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Abstract: Demand for wind power has grown, and this has increased wind turbine blade (WTB)
inspections and defect repairs. This paper empirically investigates the performance of state-of-the-art
deep learning algorithms, namely, YOLOv3, YOLOv4, and Mask R-CNN for detecting and classifying
defects by type. The paper proposes new performance evaluation measures suitable for defect
detection tasks, and these are: Prediction Box Accuracy, Recognition Rate, and False Label Rate.
Experiments were carried out using a dataset, provided by the industrial partner, that contains
images from WTB inspections. Three variations of the dataset were constructed using different image
augmentation settings. Results of the experiments revealed that on average, across all proposed
evaluation measures, Mask R-CNN outperformed all other algorithms when transformation-based
augmentations (i.e., rotation and flipping) were applied. In particular, when using the best dataset, the
mean Weighted Average (mWA) values (i.e., mWA is the average of the proposed measures) achieved
were: Mask R-CNN: 86.74%, YOLOv3: 70.08%, and YOLOv4: 78.28%. The paper also proposes a
new defect detection pipeline, called Image Enhanced Mask R-CNN (IE Mask R-CNN), that includes
the best combination of image enhancement and augmentation techniques for pre-processing the
dataset, and a Mask R-CNN model tuned for the task of WTB defect detection and classification.

Keywords: defect detection; wind turbine blade; deep learning; convolutional neural network;
region-based convolutional neural networks; evaluation measure; mask R-CNN; YOLOv3; YOLOv4

1. Introduction

Demand for wind power has grown, and this has led to an increase in the manufac-
turing of wind turbines, which in turn has resulted in an increase in wind turbine blade
(WTB) inspections and repairs. Defect detection systems can be utilised to inspect the
regular operation of WTBs. The operation efficiency of wind turbines can be reduced if
defects exist on the surface of blades [1]. Most inspection processes require engineers to
carry out manual examinations and repairs, and such tasks can be hazardous since most
wind turbines are massive in size and installed in high-speed wind areas. Non-Destructive
Testing (NDT) is a commonly adopted testing technique that evaluates the properties of
WTBs for defects, without causing damage to the WTBs. Currently, many NDT techniques
are utilised to detect defects on WTB surfaces in industries. For example, Lockin and
Infrared Thermography techniques to monitor the surface health of material [2,3]; a visual
testing system to monitor defects using fixed cameras [4]; acoustic emission test data to
check the structural health of WTBs [5]; and microwave imaging to detect delamination [6].
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Recently, vision-based techniques have received attention for defect detection applica-
tions, and these techniques use cameras (or drones) and Deep Learning (DL) algorithms to
analyse captured images/videos to locate the defected areas [7,8]. Reddy et al. [9] proposed
a Convolutional Neural Network (CNN) to recognise the presence of cracks on the surfaces
of WTBs with an accuracy of 94.94%. Yang et al. [10] proposed a ResNet50 model to identify
multi-type WTB defects and achieved 95% classification accuracy, but their dataset was
imbalanced since only 10% of the images had defects. Deng et al. [11] trained YOLOv2 for
defect detection and found that YOLOv2 outperformed the Faster R-CNN, each achieving
77% and 74.5%, respectively. However, YOLOv2 is now an outdated version (released in
2016) since the current version is YOLOv4.

Jia et al. [12] evaluated the effect of different augmentation methods and found that
applying transformation-based augmentations which used cropping, flipping and rotation,
increased accuracy by 1.0–3.5% compared to the original dataset. Applying specific image
enhancement techniques (e.g., white balance, contrast enhancement, and greyscale) to
highlight the features of areas with defects, and image augmentation techniques (e.g.,
flipping and rotation) based on geometric transformations of images can improve the
detection performance of the DL detection models [13,14]. Furthermore, transforming
images to greyscale could reduce the noise, enhance the defect features and increase a
model’s detection performance [15]. With greyscale images, the models only learn the
contrast values rather than the RGB values in an image and this may result in faster
training times.

YOLOv3 [16], YOLOv4 [17] and Mask R-CNN [18] are state-of-art DL-based object
detection algorithms. DL algorithms have not fully exploited for the task of WTB defect
detection, and defect detection in general. This paper presents an empirical comparison of
the detection performance of DL algorithms, namely, Mask R-CNN, YOLOv3, and YOLOv4,
when tuned for the defect detection task and when using various image augmentation
and enhancement techniques. The paper presents a novel defect detection pipeline based
on the Mask R-CNN algorithm and which includes an empirically selected set of image
enhancement and augmentation techniques. Furthermore, traditional evaluation measures
of Recall, Precision and F1-score, do not provide a holistic overview of the defect detection
performance of DL detection models. Therefore, this paper proposes new evaluation mea-
sures, namely Prediction Box Accuracy (PBA), Recognition Rate (RR), and False Label Rate
(FLR), suitable for the task of defect detection. Traditional measures were contextualised
for the task, and thereafter the traditional and proposed evaluation measures were adopted
for comparing the performance of DL algorithms.

This paper is organised as follows. Section 2 provides a discussion on DL based
defect detection methods. Section 3 describes the experiment methodology that includes a
discussion of the dataset that was provided by Railston & Co. Ltd.; describes various image
augmentation techniques that were applied to the dataset to empirically determine the best
combination of techniques for the task; and proposes three new evaluation measures in
addition to contextualised traditional performance evaluation measures for defect detec-
tion. Section 4 presents the results and analysis of experiments with YOLOv3, YOLOv4,
and Mask R-CNN for the task of WTB defect detection when using four datasets, i.e., the
original dataset plus three datasets that were constructed using a combination of image
augmentation techniques. Section 4 also presents the results of experiments to determine
whether image enhancement can further improve the defect detection performance of
the Mask R-CNN model. This section also presents a proposed defect detection pipeline,
namely the Image Enhanced Mask R-CNN, that was developed using the best performing
network, i.e., Mask R-CNN, and an empirically selected combination of image augmen-
tation and enhancement techniques. Section 5 provides a discussion, conclusion, and
suggestions for future work.
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2. Related Methods

This section describes relevant literature that focuses on DL-based defect detection.
Machine learning (ML) and DL algorithms have been applied to detect defects on surfaces.
For example, neural network and Bayesian network algorithms were proposed to fuse
sensor data for detecting defects in apples [19]; multi-resolution decomposition and neural
networks have been applied to detect and classify defects on textile fabrics [20,21].

