
Morphological Image Analysis and Feature
Extraction for Reasoning with AI-based Defect

Detection and Classification Models
Jiajun Zhang

Dept of Computer Science, School of Science
Loughborough University, UK
Email: j.zhang8@lboro.ac.uk

Georgina Cosma
Dept of Computer Science, School of Science

Loughborough University, UK
Email: g.cosma@lboro.ac.uk

Sarah Bugby
Dept of Physics, School of Science

Loughborough University, UK
Email: s.bugby@lboro.ac.uk

Axel Finke
Dept of Mathematical Sciences, School of Science

Loughborough University, UK
Email: a.finke@lboro.ac.uk

Jason Watkins
Railston & Co. Ltd.

Nottingham, UK
Email: jason@railstons.com

Abstract—As the use of artificial intelligence (AI) models
becomes more prevalent in industries such as engineering and
manufacturing, it is essential that these models provide trans-
parent reasoning behind their predictions. This paper proposes
the AI-Reasoner, which extracts the morphological characteristics
of defects (DefChars) from images and utilises decision trees to
reason with the DefChar values. Thereafter, the AI-Reasoner
exports visualisations (i.e. charts) and textual explanations to
provide insights into outputs made by masked-based defect
detection and classification models. It also provides effective
mitigation strategies to enhance data pre-processing and overall
model performance. The AI-Reasoner was tested on explaining
the outputs of an IE Mask R-CNN model using a set of 366 images
containing defects. The results demonstrated its effectiveness in
explaining the IE Mask R-CNN model’s predictions. Overall,
the proposed AI-Reasoner provides a solution for improving the
performance of AI models in industrial applications that require
defect analysis.

Index Terms—Morphological analysis, AI-Reasoner, ensemble
decision tree, explainable AI.

I. INTRODUCTION

As artificial intelligence (AI) models become increasingly
prevalent in industries such as manufacturing, there is a
growing need to explain the reasoning behind machine learn-
ing (ML) model outputs. Developing a comprehensive under-
standing of ML model outputs empowers end-users to make
informed decisions based on the results [1]. Moreover, this
understanding equips developers with vital information to ef-
fectively address and overcome any limitations inherent in the
model. To address this challenge, researchers have developed a
field of study known as explainable AI (XAI). XAI techniques
use various strategies to provide interpretations for the AI
model and its outputs, allowing non-experts to understand
how the models arrive at their predictions. These strategies

This research is funded through joint funding by the School of Science at
Loughborough University with industrial support from Railston & Co Ltd.

may involve generating explanations that can be understood
by humans, visualising the model’s decision-making process,
or identifying the key features that the model relies on to
make its predictions. By providing explanations of an AI
model’s outputs, XAI can help to increase the transparency and
trustworthiness of the model and enable non-experts to make
informed decisions based on the model’s predictions. This can
ultimately lead to improved safety, quality, and efficiency in
industrial applications.

In the application of ML to defect detection [2]–[6] and
analysis [7]–[9], there have been some attempts to provide
explainability of outputs. Fanci et al. [10] used image mor-
phology analysis and human visual characteristics (i.e. area,
roundness, ratio, brightness, and texture) to identify image
defects, and demonstrated that their method could successfully
distinguish defects. Lafor and Peansupap [11] proposed a
defect detection system that quantifies defects into a feature
list (i.e. region, edges, scale, interest points, and texture) and
which achieved 94% detection accuracy in a tiling defect
detection task, and effectively reduced engineers’ subjective
judgements of aesthetic faults. Dong et al. [12] extracted
geometry-, texture- and vision-based features from images to
perform weld defect analysis using a support vector machine
model, showing that defects could be identified with high
accuracy over 90% in a pipeline weld defect detection task.
Yan and Gao [13] extracted a set of optical image features,
including colour-, texture- and shape-based features, from steel
surface defect images and used those for a classification task
for an engineering enterprise, and their model’s performance
reached an average of 98% accuracy.

