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Abstract—Artificial intelligence (AI) reasoning and explainable
AI (XAI) tasks have gained popularity recently, enabling users
to explain the predictions or decision processes of AI models.
This paper introduces forest monkey (FM), a toolkit designed
to reason the outputs of any AI-based defect detection and/or
classification model with data explainability. Implemented as
a Python package, FM takes input in the form of dataset
folder paths (including original images, ground truth labels,
and predicted labels) and provides a set of charts and a text
file to illustrate the reasoning results and suggest possible
improvements. The FM toolkit consists of processes such as
feature extraction from predictions to reasoning targets, feature
extraction from images to defect characteristics, and a decision
tree-based AI-Reasoner. Additionally, this paper investigates the
time performance of the FM toolkit when applied to four AI
models with different datasets. Lastly, a tutorial is provided to
guide users in performing reasoning tasks using the FM toolkit.

Index Terms—Morphological analysis, AI-Reasoner, defect
characteristics, explainable AI.

I. INTRODUCTION

There is an increasing number of artificial intelligence (AI)
applications that recognise and classify objects for industrial
use. The outputs of AI models need to be reasoned and
explained to foster trust in the results among industries and
enable researchers to improve AI algorithms. Explainable AI
(XAI) techniques offer solutions for explaining and reasoning
about AI models, leading to the development of various XAI
toolkits. One such toolkit is XAI360 [1], published by Arya
et al. of the International Business Machines Corporation in
2020, which integrates 14 diverse XAI methods.

In 2023, Ali et al. conducted a survey on a set of XAI
techniques [2] and proposed four XAI taxonomies: scoop-
based, model-based, complexity-based, and methodology-
based, along with their corresponding use cases. Scoop-based
XAI techniques, also known as data explainability meth-
ods [3]–[5], analyse the features extracted from the data to
establish the relationship between the input and output of
the AI model. Model-based XAI techniques, such as model
explainability methods [6]–[8], break down the AI model into
steps and provide explanations for each step. Complexity-
based XAI techniques, such as intrinsic interpretable models
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(e.g. decision trees, bayesian models, linear models, and k-
nearest neighbours), offer explanations with varying levels
of detail based on the model’s complexity. Methodology-
based XAI techniques, referred to as post-hoc explainability
methods [9]–[11], interpret the AI models by analyzing the
model’s backpropagation routes or perturbation signals. Zhang
et al. [12] developed an AI reasoning framework that enables
reasoning capabilities for the outputs of an AI-based detection
and/or classification model. The framework incorporates a
proposed feature extraction method known as defect charac-
teristics (DefChars) and an ensemble decision tree (DT).

In this paper, a toolkit named forest monkey (FM) is
introduced, which implements Zhang et al. ’s [12] framework
using the Python programming language. The primary objec-
tive of the FM toolkit is to provide reasoning functionality for
predictions made by an AI-based detection and/or classifica-
tion model. The FM toolkit takes as input images, ground truth
labels, and predicted labels from the AI model. Subsequently,
the toolkit converts the predicted labels into reasoning target
vectors and transforms the images into a DefChars matrix.
Then, the toolkit generates the AI reasoning results, which in-
clude a set of charts and text-based improvement suggestions.
By examining the reasoning results, users can gain a deeper
understanding of their dataset and make improvements to their
AI model.

In this paper, Section II provides an overview of the
structure of the FM toolkit. Section III explains the imple-
mentation details of the toolkit. Section IV applies the toolkit
to four different AI-based models using diverse datasets and
discusses the performance in terms of execution time. Finally,
Section V presents a tutorial on using the toolkit and provides
an explanation of the generated output.

II. TOOLKIT OVERVIEW

This section provides an overview of the FM toolkit. The
FM toolkit is developed to a Python-based package library.
Figure 1 illustrates the architecture overview of the FM toolkit.
Zhang et al.’s [12] AI-Reasoner serves as the foundation
for the FM toolkit, which is a post-hoc and model-agnostic
framework with data explainability. As a result, the toolkit
only requires input images, ground truth labels and predicted
labels from the AI model. The outputs of the toolkit are a
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Fig. 1. FM toolkit structure overview.

set of charts and text-based improvement suggestions, which
are stored as png and txt formatted files, respectively. The FM
toolkit comprises three stages to perform an AI reasoning task:

• Feature extraction from predictions to reasoning targets:
This stage converts all predictions into a set of reasoning
target vectors based on the AI model’s prediction tasks,
such as detection, classification, or joint detection and
classification. The reasoning targets include labels such
as ”detected,” ”undetected,” ”correctly classified,” and
”misclassified.” Additionally, this stage standardises the
mask-based labels to maintain consistent mask maps and
contours of the defect regions.