Literature discussing defect detection methods using ML is limited. In 2004,
Graham et al. [22] designed a neural network to examine damages of carbon fibre com-
posites, and this is one of the earliest works on defect detection using neural networks.
Graham et al. did not present a quantitative analysis of the neural network’s performance.
Although their experiments and results were limited, they found that the neural network
algorithm could recognise damaged areas. In 2014, Soukup and Huber-Mörk [23] proposed
an algorithm for detecting cracks on the steel surfaces. Soukup and Huber-Mörk’s algo-
rithm combined a DL algorithm, namely the CNN, with a model-based algorithm which
utilised specular reflection and diffuse scattering techniques to identify defects. Their
results revealed that the detection error rate decreased by 6.55% when using CNN instead
of the model-based algorithm. Soukup and Huber-Mork [23] also highlighted that their
proposed CNN algorithm could distinguish the types of surface defects if the detection
model was trained with a quality dataset. In 2018, Wang et al. [24] applied ResNet CNN
and ML algorithms (i.e., support vector machine (SVM), linear regression (LR), random
forest (RF) and bagging) to detect defects on blueberry fruit. Their results showed that
CNN algorithms achieved an accuracy of 88.44% and an Area Under the Curve (AUC) of
92.48%. CNN outperformed other ML algorithms by reaching 8–20% higher accuracy.

In 2019, Narayanan [25] applied SVM and CNN algorithms for the task of defect detec-
tion in fused filament fabrication. The SVM required 65% less training time than the CNN
model, but its recall rate was 8.07% lower than that of the CNN model. Wang et al. [26]
proposed a DL-based CNN to inspect the product defects, and compared the detection
performance with an ML approach that utilised the Histogram of Oriented Gradient feature
(HOG) technique and an SVM model. Their results illustrated that the CNN achieved an
accuracy of 99.60%, whereas the ML model achieved an accuracy of 93.07%. However,
CNN’s detection speed was slower than the ML model by 24.30 ms.

With regards to WTB defect detection, NDT and ML techniques were utilised for
identifying surface defects of WTBs, and DL algorithms were employed to analyse the
outputs. For example, in 1999, Kawiecki [27] used a simple neural network to identify
defects by analysing the collected data. In 2009, Jasinien et al. [28], utilised ultrasonic
and radiographic techniques to detect defects. In 2015, Protopapadakis and Doulamis [29]
proposed a CNN-based algorithm to detect cracks on tunnel surfaces with 88.6% detection
accuracy, that was higher than conventional ML algorithms, i.e., SVM’s accuracy reached
71.6%; k-nearest neighbour model’s accuracy reached 74.6%, and the classification tree
model’s accuracy reached 67.3%.

DL techniques have been utilised to detect defects in images. In 2017, Yu et al. [30]
proposed an image-based damage recognition approach to identify defects on WTB sur-
faces. They composed a framework for defect detection comprising a CNN and an SVM.
The framework was trained using the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) dataset [31], and experimental results showed that their proposed method
reached 100% accuracy. Yu et al.’s defect detection system used a two-stage method. The
first stage utilised a CNN for extracting defect features from input images and for locating
the defects. In the second stage, an SVM model was utilised for classifying the defects by
type. Yu et al.’s experiment results showed that the two-stage structure is promising for
identifying defects by analysing images that were captured from inspection cameras, and
that a large enough training dataset is essential for achieving high detection accuracy.

In 2019, Qiu et al. [32] designed a WTB detection system, YSODA, which is based
on the YOLOv3 algorithm. Qiu et al. modified the YOLO architecture to support the
multi-scale feature pyramid in the layers of CNN. They captured 4000 images of WTB



J. Imaging 2021, 7, 46 4 of 20

defects using a camera that was embedded in a drone. These images were then augmented
with different processes, such as flip, rotation, blur, and zoom, and this resulted in 23,807
images that were utilised for training the model. YSODA outperformed the original YOLO
algorithm, especially for small-sized defect detection. YSODA achieved 91.3% accuracy
with 24 fps detection speed, and YOLOv3 only achieved 88.7% accuracy with 30 fps.
Although YSODA outperformed YOLOv3, YSODA’s speed was slower than the original
YOLOv3 algorithm because the complexity of feature recognition had increased. In 2019,
Shihavuddin et al. [33], exploited the faster R-CNN algorithm to detect multiple defect
types of WTBs. In this experiment, Shihavuddin et al. applied various data augmentation
approaches, such as flip, blur and contrast normalisation, to enhance the training data
and improve detection accuracy. Their proposed methods achieved 81.10% mAP@IoU(0.5)
(detection performance) with the 2.11 s detection speed. Table 1 provides a summary on
current WTB defect detection techniques that use DL and ML algorithms.

Table 1. Summary of DL and ML techniques for WTB defect detection and classification.

Author Year Method Result Limitation

Kawiecki [27] 1999 Neural Network <15% test error Data collection requires professional NDT tech-
niques. CNN architecture is outdated.

Jasinien et al. [28] 2009 Ultrasonic & radiographic N/A Requires professional NDT. Paper lacks a thorough
evaluation and only provides example outputs.

Protopapadakis & Doulamis [29] 2015 CNN, SVM, k-NN, DT CNN: 88.6%, SVM: 71.6%,
k-NN: 74.6%, DT: 67.3%

N/A.

Yu et al. [30] 2017 CNN+SVM 100% Accuracy Methods can only classify the defects but cannot
provide location information of the defect in the
images.

Qiu et al. [32] 2019 YSODA (CNN) 91.3% Accuracy Detection speed is slower than YOLOv3
Shihavuddin et al. [33] 2019 Faster R-CNN 81.10% mAP@IoU(0.5) Slow detection speed.
Reddy et al. [9] 2019 CNN 94.94% Accuracy Method only achieved high accuracy in binary clas-

sification mode (fault vs. non-fault).
Yang et al. [10] 2020 CNN 95.58% Accuracy Long training time.
Deng et al. [11] 2020 YOLOv2 (CNN) 77% mAP@IoU(0.5) Outdated YOLO version. Slow detection speed.

3. Materials and Methods

This section describes the dataset and image augmentation techniques applied to the
dataset (see Section 3.1). It describes the traditional (see Section 3.2) and proposed measures
(see Section 3.3) for evaluating the defect detection performance of the YOLOv3 [16],
YOLOv4 [17], and Mask R-CNN [18] algorithms with and without image augmentation
methods. The experiment methodology is described in Section 3.4.