One approach to XAI is through the use of saliency map
methods [14]–[18], that can explain neural network models
by highlighting interesting regions in a defect image. Another
approach is through the use of simplification and feature-
relevance methods [19]–[21] that can provide ML model



 Detection & Classification

Predict

AI-based
Detection/Classification

Model

Images
Input

Predicted Masks

Ground Truth
Masks

 Feature Extraction

Generate

Images to DefChars

Generate

Predictions to
Reasoning Targets

DefChars Matrix

Reasoning Targets Vector

Input

 AI Reasoning

AI-Reasoner

Charts

Textual
Explanation

OutputInput

Input

Fig. 1. AI-Reasoner architecture.

explanations by extracting and analysing defect features from
images and tabular data. These methods can help identify the
most important features that a model relies on to make its
predictions, enabling non-experts to better understand how the
model derived its decisions.

This paper proposes the AI-Reasoner that facilitates reason-
ing with AI outputs. The contributions are:

• A new set of defect characteristics (DefChars) for de-
scribing defects based on their morphological character-
istics. DefChar values represent quantitative information
about defects, including their colour, shape, and meta
aspects. DefChars can be utilised in AI-based models for
reasoning and defect analysis tasks.

• A novel AI-Reasoner that extracts DefChars from images
and generates a set of charts and textual descriptions to
provide visualisation and reasoning with AI outputs.

• Empirical demonstration of the AI-Reasoner on the out-
puts of a Mask region-based convolutional neural net-
work (R-CNN) model using a set of 366 images con-
taining defects. The results demonstrate the usefulness
of the proposed DefChars and AI-Reasoner in explaining
the model’s predictions. The AI-Reasoner offers effec-
tive data pre-processing mitigation strategies aimed at
enhancing model performance, and which can also save
experimental time.

II. PROPOSED AI-REASONER

This section presents the AI-Reasoner’s components, as
illustrated in Fig. 1.

A. Detection and Classification

A mask-based deep learning (DL) model can be utilised
to detect or classify defect regions. Such a model can be a
Mask R-CNN that takes images and predicts the presence or
categories of the defects.

B. Feature Extraction: Predictions to Reasoning Targets

The AI-Reasoner is able to reason the AI predictions for a
detection task or a classification task. Let X be an image. As-
sume that this image shows I defects in pairwise disjoint (i.e.
non-overlapping) regions. In other words, X \ (X1∪· · ·∪XI)

is the remaining part of the image which does not contain any
defects. Furthermore, let Li = L(Xi) ∈ {1, . . . ,K} denote
the type (category) of the defect in the ith region.

An AI model for defect detection will then output a
prediction consisting of J pairs (X̂1, L̂1), . . . , (X̂J , L̂J),
where X̂j ⊆ X is a predicted defect region and
L̂j = L̂(X̂j) ∈ {1, . . . ,K} is the predicted type of defect in
that region.

Throughout this work, it is assumed that a predicted defect
can always be matched to at most one true defect; and that a
true defect can always be matched to at most one predicted
defect, e.g., via the intersection over union (IoU) value.

For the remainder of this work, reasoning targets (i.e. true
positives and false negatives) will be defined as follows.

• Detection. If only detection (but not classification) of
defects is of interest, one can consider which of the
true defects have been detected (or not) and set C =
(C1, . . . , CI) and D = (D1, . . . , DI), where

Ci =

{
1, if Xi matches some X̂j ,

0, otherwise,
(1)

Di =

{
1, if Xi does not match any X̂j ,

0, otherwise,
(2)

for i = 1, . . . , I .
• Classification. If only classification (of already

known/correctly detected) defects is of interest (in which
case I = J), one can set C ′ = (C ′

1, . . . , C
′
I) and

D′ = (D′
1, . . . , D

′
I), where

C ′
i =

{
1, if L̂i = Li,

0, otherwise,
D′

i =

{
1, if L̂i ̸= Li,

0, otherwise,

for i = 1, . . . , I .
• Joint detection and classification. If both detection and

classification of defects are of interest, one can specify

2



Ci and Di as in (1) and (2) and then set

C ′
i =

{
1, if Ci = 1 and L̂(Xi) = Li,

0, otherwise,

D′
i =

{
1, if Ci = 1 and L̂(Xi) ̸= Li,

0, otherwise,

for i = 1, . . . , I , where L̂(Xi) is the predicted category of
the ith true defect. Finally, set C = (C1, . . . , CI), C ′ =
(C ′

1, . . . , C
′
I), D = (D1, . . . , DI), D′ = (D′

1, . . . , D
′
I).