• Feature extraction from images to DefChars: In this stage,
all defect images are processed to generate a DefChar
matrix. This is achieved by reading and processing the

hue, saturation, and brightness (HSV) values and mask
maps of the images.

• AI reasoning stage: This stage takes the DefChar matrix
and reasoning target vectors as input to analyse the im-
portance of each DefChar in causing correct or incorrect
predictions by the AI model. It involves several steps,
including plant forest, validate forest, climb forest, anal-
yse forest, summarize forest, and explain forest. Finally,
this stage produces improvement suggestions in the form
of textual output and reasoning result charts for users to
review.

III. IMPLEMENTATION

The FM toolkit is implemented using various packages,
including scikit-learn [13], OpenCV [14], NumPy [15], tqdm
[16], matplotlib [17], shapely, pillow, and polygenerator.
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Fig. 2. Example of input data for FM toolkit, the real values in the highlighted
area are the categories of defects C ∈ {1, 2 . . . }.

• NumPy is used for processing array-based and matrix-
based data.

• OpenCV and pillow are utilised for image data process-
ing, including computing the mask map and contours.

• Shapely and polygenerator are employed for converting
polygon contours into shape-based DefChars.

• scikit-learn incorporates the DT model implementation,
which is utilised for the AI reasoning functionalities.

• matplotlib is used for generating the reasoning result
charts.

A. Data Preparation

An AI model is capable of detecting and/or classifying
defects present in images. For this purpose, a classic dataset
is utilised, which consists of pre-processed images and cor-
responding mask-based ground truth labels (stored in png
format). Once the detection and/or classification tasks are
performed by the AI model, its prediction results need to be
converted into mask-based labels, mirroring the format of the
ground truth labels. Figure 2 provides an example of the input
data structure. The images, ground truth labels and predicted
labels should be stored in three separate folders.

B. Feature Extraction: Predictions to Reasoning Targets

def process_dir(imgs_path,gt_masks_path,
predicted_masks_path,contain_type,only_type):

...
return label_data={"mask map":[...],

"contours":[...],
"reasoning_targets":{...}}

The “Feature extraction from predictions to reasoning tar-
gets” stage involves the extraction of reasoning target vectors
from AI predictions, as well as the mask map and contours
from the ground truth labels. This can be accomplished by
calling the process dir() function; the required inputs for this
function are:

• The path to the images folder.
• The path to the ground truth labels folder.
• The path to the predicted labels folder.

Additionally, two Boolean values, contained type and
only type, are required to specify the extraction of reasoning
target vectors for different tasks, such as a detection task
(contained type = False, only type = False), a classifica-
tion task (contained type = True, only type = True), or a
joint detection and classification task (contained type = True,
only type = True). The output of the function is a dictionary
that contains the mask maps, contours, and reasoning target
vectors for all ground truth defects.

C. Feature Extraction: Images to DefChars

def checkImage(imgs_path):
...

def readLabel(label_dict):
...

def loadData():
...

def featureExtract():
...
return defchar={"defect_1":{...},

"defect_2":{...},...}

The ”Feature extraction from images to DefChars” stage
involves a sequence of four functions: checkImage(), read-
Label(), loadData(), and featureExtract(). The checkImage()
function is responsible for loading the images, while the
readLabel() function loads the labels, which include mask
maps and contours. The loadData() function reads the images
and labels and creates a dictionary with basic information
about the images and labels. The featureExtract() function
is utilised to extract the DefChars and stores them in the
dictionary. These functions are called in order to extract the
DefChars from the images.

D. Pre-processing before AI Reasoning

def convert2List(defchar,feature_list,
label_dict):

...
return id_list=[defect_id,...],

feature_list,
data=[[defchar 1],[defchar 2],...],
targets={"detected":[...],

"undetected":[...],...}
def load_feature_data(data):

...
def load_target_data(targets,target_name):

...

