ) is a 2:1 covering map. Then we say that F is:

(a) incompressible if any circle γ ⊂ F̃ \ L̃ that bounds a disk

in MF also bounds a disk in F̃ \ L̃.15

(b) end-incompressible if any circle γ ⊂ F̃ \ L̃ that is parallel

in MF to Σ̃± bounds a disk in F̃ \ L̃.

11Throughout, given a manifold X and a submanifold Y ⊂ X, νY denotes a
closed regular neighborhood of Y in X.

12We also assume that ∂F is transverse on ∂νL to each meridian, where a
meridian is the preimage of a point in L under the bundle map νL→ L.

13For compact X,Y ⊂ Σ × I, X\\Y denotes the metric closure of X \ Y ; see
Note 7 of [Ki23] for a precise definition.

14Interestingly, fully alternating link diagrams on nonorientable surfaces are
never checkerboard colorable.

15F is incompressible if and only if F is π1-injective, meaning that inclusion
int(F ) ↪→ (Σ× I) \L induces an injection of fundamental groups (for all possible
choices of basepoint).
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(c) ∂-incompressible if, for any circle γ ⊂ F̃ with |γ ∩ L̃| = 1

that bounds a disk in MF , γ \\L̃ is parallel in F̃ \\L̃ into L̃.
(d) essential if F satisfies (a) and (c).
(e) end-essential if F satisfies (b) and (c).16

A crossing c of a diagram D ⊂ Σ is removably nugatory if
there is a disk X ⊂ Σ such that ∂X t D = {c}; in that case, one can
remove c from D via a flype and a Reidemeister 1 move. No cellularly
embedded, weakly prime diagram has removable nugatory crossings.
Also, any diagram (Σ, D) with a removable nugatory crossing, has
at least one ∂-compressible checkerboard surface. Conversely:

Theorem 2.8 (Theorem 1.1 of [Ki23c]). If D ⊂ Σ is a fully al-
ternating diagram without removable nugatory crossings, then both
checkerboard surfaces from D are end-essential.

Proposition 2.9. Suppose F± are definite surfaces of opposite signs
spanning a link L ⊂ Σ × I and F+ ∩ F− consists only of arcs, none
of which are ∂-parallel in both F+ and F−. If F− (resp. F+) is
∂-incompressible, then no arc of F+ ∩ F− is ∂-parallel in F+ (resp.
F−).^

Proposition 2.10. If an essential surface F spanning (Σ, L) con-
tains an arc β which is parallel in (Σ × I) \\(F ∪ νL) to an arc
α ⊂ ∂νL \\∂F , then α is parallel in ∂νL to ∂F .^

Observation 2.11. Suppose B,W are the checkerboard surfaces of
a fully alternating diagram D ⊂ Σ of a link L ⊂ Σ× I. Any properly
embedded arc in W that is disjoint from B and separating in W is
either ∂-parallel in W or isotopic in W to a vertical arc of B ∩W .
Likewise with B and W reversed.^

Remark 2.12. Observation 2.11 implies in particular that no vertical
arc from a weakly prime, fully alternating diagram is ∂-parallel in
either checkerboard surface.^

2.1.2. Flype-related diagrams.

Definition 2.13. If D ⊂ Σ is a link diagram and γ ⊂ Σ is an inessen-
tial circle that intersects D transversally in three points, exactly one
of them a crossing point, c, then we call the circle γ a flyping circle
for D. Up to mirror symmetry, D and γ appear as shown far left in
Figure 1 (D intersects the disk component of Σ \ ◦νγ in a tangle T2

and intersects the other component in a “higher-genus tangle” T1),
so one can flype D along γ as shown: this move fixes T1, switches
which pair of strands cross within νγ, and changes T2 by reflecting
the underlying projection and reversing all crossing information.�

16Note that any end-essential surface is essential. Observe moreover that the
converse is true when Σ is a 2-sphere.
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Figure 2. Left: an entire flype of a diagram of the
knot 817. Right: Corollary 3.7 will imply that these
links are non-isotopic; see Example 3.8.

Observation 2.14. If D → D′ is a flype, then D and D′ represent
the same link L and have the same number of crossings. If D is ori-
ented then D and D′ have the same writhe.17If D is fully alternating
(resp. weakly prime), then so is D′.�

Remark 2.15. In the classical setting, the tangle T1 in Figure 1 might
contain no crossings, in which case the flype has the effect of chang-
ing D to its mirror image and then reversing all crossings; one may
think of this move as leaving D unchanged and viewing it from the
opposite side of Σ (in [Ki23], we call such a flype an entire flype). By
contrast (by an euler characteristic argument), no cellularly embed-
ded, checkerboard colorable diagram on a surface of positive genus
does. Thus, while, as in [Ki23], we regard two diagrams D,D′ ⊂ Σ
as equivalent iff they are related by planar isotopy and possibly an
entire flype, the latter possibility will be vacuous.

2.2. Definite surfaces.

2.2.1. Linking numbers and slopes. We adopt the notion of general-
ized linking numbers which was first defined for arbitrary 3-manifolds
with nonempty boundary in [CT07] and applied in the context of
thickened surfaces in [BCK21, BK22]. The generalized linking num-
ber of disjoint multicurves18 α, β ⊂ Σ× I is

(2.1) lkΣ(α, β) = | | − | |.

This linking pairing, taken relative to Σ+, is asymmetric: denoting
intersection number on Σ by ·Σ and projection pΣ : Σ× I → Σ,

lkΣ(α, β)− lkΣ(β, α) = pΣ(α) ·Σ pΣ(β).

