Sports Injuries to the Knee, Hips and Ankle

J. Hunt Udall, M.D.
Banner Pediatric Subspecialists

William Osler

The very first step towards success in any occupation is to become interested in it

Goals

- Help you feel more comfortable with basic orthopedic problems of the knee, hips, and ankles
- Improve diagnostic skills in identifying problems
- Become more interested in the function and treatment of musculoskeletal problems

Goals: When to refer to ortho

This is a workshop

If there are questions, no need to wait till the end, fire away and we can have a discussion

Please raise your hand or even yell out if I don't see you and we can spend some time on questions

THERE ARE NO DUMB QUESTIONS

Overview of lower extremity injuries, aches and pains

- Knees
- Hips
- Ankles
- History and Physical
- Imaging
- Anatomy/Mechanics
- Injuries/pathology
- Treatment

Why Are Sports Injuries more commonly seen in the pediatric population now???

- Increasing frequency of sport participation
- Younger patients in competitive sports
- Greater Intensity/competition
- Parental Pressure
- Better Physician recognition
- Female athletes participation

"The good physician treats the disease; the great physician treats the patient who has the disease."

-William Osler

Laugh with your patients

- Laugh with your patients
- Have fun with the people that come through your door

- Laugh with your patients
- Have fun with the people that come through your door
- Make sure your patients know you sincerely care

- Laugh with your patients
- Have fun with the people that come through your door
- Make sure your patients know you sincerely care
- Leave your office each day feeling good about what you have done

History

- What brings you in today?
 - Chief Complaint
 - Open ended questions
- Was there an injury?
 - Mechanism, swelling, pop, weight bearing
- Pain Location, duration, intensity, frequency
 - Where is the pain,
 - Point with one finger

Seek to Understand, Seek to Comfort

Observation

- Is the patient male or female?
- Is the patient obese/sedentary?
- Pain threshold
- "helicopter parent"
- Patient age
- Anxiety level

Battle of the sexes!

- Boys
 - Osgood Schlatter, osteochondritis dissecans, ACL, traumatic injuries
 - Hip labral tears and Femoroacetabular Impingement
- Girls
 - Patellofemoral pain (3 times more common), patellar instability
 - ACL tears 2-4 times more likely
 - Laxity (loose jointed) related pain

Age of Patient

Younger patients = less serious problem (usually)

- Less stress through knee
- Healthier tissue
- Growing pains"
- "Alignment issues"
 - <8 years wait, watch, see,
- Reassure

Age of Patient

 Older Patients – increase muscular force/weight lead to more damage

- Injured Tissue
 - not as regenerative

Imaging

When to get x-rays

- Any injuries, especially with swelling
- Long term pain
- Patellar Dislocations
- Patellofemoral pain
- Swelling
- Groin pain
- Ankle injuries/pain

When to get x-rays

A "negative" x-ray often tells you much more then read

When to get x-rays (in hip)

- Any injuries, especially with swelling
- Long term pain
- "groin pain"

Chest X-ray = Flight from NYC to LA (or 4-10 days of ambient radiation exposure in daily living)

- X-ray of the extremity (hand, foot) = 3 hours ambient exposure
- X-ray of knee = less then 1 day ambient exposure

BONE	Procedure	Approximate effective radiation dose	Comparable to natural background radiation for:		
	Spine X-ray	1.5 mSv	6 months		
	Extremity (hand, foot, etc.) X-ray	0.001 mSv	3 hours		
CENTRAL NERVOUS SYSTEM	Procedure	Approximate effective radiation dose	Comparable to natural background radiation for:		
	Computed Tomography (CT)–Head	2 mSv	8 months		
	Computed Tomography (CT)–Head, repeated with and without contrast material	4 mSv	16 months		
	Computed Tomography (CT)–Spine	6 mSv	2 years		
CHEST	Procedure	Approximate effective radiation dose	Comparable to natural background radiation for:		
	Computed Tomography (CT)–Chest	7 mSv	2 years		
	Computed Tomography (CT)–Lung Cancer Screening	1.5 mSv	6 months		
	Chest X-ray	0.1 mSv	10 days		
DENTAL	Procedure	Approximate effective radiation dose	Comparable to natural background radiation for:		
	Dental X-ray	0.005 mSv	1 day		