In this section, there are three utility functions (i.e. con-
vert2List(), load feature data(), and load target data()) im-
plemented in the Model.py file. The convert2List() function
returns several array-based lists derived from the feature
extraction stage, including an id list, a feature list, a DefChars
matrix and reasoning target vectors. The load feature data(),
and load target data() functions are utilised to correspond-
ingly load and prepare the feature and reasoning target data



for the AI-Reasoner model. These functions are responsible
for converting the dictionary-based data into array-based data
and loading it into the AI-Reasoner model.

E. Plant Forest

def plant_forest(n_tree=200):
...
return model=[DT_1,DT_2,...]

The plant forest() function is responsible for building and
training multiple DT models using the loaded data. The func-
tion allows for an optional input to specify the desired number
of DT models, which determines the number of decision rules
generated. By invoking the plant forest() function, the DT
models are constructed and trained using the loaded data.

F. Validate Forest

def val_forest(model, feature_list):
...
return good_learned=bool(),

eval_=[learning_score, TPR, TNR],
error_feature=[...]

The val forest() function is responsible for evaluating the
learning capability of the AI-Reasoner. It computes the overall
learning scores, including true positive rate (TPR) and true
negative rate (TNR), by averaging the learning scores of each
trained DT model. Additionally, the function provides a set
of DefChars that these DefChar made the incorrect decision
rules during the reasoning task.

G. Climb Forest

def climb_forest(model,feature_list):
...
return path=[...],node=[...],route=[...]

The climb forest() function is responsible for parsing all
decision nodes and paths from the trained DT models. It stores
the parsed information in three lists: decision paths, routes,
and decision nodes. Additionally, the list of DefChars names
is required for the parsing process; the list can be accessed by
calling FeatureExtraction.feature list.

H. Analyse Forest

def analyse_forest(path,node,error):
...
return analysed_node=[...]

The analyse forest() function takes the parsed decision
nodes and paths as input. It then computes a set of values for
each node, which helps analyse the importance of the node
in reasoning the AI predictions. The function outputs a list
that extends the input node list with the computed values;
this extended list provides additional information and insights
about each node, allowing for a more in-depth analysis of the
reasoning process.

I. Summarise Forest

def summary_forest(analysed_node,feature_list,
route,feature_range):

...
return summary={"defchar 1":{...},...},

route_to_1=[...],
route_to_0=[...]

The summary forest() function computes the importance
for each DefChar to reflect the importance of each DefChar
in influencing the AI predictions. It takes several inputs,
including the analysed nodes list, parsed route, DefChars
list, and value ranges. The function outputs a dictionary that
contains the computed scores for each DefChar to provide a
comprehensive overview of the importance of each DefChar.

J. Explain Forest

def explain_forest(report,feature_list,
save_path,route_plot=None):

...

The explain forest() function is responsible for generating
a set of visualised reasoning result charts and providing
improvement suggestions based on the summarised overviews
from the previous stage. The input includes the generated
dictionary from summary forest() function, DefChars name
list and folder path where the reasoning results will be saved.
Furthermore, a set of important decision routes can be option-
ally plotted by setting route plot as true. The reasoning result
charts are saved in the png format, while the improvement
suggestions are stored in a txt format file.

IV. PERFORMANCE

In this section, the FM toolkit was applied to four different
AI-based defect detection and classification models using
different datasets. The models include a COVID-CT-mask-
net (CCMN) trained on chest CT images dataset [18], a
lightweight fully convolutional network (LFCN) trained on
heatsink defect images dataset [19], a deep residual U-Net++
(ResUNet++) trained on Kvasir-SEG dataset [20], and an
image-enhanced mask R-CNN (IE-MRCNN) trained on wind
turbine blade defect image dataset [21]. Table I presents
the defect distributions of these four datasets, providing an
overview of the reasoning targets and quantities of defects
present in each dataset. Additionally, the running time in each
step of the FM toolkit was recorded to analyse its performance.
This allows for an assessment of the toolkit’s efficiency and
provides insights into potential areas for improvement.