If F spans a link L =
⊔
i Li ⊂ Σ × I and each L̂i is a co-oriented

pushoff of Li in F , then we call s(F ) =
∑

i lk(Li, L̂i) the slope of F .
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Figure 3. A multicurve γ ⊂ F and γ̃ ⊂ F̃ : [γ̃] = τ [γ].

2.2.2. The Gordon–Litherland pairing. Given a surface F spanning a
link L ⊂ Σ×I, take νF in the link exterior (Σ×I)\◦νL with projection
p : νF → F , such that p−1(∂F ) = νF ∩∂νL, and denote the frontier

F̃ = ∂νF \\∂νL and transfer map τ : H1(F ) → H1(F̃ ) (see Figure
3). Following Boden–Chrisman–Karimi, the (generalized) Gordon–
Litherland pairing (relative to Σ+) is the symmetric bilinear mapping
〈·, ·〉F : H1(F )×H1(F )→ Z given by [GL78, BCK21]:

〈a, b〉F =
1

2
(lkΣ(τa, b) + lkΣ(τb, a)) .

Given a multicurve γ ⊂ F representing g ∈ H1(F ), we denote
〈g, g〉F =

gF and call 1
2

gF the framing of γ in F . Given a basis
B = (a1, . . . , an) for H1(F ), the Goeritz matrix G = (xij) ∈ Zn×n,
xij = 〈ai, aj〉F , represents 〈·, ·〉F with respect to B. Denoting the
signature of G by σ(F ), the quantity

(2.2) σF (L) = σ(F )− 1

2
s(F ),

depends only on the S∗ equivalence class of F ; whenever (Σ, L) is
nonsplit with diagram (Σ, D) there are exactly two such classes, each
represented by a checkerboard surface of D [BCK21].19

17The writhe of D is wD = | | − | |.
18We call a disjoint union of embedded, oriented circles a multicurve.
19S∗ equivalence is generated by attaching and deleting tubes and crosscaps

[GL78] and thus respects relative homology classes. The checkerboard surfaces F
and F ′ of D satisfy [F ] + [F ′] = [Σ] in H2(Σ× I, L;Z/2), so [F ] 6= [F ′]; hence, F
and F ′ are not S∗ equivalent. For the converse, following the classical approach of
Yasuhara [?], put an arbitrary spanning surface in disk-band form, attach tubes to
make it a checkerboard surface for some diagram, and then perform Reidemester
moves (requiring more tubing and crosscapping moves).
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2.2.3. Definiteness characterizes alternating links. A spanning sur-
face F is positive- (resp. negative-) definite if 〈α, α〉F > 0 (resp.
〈α, α〉F < 0) for all nonzero α ∈ H1(F ) [Gr17].2021

Adapting work of Greene from the classical setting [Gr17], Boden–
Karimi characterized nonstabilized alternating links in (and diagrams
on) thickened surfaces in terms of definite surfaces:

Fact 2.16 (Proposition 3.8 of [BK22]). A cellularly embedded, checker-
board colorable link diagram D ⊂ Σ is alternating if and only if its
checkerboard surfaces are definite and of opposite signs.

Theorem 2.17 (Theorem 4.8 of [BK22]). Suppose (Σ, L) is non-
stabilized.22 Then L is alternating if and only if it has connected23

spanning surfaces of opposite signs.

The proof in [BK22] of Theorem 2.17 shows moreover that if L has
connected spanning surfaces of opposite signs, then there is a closed
surface S in Σ× I on which L has a fully alternating diagram whose
checkerboard surfaces are isotopic to the given surfaces; further, if
(L,Σ) is nonstabilized, then S is isotopic to Σ. Formally:

Corollary 2.18. If (Σ, L) is nonstabilized and B and W are con-
nected spanning surfaces of opposite signs spanning L, then L has a
fully alternating diagram on Σ whose checkerboard surfaces are iso-
topic to B and W .

Convention 2.19. The checkerboard surfaces B and W of any fully
alternating diagram are labeled such that B is positive-definite and
W is negative-definite. Likewise for checkerboard surfaces B′ and
W ′ (resp. Bi and Wi) from such a diagram D′ (resp. Di).

Lemma 2.20 (c.f. [BK22] Lemma 3.7). The checkerboard surfaces
B and W of any fully alternating diagram of a link (Σ, L) satisfy24

σB(L)− σW (L) = 2g(Σ).

Moreover, much of Boden–Karimi’s proof of Theorem 2.17 goes
through even if the spanning surfaces of opposite signs for L are
disconnected or if (Σ, L) is stabilized, or both. In particular, if L
has spanning surfaces (not necessarily connected) of opposite signs,
then there is a closed surface S (not necessarily connected) in Σ× I

20F is positive-definite iff σ(F ) = β1(F ) or equivalently iff each multicurve in
F either has positive framing in F or bounds an orientable subsurface of F .

21When |∂F | ≤ 2, every primitive g ∈ H1(F ) is represented by an oriented
circle, but this is not true in general: e.g. take F to be an oriented pair of pants
and g the sum of two boundary components, one with the boundary orientation.

22Recall that this implies that L ⊂ Σ× I is a nonsplit link.
23Spanning surfaces are assumed to be connected throughout [BK22].
24For an arbitrary diagram on Σ, |σW (L)− σB(L)| ≤ 2g(Σ).
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Figure 4. Collapsing S ∪ T along a standard arc

on which L has a fully alternating diagram D whose checkerboard
surfaces are isotopic to the given surfaces; further, each component
of S either is parallel to Σ or is a 2-sphere. In particular:

Fact 2.21. If F± are definite surfaces of opposite signs spanning a
link L ⊂ Σ × I, then for some (possibly empty) disjoint union of 2-
spheres Σ′ ⊂ (Σ×I)\Σ, L has a fully alternating diagram D ⊂ Σ∪Σ′

whose checkerboard surfaces are isotopic to F±. Thus:

(A) F+ and F− have the same number of connected components,
and this equals the number of split components of L.