ABDOMINAL REGION	Procedure	Approximate effective radiation dose	Comparable to natural background radiation for:
	Computed Tomography (CT)–Abdomen and Pelvis	10 mSv	3 years
	Computed Tomography (CT)–Abdomen and Pelvis, repeated with and without contrast material	20 mSv	7 years
	Computed Tomography (CT)–Colonography	6 mSv	2 years
	Intravenous Pyelogram (IVP)	3 mSv	1 year
	Barium Enema (Lower Gl X-ray)	8 mSv	3 years
	Upper GI Study with Barium	6 mSv	2 years

MRI

When to get an MRI

- Major swelling with injury to rule out fractures/ligament tears
- Anytime when athletic timeline more of an issue
- Persistent pain that hasn't responded to conservative measures

CT Scan

- Complex intraarticular fractures
- Rotational profile
- Pelvic Fractures

CT Scan

- Complex intraarticular fractures
- Rotational profile
- Pelvic Fractures

Knee Anatomy/Mechanics

- Function of the Bones
 - Hinge joint
 - Less bony stability
 - Rely on ligaments/menisci

Relative Bony stability

Relative Number of Visits to office

Knee Anatomy/Mechanics

- Function of the ligaments
 - Knee few bony restraints
 - IMPORTANT stabilizers
 - ACL, MCL, LCL, PCL
 - There are minor ligament stabilizers as well

Knee Mechanics

Meniscus Anatomy/Mechanics

- Function of the Menisci
 - Distribute pressure evenly
 - Stabilize the knee
 - Arthritis prevention

Knee Anatomy/Mechanics

Surface area

Head on floor similar to knee without meniscus

Knee Anatomy/Mechanics

Surface area

Head with pillow similar to knee with meniscus

Menisci help distribute pressure evenly

Meniscus Anatomy

No meniscus = Increase Arthritis

Alignment

Force= Pressure/Area

Alignment

Alignment

Alignment Changes With Age

Balance is key to happy knee

Rotational Alignment

Rotational Alignment

Video

Rotational Alignment (measure prone)

- Infants
 - 40° internal rotation
 - 70° external rotation
- Age 10
 - 50° internal rotation
 - 45° external rotation
 - Mild, moderate, and severe increases in internal rotation are demonstrated at 70°, 80°, and 90°

Rotational Alignment (measure prone)

- Thigh Foot Axis
 - Infants 5° Internal Rotation
 - 8-year olds 10° of Ext Rot

Patella Anatomy/Mechanics

Largest Sesamoid bone

■ Acts as fulcrum for the quads to increase contractile

force

■ Protects the knee

Poor Tracking-common

Patella Anatomy/Mechanics

Knee anatomy and patellofemoral pain –
 YouTube (3 minutes)

Male Vs Female Pelvis

Patella Mechanics/Anatomy

Mechanics and anatomy determine pathology

Rotation

Coronal alignment

Muscular imbalance leads to issues

Patella Exam

- Exam and observation
 - Look for internal rotation
 - Evaluate Single leg squat
 - Check Rotational profile

Patella Mechanics

- Exam and observation
- Kissing Patella
 - Patella facing each other
 - Internal Rotation of femur
 - Alignment leads to pain

Patella Mechanics

- Single leg squat Exam
- Look for patella turning in
- Look at weakness with squat

Patella Mechanics

- Single leg squat Exam
- Look for patella turning in

Physical Exam Cont.

Does the patient have loose joints

Any patients with a atraumatic history....

Any patients with a atraumatic history....

Check joint laxity

Beighton Score

Beighton Hypermobility Score

The Beighton score is a simple system to quantify joint laxity and hypermobility.