C. Feature Extraction: Images to DefChar

DefChars are a new set of defect characteristics that are
extracted from images by analysing the red, green and blue
(RGB) values and the polygon-shaped defect regions/masks in
an image. Table I presents the complete set of DefChars.
Color characteristics: extract colour information using the
hue, saturation, and brightness (HSV) values, converted from
RGB values. HSV values can provide more intuitive colour
properties than RGB values. The colour complexity features
capture the frequency distribution differences of the HSV
values between the defect and background areas.
Shape characteristics: extract shape information from
polygon annotations, including bounding boxes, vertices and
edges. Shape complexity indicates the shape irregularity of
the defect by calculating four values: the edge ratio, follow
turning, reverse turning and small turning.
Meta characteristics: ‘Defect size’ provides an indication of
the severity of the defect. ‘Distance to the nearest neighbour
defect’ provides information about a defect’s environment.

D. AI Reasoning

The AI-Reasoner uses an ensemble decision tree (DT)
to reason with the outputs of an AI-based defect detec-
tion model. Algorithm 1 introduces the pseudocode for the
proposed AI-Reasoner, which comprises: PlantForest,
ValidateForest, ClimbForest, AnalyseForest,
SummariseForest and ExplainForest.

Algorithm 1 AI-Reasoner
Input: DefChar matrix E of size m×38, where m represents

the number of defects in the dataset.
Reasoning target vector T = C or T = D or T = C ′

or T = D′, where C, D, C ′ and D′ are as in Section II-B
Output: Reasoning result R (charts and descriptions)

1: M ← PlantForest(E, T )
2: V ← ValidateForest(M,E, T )
3: print V % defects have been correctly reasoned
4: O ← ClimbForest(M)
5: A← AnalyseForest(O)
6: S ← SummariseForest(A)
7: R← ExplainForest(S)
8: return R

Empirical evaluations were carried out to determine the
optimal parameters for the ensemble DTs. These are the rec-
ommended parameters when using the proposed AI-Reasoner.
PlantForest takes the DefChar matrix E and reasoning
target vector T as inputs where T is the reasoning target
C, D, C ′ or D′ (described in Section II-B). Then, 200 DTs
are created with the untrimmed setting (i.e. max depth =
infinite, min split = 2 and min leaf = 1) for
exploring reasons behind the predictions of an AI-based defect
detection model. All trained DTs are stored in a list M for
the next step.
ValidateForest evaluates the learning performance of
each trained DT model M using the metrics (true positive rate
(TPR) and true negative rate (TNR)) defined in Section II-E.
The input data (DefChar matrix E and reasoning target vector
T ) are utilised to assess how many defects were correctly
learnt by each trained DT. Then, a learning score V provides
the overall learning performance of the AI-Reasoner and the
equation is shown in (3).
ClimbForest parses all trained DTs and recursively reads
the nodes in each tree and extracts tree information (i.e.
DefChar features, split condition, the sample distributions in
the node and its child nodes). The extracted information of
every node is stored in a list O for further steps.
AnalyseForest analyses the extracted list of DT nodes O
and computes a set of values to determine the importance of
each node. A decision score, DS, is the average split ratio in
which the parent node divides the samples into its two child
nodes:

DS =
1

2

(∣∣∣∣TC1 − FC1

N1

∣∣∣∣+ ∣∣∣∣TC0 − FC0

N0

∣∣∣∣),
where

• N1 is the number of samples whose reasoning target
values are 1 in a node;

• N0 is the number of samples whose reasoning target
values are 0 in a node;

• TC1 is the number of samples whose reasoning target
values are 1 in its true child node;

• TC0 is the number of samples whose reasoning target
values are 0 in its true child node;

• FC1 is the number of samples whose reasoning target
values are 1 in its false child node;

• FC0 is the number of samples whose reasoning target
values are 0 in its false child node.

Furthermore, the distinguish score, TS, measures the percent-
age in which the parent node isolates the samples in its two
child nodes:

TS =

∣∣∣∣TC1

N1
− TC0

N0

∣∣∣∣ = ∣∣∣∣FC1

N1
− FC0

N0

∣∣∣∣.
Finally, usage of samples, U , is the percentage of samples
contained in a node:

U =
N1 +N0

N
,

where N is the total number of samples, i.e. at the root node.

3



TABLE I
PROPOSED DEFCHARS.

