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Abstract. The usual notion of a “prime” virtual link does
not correspond to the most common notion (“weakly prime”)
of a prime link in a thickened surface. We compare these two
notions and discuss related issues (split, stabilized, etc.). Our
main result is that an alternating virtual diagram V represents
a prime (resp. weakly prime, nonsplit) virtual link unless V is
“obviously” nonprime (resp. not weakly prime, split). These
results generalize classical results due to Menasco. We also
introduce the notion of “lassos” for virtual link diagrams and
describe how to use lassos to determine by inspection whether
or not an alternating virtual diagram is weakly prime, pairwise
prime, or nonsplit.

1. Introduction

A Gauss code is a permutation of the tuple (−n, . . . ,−1, 1, . . . , n),
n ∈ Z. Some Gauss codes, but not all, describe classical knot di-
agrams. What about the other Gauss codes? Indeed, this line of
inquiry led to Kauffman’s discovery of virtual knots [Ka98]. More-
over, these objects, although defined abstractly, have tangible mean-
ing:1 by work of Kauffman [Ka98], Kamada–Kamada [KK00], and
Carter–Kamada–Saito [CKS02], there is a triple bijective correspon-
dence between (i) virtual links, (ii) abstract links (see below), and
(iii) stable equivalence classes of links in thickened surfaces.2 There
is also a correspondence between the associated diagrams [Ki22a].
We review these correspondences in §2.1.

A virtual link K is prime if, for every diagram V of K and every
diagrammatic connect sum decomposition V = V1#V2, either V1 or
V2 represents the trivial knot. Yet, the corresponding notion for a
link L in a thickened surface Σ×I is not the one that typically appears
in the literature, much of which addresses the geometry of the link
exterior E = Σ × I \ ◦νL and thus is chiefly interested in whether

1There is an obvious historical parallel between the advent of virtual knots
and that of complex numbers.

2Thus, virtual links pertain more generally to the study of links L in arbitrary
3-manifolds M for which there exists a thickened surface Σ × I ⊂ M with L ⊂
Σ× I. See [HP20, PT22].
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or not E contains an essential torus. Thus, L ⊂ Σ× I is sometimes
considered prime if, for any pairwise connect sum decomposition (Σ×
I, L) = (Σ × I, L1)#(S3, L2), L2 is the unknot. Following Howie–
Purcell, we call such L weakly prime. See §2.2 for the definitions
of primeness and weak primeness for virtual links and for links in
thickened surfaces.3

In the classical setting, Menasco proved that a reduced alternating
diagram D represents a prime (resp. nonsplit) link if and only if D
is diagrammatically prime (resp. connected) [Me84]. Our first main
result extends this fact to alternating diagrams on closed orientable
surfaces of arbitrary genus:

Theorem 1.1. Suppose D ⊂ Σ is a fully alternating diagram of a
link L ⊂ Σ × I. Then L is (i) nullhomologous over Z/2 and (ii)
nonsplit. Moreover, (iii) if (Σ, D) is prime, then (Σ, L) is prime.

Parts (i) and (ii) are proven by Ozawa in [Oz06] and by Boden-
Karimi in [BK20]. We use Menasco’s crossing ball technique to give
an alternate proof of (ii), as the argument adapts nicely to give a
proof of (iii). Adams et al prove a result similar to (iii) in [Aetal19]:
ifD is weakly prime on Σ, then there is no nontrivial pairwise connect
sum decomposition (Σ× I, L) = (Σ× I, L1)#(S3, L2).

We then turn our attention to virtual link diagrams, where an
analogous result follows from the correspondences described above.
This result is not immediately practical, however, for the following
reason.

Menasco’s classical result is sometimes stated as follows: an al-
ternating link is composite (resp. split) if and only if it is obviously
composite (resp. split) in a given alternating diagram. Theorem 3.2
can be stated in the same manner. Yet, for virtual diagrams, “obvi-
ous” feels inaccurate. What does it mean for an alternating virtual
diagram V to be “obviously” composite? Certainly, if V decomposes
as a diagrammatic connect sum of two nontrivial links, then it is ob-
viously composite; but this is too restrictive (the theorem is untrue
with such a strong requirement). To remedy this, i.e. to describe
when V is “obviously composite,” we introduce lassos in §4.

Given a link diagram D on a surface Σ, a lasso is a disk X ⊂ Σ
that contains all crossings of D. Similarly, given a virtual diagram
V ⊂ S2, a lasso is a disk X ⊂ S2 that contains all classical crossings
of V and no virtual ones. In both contexts, a lasso X is acceptable
if the part of the diagram in X is connected and the part of the
diagram outside X does not admit an “obvious” simplification. (See
§4 for the precise definition.) We show that:

3For our purposes, abstract links are useful mainly as an intermediate stage in
the correspondence between virtual links and (stable equivalence classes of) links
in thickened surfaces.
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Proposition 1.2. An alternating virtual diagram V represents a
nonsplit virtual link if and only if there is a diagram V ′ related to
V by virtual (non-classical) Reidemeister moves which admits an
acceptable lasso.