It uses a simple 9 point system, where the higher the score the higher the laxity.

The threshold for joint laxity in a young adult is ranges from 4-6. Thus a score above 6 indicates hypermobility, but not necessarily true BHJS (see below)

Joint	Finding	Points
left little (fifth) finger	passive dorsiflexion beyond 90°	1
	passive dorsiflexion <= 90°	0
right little (fifth) finger	passive dorsiflexion beyond 90°	1
	passive dorsiflexion <= 90°	0
left thumb	passive dorsiflexion to the flexor aspect	1
	of the forearm	
	cannot passively dorsiflex thumb to	0
	flexor aspect of the forearm	
right thumb	passive dorsiflexion to the flexor aspect	1
	of the forearm	
	cannot passively dorsiflex thumb to	0
	flexor aspect of the forearm	
left elbow	hyperextends beyonds 10°	1
	extends <= 10	0
right elbow	hyperextends beyonds 10°	1
	extends <= 10	0
left knee	hyperextends beyonds 10°	1
	extends <= 10	0
right knee	hyperextends beyonds 10°	1
	extends <= 10	0
forward flexion of trunk	palms and hands can rest flat on the	1
with knees full extended	floor	
	palms and hands cannot rest flat on the	0
	floor	

>10 degrees hyperextension at elbow

Mother's elbow

■ 90 or > at Metacarp-phal joint

Thumb to forearm

■ 10 deg or more knee hyperextension at knee

Beighton Testing

Palms to ground

Beighton Testing

- Score of 4-6 is threshold for laxity
- Greater then 6 = hypermobility

Why do we care about loose joints?

- Can be a very disabling problem that can last into adulthood
- Help patients to understand where their pain is coming from
- Can affect almost any joint and lead to painful hypermobility
- Helps guide treatment options

What can we do for our loose jointed patients???

- Physical Therapy to increase stability about joints
- Encourage not to stretch or show friends "Cool Tricks"
- Bracing
- Help choose appropriate activities

Physical exam cont.

- Swelling
 - fracture
 - ligament
 - meniscus tear
 - ACL tear
 - Rheumatological problems

Physical Exam

Location of pain

Lateral condyle- ITB

Sinding Larsen Johansson

Lateral joint linediscoid meniscus

Tib-fib joint instability

Patellofemoral pain

Medial Condyle-plica Patellofemoral pain

Joint Line-meniscus

Patellar tendinitis

Tuburcle-Osgood Sclatter

With knee pain, remember to examine the hip!

Avoiding the Pitfalls: Referred Knee Pain in Children

- Hip pain can often be referred to the knee in children
- Sensory distribution of obturator nerve to medial knee
- ALWAYS Examine hip in any child with knee pain
- Misdiagnosis common: LCPD [Perthes], SCFE [slipped capital femoral epiphysis]

Anterior Knee Pain: "The Headache of the Knee"

- Chronic knee pain in any part of extensor mechanism of knee
- Spectrum includes patellofemoral pain syndrome, Osgood Schlatter disease, Sinding-Larsen-Johansson syndrome, plica
- Peri-patellar, insidious pain
 - no known trauma or injury
- Occasional complaints of knee locking, acute swelling, or giving way/buckling

Patellofemoral Pain

 Definition – Pain originating from maltracking or anatomical problems (cartilage damage) to the patella

Causes Patellofemoral Knee Pain

- •Femoral anteversion
- •Genu valgum
- •Patella alta
- •Shallow patellar groove
- •Ligament laxity
- Weak hip& knee muscles

INSERT EXAM ON KIDS

The Suspects

 Very common—most common in adolescent females

- Very common—most common in adolescent females
- Dull anterior poorly localized knee pain: often worse with stairs, squatting, jumping

- Very common—most common in adolescent females
- Dull anterior poorly localized knee pain: often worse with stairs, squatting, jumping
- Poor Patellar tracking
 - Contributing factors:
 biomechanical (larger Q angle, weaker quadriceps/VMO/hip abductors, tight hamstrings/ITB, rotational problems)