Colour Information extracted and stored separately for the defect and background areas

DefChar Name Value Range Description

Average Hue {0, 1, . . . , 359} Average hue value
Mode of Hue {0, 1, . . . , 359} Most frequent hue value
Unique number of Hue values {1, 2, . . . , 360} Number of unique hue values
Hue Range {0, 1, . . . , 180} Difference of maximum and minimum hue value
Average Saturation {0, 1, . . . , 254} Average saturation value
Mode of Saturation {0, 1, . . . , 254} Most frequent saturation value
Unique number of Saturation {1, 2, . . . , 255} Number of unique saturation values
Saturation Range {0, 1, . . . , 254} Difference of maximum and minimum saturation values
Average Brightness {0, 1, . . . , 254} Average brightness value
Mode of Brightness {0, 1, . . . , 254} Most frequent brightness value
Unique number of Brightness {1, 2, . . . , 255} Unique brightness values
Brightness Range {0, 1, . . . , 254} Difference of maximum and minimum brightness value

Colour Complexity

DefChar Name Value Range Description

Hue Difference [0, 1] Hue frequency distribution difference between the defect and background areas
Saturation Difference [0, 1] Saturation frequency distribution difference between the defect and background areas
Brightness Difference [0, 1] Brightness frequency distribution difference between the defect and background areas

Shape Information

DefChar Name Value Range Description

Number of Edges {3, 4, . . . } Number of edges of the defect polygon areas
Coverage [0, 1] Percentage of the defect polygon area covered by its bounding box
Aspect Ratio [0, 1] Ratio between the width and height of defect bounding box
Average Turning Angles {1, 2, . . . , 180} Average value of vertex angles of the defect polygon area
Mode of Turning Angle {1, 2, . . . , 180} Value of vertex angles that appears the most often in the defect polygon

Shape Complexity

DefChar Name Value Range Description

Edge Ratio [0, 1] Average length ratio between two adjacent edges in the defect polygon area
Followed Turns [0, 1] Proportion of two adjacent vertices which turn to the same direction in the defect polygon area
Small Turns [0, 1] Percentage of vertices which are smaller than 90° in the defect polygon area
Reversed Turns [0, 1] Proportion of two adjacent vertices which turn to a different direction in the defect polygon area

Meta Information

DefChar Name Value Range Description

Defect Size {1, 2, . . . } Number of pixels in the defect polygon area
Neighbour Distance {0, 1, 2} Categorised distances to the nearest neighbour, 0→Short (≤100px); 1→Long; 2→No Neighbour.

A set of additional values are computed. The node impor-
tance index, IDX, is calculated to state a node’s capability
in distinguishing samples that have different reasoning target
values:

IDX = U × ((1 + DS)× TS +Bdeg +Bsta).

Decision degree bonus (Bdeg) and decision status bonus (Bsta)
are calculated based on decision degree (DEG) and decision
status (STA) (shown in Table II), and these two values are
used to amplify the IDX value. DEG expresses the sample

isolation degree (i.e. empty, weak, middle, strong and full)
according to TS. STA expresses the node’s splitting status
(i.e. confirmation, half reduction, and reduction) according to
the values of TC1, TC0, FC1, FC0. Decision direction (DIR)
is a boolean signal that indicates which child node contains
more samples that reasoning target values are 1. The output
is an extended list A, which contains the list O and these
analysed values.
SummariseForest computes the importance of each De-
fChar by summarising the list A. Firstly, all analysed nodes

4



TABLE II
INFORMATION ABOUT A NODE’S DECISION DEGREE, STATUS AND BONUS.

DEG STA

TS threshold Degree Bdeg Condition Status Bsta

TS = 0 empty 0 TC1 = 0 or TC0 = 0 confirmation 0.5
0 < TS < 0.25 weak 0.1 TC1 = FC1 or TC0 = FC0 half reduction 0.2
0.25 ≤ TS < 0.5 middle 0.2 all other conditions reduction 0
0.5 ≤ TS < 1 strong 0.3
TS = 1 full 0.5

are divided into groups by DefChar; hence 38 groups of nodes
are constructed where each node corresponds to a unique
DefChar. Next, DefChar Importance Index (DIS), DefChar
Usage Frequency (DUF), DefChar Overall Score (DOS),
DefChar Effective Range (DER) are calculated to quantify
the importance of each DefChar as follows.

• DIS is calculated by averaging the node importance
indices IDX in the grouped nodes; a higher value in-
dicates that the DefChar can easily affect the AI model’s
detection/classification performance.