3.1. Dataset and Image Augmentation

The dataset used for the experiments was provided by the industrial partner Railston
& Co. Ltd. The dataset comprises images that were captured by engineers during manual
WTB inspections. The engineers labelled the images into four categories: crack, erosion,
void and ‘other’ defects. The original size of each captured image is 2592 × 1936 pixels.
All images were uniformly cropped and resized to 1920 × 1080 pixels with 16:9 ratio. The
number of images for each defect type are shown in Table 2.

Table 2. Number of images per defect type in the original dataset. The original dataset is the
baseline dataset.

Type Number of Images

Crack 55
Erosion 62

Void 52
Other 22
Total 191
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Image augmentation techniques were applied to the original dataset (Dataset D0).
Dataset D0 consists of 191 images classified into four types of defects. Note that the ‘other’
defect type contains delamination and debonding defects, and these were combined into
one type named ‘other’ because there were only 22 images that belonged to those defects.

Datasets D1–D3 were created using different combinations of image augmentation
techniques (e.g., flipping, rotation, and greyscale) can enhance the detection performance
of DL methods [30,32,33]. Influenced by literature, three combinations of augmentation
techniques were devised and applied to the original dataset (D0) to create three new
datasets (Dataset 1 (D1), Dataset 2 (D2), and Dataset 3 (D3)) as shown in Table 3. Image
augmentation artificially expands the size of a dataset by creating modified versions of the
images found in the dataset using techniques such as greyscale, flip and rotation. The DL
detection model was then trained on the original dataset (i.e., D0), and thereafter on each
of the three datasets (i.e., D1–D3).

Table 3. Image augmentation settings of each dataset.

Dataset Image Augmentation Settings

D0 Original

D1

Original
+Vertical Flip + Horizontal Flip
+90◦ Rotation + 180◦ Rotation + 270◦ Rotation
+Greyscale Original

Original
D2 +Vertical Flip + Horizontal Flip

+90◦ Rotation + 180◦ Rotation + 270◦ Rotation

Greyscale Original
D3 +Greyscale Vertical Flip + Greyscale Horizontal Flip

+Greyscale 90◦ Rotation + Greyscale 180◦ Rotation + Greyscale 270◦ Rotation

3.2. Traditional Performance Evaluation Measures for Defect Detection

Traditional evaluation measures were based on Precision (as shown in (1)), Recall (as
shown in (2)), the F1-score (as shown in (3)) and mAP@IoU. These evaluation measures are
described in the context of defect detection. The contextualised concepts of TP, FP and FN
are provided below.

• True Positive (TP) predictions—a defect area that is correctly detected and classified
by the model.

• False Positive (FP) predictions—an area that has been incorrectly identified as a defect.
There are two types of FPs. (1) The predicted area does not overlap with a labelled
area; and (2) the predicted area is overlapping with a labelled area, but the defect’s
type is misclassified.

• False Negative (FN) predictions—a labelled area that has not been detected by
the model.

Detection Precision =
Total TP Predictions

Total TP Predictions + Total FP Predictions
(1)

Detection Recall =
Total TP Predictions

Total TP Predictions + Total FN Predictions
(2)

Detection F1-score = 2× Detection Precision×Detection Recall
Detection Precision + Detection Recall

(3)

The mean Average Prevision (mAP) at Intersection over Union (IoU), mAP@IoU, is
a measure commonly adopted for evaluating the performance of DL detection models
for machine vision tasks. mAP@IoU was also adopted during the evaluations. The mean
Average Precision (mAP) shown in (4) [34], is the average AP over all classes.
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mAP =
1
C

C

∑
i=1

APi (4)

where APi is the AP value for the i-th class and C is the total number of classes (i.e., defect
types) being classified. A prediction whose bounding box IoU value is greater than a
threshold is considered as a TP, otherwise, the prediction is considered as an FP. An IoU
threshold value of 0.5 is commonly used to indicate the average detection performance. In
the experiments described in this paper, the threshold for IoU was set to 0.5.

3.3. Proposed Performance Evaluation Measures for Defect Detection

Let bounding box accuracy (BBA) be the measure of the performance of a detection
model in terms of how accurately it predicts the defect’s bounding box compared to the
label’s bounding box, as shown in (5) and illustrated in Figure 1.

Bounding Box Accuracy =

{
WidthAcc + HeightAcc

2 , if ((WidthAcc > 0) ∧ (HeightAcc > 0))
0 otherwise

(5)

where WidthAcc and HeightAcc is Width Accuracy and Height Accuracy, respectively,
which are calculated using (6) and (7) shown below.

Width Accuracy = 1− | x1 − x3 | + | x2 − x4 |
| max(x2, x4)−min(x1, x3) |

(6)

where x1, x2, x3 and x4 are the values of the x coordinate points shown in Figure 1.

Height Accuracy = 1− | y1 − y3 | + | y2 − y4 |
| max(y2, y4)−min(y1, y3) |

(7)

where y1, y2, y3 and y4 are the values of the y coordinate points shown in Figure 1.

Figure 1. Bounding Box Accuracy—yellow box shows the bounding box of the manually labelled de-
fect, and the black box is an example predicted bounding box that may be generated by the detection
model. BBA computes the difference between two overlapping bounding boxes by calculating the
area between the overlapping boxes. If there is no overlap between the bounding boxes, the BBA
value will be 0.
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If the predicted bounding box does not overlap with the label’s bounding box or the
prediction is FN, the BBA value will be 0. If the bounding boxes overlap, then BBA will
be a positive value indicating the bounding box difference. The BBA value is 1 when the
bounding box of a predicted defect area is perfectly overlapping with the label’s bounding
box, and hence the difference is 0. The three new evaluation measures proposed for the
task of defect detection are described below and these measures utilise BBA.

3.3.1. Prediction Box Accuracy

Prediction Box Accuracy (PBA) calculates the average BBA of all BBA values greater
than 0, as shown in (8). PBA, computes the average degree of overlap (i.e., BBA) between
the labelled and the predicted boxes of the defects that have been identified by the model.

PBA = 1
n ∑n

i=1 BBAi (8)

where i is the index of each prediction, and n is the total number of predictions.