- Very common—most common in adolescent females
- Dull anterior poorly localized knee pain: often worse with stairs, squatting, jumping
- Poor Patellar tracking
 - Contributing factors:
 biomechanical (larger Q angle,
 weaker quadriceps/VMO/hip
 abductors, tight
 hamstrings/ITB)

Pain often medial to patella

Plica

Patellofemoral Maltracking

Anterior Knee Pain: Management

- Manage conservatively with NSAIDS, physical therapy, isometic exercises, activity modification, bracing, orthotics
- Often frustrating problem to treat in the adolescent: activity modification hard for athlete
- Physical therapy: Emphasis of strengthening VMO, hip abductors, improving patella tracking, correcting biomechanical faults, etc.
- Generally responds well to conserv.

Patellofemoral Pain

When to Operate?

Patellofemoral Pain

- When to Operate?
 - At least 6 months failed nonoperative treatment
 - Anatomical problems that can be addressed

- Educating parents key
 - Discussion about causes
 - Discussion about success rate

Lateral releases- less popular now

Lateral lengthening

Tibia tubercle transfers

Tibia tubercle transfers

Tibia tubercle transfers

Derotational osteotomies

Derotational osteotomies

Coronal alignment procedures

Patella Dislocation (Instability)

- Anatomical (non-traumatic) Factors
 - **■** Femoral anteversion (internal rotation)
 - Genu valgum (knock knee)
 - Patella alta (high riding patella)
 - Ligament laxity
 - Shallow Trochlear (patellar) groove

Patella Dislocation (Instability)

- Traumatic Dislocation
 - Tearing Medial Patellofemoral Ligament
 - Anatomical risk factors

Patella Dislocation (Instability)

- Up to 50% redislocation rate
- Cartilage Damage
 - Worse with tight jointed patients
 - Loose= elastic system

Patellar Instability Testing

Apprehension Test

J-Sign- extend while sitting

Overall joint laxity

Single leg squat

Femoral Anteversion

J Sign – trochlea dysplasia

X-Rays Cross Over Sign

Knee Dislocations

- Tearing of Medial ligaments
- Convex patellar groove
- Increased Q angle
 - TTTG

Convexity of Patellar Groove

Trochlea dysplasia

Convex trochlea groove (groove that patella sits in)

Convexity
of
Patellar
Groove

Imaging for first dislocation

- Xrays for all patients (AP, lateral, sunrise)
 - Good lateral most important view

Imaging for first dislocation

- MRI for massive swelling
 - Often have a cartilage lesion

MPFL - ligament

Imaging for first dislocation

- MRI for massive swelling
 - Often have a cartilage lesion

Patellar Dislocations Treatment

- First time dislocators Non-operative
 - If there is bony fragment in joint-surgery
 - Physical Therapy, immobilizer 1-2 weeks, brace
 - Operative for loose fragments or poor anatomy

■ 2+ dislocations — Discuss surgery

How debilitating is the problem?

Treatment

 Medial patellofemoral ligament reconstruction

■ Reconstruct medial restraint

Surgery for trochlea dysplasia

Surgery for trochlea dysplasia

Osgood Schlatter

Apophysitis of the tibial tuburcle

Problem of the active child

Usually a problem of 10-16 year olds

Pain is self limiting

Bracing sometimes helps, sometimes doesn't

Patient with this xray doesn't need to be referred

Treatment –Reassurance, education, Brace, activity modification

Osgood Schlatter

- It's Not Osgood Schlatter if the growth plates are closed
- Insertional patellar tendinitis

Osgood Schlatter's Disease of the Knee

Osgood schlatter

- This won't heal
- Needs surgery

The bigger the bump, the more likely a loose fragment is present

Osgood Treatment

- Activity Modification
- Knee bracing
- Education of parents
- Physical therapy (stretching and strengthening)
 - Usually only moderately beneficial

Tibial Tuburcle Fracture

Sinding-Larsen-Johansson Syndrome

- The "Osgood Schlatter" of the patella
- Traction apophysis of the distal pole of patella: repetitive microtrauma
- Self-limiting: Resolves in approx 6-12 months, responds to activity modification, NSAIDS, occasional PT

Ossification/fragmentation seen at distal pole of patella

Traumatic Knee injuries

Can you name this players injury?