• DUF is calculated by averaging the occurrence of the
DefChar used in the ensemble DT; a higher value implies
that the DefChar is essential to split the reasoning targets.

• DOS is the overall score for each DefChar calculated by
multiplying the DIS and DUF with a 3:1 ratio.

• DER is a value range to show the DefChar value interval
that can affect the AI model’s predictions.

The metrics defined in this section are utilised by
ExplainForest to create the AI-Reasoner’s output (i.e.
charts and textual descriptions) for enabling the end-user to
reason with a model’s outputs. ExplainForest visualises
the array-format reasoning result S using charts and provides
textual descriptions that include mitigation strategies R to help
users gain reasons behind the AI results and to take steps
in improving the dataset that was used to train the models.
Sample outputs are shown in the paper’s Github repository1.

E. Metrics for Evaluating the AI-Reasoner’s Learning

TPR and TNR evaluate the learning performance of each
DT and are defined as

TPR =
TP

TP + FN
, TNR =

TN

TN+ FP
,

where
• TP is the total number of defects whose reasoning target

values are 1 and were correctly learnt by the DT;
• TN is the total number of defects whose reasoning target

values are 0 and were correctly learnt by the DT;
• FP is the total number of defects whose reasoning target

values are 1 and were not correctly learnt by DT;
• FN is the total number of defects whose reasoning target

values are 0 and were not correctly learnt by DT.

1https://github.com/edgetrier/AI-Reasoner

TPR measures the ability of a model to correctly identify
positive instances. TNR measures the ability of a model to
correctly identify negative instances.

The learning score evaluates the overall learning perfor-
mance of the reasoning model:

Learning Score =
1

n

n∑
i=1

TPRi +TNRi

2
, (3)

where n is the number (i.e. n = 200) of DTs that comprise
the reasoning model; i is the index of a DT; TPRi and TNRi

are the TPR and the TNR of the ith DT.

III. EXPERIMENT METHODOLOGY – UTILISING
DEFCHARS TO REASON WITH AI MODELS

TABLE III
OVERVIEW OF PREDICTION RESULTS FROM ZHANG et al.’S

image-enhanced mask R-CNN (IE-MRCNN) MODEL [22].

Prediction
Number (Percentage) of Detected Defects

Results Augmented Greyscaled Image-Enhanced

Detected C 311 (84.97%) 298 (81.42%) 308 (84.15%)
Undetected D 55 (15.03%) 68 (18.58%) 58 (15.85%)
Correctly Clas-
sified C′ 296 (80.87%) 287 (78.42%) 295 (80.60%)

Misclassified D′ 15 (4.10%) 11 (3.00%) 13 (3.55%)
Total 366 (100.00%)

The proposed AI-Reasoner is applied to reason with the
outputs of the IE-MRCNN model proposed by Zhang et
al. [22] which can detect the presence and types of wind
turbine blade defects. Their paper evaluates the model’s defect
detection and type classification performance on an augmented
dataset of defects (v1), the augmented dataset greyscaled
(v2), and the augmented dataset after image enhancement (but
not greyscaled) (v3). Their prediction results are shown in
Table III.

A. Dataset

The dataset utilised for the experiments was provided by
Zhang et al. [22]. Each defect is represented as a set of
DefChar features stored in a 366 × 38 matrix E. The ground
truth label (i.e. region and type) of each defect is stored in a

5



set of pairs (X,L) where each pair (Xi, Li) corresponds to
the ith row of matrix E. The predicted label of each defect is
stored in a set of pairs (X̂, L̂).

B. Methodology

TABLE IV
COMBINATIONS OF DEFCHARS.