3.3.2. Recognition Rate

Recognition Rate (RR) measures the recognition performance of a detection model. RR,
as shown in (9), calculates the proportion of defects that were recognised as defects over all
known defects, without taking into consideration the defect type classification results. If a
defect is correctly detected but its type is incorrectly classified, it will be counted in the RR.

RR = 1
N ∑n

i=1 1, if BBAi > 0 (9)

where i is the index of each prediction, n is the total number of predictions with a BBA
value greater than 0, and N is the total number of the labelled defects.

3.3.3. False Label Rate

False Label Rate (FLR), as shown in (10) computes the proportion of the predictions
with a false label (i.e., Predicted Typei 6= Labelled Typei) and whose bounding box has an
overlap with the manual label (i.e., BBA value > 0). Hence, FLR is the ratio of the total
number of misclassified predictions that have overlapping bounding boxes over the total
number of predictions with overlapping bounding boxes.

FLR = 1
N ∑n

i=1 1, if (BBAi > 0) ∧ (Predicted Typei 6= Labelled Typei) (10)

where i is the index of each prediction, n is the total number of predictions with a BBA value > 0
and a false label (i.e., Predicted Typei 6= Labelled Typei), and N is the total number of predic-
tions with BBA values > 0.

3.4. Experimental Setup

The datasets used for the experiments are described in Section 3.1. Areas with defects
were annotated using the VGG Image Annotator (VIA) [35] tool. The process of image
annotation creates a set of annotations (a.k.a labels) that DL detection models use during
the training process to learn areas of interest with better accuracy. The annotation formats
required for YOLOv3, YOLOv4, and Mask R-CNN are different, and thus the annotations
were converted to the appropriate format for each model. Each model requires a set of
inputs: (1) a set of images; and (2) a file containing annotations of defects in the required
format. Different augmentation strategies were applied to the original dataset to derive
new datasets that can be utilised to identify the best image augmentation strategies for
defect detection using DL algorithms. Applying various augmentation strategies resulted
in four datasets (see Table 3) and each dataset was split into a train and test set with an
80:20% ratio. The number of images distributed across Datasets D0–D3 is shown in Table 4.
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Table 4. Number of training and testing images in Datasets D0–D3. The last column shows the total
number of images of each dataset.

Dataset Number of Training Images Number of Testing Images Total Images

D0 147 44 191
D1 1069 268 1337
D2 923 223 1146
D3 923 223 1146

During the training process, each model provides a loss value that indicates the
overall learning progress. The loss value is low when the model learns the defect features.
Therefore, by default, the training process stops when the training loss value converges
and it is lower than each algorithm’s default settings (YOLO: 0.06, Mask R-CNN: 0.08). At
the end of the training process, the model generates a weight file to perform the defect
detection; every weight stores the feature map, containing the defect’s features. Finally, the
performance of a trained model is evaluated using a test set that has not been previously
seen by the model (i.e., it was unseen during the training process). The experiments were
performed using a high-end desktop computer equipped with an i7 CPU, RTX 2070 GPU,
and 64 GB RAM.

4. Results

This section describes the results of the experiments with YOLOv3, YOLOv4, and
Mask R-CNN for the task of WTB defect detection through using four different datasets
(i.e., Datasets D0-D3), where each dataset was constructed using a combination of image
augmentation techniques (see Table 3). Contextualised traditional and proposed measures
described in Sections 3.2 and 3.3 were adopted to evaluate the performance of the models.
As an example, Figure 2 shows three outputs of each algorithm.

Tables 5–7 provide the performance evaluation results of the YOLOv3, YOLOv4, and
Mask R-CNN, respectively. In these tables, the weighted average (WA) value, as shown
in (11), provides the overall performance for each model.

WA = 1
N ∑t

i=1 Vi × Di (11)

where WA is the weighted average value, N is the total number of labelled defects, t is the
total number of defect types, Vi is the evaluation measure result for defect type i, and Di is
the total number of labelled defects belonging to defect type i.

4.1. Performance Evaluation of YOLOv3, YOLOv4, and Mask R-CNN

This subsection describes the results of the experiments carried out to evaluate the
performance of YOLOv3, YOLOv4, and Mask R-CNN for WTB defect detection when
using the test set described in Section 3.1.

YOLOv3: The performance evaluation results of YOLOv3 are shown in Table 5. The
results revealed that the best model was YOLOv3(D3), and reached the highest mWA of
70.08% ± 0.15. Although the WA(FLR) values of YOLOv3(D1) and YOLOv3(D2) were
lower than those of YOLOv3(D3) by 2.9% and 6.1% respectively, their WA(RR)s were also
lower than those of YOLO(D3) by 9.24% and 19.58%, respectively. Regarding the average
performance of YOLOv3, the mStd was the highest for YOLOv3(D3), i.e., ±0.15, which
indicates that the model was less stable than when trained using other datasets. However,
the relatively high mStd value was mainly because the YOLOv3(D3) model performed
worse on detecting crack defects compared to other defects.
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Figure 2. Example outputs of DL algorithms. The figure shows three outputs of YOLOv3, YOLOv4
and Mask R-CNN. All algorithms recognised the defects, however, YOLOv3 incorrectly classified a
crack defect as a void defect; and the prediction boxes did not comprehensively cover the large-sized
defect area, such as erosion defect, in YOLOv4.
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Table 5. YOLOv3: Performance evaluation on test dataset. WA is the weighted average as defined in (11). mWA is the mean
WA of PBA, RR, and Detection F1-score. mStd is the mean std of PBA, RR, and Detection F1-score. mFLR is the weighted
average of FLR across all defect types.