(B) L has at most one non-local component.

2.2.4. Intersections between definite surfaces. Let F and F ′ be span-
ning surfaces for (Σ, L) with F t F ′. Orient L arbitrarily, and orient
∂F and ∂F ′ so that each is homologous in νL to L. Given an arc α
of F ∩F ′, take ν∂α in ∂νL. Following Howie [Ho18], we call α stan-
dard if i(∂F, ∂F ′)ν∂α = ±2 and non-standard if i(∂F, ∂F ′)ν∂α = 0.

(2.3) s(F )− s(F ′) = i(∂F, ∂F ′)∂νL =
∑

arcs α of F∩F ′
i(∂F, ∂F ′)ν∂α

Procedure 2.22. Let (Σ, L) be non-stabilized with connected span-
ning surfaces S, T such that S ∩ T consists entirely of standard arcs
and |S ∩ T | = β1(S) + β1(T ) + 2g(Σ). Then extending S, T through
νL so that ∂S = L = ∂T and collapsing S ∪ T along each arc of
int(S) ∩ int(T ) gives a closed surface Q isotopic to Σ25 on which L
collapses to a connected 4-valent graph; recovering crossing informa-
tion gives a connected link diagram D ⊂ Q for which S and T are
checkerboard surfaces. The initial configuration of S and T , up to
isotopy of S∪T in (Σ×I)\ ◦νL, uniquely determines D up to isotopy.
See Figure 4.�

Proposition 2.23. If (Σ, L) is local and has positive- and negative-
definite connected spanning surfaces F+ and F−, then

s(F+)− s(F−) = 2 (β1(F+) + β1(F−)) .

Proof. Because L is local, the surfaces F+ and F− are S∗-equivalent,
so σF+(L) = σF−(L), and the result follows from (2.2). �

25Connectedness and |S ∩ T | = β1(S) + β1(T ) imply that g(Q) = g(Σ). This
and the assumption that (Σ, L) is non-stabilized imply that Q is isotopic to Σ.
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Figure 5. Removing a circle γ of intersection be-
tween positive- and negative-definite surfaces F+ and
F−. The dashed purple circle bounds a disk in F+.

Proposition 2.24 (c.f. Propositions 2.12 and 2.22 of [Ki23]). If
(Σ, L) is non-stabilized and has positive- and negative-definite con-
nected spanning surfaces F+ and F−, then

s(F+)− s(F−) = 2β1(F+) + 2β1(F−) + 4g(Σ).

Further, if F+∩F− is comprised of arcs α with i(∂F+, ∂F−)ν∂α = +2:

(A) |F+ ∩ F−| = β1(F+) + β1(F−) + 2g(Σ),
(B) F± yield an alternating diagram D via Procedure 2.22, and
(C) if F+ and F− are ∂-incompressible, then D has no removable

nugatory crossings.

Proof. Isotope F± so that each component α of F+ ∩ F− is an arc
with i(∂F+, ∂F−)ν∂α = +2. Now

|F+ ∩ F−| =
1

2
|∂F+ ∩ ∂F−| =

1

2
(s(F+)− s(F−)) ,

which equals β1(F+) + β1(F−) + 2g(Σ) by (2.2) and Lemma 2.20.
Therefore, the pair F± determines a connected diagram D of L via
Procedure 2.22. The checkerboard surfaces of D are F±, so D is
alternating by Fact 2.16. Part (C) follows easily. �

Fact 2.25 (c.f. Fact 2.23 of [Ki23], Lemma 3.4 of [Gr17]). If F+ t F−
are definite surfaces of opposite signs spanning a link L ⊂ Σ×I, then
any circle γ ⊂ F+ ∩ F− bounds disks in both F+ and F−.

Procedure 2.26. Suppose F+ t F− are definite surfaces of opposite
signs spanning a link L ⊂ Σ × I. Fixing F−, isotope F+ via the
following hierarchy of moves:26

(1) If F+ ∩ F− contains circles, then (using Fact 2.25) choose an
innermost one γ in F+; γ bounds disks X± ⊂ F±. Using the

26That is, perform (1) whenever possible, perform (2) whenever possible unless
(1) is possible, and perform (3) whenever possible unless (1) or (2) is possible.
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Figure 6. Removing adjacent points of ∂F+ ∩ ∂F−
of opposite sign

α

α′
α′′

Figure 7. Adding positive twists to a spanning surface

irreducibility of (Σ× I) \L, isotope X+ past X− as shown in
Figure 5. Meanwhile, fix F+ away from X+.

(2) If any arc α of F+ ∩ F− is parallel in F−\\F+ to ∂F− and in
F+\\F− to ∂F+, then remove α as shown in Figure 6, top.