Moreover, still assuming that V is alternating, we describe how
to determine from V ′ and X (by inspection) whether or not the
associated virtual link is prime (resp. weakly prime, nonsplit):

Theorem 1.3. Suppose an alternating virtual diagram V admits
an acceptable lasso X. Then (V is connected and) the virtual link
represented by V is (nonsplit and):

(i) pairwise prime if and only if, for every disk Z ⊂ S2 whose
boundary intersects V in two generic points, both in X, all
classical crossings of V lie on the same side of ∂Z; and

(ii) weakly prime if and only if, for every disk Z ⊂ X that
intersects V generically and contains at least one crossing,
|∂Z ∩ L| > 2.

Finally, in §??, we introduce lasso numbers of virtual links and
their diagrams. We establish some basic properties. Computing
these invariants seems like a challenging, but approachable, problem.

2. Background

2.1. Correspondences. A virtual link diagram is the image of an
immersion

⊔
S1 → S2 in which all self-intersections are transverse

double-points, some of which are labeled with over-under informa-
tion. These labeled points are called classical crossings, and the
other double-points are called virtual crossings. Traditionally, vir-
tual crossings are marked with a circle, as in Figure 1. A virtual
link is an equivalence class of such diagrams under generalized Rei-
demeister moves, as shown in Figure 1. There are seven types of such
moves, the three classical moves and four virtual moves.4

Notation 2.1. Given a virtual link diagram V ⊂ S2, let [V ] denote
the set of all virtual diagrams related to V by planar isotopy and
virtual Reidemeister moves.

An abstract link diagram (S,G) consists of a 4-valent graph G
embedded in a compact orientable surface S, such that G has over-
under information at each vertex, and G is a deformation retract of
S. An abstract link is an equivalence class of such diagrams under
the following equivalence relation ∼: (S1, G1) ∼ (S2, G2) if there are
embeddings φi : Si → S, i = 1, 2, into a surface S, such that φ1(G1)
and φ2(G2) are related by classical Reidemeister moves on S.

4The move involving two virtual crossings and one classical crossing is some-
times called a mixed move, but we include it as a virtual (non-classical) move.
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Figure 1. Classical (top) and virtual (bottom) Rei-
demeister moves

Figure 2. A link diagram on the torus and a corre-
sponding virtual diagram

Notation 2.2. Throughout, Σ is a closed orientable surface, not
necessarily connected or of positive genus. We denote the intervals
[−1, 1] and [0, 1] by I and I+, respectively. In Σ × I, we identify
Σ with Σ × {0}, and we denote Σ × {±1} = Σ±. We reserve the
notations L and D for links and diagrams as follows: for a pair
(Σ, L), L is a link in Σ× I which intersects each component of Σ× I,
and for a pair (Σ, D), D is a link diagram on Σ which intersects each
component of Σ× I.

The diagrammatic correspondence works as follows (see [Ki22a]
for a proof):

Correspondence 2.3. There is a triple bijective correspondence be-
tween (i) equivalence classes [V ] of virtual link diagrams, (ii) abstract
link diagrams, and (iii) cellularly embedded link diagrams on closed
surfaces. Namely:

(i) → (ii) Given an equivalence class [V ] of virtual link diagrams, choose
a representative diagram V ⊂ S2, and construct an abstract
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or

Figure 3. Converting the neighborhood of a virtual
link diagram to an abstract link diagram

link diagram as follows. First, take a regular neighborhood
νV of V in S2. Second, near each virtual crossing of V ,
modify νV as shown in Figure 3. Third, view the resulting
pair abstractly, forgetting the embedding in S3.

(ii) → (i) Given an abstract link diagram (S,G), view S3 = (S2 ×R)∪
{±∞}, denote Ŝ3 = S3 \ {±∞} with projection π : Ŝ3 →
S2, and choose any embedding φ : S → Ŝ3 such that π|φ(S)

has no critical points and all self-intersections in π ◦ φ(G)
are transverse double-points with neighborhoods as suggested
in Figure 3. Now take the 4-valent graph π ◦ φ(G) ⊂ S2,
and, for each crossing point c of G, label the double-point
π◦φ(c) with the matching over-under information. (Thus, the
double points of V coming from the crossings of D comprise
the classical crossings of V , and the remaining double-points
comprise the virtual crossings.) See Figure 2.

(ii) → (iii) Given an abstract link diagram (S,G), cap off each compo-
nent of ∂S with a disk to obtain a cellularly embedded link
diagram on a closed surface.

(iii) → (ii) Given any pair (Σ, D), the pair (νD,D) is the associated
abstract link diagram.

This gives a new diagrammatic perspective on a well-known cor-
respondence [Ka98, KK00, ?]:

Correspondence 2.4. There is a triple bijective correspondence be-
tween (i) virtual links, (ii) abstract links, and (iii) stable equivalence
classes of links in thickened surfaces. Namely, choose any represen-
tative diagram and apply the diagrammatic Correspondence 2.3.