Prediction Box Accuracy (PBA)

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Crack 87.88% ± 0.11 69.20% ± 0.10 84.83% ± 0.076 64.29% ± 0.23
Erosion 66.06% ± 0.24 75.35% ± 0.083 84.79% ± 0.080 79.20% ± 0.091
Void 79.10% ± 0.17 80.10% ± 0.097 99.32% ± 0.052 99.22% ± 0.051
Other 71.49% ± 0.10 92.76% ± 0.098 89.03% ± 0.074 70.04% ± 0.094

std(PBA) ±0.09 ±0.10 ±0.069 ±0.15
WA(PBA) 77.59% ± 0.19 81.62% ± 0.10 91.99% ± 0.07 83.98% ± 0.13

Recognition Rate (RR) and (False Label Rate (FLR))

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Cracks 45.00% (15.0%) 45.21% (14.4%) 36.63% (7.0%) 51.45% (21.4%)
Erosion 62.50% (0.0%) 76.36% (8.2%) 65.93% (5.5%) 84.95% (12.9%)
Void 47.92% (16.7%) 51.14% (8.2%) 39.69% (4.1%) 63.24% (3.2%)
Other 33.33% (0.0%) 53.16% (3.1%) 40.74% (7.4%) 62.96% (3.7%)

std(RR) ±0.12 ±0.13 ±0.14 ±0.14
WA(RR) 48.89% (12.2%) 53.94% (8.8%) 43.60% (5.6%) 63.18% (11.7%)

Detection F1-score

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Crack 41.38% 42.49% 43.40% 39.69%
Erosion 76.92% 77.32% 72.85% 77.91%
Void 42.25% 57.31% 50.92% 73.51%
Other 50.00% 68.00% 47.37% 72.73%

std(F1) ±0.17 ±0.15 ±0.13 ±0.17
WA(F1) 49.25% 58.67% 52.95% 63.08%

Average Performance

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Crack 58.09% 52.30% 60.73% 51.81%
Erosion 68.49% 76.34% 74.52% 80.69%
Void 56.42% 62.85% 63.31% 78.66%
Other 51.61% 71.31% 56.58% 67.34%

mAP@IoU(0.5) 37.10% 55.69% 49.66% 53.28%
mStd ±0.13 ±0.13 ±0.11 ±0.15
mWA 58.58% 64.74% 62.58% 70.08%
mFLR 12.2% 8.8% 5.6% 11.7%

YOLOv4: The performance evaluation results of YOLOv4 are shown in Table 6.
Observing the results, it appears that YOLOv4’s performance was best with Dataset D1 and
Dataset D2. YOLOv4(D1) reached the highest mAW (78.28%), a relatively low mStd ± 0.20
value, and the highest WA(RR) (79.11%) and these results indicate that it is the better model.
YOLOv4(D2) reached higher WA(PBA) and WAF1-score values than YOLOv4(D1), however,
the WA(RR) of YOLOv4(D1) was much higher, i.e., 5.94%, than that of YOLOv4(D2). These
results suggest that Dataset D1 is the better dataset to train YOLOv4.
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Table 6. YOLOv4: Performance evaluation on test dataset. WA is the weighted average as defined in (11). mWA is the mean
WA of PBA, RR, and Detection F1-score. mStd is the mean std of PBA, RR, and Detection F1-score. mFLR is the weighted
average of FLR across all defect types.

Prediction Box Accuracy

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Crack 70.99% ± 0.25 79.50% ± 0.082 80.08% ± 0.11 77.47% ± 0.16
Erosion 88.45% ± 0.37 65.95% ± 0.20 73.27% ± 0.18 69.51% ± 0.15
Void 89.55% ± 0.45 89.71% ± 0.14 91.33% ± 0.092 88.76% ± 0.097
Other 46.48% ± 0.30 50.60% ± 0.24 46.65% ± 0.34 59.64% ± 0.17

std(PBA) ±0.20 ±0.17 ±0.19 ±0.12
WA(PBA) 82.08% ± 0.23 81.71% ± 0.16 84.08% ± 0.14 80.83% ± 0.14

Recognition Rate (RR) and (False Label Rate (FLR))

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Crack 35.00% (20.0%) 64.36% (18.6%) 59.30% (9.9%) 62.79% (23.3%)
Erosion 75.00% (6.3%) 93.75% (25.9%) 81.72% (12.9%) 94.62% (23.7%)
Void 50.00% (6.3%) 84.09% (0.0%) 85.95% (4.3%) 85.41% (3.8%)
Other 83.33% (33.3%) 50.00% (25.0%) 44.44% (22.2%) 40.74% (11.1%)

std(RR) ±0.22 ±0.20 ±0.20 ±0.24
WA(RR) 53.33% (11.1%) 79.11% (12.9%) 73.17% (9.0%) 76.52% (15.1%)

Detection F1-score

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Crack 22.22% 55.66% 62.04% 48.57%
Erosion 78.57% 70.05% 75.74% 72.93%
Void 58.33% 90.90% 87.79% 88.05%
Other 54.55% 33.33% 30.77% 42.11%

std(F1) ±0.23 ±0.24 ±0.25 ±0.21
WA(F1) 55.07% 73.98% 74.09% 69.60%

Average Performance (type classification)

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Crack 42.74% 66.51% 67.14% 62.94%
Erosion 80.67% 76.58% 76.91% 79.02%
Void 65.96% 88.23% 88.36% 87.41%
Other 61.45% 44.64% 40.62% 47.50%

mAP@IoU(0.5) 39.55% 55.58% 56.53% 53.67%
mStd ±0.22 ±0.20 ±0.22 ±0.19
mWA 63.49% 78.28% 77.11% 75.65%
mFLR 11.1% 12.9% 9.0% 15.1%

Mask R-CNN: The performance evaluation results of Mask R-CNN are shown in
Table 7. The Average Performance results show that Mask R-CNN(D2) returned the best
model, outperforming other Mask R-CNN models. Observing the Average Performance
results, Mask R-CNN(D2) reached the highest mAW and mAP@IoU(0.5) values, i.e., a
mAW value of 86.74%, and a mAP@IoU(0.5) of 82.57%. Mask R-CNN(D2) also achieved
the lowest mStd (±0.05) value. Furthermore, with regards to detecting defect types, Mask
R-CNN(D2) achieved the highest performance for all except for the void type, where Mask
R-CNN(D3) slightly outperformed Mask RCNN(D2) by 0.25%.
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Table 7. Mask R-CNN: Performance evaluation on test dataset. WA is the weighted average as defined in (11). mWA is
the mean WA of PBA, RR, and Detection F1-score. mStd is the mean std of PBA, RR, and Detection F1-score. mFLR is the
weighted average of FLR across all defect types.