(3) If arcs α+ ⊂ ∂F+\\∂F− and α− ⊂ ∂F−\\∂F+ are parallel in
∂νL, then push α+ past α− as in Figure 6, bottom.�

We also recall:

Fact 2.27. If α is a system of disjoint properly embedded arcs in a

definite surface F , then F \ ◦να is definite.�

Fact 2.28. If F ′ is obtained by adding positive twists to a positive-
definite surface F as in Figure 7, then F ′ is positive-definite.�27

Fact 2.29. If F± are definite surfaces of opposite signs spanning
(Σ, L) and α is a non-standard arc of F+ ∩ F−, then denoting F ′+ =

F+ \
◦
να, L′ = ∂F ′+, and F ′− = F− \

◦
να, the following are equivalent:

(I) α is separating on F+;
(II) α is separating on F−;

(III) L′ has one more split component than L.�

The next two facts differ notably from their classical analogs:

27Likewise for adding negative twists to a negative-definite surface.
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Fact 2.30 (c.f. Proposition 6.6 of [Ki23]). Let F be a positive-definite
surface spanning a weakly prime alternating link L, and let K be
the kernel of the map H1(F ) → H1(Σ × I) induced by inclusion
F ↪→ Σ × I. Then F is end-essential if and only if every nonzero
a ∈ K satisfies 〈a, a〉F ≥ 2.28

Proof. Take an end-essential negative-definite spanning surface W
for L with W t F , and let D be an alternating diagram of L asso-
ciated to F,W (via Procedure 2.26 and then 2.22). If D is weakly
prime, then both conditions are satisfied, the first by Theorem 2.8
and the second by an argument analogous to the proof of Lemma 4
of [Ki23a]. Conversely, if D admits a removable nugatory crossing c,
then neither condition holds, because W is end-essential. �

Proposition 2.31 (c.f. Proposition 6.7 of [Ki23]). Let F be a
positive-definite surface spanning a weakly prime alternating link L,
and let α ⊂ F be a properly embedded arc such that F ′ = F \ ◦να
spans a weakly prime alternating link L′. If F is end-essential, then
F ′ is also end-essential.

Proof. Letting K and K ′ denote the kernels of the maps H1(F ) →
H1(Σ× I) and H1(F ′)→ H1(Σ× I) induced by inclusion, Fact 2.30
tells us that every nonzero c ∈ K satisfies 〈c, c〉F ≥ 2, and Fact
2.27 implies that F ′ is positive-definite. Therefore every nonzero
c ∈ K ′ satisfies 〈c, c〉F ≥ 2, and so Fact 2.30 implies that F ′ is
end-essential. �

Proposition 2.32. As a result of Procedure 2.26, F+ ∩ F− consists
only of standard positive arcs.^29

Proposition 2.33. If F± are definite surfaces of opposite signs span-
ning a link L ⊂ Σ× I and α is an arc of F+ ∩ F− that is ∂-parallel
in both F+ and F−, then α is non-standard.^

Lemma 2.34 (c.f. Lemma 2.30 of [Ki23]). Suppose F± are positive-
and negative-definite surfaces spanning a non-stabilized link L ⊂ Σ×
I, and α is an arc of F+ t F−. Then:

(A) i(∂F+, ∂F−)ν∂α 6= −2.
(B) If α is nonseparating on F−, then i(∂F+, ∂F−)ν∂α = 2.
(C) In particular, if L is weakly prime, both F± are essential, and

α is not ∂-parallel in both F±, then i(∂F+, ∂F−)ν∂α = 2.

Proof. The argument is largely the same as in [Ki23]. For (A) and
(B), we just describe the differences: if (Σ, L′) is nonstabilized, then
replacing β1(F+)+β1(F−) with β1(F+)+β1(F−)+2g(Σ) in (6.1) and

28Definiteness implies that F is end-incompressible.
29Note that Procedure 2.26 always terminates because each move decreases

|F+ ∩ F−|+ |∂F+ ∩ ∂F−|.
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(6.2) of [Ki23] contradicts Proposition 2.24 (A); if (Σ, L′) is stabilized,
then Fact 2.21 (A) (and, for (B), the assumption that α is non-
separating on F−) implies that L′ is local, so Proposition 2.23 gives:

−2 = (s(F+)− s(F−))−
(
s(F ′+)− s(F ′−)

)
−2 = 2(β1(F+) + β1(F−) + 2g(Σ))− 2(β1(F ′+) + β1(F ′−))

−1 = g(Σ).

(2.4)

We prove (C) by contradiction. Apply Procedure 2.26 F+ = F0 →
F1 → · · · → Ft until it terminates, and consider the last move (3)
Fs → Fs+1 in the sequence, which involves two arcs α1, α2 of Fs∩F−
and one arc α of Fs+1 ∩ F−; perturb α1 in F− so that it is disjoint
from Fs. Parts (A) and (B) imply without loss of generality that
α1 is non-standard, so F− \ να1 and Fs \ να1 are definite surfaces
of opposite sign spanning the same link L′. Observe that, for all
i = s+ 1, . . . , t (c.f. (6.3) of [Ki23]), and each arc α′ of F− \\Fi that
separates F−, either α′ is ∂-parallel in F− or ∂(F− \να′) is split with
no local components. The latter “possibility” uses the assumption
that L is weakly prime; it also contradicts Fact 2.21 (B). Therefore,
α1 is ∂-parallel in F−, which contradicts the hierarchy of the moves
in Procedure 2.26. �

Using Lemma 2.34, the same reasoning as in [Ki23] leads to:

Theorem 2.35. Suppose (Σ, D) and (Σ, D′) are weakly prime, fully
alternating diagrams of (Σ, L) with checkerboard surfaces B,W and
B′,W ′. Then D and D′ are equivalent if and only if B and B′ are
isotopic in (Σ× I) \ ◦νL, as are W and W ′.^

Corollary 2.36. There is a bijective correspondence between equiv-
alence classes of weakly prime, fully alternating link diagrams on Σ
and pairs of isotopy classes of essential definite surfaces of opposite
signs spanning the same weakly prime, nonstabilized link in Σ×I.^30

2.3. Plumbing. A plumbing cap for a surface F spanning (Σ, L) is
an embedded disk V ⊂ (Σ× I)\ ◦νL with V ∩ (F ∪∂νL) = ∂V where:

• ∂V bounds a disk Û ⊂ F ∪ νL,

• Û ∩ F is a disk U called the shadow of V , and

• denoting the components of (Σ × I) \\(Û ∪ V ) by Y1, Y2,
neither subsurface Fi = F ∩ Yi is a disk.