Figure 3a illustrates the execution times when applying the
FM toolkit to different datasets. It shows that the execution
time is positively correlated with the dataset size and image
size, indicating that larger datasets or images require longer
execution times. Figure 3b illustrates the stacked execution
times of each stage for different reasoning targets. Among
the various stages of the FM toolkit, feature extraction from
images to DefChars, climb forest, analyse forest, and explain



TABLE I
INFORMATION OF FOUR DATASETS; WHERE N/A REPRESENTS NO SUCH TASKS.

Dataset Image Size Number of Defects for Each Reasoning Targets (percentage) Total
detected undetected correctly classified misclassified

Chest CT 512×512 244 147 215 29 391
Heatsink Defect 256×256 804 368 774 30 1172
Kvasir-SEG 256×256 104 3 N/A N/A 107
Wind Turbine Blade Defect 1920×1080 311 55 296 15 366

(a) Average execution time of the FM toolkit for different datasets. The
black dots represent the average execution time, indicated on the right axis.
The bars represent the dataset size, indicated on the left axis, and the colours
of the bars correspond to the dataset’s image size, as shown in the legends.

(b) Stacked execution time of each stage in the FM toolkit for different
reasoning targets.

Fig. 3. Execution time of FM toolkit.

forest consumed relatively more time compared to other stages.
In summary, the FM toolkit can complete a reasoning task in
at least 40 seconds. However, the execution time may increase
when dealing with datasets containing large amounts or large-
size images.

V. TUTORIAL

This section describes a tutorial for applying the FM toolkit
to reason the outputs of an AI model. Users can follow the
Python programming code below to run the FM toolkit. The
code can be written in a single Python file or a notebook.
Step 1: Import the FM toolkit.

from AIReasoner import AIOutputExporter
from AIReasoner import FeatureExtraction
from AIReasoner import Model
from AIReasoner import Plot

Step 2: Set the directory paths of original images, ground truth
labels and predicted labels from the AI model; the related data
preparation is described in Section III-A.

images="/path/.../"
gt_labels="/path/.../"
predicted_labels="/path/.../"

Step 3: Feature extraction from prediction to reasoning targets

contain_type=True
type_only=False
label_data=AIOutputExporter.process_bydir(

images,gt_labels,predicted_labels)

Step 4: Feature extraction from images to DefChars

FeatureExtraction.checkImages(images)
FeatureExtraction.readLabel(label_data)
FeatureExtraction.loadData()
defchar=FeatureExtraction.featureExtract()

Step 5: Pre-processing before reasoning task

feature_list = FeatureExtraction.feature_list
id_list,feature,data,target=Model.convert2List
(defchar,feature_list,label_data)
Model.load_feature_data(data)

Step 6: Execute AI reasoning task for all reasoning targets

for t in target.keys():
Model.load_target_data(target[t],t)
model = Model.plant_forest()
tree_validated,scores,errors=Model.

val_forest(model,feature)
path,node,route=Model.climb_forest(model,

feature_name=feature)
analysed_node=Model.analyse_forest(path,

node,error)
report,route_t,route_nt=Model.

summary_forest(analysed_node,route,feature,
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FeatureExtraction.get_FeatureRange())
Plot.explain_forest(report,feature,

"/directory/path/to/save/"+t)

After completing these six steps, the reasoning results
will be saved in the specified directory. Figure 4 illustrates
an example of a reasoning result chart generated by the
FM toolkit. The chart provides an explanation for each el-
ement in the chart, allowing users to understand the sig-
nificance of each DC and its value range in influencing
the AI model’s correct or incorrect predictions in detection
and/or classification tasks. Additionally, users can refer to
the improvement recommendations.txt file for improvement
suggestions on how to enhance their dataset and model based
on the reasoning results.

VI. CONCLUSION

This paper presents the integration of Zhang et al.’s AI-
Reasoner framework into a toolkit called FM, implemented
in Python. The FM toolkit can be easily used by importing
it as a Python package, and a detailed tutorial is provided to
guide users in utilising the toolkit effectively. Furthermore,
the FM toolkit is evaluated by applying it to four different
AI-based models with diverse datasets to assess its execution
performance.

In terms of future work, several enhancements are suggested
for the FM toolkit. Firstly, the implementation of GPU-enabled
parallel computations could be explored to accelerate the
execution speed. Additionally, the development of interac-
tive interfaces would enhance user experience and make the
toolkit more user-friendly. Furthermore, visualisations of the
DefChars could be incorporated to provide users with a better
understanding of the reasoning process.
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