Can you name this Players Injury

Can you name this players injury?

ACL Injuries

ACL Mechanics

ACL Mechanism of Injury

- 70% Noncontact
- 30% Contact (player is hit by opposing player)
- Hyperextension or valgus load to knee

Function of ACL

- Prevent anterior translation
- Prevent Rotation of the knee
- Necessary for cutting sports
- Protect menisci
- Efficient transfer of force

Knee Anatomy/Mechanics

Sedona Vortex don't heal ACLs

- Ligaments
 - Extra-articular heal well
 - MCL/LCL
 - Intra-articular heal poorly
 - ACL
 - PCL better healing then ACL
 - Synovial fluid

ACL vs MCL healing

ACL Injuries in Female Adolescents

- Female athletes 2-4 times more susceptible to ACL injuries
- Theories...anatomic differences: smaller intercondylar notch, smaller size of ACL, landing mechanics, larger Q-angle, ligamentous laxity, imbalance between hamstring and quad strength, hormonal differences (estrogen/menstrual cycle) improper training/conditioning program

Non Sex-Dependent Risk Factors

- Artificial surfaces
- Increase friction at shoe-playing surface interface
 - More cleats
 - Bigger cleats
 - Drier climates
- Sport
 - Soccer, football, basketball
 - Hockey rare

How do you know when the ACL is torn??

- Very Painful
- Often a pop is heard
- Immediate swelling common
- Pop + Swelling- 70%

Concommitant Injuries

- Meniscus 50%
- Collaterals

Testing

Lachman Exam

- Need a relaxed patient!
- Compare sides

Do on every patient (regardless of suspicion) to

increase skills

Lachman Exam

- 20 deg. Flexion of knee, stabilize femur with one hand, use other to anteriorly translate tibia
- Test PCL first with posterior drawer
- Multiple times bilaterally to get sense of stability
- Sensitivity 85% specificity 94%

Lachman Test

Tough Exam

When do we operate on these?

ALWAYS

ACL Reconstruction

Does surgery prevent Arthritis??

Pediatric ACL Reconstruction

- In open growth plates, always soft tissue graft
- Always use autologous tissue
 - 10-15% re-tear rate with autologous tissue
 - 30% with allograft tissue

Graft Sources

- Hamstring
- Patellar Tendon
- Quadriceps
- Iliotibial Band

Pediatric ACL Reconstruction

- Closed growth plates can get patellar tendon grafts
 - Better in soccer players
 - Better in loose jointed girls
 - Large Football players

Retear rates

- 17% Hamstring reconstruction
 - Only option in skeletally immature
- 8% BTB recon
- 33% -allograft

How do patients do post surgery?

- 9-12 month minimum to get back to sports
- 5,770 patient meta-analysis Arden, et al (2011 Br J sports med)
- 82% returned to sports
- 63% returned to preinjury sport
- 44% returned to competitive sport

How about the patient under 10 with ACL Injures?

- Fix or watch?
- Ortho Mantra Heal With Steel!

ACL Tears in Skeletally Immature

- Recommendations: FIX!
- Surgical limitations
 - Timing
 - Modified procedure

14 year old male 8 years post ACL reconstruction

Can we prevent ACL tears??