Combination Color DefChar Shape DefChar Meta DefChar

Color ✓

Shape ✓

Meta ✓

Color-Shape ✓ ✓

All DefChars ✓ ✓ ✓

Step 1: Apply the Mask R-CNN model to the dataset con-
taining 366 defects with ground truth labels (i.e. regions X ,
types L) and obtain predicted labels (i.e. regions X̂ , types L̂)
(described in Section III-A).
Step 2: Extract the DefChar matrix E (366×38) of the images
and rescale the DefChar values using the min-max scaling
method (described in Section II-C).
Step 3: Convert and merge each image’s ground truth labels
(X,L) and predicted labels (X̂, L̂) of the Mask R-CNN model
to four separate reasoning target vectors C, D, C ′ and D′.
Vectors C and D hold the reasoning targets of the correct and
incorrect model outputs of the detection task, and vectors C ′

and D′ hold the reasoning targets of the correct and incorrect
outputs of the classification task (see Section II-B).
Step 4: Apply the AI-Reasoner (see Section II-D) to the
DefChar matrix E and each reasoning target vector T ∈
{C,D,C ′, D′}. Conduct four experiments, each with a differ-
ent reasoning target: 1) reasoning with the outputs that were
correctly detected; 2) reasoning with the outputs that were
not detected; 3) reasoning with the outputs whose types were
correctly classified; and 4) reasoning with the outputs whose
types were not correctly classified.
Step 5: Evaluate the learning performance of the AI-Reasoner
across each experiment using the learning score metric de-
scribed in Section II-E. The learning scores are averaged
across four reasoning targets and presented in Table V that also
contains the results when tuning the DT with different parame-
ter settings (max depth, min split and min leaf) and
using different DefChar combinations (see Table IV).
Step 6: AI-Reasoner interprets the outputs, presents charts,
textual explanations, and suggests mitigation strategies to the
user for improving prediction performance. These strategies
are presented to the end-user in textual format (see Sec-
tion IV-B). The user can follow the proposed mitigation strate-
gies to improve their dataset and the model’s performance.

IV. RESULTS

A. Reasoning Performance when Using DefChars

This section describes the learning performance of the AI-
Reasoner when using different parameters and combinations of

DefChars. The learning scores for each parameter setting and
combination are computed by averaging the learning scores
across the four reasoning targets (see Section III-B step 4)
and are shown in Table V. The highest learning score of
each model is marked in bold text. The AI-Reasoner achieves
a higher learning score if the DT is set with a deep tree
depth, a small number of splits, and a small number of
leaves. The learning score gradually increased from 50.31%
(max depth = 1, min split = 2, and min leaf =
1) to 100% (max depth = infinity, min split =
2, and min leaf = 1) when applying all DefChars. The
AI-Reasoner achieved the highest learning score of 100%
when using all DefChars and the DT setting (max depth
= infinity, min split = 2, and min leaf = 1);
hence, this DefChar combination and DT settings are applied
to the DTs that comprise AI-Reasoner.

B. Interpretation of the AI-Reasoner’s Outputs

The outputs of AI-Reasoner contain 38 charts in total for
a reasoning target. Sample outputs are shown in the project’s
Github2 and in Fig. 2. Each chart illustrates the value range
(i.e. DER) of a DefChar for a defect that was undetected or
misclassified by the IE-MRCNN model. The charts provide
the calculated scores (i.e. DIS, DUF and DOS) indicating
the importance of a DefChar. These scores are shown at the
top of each chart. The reasons for undetected cases include
low hue range, neighbouring defects, and low saturation; and
the reasons for misclassified cases include low hue range
and strong saturation in the background, and narrow hue
differences between the inside and outside of the defected area.
Based on these findings, the AI-Reasoner suggests the follow-
ing mitigation strategies: Greyscaling the defects may reduce
misclassified but increase the undetected cases. Enhancing the
images by normalising the colours of the defects may increase
the detected cases and reduce the misclassified cases.

Zhang et al.’s [22] experiments revealed that using a
greyscaled dataset (v2) reduced the misclassified and increased
the undetected cases compared to when using the augmented
dataset (v1); and when using the image-enhanced dataset (v3),
the detected cases were slightly decreased but the misclassified
cases were reduced (see Table III). These results are mostly
consistent with the mitigation strategies proposed by the AI-
Reasoner.

C. Discussion Around the Suitability of shapley additive ex-
planations (SHAP) for Reasoning with Defect Predictions

This section explains the outputs of a pre-trained CNN
model using the SHAP algorithm [23], an XAI technique for
reasoning with model outputs. SHAP cannot support object-
detection models and hence a simple CNN model was utilised
for the type classification task instead of Zhang et al.’s [22]
IE-MRCNN model.

Fig. 3 shows SHAP’s output when given four defect images.
The important regions are highlighted with blue and red

2https://github.com/edgetrier/AI-Reasoner

6



TABLE V
AVERAGE LEARNING SCORES FOR EACH DEFCHAR COMBINATION ACROSS FOUR REASONING TARGETS (SEE SECTION III-B STEP 4).