If the first two properties hold but the third fails, we call V a fake
plumbing cap for F .31 If V is a plumbing cap for F with shadow U ,

30Example 2.37 of [Ki23] shows that Theorem 2.35 and Corollary 2.36 become
false if one removes “weakly prime” or “fully alternating.”

31The decomposition F = F1 ∪ F2 is a de-plumbing of F along U and V ,
denoted F = F1 ∗ F2. The reverse operation, in which one obtains F by gluing
F1 and F2 along U , is called generalized plumbing or Murasugi sum.
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Figure 8. Re-plumbing a spanning surface replaces
a plumbing shadow with its cap.

then the operation F → (F \ U) ∪ V is called re-plumbing. See
Figure 8. The same operation along a fake plumbing cap, a “fake
re-plumbing,” is an isotopy move. Two spanning surfaces are plumb-
related if they are related by re-plumbing and isotopy moves.

2.3.1. The 4-dimensional perspective.

Proposition 2.37 (c.f. Proposition 2.36 of [Ki23]). Given surfaces
F1, F2 spanning (Σ, L), let F ′i be properly embedded surfaces in Σ ×
I × I+ obtained by perturbing int(Fi), while fixing ∂F1 = L = ∂F2.
If F1 \

◦
νL and F2 \

◦
νL are plumb-related, then:

(A) F ′1 and F ′2 are related by an ambient isotopy of Σ × I × I+

which fixes Σ× I ⊃ L;
(B) there is an isomorphism φ : H1(F1) → H1(F2) satisfying
〈α, β〉F1

= 〈φ(α), φ(β)〉F2
for all α, β ∈ H1(F1);

(C) if F1 is definite, then F2 is definite of the same sign;
(D) in particular, if F1 is a checkerboard surface from an alter-

nating diagram of L on Σ, then so is F2;
(E) F1 and F2 are S∗ equivalent, and thus σF1(L) = σF2(L).

Proof. Part (A) is the same as in [Ki23]. For (B), construct the
desired isomorphism φ : H1(F1) → H1(F2) as follows. Given a ∈
H1(F1), take a multicurve α ⊂ Fi representing a, replace each arc of
α ∩ U with an arc in V (with the same initial and terminal points),
and denote the resulting multicurve by α′; set φ(a) = [α′]. This
immediately gives (C) and (D), and (E) now follows from the obser-
vation that [F1] + [F2] = 0 ∈ H2(Σ × I, L;Z/2), since the union of
any plumbing cap and its shadow is nullhomologous. �

Next, we extend Theorem 3 of [GL78] to the context of thickened
surfaces. Let F be a spanning surface of a link L ⊂ Σ × I. Isotope
F so that F ⊂ (Σ \ ◦νx) × I for some point x ∈ Σ.32 Let F ′ be a
properly embedded surface in (Σ\ ◦νx)×I×I+ obtained by perturbing
the interior of F while fixing ∂F . One can construct the double-
branched cover M

F̂
of (Σ \ ◦νx) × I × I+ along F ′ by cutting Σ ×

I × I+ along the trace of this isotopy, taking two copies, and gluing.
Yet, these two copies are homeomorphic to Σ × I × I+, and the
gluing region corresponds to a regular neighborhood N of F in Σ×I.

32To see that this is always possible, consider isotoping F into disk-band form.
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Therefore, one may instead construct M
F̂

as follows. Let ι : N → N

be involution given by reflection in the fiber, take two copies Σ4
1 and

Σ4
2 of (Σ \ ◦νx)× I × I+, and define

M
F̂

=
(
Σ4

1 ∪ Σ4
2

)
/
(
y ∈ N ⊂ ∂Σ4

1 ∼ ι(y) ∈ N ⊂ ∂Σ4
2

)
.

Consider the Mayer-Vietoris sequence for M
F̂

:

0 = H2(Σ4
1)⊕H2(Σ4

2)→H2(M
F̂

)
ϕ→H1(N)

ψ→H1(Σ4
1)⊕H1(Σ4

2)→· · ·

If g(Σ) = 0, as in [GL78], then both Σ4
i are 4-balls, so ϕ is an iso-

morphism; Gordon–Litherland then use the inverse map to compare
the intersection form · on M

F̂
with their pairing GF on F . After

restricting appropriately, the same ideas work here:

Theorem 2.38 (c.f. Theorem 3 of [GL78]). With the setup above,
let i∗ : H1(F ) → H1(N) be the isomorphism induced by inclusion,
and denote K = i−1

∗ (ker(ψ)). Then there is an isomorphism S :
(K,GF )→

(
H2(M

F̂
), ·
)
.

Proof. Consider the following map S : K → H2(M
F̂

). Given A ∈ K,
choose a multicurve α ⊂ F with [α] = A. Then α bounds properly
embedded oriented surfaces si ⊂ Σ4

i for i = 1, 2. Define S(A) =
[s1]− [s2] ∈ H2(M

F̂
).