ACL prevention

 62% reduction rate of ACL injuries with prevention program employed

(Sadoghi JBJS 2012)

Focus on "knee over foot landing"

ACL prevention

- MCL most common ligament injury in knee
- Grade 1-3
 - Grade 1-2 Nonoperative
 - Grade 1 Back to sports 10.6 days
 - Grade 2 Back to sports 19.4
 - Grade 3 possible surgery
- Bracing may help

- Lateral collateral ligament Usually heal with nonoperative treatment
- TX: Brace, PT, activity restriction (6 weeks)
- In chronic setting surgery may be needed

LCL ligament injuries

Post LCL reconstruction

Always check alignment

Collateral Ligament Tests

- Varus and Valgus loads at 20 degrees
- It's not a collateral tearwithout matching history

Osteochondritis Dissecans (OCD)

Osteochondritis Dissecans of the Knee

- Fragmentation of cartilage and avascular necrosis of subchondral bone **Unknown Etiology**: repetitive microtrauma, ischemia, genetic component
- Medial femoral condyle, occasionally lateral condyle or patella, bilateral in approx 30%
- Symptoms: pain, locking, recurrent mild effusion

OCD- Whose at risk?

OCD – Who's at risk

The very active tween or teen

Tunnel X-Rays Critical

Large OFD Medial Femoral Conduction

Osteochondritis Dissecans: Management

- ■Best treatment???
 - REST, REST, REST!!!
 - unloader brace, activity modification, surgery

The Meniscus

Meniscus Function

- Stability & shock absorption
- If ACL torn... meniscus takes more stress
- Torn/compromised meniscus ---- Future Arthritis

Meniscus function

Meniscal tears How do they present?

- Adults
 - often no known injury (degenerative)
- Pediatric population
 - Usually a traumatic injury (not always)
 - Lateral sided pain be ware of discoid meniscus

What age do Meniscal tears occur?

- Usually teenage patients
- If under 10 and point tenderness at lateral joint line, think discoid meniscus

Location of pain

- Joint Line pain
- Posterior pain
- If pain at the medial joint line, often patellofemoral pain

Location of pain

Lateral condyle- ITB

Sinding Larsen Johansson

Lateral joint linediscoid meniscus

Tib-fib joint instability

Patellofemoral pain

Medial Condyle-plica Patellofemoral pain

Joint Line-meniscus

Patellar tendinitis

Tuburcle-Osgood Sclatter

Meniscal Testing

- McMurray
- Thessaly
- Duck walkin

Meniscal Testing

McMurray an Thessaly – Both have sensitivity and specificity of mid 60s

McMurray Testing

Thessaly Test

Meniscal Treatment?

- Usually surgery
- Repair preferable
- Recovery 6 month

Lateral sided Knee Pain

- Discoid Lateral Meniscus
- Iliotibial band syndrome
- Proximal tibia-fibula joint instability
- Torn lateral meniscus
- LCL tear/laxity

Discoid Meniscus

- Congenitally enlarged meniscus
 - (almost always lateral)

Discoid Meniscus

- Age at Presentation
 - Varies
 - •If <10-12 years w/meniscal tear, likely discoid
- •Symptoms
 - Lateral pain, locking, swelling

Discoid Meniscus Treatment

- Non-operative if incidental finding and symptom free
- If symptomatic, operative intervention

Iliotibial Band Friction Syndrome

Noble Test

Noble Test

Ober Test

Proximal Tibia-Fibula Joint Pain

Lateral sided pain just distal to joint line at tib-

fib joint

Frustrated patients

- Negative studies
- Failed PT

Proximal Tibia-Fibula Joint Pain

Test- grab fibula head and shift ant-post to illicit

pain

Injection can help dx

- Imaging negative
- Surgery if pain bad

Hip Problems

Hip Problems

- Slipped Capital Femoral Epiphysis
- Transient Synovitis
- Septic Arthritis
- Femoroacetabular Impingement
- Snapping Hip
- Avulsion Injuries

Slipped Capital Femoral Epiphysis

- 2-3 times more common in boys then girls
- Often overweight patients
- 80% occur during adolescent growth spurt
 - $\sim 12 \text{ y/o girls}$
 - \sim 13.5 y/o boys
- 25% bilateral (some think 60-80%)