Parameters DefChar Combination

Max Depth Min Split Min Leaf Color Shape Meta Color-Shape All DefChars

1 2 1 50.23% 50.00% 50.09% 50.20% 50.31%

5 2 1 68.75% 55.69% 52.24% 69.52% 71.88%

10 2 1 91.67% 75.57% 71.52% 93.14% 94.72%

Infinity 2 1 100.00% 96.60% 96.60% 100.00% 100.00%

Infinity 2 3 79.24% 67.48% 60.33% 81.02% 84.62%

Infinity 2 5 69.16% 56.61% 53.54% 70.57% 75.88%

Infinity 5 1 88.84% 79.45% 74.61% 89.06% 91.28%

Infinity 5 3 79.26% 67.52% 60.37% 80.87% 84.55%

(a) Undetected Cases D. (b) Misclassified Cases D′.

Fig. 2. Top-three Reasoning results of undetected and misclassified cases.

colours based on the analysis of the hidden layers of the
CNN. The main observations when comparing SHAP with
the proposed AI-Reasoner for defect detection, SHAP is not
compatible with masked-based models that provide multi-
channel outputs (i.e. matrices that indicate the presence or
absence of specific objects or regions within an image) or
have complex-structured designs (e.g. YOLO, Faster R-CNN,
and Mask R-CNN). Whereas, the AI-Reasoner is compatible
with masked-based models. SHAP does not provide details
about a defect’s characteristics that lead to its misclassification,
whereas the AI-Reasoner captures that information in the form
of DefChar charts and provides reasoning in the form of
charts and textual explanations with mitigation strategies for
improving the performance of the model.

V. CONCLUSION

This paper proposes DefChars and an AI-Reasoner that
extracts DefChars from images and utilises DTs to reason
with AI outputs. The AI-Reasoner provides the end-user
with charts, textual explanations and recommendations on
improving the dataset pre-processing in order to improve a
model’s performance. Future work includes experiments with
additional datasets, considering other prediction errors (e.g.

false positive, duplicated predictions, etc.), DefChar applica-
tions, and exploring the AI-Reasoner’s capability in saving
experimental time via the mitigation strategies it provides.

ACKNOWLEDGMENT

The authors acknowledge the expert guidance and datasets
provided by Jason Watkins, Chris Gibson, and Andrew Rattray
of Railston & Co Ltd.

REFERENCES

[1] I. Ahmed, G. Jeon, and F. Piccialli, “From artificial intelligence to
explainable artificial intelligence in industry 4.0: A survey on what,
how, and where,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 8, pp. 5031–5042, 2022.

[2] Y. Cheng, D. HongGui, and F. YuXin, “Effects of faster region-based
convolutional neural network on the detection efficiency of rail defects
under machine vision,” in 2020 IEEE 5th Information Technology and
Mechatronics Engineering Conference (ITOEC), 2020, pp. 1377–1380.

[3] J. Lian, W. Jia, M. Zareapoor, Y. Zheng, R. Luo, D. K. Jain, and
N. Kumar, “Deep-learning-based small surface defect detection via an
exaggerated local variation-based generative adversarial network,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 2, pp. 1343–1351,
2020.

[4] H. Dong, K. Song, Y. He, J. Xu, Y. Yan, and Q. Meng, “Pga-net: Pyramid
feature fusion and global context attention network for automated surface
defect detection,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 12, pp. 7448–7458, 2020.

7



Fig. 3. SHAP output of four defect images. Important regions are highlighted with blue and red based on the analysis of the hidden layers of the CNN.

[5] B. Yang, Z. Liu, G. Duan, and J. Tan, “Mask2defect: A prior knowledge-
based data augmentation method for metal surface defect inspection,”
IEEE Transactions on Industrial Informatics, vol. 18, no. 10, pp. 6743–
6755, 2022.

[6] X. Ni, Z. Ma, J. Liu, B. Shi, and H. Liu, “Attention network
for rail surface defect detection via consistency of intersection-
over-union(iou)-guided center-point estimation,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 3, pp. 1694–1705, 2022.

[7] G. Acciani, G. Brunetti, and G. Fornarelli, “Application of neural
networks in optical inspection and classification of solder joints in
surface mount technology,” IEEE Transactions on Industrial Informatics,
vol. 2, no. 3, pp. 200–209, 2006.