Prediction Box Accuracy

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Crack 89.64% ± 0.37 89.05% ± 0.15 88.49% ± 0.15 85.81% ± 0.17
Erosion 86.17% ± 0.069 89.39% ± 0.18 86.50% ± 0.21 87.02% ± 0.21
Void 76.99% ± 0.23 88.66% ± 0.11 87.38% ± 0.087 86.77% ± 0.083
Other 81.64% ± 0.12 89.94% ± 0.045 90.84% ± 0.049 89.70% ± 0.087

std(PBA) ±0.055 ±0.054 ±0.019 ±0.017
WA(PBA) 83.56% ± 0.15 89.05% ± 0.14 87.80% ± 0.14 86.68% ± 0.15

Recognition Rate (RR) and (False Label Rate (FLR))

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Crack 75.00% (0.0%) 78.68% (2.9%) 90.16% (4.1%) 87.70% (0.8%)
Erosion 75.00% (6.3%) 88.00% (8.0%) 93.75% (8.8%) 87.50% (7.5%)
Void 40.54% (5.4%) 72.02% (3.0%) 74.82% (2.2%) 72.66% (2.2%)
Other 50.00% (0.0%) 66.67% (0.0%) 88.00% (0.0%) 80.00% (4.0%)

std(RR) ±0.18 ±0.092 ±0.083 ±0.072
WA(RR) 56.00% (4.0%) 77.42% (3.9%) 84.97% (4.1%) 81.42% (3.0%)

Detection F1-score

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Crack 85.71% 84.77% 90.52% 92.58%
Erosion 78.57% 85.11% 87.74% 85.33%
Void 50.00% 80.28% 83.13% 81.67%
Other 66.67% 80.00% 93.62% 84.44%

std(F1) ±0.16 ±0.028 ±0.045 ±0.047
WA(F1) 66.67% 82.86% 87.44% 86.45%

Average Performance

Defect type Dataset D0 Dataset D1 Dataset D2 Dataset D3
Crack 83.45% 84.17% 89.72% 88.70%
Erosion 79.91% 87.50% 89.33% 86.62%
Void 55.84% 80.32% 81.78% 82.03%
Other 66.10% 78.87% 90.82% 84.72%

mAP@IoU(0.5) 57.47% 77.53% 82.57% 76.80%
mStd ±0.13 ±0.06 ±0.05 ±0.05
mWA 68.74% 83.11% 86.74% 84.85%
mFLR 4.0% 3.9% 4.1% 3.0%

4.2. Comparison of YOLOv3, YOLOv4 and Mask R-CNN

Table 8 presents a comparison of the performance of the best models that resulted
from Section 4.1. The models under comparison are: Mask R-CNN(D2), YOLOv3(D3), and
YOLOv4(D1).

Mask R-CNN(D2) Compared to YOLOv3(D3):
Mask R-CNN outperformed YOLOv3 and YOLOv4 in terms of PBA performance,

detecting all except the void defect types. With regards to detecting voids, YOLOv3 and
YOLOv4 outperformed Mask R-CNN by achieving PBA values that are 11.84% and 2.33%,
respectively, (as shown in Table 8). This may be due to the fact that void defects are
usually small in size (and smaller than the other defect types). Figure 3d illustrates that
Mask R-CNN is relatively weaker than YOLOv3 and YOLOv4 algorithms in recognising
small-sized defects (i.e., void).
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Table 8. Performance evaluation comparison of Mask R-CNN(D2), YOLOv3(D3), and YOLOv4(D1).

Prediction Box Accuracy (PBA)

Defect type Mask R-CNN vs. YOLOv3 Mask R-CNN vs. YOLOv4 YOLOv4 vs. YOLOv3
Crack +24.20% +8.99% +15.21%
Erosion +7.29% +20.54% −13.25%
Void −11.84% −2.33% −9.51%
Other +20.81% +40.24% −19.44%

std(PBA) −0.131 −0.151 +0.02
WA(PBA) +3.82% +6.09% −2.27%

Recognition Rate (RR) and (False Label Rate (FLR))

Defect type Mask R-CNN vs. YOLOv3 Mask R-CNN vs. YOLOv4 YOLOv4 vs. YOLOv3
Crack +38.72% (−17.30%) +25.80% (−14.50%) +12.92% (−2.80%)
Erosion +8.80% (−4.10%) +0.00% (−17.10%) +8.80% (+13.00%)
Void +11.58% (−1.00%) −9.27% (+2.20%) +20.85% (−3.20%)
Other +25.04% (−3.70%) +38.00% (−25.00%) −12.96% (+21.30%)

std(RR) −0.057 −0.117 0.06
WA(RR) +21.79% (−7.60%) +5.87% (−8.80%) +15.93% (+1.20%)

Detection F1-score

Defect type Mask R-CNN vs. YOLOv3 Mask R-CNN vs. YOLOv4 YOLOv4 vs. YOLOv3

Crack +50.82% +34.85% +15.97%
Erosion +9.83% +17.70% −7.86%
Void +9.62% −7.78% +17.40%
Other +20.89% +60.28% −39.39%

std(F1) −0.125 −0.195 +0.07
WA(F1) +24.37% +13.47% +10.90%

Average Performance

Defect type Mask R-CNN vs. YOLOv3 Mask R-CNN vs. YOLOv4 YOLOv4 vs. YOLOv3
Crack +37.91% +23.22% +14.70%
Erosion +8.64% +12.75% −4.10%
Void +3.12% −6.46% +9.58%
Other +22.25% +46.18% −23.93%

mAP@IoU(0.5) 29.29% 26.99% 2.30%
mStd −0.104 −0.154 +0.05
mAW +16.66% +8.47% +8.19%
mFLR −7.60% −8.80% +1.20%

Regarding the RR (see Figure 3d) and F1-score (see Figure 3a) results, Mask R-CNN(D2)
outperformed YOLOv3(D3) across all defect types. Table 8 shows that, on average,
mAP@IoU(0.5) was higher by 29.29%, WA(RR) was higher by 21.79%, WA(FLR) was
lower by 7.60%, and WA(F1) was higher by 24.37% when using Mask R-CNN compared to
YOLOv3. Finally, looking at the Average Performance results (see Figure 3c), Mask R-CNN
outperformed YOLOv3 when considering all evaluation measures.