There is an important caveat in Correspondences 2.3 and 2.4 which
is worth noting explicitly. Namely, recall the requirement in part (ii)
→ (i) of the proof of Correspondence 2.3 that π ◦ φ|S must have no
critical points. Therefore, φ(S) has no “back side.” If one wishes to
construct a virtual link diagram directly from diagram D on a closed
surface Σ, however, this is too much to require, any embedding of

Σ will have a front and a back: given an embedding φ : Σ → Ŝ3, a
regular point of π|φ(Σ) lies on the front or back of φ(Σ) depending on
whether an even or odd number of points of φ(Σ) lie directly above
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it. The salient point is that one must choose an embedding φ of Σ
under which all crossings of D lie on the front of φ(Σ):

Construction 2.5. Given a link diagram D on a surface Σ, one may
construct a corresponding virtual link diagram V directly as follows.

Choose any embedding φ : Σ → Ŝ3 such that (i) for each crossing
point c ∈ D, φ(c) lies on the front of Σ and (ii) all self-intersections
in π ◦ φ(G) are transverse double-points. Then let V = π ◦ φ(D),
with over-under information matching D.

Remark. The requirement in Construction 2.5 that all crossings lie
on the front of φ(Σ) is necessary. Without this requirement, different
embeddings may produce distinct virtual links. See Example 2.6.

Example 2.6. Suppose Σ is a 2-sphere and D is a minimal diagram

of the RH trefoil. Embed Σ in Ŝ3 such that the critical locus of π|Σ
is a circle and D lies entirely on the front of Σ. The corresponding
virtual diagram V is also a minimal diagram of the classical RH
trefoil. Now isotope D on Σ so that a crossing passes across the
critical circle of π|Σ, as shown locally in Figure 4, top. The effect on
the virtual diagram, shown locally in Figure 4, center, produces a new
virtual diagram Dv′ . As shown in Figure 4, bottom, this diagram Dv′

represents the virtual knot 3.5, which is distinct from the classical
RH trefoil [Ka98]. Interestingly, the virtual knot 3.5 has the same
Jones polynomial as the RH trefoil, but the two can be distinguished
using the involutory quandle, also called the fundamental quandle.
Indeed, by Lemma 5 of [Ka98], the virtual knot 3.5 has the same
involutory quandle as the unknot, which is distinct from that of the
RH trefoil, since the former is trivial and the latter is not [Jo82].

The pair (Σ, L) is stabilized if, for some essential circle5 γ ⊂ Σ,
L can be isotoped to be disjoint from the annulus γ×I; one can then
destabilize the pair (Σ, L) by cutting Σ× I along γ× I and attaching
two 3-dimensional 2-handles in the natural way; the reverse operation
is called stabilization. Equivalently, (Σ, L) is nonstabilized if every
diagram D of L on Σ is cellularly embedded, meaning that D cuts
Σ into disks. Kuperberg’s Theorem states that the stable equivalence
class of (Σ, L) contains a unique nonstabilized representative:

Theorem 1 of [Ku03]. If (Σ, L) and (Σ′ × I, L′) are stably equiv-
alent and nonstabilized, then there is a pairwise homeomorphism
(Σ× I, L)→ (Σ′ × I, L′).

Correspondence 2.3 yields a new diagrammatic proof of Kuper-
berg’s theorem (see [Ki22a]):

5We use “circle” as shorthand for “simple closed curve.”
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Figure 4. Given D ⊂ Σ, one obtains V ⊂ S2 by
embedding Σ in S3 and projecting, but all crossings
of D must remain on the front of Σ.

Theorem 2.7 (Theorem 1 of [Ku03]). If (Σ, L) and (Σ′, L′) are
stably equivalent and nonstabilized, then there is a pairwise homeo-
morphism (Σ× I, L)→ (Σ′ × I, L′).

2.2. Primeness and related notions. Kuperburg’s theorem im-
plies, in particular, that when (Σ, L) is nonsplit, meaning that every
diagram of L on Σ is connected, (Σ, L) is nonstabilized if and only
if Σ has minimal genus in this stable equivalence class. Note that
if (Σ, L) is nonstabilized, then it is also nonsplit. The converse is
false: if (Σ, L) is split, then so is any stabilization of it, as is any
destabilization which fixes |Σ|.6

If L is nonsplit and g(Σ) = 0, then (Σ × I) \ L is irreducible, as
Σ× I is always irreducible, since its universal cover is R2 ×R.7 The
converse of this, too, is false, 8 due to the next observation, which
follows from a standard innermost circle argument:

Observation 2.8. If (Σi × I) \ Li is irreducible for i = 1, 2 and
Σ = Σ1#γΣ2 with L = L1tL2 ⊂ Σ×I, where the annulus A = γ×I
separates L1 from L2 in Σ× I, then (Σ× I) \ L is irreducible.

6Throughout, |X| denotes the number of connected components of X.
7For more detail, see the proof of Proposition 12 of [BK20], which cites

[CSW14].
8If (Σi × I, Li) is nonsplit for i = 1, 2, then choose disks Xi ⊂ Σi with (Xi ×

I)∩Li = ∅ and construct the connect sum Σ = (Σ1 \ int(X1))∪ (Σ2 \ int(X2)) =
Σ1#Σ2. Let L = L1 t L2 ⊂ Σ× I. Then L is split. Yet, Σ× I is irreducible by
Observation 2.8.
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A diagram D ⊂ Σ is fully alternating on Σ if D is alternating
and cellularly embedded [Aetal19]. We will use the following result
of Boden–Karimi and the subsequent generalization:

Corollary 3.6 of [BK20]. Corollary 3.6 of [BK20] If Σ is connected
and (Σ, L) is represented by a fully alternating diagram, then (Σ, L)
is nonsplit and nonstabilized.