To see that this is the required isomorphism (K,GF )→
(
H2(M

F̂
), ·
)
,

let A,B ∈ K, represented respectively by multicurves α, β ⊂ F .

Then α and β̃ are disjoint multicurves in N with [α̃] = 2A, [β̃] = 2B,

ι(α) = α, and ι(β̃) = β̃. Hence:

S(A) · S(B) =
1

4

(
S([α̃]) · S([β]) + S([β̃]) · S([α])

)
=

1

4

(
lkΣ (α̃, β) + lkΣ (ια̃, ιβ) + lkΣ(β̃, α) + lkΣ(ιβ̃, ια)

)
=

1

2

(
lkΣ (α̃, β) + lkΣ(β̃, α)

)
= GF (A,B). �

2.3.2. Flyping caps. Let D ⊂ Σ be a weakly prime, fully alternating
link diagram with checkerboard surfaces B,W . Say that a plumbing
cap V for B is a flyping cap if V appears as in Figure 10, left-center.
There is then a corresponding flype move as shown in Figures 10 and
9. Namely, denoting the shadow of V by U , the flype move proceeds
along an annular neighborhood of a circle γ ⊂ Σ comprised of the arc
V ∩W together with an arc in U ∪ νL. (The resulting link diagram
might be equivalent to D.) More formally:

Proposition 2.39 (c.f. Proposition 2.37 of [Ki23]). Let V be an
flyping cap for B, D → D′ the flype move corresponding to V , B′ and
W ′ the checkerboard surfaces from D′, and B′′ the surface obtained
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T2

T1

T2

T1

T2

Figure 9. A flype move corresponds to an isotopy
of one checkerboard surface (here, W ) and a re-
plumbing of the other.

Tangle 2

Tangle 1

Tangle2

Tangle 1

Figure 10. A flyping cap and the associated flype move

by re-plumbing B along V . Then B′ and B′′ are isotopic, as are W ′

and W . Hence, D′ is equivalent to the diagram determined by B′′,W
via Theorem 2.35.33

Proof. As in [Ki23], Figure 9 demonstrates the isotopies. �

Conversely, if γ is a flyping circle for (Σ, D), then there is an
flyping cap V for B (or W ) with V ∩W ⊂ νγ (resp. V ∩B ⊂ νγ).

3. The flyping theorem in thickened surfaces

The arguments in §§3-5 and 7-8 of [Ki23] have been revised so that
they apply directly in the context of this paper (with the obvious re-
placements of S3 with Σ×I, S2 with Σ): B, W are the checkerboard
surfaces from a weakly prime, fully alternating diagram D ⊂ Σ of a
link L ⊂ Σ×I, F is an end-essential positive-definite surface spanning
L, vF is comprised of the vertical arcs at the crossings where F has
crossing bands, and DF,W is the diagram determined via Theorem
2.35 by F,W . One then implements Menasco’s crossing ball setup,
isotopes F into fair position, and performs a sequence of isotopy and
re-plumbing moves according to a hierarchy: one only performs each
move k if F is in (k − 1)-good position, meaning that F is in fair
position and none of Moves 1 through k − 1 are possible. See [Ki23]

for the notations C, v, Ŵ , S± etc. associated with the crossing ball
setup and for the precise definitions of fair position and Moves 1-10.

33An analogous statement holds for flyping caps for W .
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Moves 1-9, all of which are isotopy moves, appear in Figure 11. Move
10 is a re-plumbing move and is more complicated; see [Ki23].

A few details are worth noting. First, one must be more careful
with push-through moves (see Definition 3.10 of [Ki23]) in thickened
surfaces than in S3. The definition is the same (because it was writ-
ten with this paper in mind!), but in addition to the three pictures
shown top in Figure 19 of [Ki23], three more pictures are possible.
See Figure 12. In any case, if we wish to perform (or observe the
possibility of) a push-through move along an arc α whose endpoints
lie on a circle γ, we must now check that α is parallel in S+ into γ; in
[Ki23], this was free. Importantly, however, this is always the case.34

Second, whereas in [Ki23] every circle of F ∩ S± was inessential
in S± ≈ S2, this property holds here only because the assumption
that F is end-incompressible allows us to require that S+ ∪ S− cuts
F into disks (c.f. Definition 3.2 (h) and Lemma 3.3 of [Ki23]).

Third, Sublemma 5.2 of [Ki23] implies there that the circles of
F ∩ S+ are mutually nested, but this is less clear here. The proof of
Lemma 5.3 of [Ki23] is thus written with this paper in mind, and is
slightly more complicated as a result.

Adapting the arguments from §§3-5, 7-8 of [Ki23] thus gives:

Theorem 3.1. If D = DB,W is a weakly prime, fully alternating
diagram of (Σ, L), then any end-essential, positive definite surface F
spanning L is plumb-related to B; likewise for end-essential negative-
definite surfaces and W .�

Corollary 3.2. With F and D as in Theorem 3.1, β1(B) = β1(F )
and s(B) = s(F ′).�35

Theorem 3.3 (Part of Tait’s extended first conjecture [Gr17, Ka87,
Mu87, Th87, Tu87]). If D,D′ ⊂ Σ are alternating diagrams of a link
L ⊂ Σ× I, neither containing removable nugatory crossings, then D
and D′ have the same number of crossings.36

Theorem 3.4. If F is in 9-good position, then F contains no saddle
disks: F ∩C = vF ; hence, every circle γ of F ∩S+ is a flyping circle,
and DF,W is related to D by a sequence of flypes that preserve the
isotopy class of W .�

Theorem 3.5 (Tait’s extended flyping conjecture). All weakly prime,
fully alternating diagrams D = DB,W and D′ = DB′,W ′ of the same

34In [Ki23], see the definition of Move 2 and the proofs of Lemmas 3.22, 4.1,
and 5.3 and of Propositions 8.2 and 8.3.