Mask R-CNN(D2) compared to YOLOv4(D1): In Table 8, the PBA of YOLOv4 was
2.33% higher than Mask R-CNN in detecting void defects. The std(PBA) of Mask R-CNN
was lower than that of YOLOV4 by 0.151 points and WA(PBA) was higher by 6.09%, and
these values indicate that the Mask R-CNN is relatively more stable and accurate in BBA
predictions than YOLOv4. On average, Mask R-CNN outperformed YOLOv4 with regards
to WA(RR) by 5.87%. The WA(FLR) and std(RR) values of Mask R-CNN were on average
lower than those of YOLOv4 by 8.80% and 0.117, respectively. This suggests that the Mask
R-CNN is more stable than YOLOv4 in detecting defects by type. However, due to Mask
R-CNN’s weak ability in detecting small-sized defects, the RR was 9.27% lower in void
defect detection, as also shown in Figure 3d. In overall, Table 8 shows that Mask R-CNN
outperformed YOLOv4 with a 8.47% higher value for mAW, 26.99% higher mAP@IoU(0.5)
and a 8.80% lower FLR.
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YOLOv4(D1) compared to YOLOv3(D3): On Average YOLOv4 returned a 8.19%
higher mAW value, but compared to YOLOv3, it also returned higher mStd and mFLR
values, by, 0.05 and 1.20% respectively (as shown in Table 8), which are indicators of worse
performance. A closer look at the performance of YOLOv4 and YOLOv3 with regards to
their ability in detecting individual defect types, YOLOv3 outperformed YOLOv4 with
regards to WA(PBA) performance by 2.27% (see Figure 3c) and an std(PBA) difference of
0.02 (see Table 8), whereas YOLOV4 outperformed YOLOv3 by 15.93% with regards to
WA(RR), as shown in Figure 3d. Table 8 illustrates that YOLOv4’s WA(F1) score was 10.90%
higher than that of YOLOv3.

Comparison of detection speed: The detection speed values of each algorithm are
shown in Figure 3b. Mask R-CNN’s detection speed is much slower than that of YOLOv3
and YOLOv4 by 25 and 13 fps, respectively. However, due to the high and stable detection
performance of the Mask R-CNN model, it is still regarded as the most suitable detection
model for detecting defects. In real-time inspection tasks, detection speeds of 20 and 30 fps
would be too fast since the engineers would not be able to respond to the outputs of the
model at those speeds. Therefore, the detection speed of a DL algorithm will need to be
tuned to match its real-world use.

(a) (b)

(c) (d)

Figure 3. Performance Evaluation Diagrams for YOLOv3, YOLOv4 and Mask R-CNN. (a) Traditional Performance Evaluation.
(b) Detection Speed Evaluation. (c) mean Weighted Average Performance Evaluation. (d) RR and FLR Evaluation.
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4.3. An Investigation into Whether Image Enhancement Can Further Improve the Results of the
Mask R-CNN Model

Based on the experiments carried out thus far, as described in Section 4, Mask R-
CNN(D2) was the best performing model. This section describes the results of experiments
that apply image enhancement techniques to the dataset. Initially, image enhancement
techniques, namely white balance (WB) and adaptive histogram equalisation (AHE) were
applied to the original dataset. After that, image augmentation techniques are applied to
the image enhanced dataset. These image augmentation techniques are those provided
in Table 3 Dataset D2. This detection pipeline is called Image Enhanced Mask R-CNN
(IE Mask R-CNN). Figure 4 shows IE Mask R-CNN’s performance, and the results are
compared with Mask R-CNN(D2).

(a) (b)

Figure 4. Performance comparison between Mask R-CNN(D2) and IE Mask R-CNN(D2). (a) Overall performance compar-
isons. (b) mWA evaluation and FLR comparisons. Left axis is used for mWA, and the right axis is used for FLR.

In overall, the performance of IE Mask R-CNN(D2) (mAW:86.82%, F1-score: 87.44%)
and Mask R-CNN(D2) (mAW: 86.74%, F1-score: 87.54 %) were close, as shown in Figure 4a.
With IE Mask R-CNN(D2) mAP@IoU(0.5) was 1.64% higher, PBA was 0.94% higher and
FLR was 0.5% lower than Mask R-CNN(D2). The higher PBA values suggest an overall
improvement in defect detection and bounding box prediction when applying image
enhancement techniques (i.e., WB and AHE).

Figure 4b compares the mWA and FLR of each defect type for IE Mask R-CNN(D2) and
Mask R-CNN(D2). The figure shows that the mWA value of defect type ‘other’ was lower
by 0.81% compared to IE Mask R-CNN(D2), whereas the mWA values of all other defect
types were higher (i.e., by 0.29% for crack, by 0.68% for erosion, and by 8.23% for void)
compared to Mask R-CNN(D2). The fact that there was no improvement in detecting the
‘other’ type of defects when using the IE Mask R-CNN(D2) compared to Mask R-CNN(D2)
is likely to be because the class ‘other’ only had 22 images in the original dataset, and
therefore the models were not able to learn all the features of the defects of type ‘other’ due
to complex defect data and lack of training data.

The FLRs for crack and erosion were decreased by 1.6% and 5% respectively when IE
Mask R-CNN was using, but the FLR of the void defect was higher than Mask R-CNN by
2.8%. Considering the size of each defect type, the void defects were relatively smaller than
crack and erosion. Given that IE Mask R-CNN(D2) outperformed Mask R-CNN(D2) with
regards to detecting the larger-sized defects (i.e., erosion and crack) suggests that image
enhancement techniques can reduce the number of misclassified images that contain the
larger sized defects.
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4.4. IE Mask R-CNN: Proposed Deep Learning Defect Detection Pipeline

Based on the results of the experiments discussed in Section 4, a DL model for defect
detection is proposed. The pipeline structure of IE Mask R-CNN is shown in Figure 5. This
section describes the components of the proposed IE Mask R-CNN pipeline.

Figure 5. IE Mask R-CNN: The proposed Image Enhanced Mask R-CNN pipeline.

Input images: The input images are the original images captured by engineers during
inspections, such as those discussed in Section 3.1. When new batches of images along
with their annotations become available, these can be used for re-training the model, as
a strategy for improving its performance. The images are required to be in JPG or PNG-
format and need to be at least 400 pixels in height and width dimensions and they can be
in any aspect ratio.

Image enhancement: Image enhancement and augmentation methods are initially
applied to the dataset, and thereafter the dataset is trained using a Mask R-CNN algorithm.
The architecture of the Mask R-CNN algorithm is described below. Image enhancement
techniques include WB [36] and AHE [37,38]. WB normalises the images such that they have
the same temperature. The IE Mask R-CNN pipeline utilises a WB image pre-processing
tool developed by Afifi and Brown [39] that can automatically adjust the image tempera-
tures. The IE Mask R-CNN pipeline includes the AHE technique which utilises a contrast
enhancement algorithm implemented by Pizer et al. [38] to distinguish the areas whose
colour is significantly different across the image set.