Slipped Capital Femoral Epiphysis

- If patient doesn't look like....
- Look for other problems
 - Renal osteodystrophy
 - Hypothyroidism
 - Panhypopituitarism
 - Hypogonal syndrome

Slipped Capital Femoral Epiphysis

- Up to 4 months from first physician visit to diagnosis
- Presentation
 - Hip, Groin, Thigh, or knee pain for long time
 - Abductor Lurch
 - Foot externally rotated
 - Poor internal rotation with hip flexed

Avoiding the Pitfalls: Referred Knee Pain in Children

- Hip pain can often be referred to the knee in children
- Sensory distribution of obturator nerve to medial knee
- ALWAYS Examine hip in any child with knee pain
- Misdiagnosis common: LCPD [Perthes], SCFE [slipped capital femoral epiphysis]

10 year old female presents to ER 8/1/09 with months of hip pain secondary to a groin pull

10 year old female presents to ER 9 days later with severe pain now

Slipped Capital Femoral Epiphysis Treatment

Heal with Steel...

Legg Calves Perthes

Legg Calves Perthes

- Idiopathic avascuar necrosis of the femoral head
- 10% Bilateral
- Most common between 4-8 years of age
 - Can be seen in kids less then 2
- Diagnosis can be difficult/subtle
 - Can be mistaken for synovitis
 - "I notice a slight limp at the end of the day, but he doesn't complain of pain"

Legg Calves Perthes

- Exam
 - Slight assymetry with loss of abduction/internal rotation
- Diagnosis Xrays (occasioanally MRI)
 - Sometimes can be missed initially

Legg Calves Perthes Treatment

- Casting
- Rest
- NSAIDs
- Surgery

Transient Synovitis

- Most common cause of pain in school age kids
- May have elevated labs, fever, inability to walk
- More common in boys then girls (2-4xs)
- May have viral etiology or trauma (30% & 5%)
- Treatment NSAIDs
- Lasts7-10 days up to 17% recur

Septic Arthritis

Septic Arthritis

- Bacterial Infection
- Patient looks sick, getting worse
- Nonweightbearing
- Pain with even log role of hip

Septic Arthritis Diagnosis

- Kocher Criterium- Non-weight bearing,
 ESR>40, fever, WBC>12,000
 - 4/4 of the above (+) 99% chance septic
 - 3/4 above positivie 93% chance
 - 2/4 above positive 40% Chance
 - 1/4 above positive 3% chance

Septic Arthritis

- Suspicious???
- Bypass the ortho doc and send to the ER

Femoroacetabular Impingement

- New "Hot Topic" in Orthopaedics
- Impingement is the next frontier for sports medicine
- High profile athletes with FAI have raised awareness
- Process can start early in adolesc. and progress with age (McCarthy

Femoroacetabular Impingement What is it?

Femoroacetabular Impingement

- Ball and Socket configuration
- When the ball or socket has an abnormal shape, bone on bone/cartilage contact occurs leading to damage of the labrum or cartilage

Femoral Acetabular Impingement

Labral Function

Role of the labrum

- 1. Increases joint stability, improves hydrostatic fluid pressure in the intraarticular space
- 2. Increased joint stability, deepens socket
- 3. Load transmission
 Isolated labral tears
 are uncommon

Labral Tear Presentation

- Pain is classically in the anterior groin
- C"-sign
- Less commonly in posterior hip

How do we diagnose?

- Clinical exam is very sensitive
 - "Impingement test"

How do we diagnose?

- Clinical exam is very sensitive and specific
 - Impingement test
 - Flexion Adduction Internal Rotation

How do we diagnose?