Corollary 2.9. Suppose (Σ, L) is represented by a fully alternating
diagram. Then (Σ, L) is nonsplit if and only if Σ is connected. Either
way, (Σ, L) is nonstabilized.

Corollary 2.10. Suppose (Σ, L) is represented by an alternating di-
agram D. Then (Σ, L) is nonsplit if and only if D is connected.

We call (Σ, D) (pairwise) prime if Σ is connected and every sepa-
rating curve intersecting D in two generic points also bounds a disk
in Σ which contains no crossings of D, or equivalently if any pair-
wise connect sum decomposition (Σ, D) = (Σ1, D1)#(Σ2, D2) has
(Σi, Di) = (S2,©) for either i = 1, 2. Note that if (Σ, D) is prime,
then D is connected, unless (Σ, D) = (S2,© ©).

Two other notions of primeness for D on Σ appear in the liter-
ature; one is more restrictive than our pairwise notion for (Σ, D),
the other less restrictive. Removing “separating” in the first version
of the definition above gives the (more restrictive) notion of strong
primeness introduced by Ozawa in [Oz06]. Following Howie–Purcell,
we call (Σ, D) weakly prime if any pairwise connect sum decom-
position (Σ, D) = (Σ1, D1)#(S2, D2) has D2 =© [HP20].910

We say that (Σ, L) is (pairwise) prime if Σ is connected and,
whenever γ ⊂ Σ is a separating curve and L is isotoped to inter-
sect the annulus γ × I in two points, then γ bounds a disk X ⊂ Σ
and L intersects X × I in a single unknotted arc. Equivalently,
(Σ, L) is non-prime if there is a diagram D of L such that (Σ, D) =
(Σ1, D1)#(Σ2, D2), where neither Di is a diagram of the unknot on
S2. If there is such a diagramD, we write (Σ, L) = (Σ1, L1)#(Σ2, L2),
where Li is the link in Σi× I represented by Di; we may also specify
(Σ, L) = (Σ1, L1)#γ(Σ2, L2), where Σ \ \γ = (Σ1 \ \(disk)) t (Σ2 \
\(disk)). This operation is sometimes called an annular connect sum.

If (Σ, L) is (pairwise) prime, then L is prime in Σ×I, in the sense of
Definition 2 of [Aetal19]: there is no nontrivial pairwise connect sum
decomposition (Σ× I, L) = (Σ× I, L1)#(S3 × L2). The converse is
false.11 Note that whenever (Σ, L) is prime, it is also nonsplit, hence
nonstabilized.

9Their definition also allows Σ to be disconnected and for its components to
have any genus.

10Adams et al use the term obviously prime for the same condition [Aetal19].
11For example, for i = 1, 2, suppose (Σi × I, Li) is prime and Σi has positive

genus, and take a disk Xi ⊂ Σi such that (Xi × I) intersects Li in a single
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3. Weak and pairwise primeness for links in thickened
surfaces

In this section, we establish our main result regarding (pairwise)
prime alternating links in thickened surfaces. To prepare, we need:

Proposition 3.1. Suppose (Σ, L) = (Σ1, L1)#γ(Σ2, L2). If both
(Σi, Li) are nonsplit, then (Σ, L) is also nonsplit.

Proof of Proposition 3.1. Note that Σ1 and Σ2 are connected, so Σ
is too. In the case where, say Σ2 = S2, the proposition follows from
a more general fact: if L1 is a link in a 3-manifold M and M \ L1

is irreducible, and if L2 is nonsplit in S3, then the complement of
L1#L2 in M = M#S3 is also irreducible. The proof is a standard
innermost circle argument. We may thus assume that both Σi have
positive genus, hence that both (Σi× I) \Li are irreducible. A stan-
dard innermost circle argument shows that (Σ× I) \L is irreducible.

Suppose that (Σ, L) is split. Then there is a system A of annuli,
each with one boundary component on each of Σ±, such that (Σ ×
I) \ A has two components, both of which intersect L. Among all
choices for such A, choose one which lexicographically minimizes
(|A|, |A t U |),12 where U is the annulus γ × I.

Note that Σ± \ ∂A each have two components, neither of which
is a disk due to the irreducibility of (Σ × I) \ L, and that A must
intersect U , since both (Σi × I, L) are nonsplit. The minimality of
|A t U | further implies that A ∩ U consists only of circles, each of
which is parallel in A ⊂ Σ×I to ∂A. The fact that ∂A contains only
essential circles in Σ± thus implies that A∩U consists only of circles
parallel in U to γ, and thus (using the minimality of |A|) that A has
a single component, which is parallel in Σ× I to U . This contradicts
the assumptions that both (Σi × I, L) are nonsplit and |A t U | is
minimized.13 �

As proven by Menasco in the classical case [Me84], certain dia-
grammatic conditions constrain an alternating link L as one might
wish. This is our first main result:

unknotted arc. Construct the pairwise connect sum (Σ, L) = (Σ1, L1)#(Σ2, L2)
along these (thickened) disks Xi. Then L is prime in Σ, in the sense of [Aetal19],
but (Σ, L) is not (pairwise) prime.