[8] C. Phua and L. B. Theng, “Semiconductor wafer surface: Automatic
defect classification with deep cnn,” in 2020 IEEE REGION 10
CONFERENCE (TENCON), 2020, pp. 714–719.

[9] L. Wen, Y. Wang, and X. Li, “A new cycle-consistent adversarial
networks with attention mechanism for surface defect classification with
small samples,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 12, pp. 8988–8998, 2022.

[10] G. Fanci, Z. Chune, and X. Ke, “Image defect inspection
based on human visual characteristics,” IET Conference Proceedings,
pp. 377–380(3), January 2011. [Online]. Available: https://digital-
library.theiet.org/content/conferences/10.1049/cp.2011.1028

[11] C. Laofor and V. Peansupap, “Defect detection and quantification
system to support subjective visual quality inspection via a digital
image processing: A tiling work case study,” Automation in
Construction, vol. 24, pp. 160–174, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0926580512000271

[12] S. Dong, X. Sun, S. Xie, and M. Wang, “Automatic defect
identification technology of digital image of pipeline weld,” Natural
Gas Industry B, vol. 6, no. 4, pp. 399–403, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352854019300749

[13] X. Yan and L. Gao, “A feature extraction and classification
algorithm based on improved sparse auto-encoder for round
steel surface defects,” Mathematical Biosciences and Engineering,
vol. 17, no. 5, pp. 5369–5394, 2020. [Online]. Available:
https://www.aimspress.com/article/doi/10.3934/mbe.2020290

[14] M. Lee, J. Jeon, and H. Lee, “Explainable ai for domain experts: a
post hoc analysis of deep learning for defect classification of tft–lcd
panels,” Journal of Intelligent Manufacturing, 2021, publisher Copy-

right: © 2021, The Author(s), under exclusive licence to Springer
Science+Business Media, LLC, part of Springer Nature.

[15] J. Lorentz, T. Hartmann, A. Moawad, F. Fouquet, and D. Aouada,
“Explaining defect detection with saliency maps,” in International
Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems. Springer, 2021, pp. 506–518.

[16] V. Bento, M. Kohler, P. Diaz, L. Mendoza, and M. A. Pacheco,
“Improving deep learning performance by using explainable artificial
intelligence (xai) approaches,” Discover Artificial Intelligence, vol. 1,
no. 1, pp. 1–11, 2021.

[17] R.-K. Sheu, L.-C. Chen, M. S. Pardeshi, K.-C. Pai, and C.-Y. Chen, “Ai
landing for sheet metal-based drawer box defect detection using deep
learning (aldb-dl),” Processes, vol. 9, no. 5, 2021. [Online]. Available:
https://www.mdpi.com/2227-9717/9/5/768

[18] C. Seiffer, H. Ziekow, U. Schreier, and A. Gerling, “Detection of concept
drift in manufacturing data with shap values to improve error prediction,”
in DATA ANALYTICS 2021: The Tenth International Conference on
Data Analytics, October 3-7, 2021, Barcelona, Spain, 2021, pp. 51–60.

[19] G. Kolappan Geetha and S.-H. Sim, “Fast identification
of concrete cracks using 1d deep learning and ex-
plainable artificial intelligence-based analysis,” Automation in
Construction, vol. 143, p. 104572, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0926580522004423

[20] S. Zhou, H. Liu, K. Cui, and Z. Hao, “Jcs: An explainable surface
defects detection method for steel sheet by joint classification and
segmentation,” IEEE Access, vol. PP, pp. 1–1, 10 2021.

[21] A. S. Barnard, “Explainable prediction of n-v-related defects in
nanodiamond using neural networks and shapley values,” Cell Reports
Physical Science, vol. 3, no. 1, p. 100696, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2666386421004215

[22] J. Zhang, G. Cosma, and J. Watkins, “Image enhanced mask r-cnn:
A deep learning pipeline with new evaluation measures for wind
turbine blade defect detection and classification,” Journal of Imaging,
vol. 7, no. 3, 2021. [Online]. Available: https://www.mdpi.com/2313-
433X/7/3/46

[23] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 4765–4774. [Online]. Available: http://papers.nips.cc/paper/7062-a-
unified-approach-to-interpreting-model-predictions.pdf

8