Clinical exam is very sensitive and specific

MRI Sensitivity for labral tears

- Pelvis MRI with Large Field of View 8% ssensitivity
- Hip MRI noncontrast 25%
- MRI Hip Arthrogram 92%
 - Toomayan et al, AJR, 2006

Treatment

- Therapy will be less effective
- Surgery is the best option

Surgery

Surgery

Surgery

Restored femoral neck

Restored femoral neck

16 year Old Boston Hockey PLayer

Femoral Head

Labral Debridement

Pelvic Avulsion Fractures

- Most common in boys between age 12-14 years
- Mechanism: forceful contraction (sprinting, kicking, jumping)
 - Often an eccentric load (landing)

Pelvic Avulsion Fractures

- Localized tenderness on physical exam
- Pain with stretch of affected muscle
- Antalgic Gait, Limping,Pain worse with activity
- Radiographs are diagnostic

Snapping Hip

Snapping Hip

Internal (iliopsoas)

External (iliotibial band)

Palpate

Trochanteric Bursitis and Iliopsoas Band tendinitis

Even if it doesn't snap, these areas can be pain generators

Trochanteric Bursitis and Iliopsoas tendinitis Treatment

Even if it doesn't snap, these areas can be pain generators

Trochanteric Bursitis and Iliotibial Band tendinitis

OBER TESTING- Iliotibial Band Problem

Iliopsoas Tendinitis Testing Thomas Test (Tight Iliopsoas)

Trochanteric Bursitis and Iliopsoas tendinitis Treatment

- Physical Therapy
- Injections
- Surgical lengthening of respective tendon

Foot and Ankle Problems

Location of Pain- Lateral Ankle

Location of Pain Ankle/Foot

Common Ankle Injuries in Children

Common in young athletes

 Sprains are difficult to distinguish from growth plate injuries in children

- Primary ligamentous support for ankle includes 3-part lateral ligament complex and 5-part medial (deltoid) ligament complex
- Lateral ankle sprains by far more common

Physical Examination of the Ankle

- May be very limited exam due to swelling and pain
- Inspect, palpate ligaments sequentially
- Push on growth plate to see if most tender over bone

Anterior Drawer & Talar Tilt Tests of the Ankle

Anterior Drawer Test: Assesses stability of anterior talofibular ligament [Often very difficult to assess secondary to significant swelling and pain]

Differential Diagnosis: Ankle Sprain

■ Proximal fibula fracture

Syndesmotic disruption (High Ankle Sprain)

Physeal (Growth plate) fracture

Ankle Rehabilitation

- R-Rest
- I-Ice
- C-Compression
- **■** E-Elevation

- Splints, Casts, Crutches: Depend on severity of injury
- Early weight bearing as tolerated, AVOID prolonged immob.
- Home or formal PT

Ankle Rehabilitation: Phase III

- Functional conditioning with proprioception, agility, and endurance training
- Gradual return to play
- Maintenance exercises and protection

High Ankle Sprain

- Rotational injury
- Pain more proximal
- Recovery twice as long
- **■** Treatment
 - Cam Boot
 - Therapy

Heel Pain: Sever's Disease

- Traction Apophysitis of the calcaneous: Activity related/Overuse
- Most common cause of heel pain in adolescents
- Most common in active males 10-13 years of age
- Heel tenderness at calcaneal apophysis

Severe's Treatment

- Reassurance
- Heel cups
- Stretching
- Short term immobilization if acutely symptomatic (rare)
- Self-limited disorder: will not have pain after physeal closure

Os Trigonum

- Accessory bone in the posterior ankle
- Non-tendon posteriorPain

Location of Pain- Lateral Ankle

Os Trigonum Treatment

- Observation
- Casting
- Injection
- Occasional surgery

Pes Planus "Flat Feet"

Arches Change over time

Pes Planus "Flat Feet"

- Orthotics??
 - Only in the painful child

"The Intoer"

The Intoer

- Most important part of treatment???
 - Acknowledge there is intoeing
 - "We can cut the bone and rotate it and put hardware in, or we can watch and will probably fully resolve"

The Intoer

- Evaluate patient with knees pointing forward
- Most of the problem comes from tibial torsion

Rotational Alignment

Bow legged

Questions?