12|A| denotes the number of connected components of A. Likewise throughout.
13Namely, choose a component A0 of A whose boundary consists of a circle of

A ∩ U and a component of ∂A. Then one of the two components U0 of U \ u is
disjoint from L. Surger A along U0 to obtain two annuli, A1, A2 ⊂ (Σ × I) \ L,
where A1 is parallel in Σ × I to A (and U), and A2 is parallel in Σ × I to Σ±.
Then |A1 t U | < |A t U |, so A1 must not separate L, but this implies that L
must intersect the solid torus through which A2 is parallel to Σ±, contrary to the
assumption that both (Σi × I, Li) are non-split.
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Figure 5. A crossing bubble, a saddle, and the disk
X in the proof of Theorem 3.2.

Theorem 3.2. Suppose D ⊂ Σ is a fully alternating diagram of a
link L ⊂ Σ × I. Then L is (i) nullhomologous over Z/2 and (ii)
nonsplit. Moreover, (iii) if (Σ, D) is prime, then (Σ, L) is prime.

Proof of Theorem 3.2. Any fully alternating diagram D is checker-
board colorable,1415 so L bounds checkerboard surfaces16 and thus is
nullhomologous over Z/2. This confirms (i).

Assume for the rest of the proof that (Σ, D) is prime. Indeed, this
is a hypothesis of (iii), and by Proposition 3.1, it will suffice to prove
(ii) under this additional assumption.

Implement the crossing ball setup a la Menasco by inserting a
tiny ball Ci centered at each crossing point of D and pushing the
two strands of D near that crossing point onto opposite hemispheres
of that ball’s boundary. Denoting C =

⋃
iCi, this gives an embed-

ding of L in (Σ \ int(C)) ∪ ∂C. See Figure 5, left. Denote the two
components of (Σ× I) \ \(Σ ∪ C) by H+ and H−.17

Assume contrary to (ii) that (Σ, L) is split. Then there is a system
A ⊂ (Σ× I)\L of disjoint, properly embedded annuli, each with one
boundary component in Σ+ and one in Σ−, which cuts Σ×I into two
pieces, both of which intersect L. Of all choices for such A, choose one
which lexicographically minimizes (|A ∩ C|, |A \ (Σ ∪ C)|), provided
A t ∂C and A t Σ \ int(C).

Then, since D is cellularly embedded, each component of A must
intersect C, and, by a standard argument, each component of A∩C

14This means that one can color the disks of Σ \ \D black and white so that
regions of the same color abut only at crossings.

15Since D is fully alternating, it is possible to orient each disk of Σ \ D so
that, under the resulting boundary orientation, over-strands are oriented toward
crossings and under-strands away from crossings. Since Σ is orientable, these
orientations determine the desired coloring. Interestingly, fully alternating link
diagrams on nonorientable surfaces are never checkerboard colorable.

16One can use a checkerboard coloring to construct checkerboard surfaces B
and W for L, where B projects into the black regions, W projects into the white,
and B and W intersect in vertical arcs which project to the the crossings of D.

17X \ \Y denotes “X cut along Y ,” which is the metric closure of X \ Y . For
more detail, see footnote 7 of [Ki20].
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Figure 6. Part of the circle γ in the proof of Part
(ii) of Theorem 3.2. Arrows point inward. The shaded
areas may contain more of γ.

→

Figure 7. The first part of the simplifying move in
the proof of Part (ii) of Theorem 3.2

is a saddle, as in Figure 5, center. Also, by minimality, no arc of
A∩Σ\C is parallel in Σ\C to ∂C. Some component V of A\\(Σ∪C)
must be a disk, due to euler characteristic considerations. Assume
without loss of generality that V ⊂ H+. Denote γ = ∂V ⊂ ∂H+.
Then γ bounds a disk U in ∂H+; by passing to an innermost circle
in this disk, we may assume that the interior of U is disjoint from A.

We claim that there is an arc δ0 of γ ∩ ∂C that is parallel in
∂C ∩ U \ \γ to an overpass. To see this, choose any arc δ of γ ∩ ∂C
that is parallel in ∂C ∩ ∂H+ \ γ to an overpass. If the overpass lies
inside U , take δ = δ0. Otherwise, take ε to be either arc of γ \ ∂C
incident to δ, and let δ′ be the other arc of γ ∩ ∂C incident to ε.
See Figure 6. If δ′ is parallel in ∂C ∩ ∂H+ \ γ to an overpass, then
this overpass lies inside U (because D is alternating), giving δ′ = δ0.
Otherwise, δ′ is parallel in ∂C ∩ U to an arc δ′′ of γ ∩ ∂C, but this
allows an isotopy that decreases |A t C|, contrary to assumption.
See Figure 7 (and bigon moves in §??).