35This is also true if L is non-stabilized and/or weakly prime.
36When D and D′ are weakly prime and fully alternating, Fact 2.16, Theorems

2.8 and 3.1, and Corollary 3.2 immediately imply this. The general case then fol-
lows, as the number of crossings is additive under (de)stabilization, diagrammatic
connect sum, and split union.
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Figure 11. Moves 1-9
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β

α

β

α

β

α

Figure 12. Push-through moves in Σ × I need not
appear as in Figure 19 of [Ki23].

link L ⊂ Σ× I are related by a sequence of flypes D → · · · → D′′ →
· · · → D′ in which D → · · · → D′′ preserves the isotopy class of W
and D′′ → · · · → D′ preserves the isotopy class of B′.

Since writhe is invariant under flypes (recall Observation 2.14)
and additive under diagrammatic connect sum and disjoint union,
we obtain a new geometric proof of Tait’s second conjecture:

Theorem 3.6 (Tait’s extended second conjecture [BK18, BKS19]).
All weakly prime, fully alternating diagrams of a given link L ⊂ Σ×I
have the same writhe.

Theorem 3.5 implies that, unlike a classical link and a link in
S2 × I, a link in a thickened surface of positive genus is not neces-
sarily isotopic to the link obtained by reflecting horizontally (in the
projection surface) and then vertically. More precisely, let D ⊂ Σ be
a weakly prime, fully alternating diagram of a link L ⊂ Σ × I; let
φ : Σ→ Σ be an orientation-reversing involution; let D′ ⊂ Σ be the
diagram obtained from φ(D) by reversing all crossing information;
and let L′ ⊂ Σ× I be the link represented by D′. Note that L′ is the
image of L under the map Σ×I → Σ×I given by (x, t) 7→ (φ(x),−t).

Corollary 3.7. With the setup above, if D is weakly prime and fully
alternating, then the links L and L′ are isotopic in Σ× I if and only
if the diagrams D and D′ are flype-related on Σ. In particular, this
is always true if g(Σ) = 0, but not necessarily if g(Σ) > 0.

Example 3.8. The diagrams on T 2 shown right in Figure 2 admit
no non-trivial flypes and are non-isotopic; thus, by Corollary 3.7,
they represent non-isotopic links in T 2 × I.

4. The flyping theorem for virtual links

A virtual link diagram is the image of an immersion
⊔
S1 → S2

in which all self-intersections are transverse double-points, some of
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Figure 13. Classical (top) and virtual (bottom) Rei-
demeister moves

which are labeled with over-under information. These labeled points
are called classical crossings, and the other double-points are called
virtual crossings. Traditionally, virtual crossings are marked with a
circle, as in Figure 13. A virtual link is an equivalence class of such
diagrams under generalized Reidemeister moves, as shown in Figure
13. There are seven types of such moves, the three classical moves
and four virtual moves.37

Notation 4.1. Given a virtual link diagram V ⊂ S2, let [V ] denote
the set of all virtual diagrams related to V by planar isotopy and
virtual Reidemeister moves.

The main result of [Ki23d] establishes a bijective correspondence
between such equivalence classes [V ] and pairwise homeomorphism
classes of cellularly embedded link diagrams on thickened surfaces,
(Σ, D). In fact, this is a triple bijective correspondence, also involving
abstract link diagrams, which we will not need. There is also an older,
well-known triple correspondence between equivalence classes of the
(virtual) links represented by these diagrams [Ka98, KK00, CKS02],
which we will not need here. The salient part is captured in the
following theorem, where we view S3 = (S2 × R) ∪ {±∞}, denote

Ŝ3 = S3 \ {±∞} with projection π : Ŝ3 → S2.

Theorem 4.2 (Theorem 5 of [Ki23d]). There is a bijective corre-
spondence between (1) equivalence classes [V ] of virtual diagrams
and (2) pairwise homeomorphism classes of cellularly embedded link
diagrams (Σ, D):

(1)→ (2) Given [V ], choose a representative V ⊂ S2, take a regular
neighborhood νV of V in S2, modify νV near each virtual
crossing of V as shown in Figure 14, and (abstractly) cap off
each boundary component of the resulting surface with a disk.

37The move involving two virtual crossings and one classical crossing is some-
times called a mixed move, but we include it as a virtual (non-classical) move.
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or

Figure 14. Converting the neighborhood of a virtual
link diagram to an abstract link diagram

(2)→ (1) Given (Σ, D), choose any embedding φ : Σ→ Ŝ3 such that (i)
for each crossing point c ∈ D, φ(c) lies on the front of Σ and
(ii) all self-intersections in π ◦ φ(G) are transverse double-
points. Then let V = π ◦ φ(D), with over-under information
matching D.

Remark 4.3. The requirement in Theorem 4.2 that all crossings lie
on the front of φ(Σ) is necessary; otherwise, different embeddings

Σ→ Ŝ3 may yield distinct virtual links. See Example 7 of [Ki23d].

Definition 4.4. Let V be a virtual link diagram, and let (Σ, D) be
the cellularly embedded link diagram corresponding to [V ]. Say that
V is split if Σ is connected. Say that V is prime (resp. weakly
prime) if (Σ, D) is prime (resp. weakly prime).