Image augmentation: In Section 4, Mask R-CNN achieved the best performance with
Dataset D2, and thus the image augmentation techniques used in Dataset D2 were included
in the IE Mask R-CNN pipeline. Details of the image augmentation techniques that were
fused to derive Dataset D2 are provided in Table 3.

Mask R-CNN algorithm: Mask R-CNN [18] is the detection algorithm that is used
in the proposed pipeline. The architecture of Mask R-CNN is shown in Figure 6. In the
first stage, the pre-processed images are trained using a ResNetX-101 CNN backbone [40],
and a region proposal network that generates a RoIAlign feature map that stores feature
information of defects. In the second stage, a fully connected layer detects and classifies
the detected defects. Moreover, additional convolutional layers learn the masked areas of
the predicted defect areas.
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Figure 6. Mask R-CNN architecture with ResNetX-101 backbone and Fully Connected layers (FC layers). This architecture
was embedded in the proposed IE Mask R-CNN pipeline.

5. Discussion and Conclusions

This paper investigates the performance of DL algorithms for the task of WTB defect
detection and classification, and proposes a new Mask R-CNN based pipeline for the task.
A dataset of images captured by engineers during manual WTB inspections was provided
by the industrial partner Railston & Co. Ltd. The engineers labelled the images into four
categories: crack, erosion, void, and ‘other’ defects. The main contributions of the paper
are summarised as follows:

The paper investigates the impact of various image augmentation and image en-
hancement techniques on the performance of DL algorithms for the task of WTB defect
detection. The original dataset was transformed three times using a different set of image
augmentation techniques. As a result, experiments were carried out using four datasets
(i.e., original dataset and 3 datasets derived after applying transformation techniques).
Empirical evaluations were carried out with the original and augmented datasets to inves-
tigate the performance of state-of-the-art DL algorithms, namely, YOLOv3, YOLOv4, and
Mask R-CNN for detecting defect areas (i.e., bounding boxes around detected areas) and
for classifying the detected defects by type.

Traditional evaluation measures of Recall, Precision and F1-score, do not provide a
holistic overview of the defect detection performance of DL detection models. Therefore,
this paper proposes new evaluation measures, namely Prediction Box Accuracy (PBA),
Recognition Rate (RR), and False Label Rate (FLR). The proposed measures consider the
bounding box accuracy of the detected defect areas and were designed for the task of
evaluating the performance of DL detection models applied to defect detection tasks.
Furthermore, the traditional evaluation measures of Precision, Recall, and F1-score were
contextualised for the task of defect detection.

The contextualised traditional and proposed evaluation measures were adopted for
comparing the performance of the DL detection models. The results of the experiments
revealed that on average, across all evaluation measures (i.e., mean Weighted Average
(mWA)), Mask R-CNN outperformed other DL algorithms when transformation-based
augmentations (i.e., rotation and flipping) were applied to the image dataset. Mask R-CNN
outperformed YOLOv3 and YOLOv4, and achieved the highest detection performance
with mAP@IoU(0.5): 82.57%, mAW: 86.74%, PBA: 87.80%, RR: 84.97% and FLR: 4.1%. This
paper proposes a new defect detection pipeline, called IE Mask R-CNN, which applies
image enhancement and augmentation methods. IE Mask R-CNN reached mAP@IoU(0.5):
84.21%, mWA: 86.82%, PBA: 88.76% and FLR: 3.6%, and outperformed Mask R-CNN in
mAP@IoU(0.5) (by 1.64%), mAW (by 0.08%), PBA (by 0.94%) and FLR (by 0.5%).

In future work, additional image enhancement techniques that can highlight the colour
of defect areas from the images will be explored. Dataset re-sampling methods will also be
empirically evaluated to improve the balance between images across the defect types. In
Mask R-CNN, many CNN parameters can be adjusted for different detection purposes,
such as anchor-scale, Region of Interest number, and backbone stride. These parameters
can be further investigated to provide the best setting for different detection situations.
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The condition monitoring and fault diagnosis of WTBs deserve further investigation
through using the IE Mask R-CNN. A monitoring system can be designed to define the
potential WTB health problems beforehand and deliver the engineers to execute checking
and repairing programs. Since demand for wind power has grown, this has resulted
in an increase in the manufacturing, inspection, and repairs of wind turbines and their
blades. The operation efficiency of wind turbines is affected by defects that exist on the
surface of blades. Defect detection systems based on ML and DL methods have been
utilised to inspect the regular operation of WTBs damage diagnosis [41,42] and condition
monitoring [43–45]. Future work includes extending the proposed pipeline for the task of
condition monitoring. Research on the topic of defect detection and especially WTB defect
detection with DL algorithms is still at an early stage. The proposed Image Enhanced Mask
R-CNN pipeline is suitable for the task of WTB defect detection and can be applied to
other surfaces. Therefore, future work also includes evaluating the performance of IE Mask
R-CNN for other tasks such as train wheel defect detection.
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Abbreviations
The following abbreviations are used in this manuscript:

WTB Wind Turbine Blade
NDT Non-Destructive Testing
DL Deep Learning
CNN Convolutional Neural Network
YOLO You Only Look Once
YOLOv2 YOLO version 2
YOLOv3 YOLO version 3
YOLOv4 YOLO version 4
Mask R-CNN Mask Region-based Convolutional Neural Network
mAP Mean Average Precision
PBA Prediction Box Accuracy
RR Recognition Rate
FLR False Label Rate
IE Mask R-CNN Image Enhanced Mask R-CNN
ML Machine Learning
SVM Support Vector Machine
LR Linear Regression
RF Random Forest
AUC Area Under the Curve
HOG Histogram of Oriented Gradient feature
ILSVRC ImageNet Large Scale Visual Recognition Challenge
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k-NN k-Nearest Neighbour
DT Decision Tree
D0 Dataset D0
D1 Dataset D1
D2 Dataset D2
D3 Dataset D3
TP True Positive
FP False Positive
FN False Negative
IoU Intersection over Union
BBA Bounding Box Accuracy
WidthA Width Accuracy
HeightA Height Accuracy
VIA VGG Image Annotator
WA Weighted Average
mWA mean Weighted Average
std Standard Deviation
WB White Balance
AHE Adaptive Histogram Equalisation
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