Let S0 denote the saddle in C0 incident to δ0. Then S0 ∩ ∂S+

consists of δ0 and another arc, δ1, which must also lie on γ. Choose
points xi ∈ δi, i = 1, 2, and construct arcs α ⊂ V and β ⊂ Si joining
x1 and x2. Then, as shown in Figure 5, right, α ∪ β is a circle in A
which bounds a disk X ⊂ A with |X t L| = 1, which is impossible.

The proof of (iii) is nearly the same, but taking A to be a sin-
gle annulus, again with one boundary component in each Σ±, which
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Figure 8. The simplifying move in the proof of part
(iii) of Theorem 3.2. The highlighted circle is γ.

separates Σ × I and intersects L in exactly two points; of all pos-
sibilities for such A, choose one which lexicographically minimizes
(|A ∩ C|, |A \ (Σ ∪ C)|), provided A t ∂C and A t Σ \ int(C). Pro-
ceeding as before, and noting that A must intersect C since (Σ, D)
is prime, obtain a circle γ ⊂ ∂H+ which bounds disks V ⊂ A ∩H+

and U ⊂ ∂H+, the latter with interior disjoint from A. If there is an
arc δ0 of γ∩∂C that is parallel in ∂C ∩U \γ to an overpass, then we
again get the disk X ⊂ A with |X t L| = 1, which now contradicts
the minimality of |A ∩ C|.

Assume instead that no such δ0 exists. Choose any crossing ball C0

that γ intersects. Then there is an arc δ of γ∩∂C0 that is parallel in
∂C0∩∂H+ \γ to the overpass at C0, which must therefore lie outside
U . Denote the arcs of γ\∂C incident to δ by ε1 and ε2. Both εi must
intersect L, by the arguments from (ii). But |γ ∩ L| ≤ |A ∩ L| = 2,
so γ intersects at most two crossing balls and therefore appears as
in Figure 8, left. As shown, the fact that D is prime now gives an
isotopy which decreases |A ∩ C|, contrary to assumption. �

4. Lassos

We now turn our attention to virtual links and their diagrams.

4.1. Weak and pairwise primeness for virtual links.

Definition 4.1. Let V be a virtual diagram, and let (Σ, D) be the
cellularly embedded diagram corresponding to [V ]. Say that V is
split if Σ is connected. Say that V is prime (resp. weakly prime)
if (Σ, D) is pairwise prime (resp. weakly prime).

Remark. This definition of primeness for virtual knot is traditional
and is well motivated by Gauss codes [Ka98]. Namely, suppose V
comes from a (cyclic) Gauss code G. Then V is nonprime if and only
if G has the form w1w2, where w1 and w2 are nonempty words with
no letters in common.

Proposition 4.2. Whereas connected sum is a well-defined opera-
tion for classical knots and for any classical knot with any virtual
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Figure 9. Connected sum is not a well-defined oper-
ation on virtual knots: the knot on the left is distinct
from the knot on the right.

Figure 10. There are infinitely many different ways
to take the connect sum of any two non-classical al-
ternating knots.

knot, connected sum is not a well-defined operation for virtual knots.
In particular, given any two non-classical, weakly prime, alternating
virtual links V1 and V2, there are infinitely many distinct virtual links
that decompose as a connected sum of V1 and V2.

This fact follows easily from the flyping theorem for virtual links
[Ki22a]. See Figure 10.

We conjecture that the same construction works in the non-alternating
case:

Conjecture 4.3. Given any two non-classical, weakly prime virtual
links V1 and V2, there are infinitely many distinct virtual links that
decompose as a connected sum of V1 and V2.

Definition 4.4. A virtual link L̃ is nonsplit (resp. weakly prime,
pairwise prime) if the unique nonstabilized representative (Σ, L) of
the corresponding stable equivalence class is nonsplit (resp. weakly
prime, pairwise prime).

Theorem 3.2 and Theorem 2 of [Aetal19] give the following gener-
alization of Menasco’s classical results that a link if split or non-prime
if and only if obviously so in a given alternating diagram [Me84]:

Theorem 4.5. Suppose V is an alternating diagram of a virtual link

L̃. Then L̃ is nonsplit if and only if V is. Likewise for weakly prime
and pairwise prime.
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4.2. Lassos of link diagrams on closed surfaces. One would like
to be able to tell whether or not an alternating virtual diagram V is
split, weakly prime, or pairwise prime by inspection, as one can for
(Σ, D). To enable this, we define:

Definition 4.6. A lasso for (Σ, D) is a disk X ⊂ Σ that intersects
D generically and contains all crossings of D; X is acceptable if:

• D ∩X is connected and
• no crossingless arc of D \ \X is parallel in Σ \ \X to ∂X.

Proposition 4.7. If D is connected, then (Σ, D) admits an accept-
able lasso.

Proof. LetG be the underlying graph ofD. Take a spanning tree T of
G. Then the disk νT ⊂ Σ is a lasso for (Σ, D). If any crossingless arc
of D \\X is parallel in Σ\\X to ∂X, isotope ∂X past that arc; note
that D ∩X remains connected. Repeat until X is acceptable. �

Proposition 4.7 and Corollary 2.10 imply:

Corollary 4.8. An alternating diagram D on a surface Σ is con-
nected, and thus represents a nonsplit link, if and only if (Σ, D) ad-
mits an acceptable lasso.