Remark 4.5. This definition of primeness for virtual knot is tradi-
tional and is well motivated by Gauss codes [Ka98].38 Namely, sup-
pose V comes from a Gauss code G. Then V is nonprime if and only
if, after some cyclic permutation, G has the form (a1, . . . , ak, b1, . . . , b`)
where bi 6= −aj for all i, j. The distinction between weak and pair-
wise primeness is at the heart of the companion paper [Ki23b].

Definition 4.6. A virtual link L̃ is nonsplit (resp. prime, weakly
prime) if the unique nonstabilized representative (Σ, L) of the cor-
responding stable equivalence class is nonsplit (resp. prime, weakly
prime).

Theorem 2.6 [Oz06, BK22, Aetal19, Ki23b] gives the following
generalization of Menasco’s classical results that a link is split or
non-prime if and only if obviously so in a given reduced alternating
diagram [Me84]:

Theorem 4.7. Let V be an alternating diagram of a virtual link L̃.

• If V is nonsplit, then L̃ is nonsplit.

• If V is weakly prime, then L̃ is weakly prime.

• If V is prime, then L̃ is prime.

38A Gauss code is a permutation of the tuple (−n, . . . ,−1, 1, . . . , n), n ∈ Z.
Some Gauss codes describe classical knot diagrams, but all Gauss codes describe
virtual knot diagrams.
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The trouble is that, unlike with classical diagrams and diagrams
on surfaces, it may be challenging to tell by direct inspection whether
or not a given virtual diagram is split, weakly prime, or prime. Also,
the converses to the second and third statements are false, because of
possible nugatory crossings, which we have yet to address. Theorem
4.15 of [Ki23b] uses lassos to rectify all this, giving necessary and
sufficient conditions for an alternating virtual diagram to represent a
nonsplit, prime, or weakly prime virtual link. See [Ki23b] for details.

Theorem 4.8. Any two weakly prime, alternating diagrams of a

given virtual link L̃ are related by virtual Reidemeister moves and
(classical) flypes.

Proof. Let V and V ′ be two such diagrams, and let (Σ, D) and
(Σ′, D′) be the associated pairs under Theorem 4.2. By Kuperburg’s
theorem, we may identify Σ ≡ Σ′, and by Theorem 3.5, there is a
sequence of flype moves on Σ taking D to D′:

D = D0 → D1 → · · · → Dn = D′.

We will show for each i = 1, . . . , n that there are virtual diagrams
V 2
i−1 and V 1

i which correspond to (Σ, Di−1) and (Σ, Di) and which are
related by a flype. This will produce a sequence of virtual diagrams

V = V 1
0 → V 2

0 → V 1
1 → V 2

1 → · · · →→ V 1
n → V 2

n = V ′

where each V 1
i → V 2

i comes from a sequence of virtual R-moves and
each V 2

i−1 → V 1
i comes from a flype.

Consider a flype Di−1 → Di; it is supported within a disk X ⊂
Σ.39 Denote the quotient map q : Σ → Σ/X ≡ Σ, and denote the
underlying graph of Di−1 by G. Choose a spanning tree T for the
4-valent graph q(G) ⊂ Σ/X, and take a regular neighborhood νT .
Denote U = q−1(νT ), and observe that U is a disk in Σ that contains
X and all crossings of Di−1.40

Choose an embedding φ : Σ→ Ŝ3 such that π|φ(U) has no critical
points and π ◦ φ(U) ∩ π ◦ φ(D \ U) = ∅. Denote f = π ◦ φ and
f(Di−1) = V 2

i−1. Observe that f |X is a homeomorphism onto its

image, and so the disk f(X) supports a flype V 2
i−1 → V 1

i where V 1
i

corresponds to (Σ, Di).
Thus, as needed, each V 2

i−1 → V 1
i comes from a flype. To complete

the proof, we note that each V 1
i → V 2

i comes from a sequence of vir-
tual R-moves, due to Theorem 4.2, since both V 1

i and V 2
i correspond

to the same cellularly embedded diagram Di on Σ. �

Since crossing number and writhe are invariant under flypes, we
can also extend more parts of Tait’s conjectures to virtual links:

39That is, take X to be the oval-shaped disk shown left in Figure 1.
40Thus, U is a lasso for (Σ, Di−1).
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Figure 15. There are infinitely many different ways
to take the connect sum of any two non-classical al-
ternating knots.

Theorem 4.9. All weakly prime, alternating diagrams of a given
virtual link have the same crossing number and writhe.

Finally, we have an additional corollary regarding connect sums
of virtual knots. It has long been known that connect sum is not a
well-defined operation for virtual knots. In general, connect sums of
virtual knots depend on choices of diagram and basepoint. For exam-
ple, Kauffman–Manturov cite an example due to Kishino–Satoh of a
non-trivial connect sum of two trivial virtual knots [KS04, KM05].
Their summands, viewed as links in thickened surfaces, are both sta-
bilized, but the connect sum operation causes the resulting link to
intersect what were the destabilizing annuli. We offer a different
(and larger) class of examples illustrating this non-uniqueness. In
particular, our summands are always nonstabilized, and each pair
gives infinitely many distinct connect sums:

Corollary 4.10. Given any two non-classical, weakly prime, alter-
nating virtual links V1 and V2, there are infinitely many distinct vir-
tual links that decompose as a connect sum of V1 and V2.

This follows immediately from Theorem 4.9, using the construc-
tion suggested in Figure 15. We conjecture that the same construc-
tion works more generally:

Conjecture 4.11. Given any two non-classical, weakly prime virtual
links V1 and V2, there are infinitely many distinct virtual links that
decompose as a connect sum of V1 and V2.
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