4.3. Lassos of virtual link diagrams.

Definition 4.9. A lasso for a virtual link diagram V ⊂ S2 is a
disk X ⊂ S2 that intersects D generically and contains all classical
crossings of D but no virtual crossings. Then V ∩ X and V \ \X
are called the classical and virtual parts of V (with respect to X),
respectively. The lasso X is acceptable if no crossingless arc of
V \ \∂X is parallel in S2 \ \(V ∪ ∂X) to ∂X and no pair of arcs in
the virtual part of V intersect more than once.

Construction 4.10. Suppose that [V ] corresponds to (Σ, D) under
Correspondence 2.3. If X is an acceptable lasso for (Σ, D), then one
can construct an acceptable lasso for a virtual diagram V ′ ∈ [V ] as
follows:

• Choose an embedding ϕ : Σ→ Ŝ3 such that ϕ(X) lies entirely
on the front of Σ and (π ◦ ϕ(D ∩X)) ∩ (π ◦ ϕ(D \X)) = ∅.
• Perturb ϕ so that all self-intersections in π ◦ ϕ(D \ X) are

transverse double-points.
• Then π ◦ϕ(X) is an acceptable lasso for the virtual diagram
π ◦ ϕ(D) = V ′ ∈ [V ] (with over-under information matching
D), using Construction 2.5

Conversely, if Y is an acceptable lasso for V ′ ∈ [V ], then one can
construct an acceptable lasso for (Σ, D) as follows:
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• Construct (Σ, D) by taking a regular neighborhood of Y ∪V ,
changing the neighborhood of each virtual crossing as in Fig-
ure 3, and (abstractly) capping off each resulting boundary
component with a disk.
• Then Y embeds naturally in Σ and is an acceptable lasso for
D.

Proposition 4.11. For every virtual diagram V , if every V ′ ∈ [V ]
is connected, then some V ′ ∈ [V ] admits an acceptable lasso.

Proof. Let (Σ, D) be the pair corresponding to [V ] under Correspon-
dence 2.3. Assume that every V ′ ∈ [V ] is connected. Then D is also
connected. Hence, by Proposition 4.7, (Σ, D) admits an acceptable
lasso X. Therefore, Construction 4.10 gives an acceptable lasso for
some V ′ ∈ [V ]. �

We note also:

Proposition 4.12. Every virtual diagram admits a lasso.

Proof. Let G ⊂ S2 denote the underlying graph of V , and denote the
vertex set of G by P . Construct a planar graph Γ ⊂ S2 as follows.
Place one vertex at each classical crossing of V and one in the interior
of each component of S2 \ \G. Each classical crossing c of V lies on
the boundary of four components of S2 \ \G; construct an edge from
c to the vertex in each of these four components. Each edge e of
G is incident to two components of S2 \ \G; construct an edge α
between the vertices in these components, such that α ∩ G consists
of a single point in e. Now choose a spanning tree T for Γ, and take
a regular neighborhood X ′ of T in S2. The disk X ′ ⊂ S2 intersects
V generically and contains all classical crossings in V but no virtual
crossings. Thus, X ′ is a lasso for V . �

We now turn our attention to alternating virtual diagrams.

Proposition 4.13. An alternating virtual diagram V represents a
nonsplit virtual link if and only if some V ′ ∈ [V ] admits an acceptable
lasso.

Proof. If V represents a nonsplit virtual link, then each V ′ ∈ [V ] is
connected. Hence, by Proposition 4.11, some V ′ ∈ [V ] admits an
acceptable lasso. Conversely, if some V ′ ∈ [V ] admits an acceptable
lasso X, then so does the corresponding pair (Σ, D), by Construction
4.10. Thus, by Corollary 4.8, D represents a nonsplit link in Σ× I,
so V represents a nonsplit virtual link. �

Theorem 4.14. Suppose an alternating virtual diagram V admits
an acceptable lasso X. Then (V is connected and) the virtual link
represented by V is (nonsplit and):
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(i) pairwise prime if and only if, for every disk Z ⊂ S2 whose
boundary intersects V in two generic points, both in X, all
classical crossings of V lie on the same side of ∂Z; and

(ii) weakly prime if and only if, for every disk Z ⊂ X that
intersects V generically and contains at least one crossing,
|∂Z ∩ L| > 2.

Proof. Parts (i) and (ii) follow immediately from Theorem 3.2 and
the correspondence.... For part (iii), the backward direction is im-
mediate. For the converse, suppose otherwise. Then, by the corre-
spondence, there is a disk Z ⊂ S2 whose boundary intersects V in
two generic points, both in X, such that both components of X \∂Z
contain classical crossings, and one of the disks Y of S2 \ \∂Z con-
tains no virtual crossings. Among such disks Z, choose one which
minimizes |Z ∩ ∂X.

If Y ∩ V ⊂ X, then the boundary of the disk Y ∩X intersects V
in two generic points, but this disk also contains classical crossings,
contrary to assumption. Instead, Y \X must intersect V , but with
no virtual crossings. Choose an outermost disk Y0 of Y \ \∂X whose
boundary is disjoint from D. One may push an outermost arc of V
in Y \X past ∂X, decreasing |∂X ∩ V | contrary to the fact that X
is an efficient lasso for V . �

5. Lasso numbers

Definition 5.1. Given a diagram (Σ, D) of a link L ⊂ Σ, denote the
set of all lassos for (Σ, D) by lassos(Σ, D). Define the lasso number
of (Σ, D) to be

lasso(Σ, D) = min
X∈lassos(Σ,D)

|∂X ∩D|.

If X is a lasso for (Σ, D) and |∂X ∩D| = lasso(Σ, D), say that X is
efficient for D. Define the lasso number of (Σ, L) to be

lasso(Σ, L) = min
diagrams D of L

lasso(Σ, D).

If X is a lasso for a diagram D of L and |∂X ∩D| = lasso(Σ, L), say
that X is efficient for L.

Note that every efficient lasso is acceptable. In general, computing
lasso numbers of diagrams, let alone links, seems difficult. In prac-
tice, however, computing lasso numbers of diagrams is not so bad,
using the following fact:

Proposition 5.2. Consider a pair (Σ, D), where D has n crossings
and Σ has genus g. Then every acceptable lasso X for (Σ, D) satisfies

|∂X ∩D| = 2g − 1 + |Σ \ \D| − n,
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where n is the number of faces of Σ \ \D contained in X. Hence, X
is efficient for D if and only if it contains as many faces of Σ \ \D
as possible.

Proof. Collapse X to a point to obtain the graph G = D/X in the
surface Σ/X ≡ Σ. Then G has one vertex and |D ∩ ∂X| edges.

The fact that X is acceptable implies that, for each face U of
Σ\\D, U \\X is either empty or connected. Let n denote the number
of faces of Σ\\D contained in X. Therefore, |Σ\\G| = |Σ\\D|−n.
Hence, as claimed:

2− 2g = 1− |D ∩ ∂X|+ |Σ \ \D| − n
|∂X ∩D| = 2g − 1 + |Σ \ \D| − n.

Of the quantities on the right-hand side, only n depends on X. Thus,
X is efficient for D if and only if it contains as many faces of Σ \ \D
as possible. �

Thus, the problem of computing the lasso number of (Σ, D) is
equivalent to the following. Denote the faces of Σ \ \D by Ui, i ∈ C
for some index set C. The problem is to find the largest subset L ⊂ C
such that

⋃
i∈L Ui is simply connected.

One can show that one can always choose a maximal subset L
which contains all bigons (and monogons) Ui, but this is as far as
we pursue this matter in this paper. Given, say, a 100-crossing fully
alternating diagram D on a surface Σ of genus five (with no symme-
try), it seems challenging to compute lasso(Σ, D).

Continue. Say more? Prove that lasso numbers for [virtual dia-
grams] equal lasso numbers for pairs.

Definition 5.3. Given a virtual diagram V , denote the set of all
lassos for V by lassos(V ). Define the lasso number of V to be

lasso(V ) = min
V ′∈[V ]

min
X∈(V ′)

|∂X ∩ V ′|.

If X is a lasso for V and |∂X ∩ V | = lasso(V ), say that X is classi-
cally efficient. If no two arcs of V \ \X intersect more than once,
say that X is virtually efficient. Say that X is efficient if it is
both classically and virtually efficient.

Definition 5.4. Given a pair (Σ, D) where Σ is connected, the lasso
number of (Σ, D) is:

lasso(Σ, D) = min
X∈lasso(Σ,D)

|∂X ∩D|.

Call X ∈ lasso(Σ, D) efficient if |∂X ∩D| = lasso(Σ, D).

Proposition 5.5. If the lasso X ⊂ Σ for D in Construction ?? is
efficient, then the lasso π(X) for V = π(D) is classically efficient.
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If the lasso X for V in Construction ?? is classically efficient, then
X is an efficient lasso for (Σ, D).

Proof. Both statements follow from the observation that Construc-
tions ?? and ?? are inverse procedures: given any lasso X for (Σ, D),
performing Construction ?? and then Construction ?? returns X and
(Σ, D), up to isotopy, and given any lasso X for V , performing Con-
struction ?? and then Construction ?? returns a lasso X ′′ for some
V ′′ ∈ [V ] such that there is a pairwise homeomorphism between
(X,V ∩X) and (X ′′, V ′′ ∩X ′′). �

Corollary 5.6. Suppose D is a cellularly embedded diagram on a
connected surface Σ, and the corresponding virtual class is [V ]. Then
lasso(Σ, D) = lasso(V ).

Observation 5.7. Given a lasso X for a virtual diagram V , there
exists V ′ ∈ [V ] with V ′∩X = V ∩X, for which X is an efficient lasso;
in particular, if X is classically efficient, for V , then it is efficient
for V ′. Moreover, if one allows only isotopy and virtual Reidemeister
moves that fix V ∩X pointwise, then V ′ is unique up to isotopy.
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