Advanced Math

Using Multiple Formulas

1. How many pounds of pure chlorine are needed to apply a $12.5 \mathrm{mg} / \mathrm{I}$ dosage to a tank that is $\mathbf{1 0} \mathrm{ft}$ tall, $\mathbf{3 0} \mathbf{f t}$ wide, and $\mathbf{2 5} \mathbf{f t}$ long?

Step 1 - Starting Material

Dosage $=12.5 \mathrm{mg} / \mathrm{I} \quad$ (information in question)
Height $=\mathbf{1 0} \mathbf{f t}$ (information in question)
Width $=\mathbf{3 0} \mathbf{f t}$ (information in question)
Length $=\mathbf{2 5} \mathbf{f t}$ (information in question)
Lbs. pure chlorine $=$? (what you are looking for)
Step 2A - Write down the formula.
(MG) $(\mathrm{mg} / \mathrm{I})(8.34)=\mathrm{lbs} . \quad$ (this formula will give the final answer)
Step 3A - Fill numbers into the formula.
(MG) ($12.5 \mathrm{mg} / \mathrm{I}$) (8.34) = lbs.
(There is another piece of information missing, so a second formula will need to be used)
Step 2 - Write down the formula.
Volume $=$ Length x Width x Height
(MG stands for Million Gallons, a volume measurement)
Step 3 - Fill numbers into the formula.
Volume $=\mathbf{2 5 f t} \mathbf{3 0} \mathbf{f t} \times 10 \mathrm{ft}$
Step 4 - Calculate
$25 \times 30 \times 10=7,500 \mathrm{cu}$. ft. (Volume needs to be converted to gallons)
7,500 cu. ft. x $7.48=56,100$ gallons
$\rightarrow \mathrm{MG}=0.0561 \quad$ (Use this value to complete the first formula)
Step 3B - Fill numbers into the formula.
$(0.0561)(12.5 \mathrm{mg} / \mathrm{I})(8.34)=$ lbs.

Step 4 - Calculate

$0.0561 \times 12.5 \times 8.34=5.8 \mathrm{mg} /$ Dosage
2. Calculate the dosage given to a 750,000-gallon system after adding $\mathbf{2 0}$ pounds of 85% calcium hypochlorite?

Step 1 - Starting Material

750,000 gal (information in question)
$\rightarrow \mathrm{MG}=\mathbf{0 . 7 5}$ (move decimal to the left 6 places)
Compound Chlorine = $\mathbf{2 0}$ lbs. (information in question)
85\% chlorine
(information in question)
\rightarrow Chlorine strength $=\mathbf{0 . 8 5}$ (move decimal to the left $\mathbf{2}$ places)
Dosage $=$? (what you are looking for)
Step 2A - Write down the formula.
Dosage in $\mathrm{mg} / \mathrm{I}=$ Lbs. chemical (Lbs. chemical is PURE chlorine)
MGD x 8.34, (This formula will give the final answer)
Step 3A - Fill numbers into the formula.
Dosage in $\mathrm{mg} / \mathrm{I}=$ Lbs. chemical (There is another piece of information missing)

0.75×8.34

Step 2 - Write down the formula.
Lbs. of compound = Lbs. pure chlorine divided by \% chlorine
Step 3 - Fill numbers into the formula.
20 lbs. = Lbs. pure chlorine $\div 0.85$ Unknown value must be by itself.
Lbs. pure chlorine $=20 \mathrm{lbs} . \times 0.85$

Step 4 - Calculate

Step 3B - Fill numbers into the formula.
Dosage in $\mathrm{mg} / \mathrm{I}=$ \qquad 17 lbs.
0.75×8.34

Step 4 - Calculate

Dosage in $\mathrm{mg} / \mathrm{I}=\ldots \quad 17 \mathrm{lbs}$.

$$
6.255 \text { (You must do what is on bottom first.) }
$$

$\mathbf{1 7} \div 6.255=\underline{2.7} \mathrm{mg} / \mathrm{l}$ dosage
3. Calculate the demand of a 4 ft diameter by 16 ft tall round tank that was disinfected with $\mathbf{5}$ pounds of $\mathbf{8 \%}$ bleach and has a sustained residual of $\mathbf{2 . 6}$ mg / l ?

Step 1 - Starting Material

Diameter $=\mathbf{4} \mathrm{ft}$ (information in question)
Radius $=\mathbf{2 ~ f t}$ (radius is half the diameter)
Height $=16 \mathrm{ft}$ (information in question)
Compound Chlorine $=\mathbf{5 l b s}$. (information in question)
8\% chlorine (information in question)
\rightarrow Chlorine strength $=0.08$ (move decimal to the left 2 places)
Residual $\mathbf{=} \mathbf{2 . 6} \mathbf{~ m g} / \mathrm{I} \quad$ (information in question)
Demand = ? (what you are looking for)
Step 2A - Write down the formula.
Dosage $=$ Demand + Residual \quad (This formula will give the final answer)
Step 3A - Fill numbers into the formula.
Dosage =_Demand + $\mathbf{2 . 6} \mathbf{~ m g / I \quad ~ (T h e r e ~ i s ~ a n o t h e r ~ p i e c e ~ o f ~ i n f o r m a t i o n ~ m i s s i n g) ~}$
Step 2 - Write down the formula.
Dosage in $\mathrm{mg} / \mathrm{I}=$ Lbs. chemical (Lbs. chemical is PURE chlorine)
MGD x 8.34,
Step 3A - Fill numbers into the formula.
Dosage in mg/l = Lbs. chemical
MGD x 8.34 (There are two pieces of information missing)
Step 2A - Write down the formula.
Lbs. compound = Lbs. pure chlorine divided by \% chlorine
Step 3A - Fill numbers into the formula.
5 lbs. = Lbs. pure chlorine $\div 0.08$ Unknown value must be by itself.
Lbs. pure chlorine $=5 \mathrm{lbs}$ x 0.08

Step 4A - Calculate
$5 \times 0.08=0.4 \mathrm{lbs}$. pure chlorine (Use this value to complete the second formula)

Step 2B - Write down the formula.
Volume $=\pi r^{2} \mathbf{x}$ height

Step 3B - Fill numbers into the formula.
Volume = 3.14×2 ft x $2 \mathrm{ft} \times 16 \mathrm{ft}$

Step 4B - Calculate
$3.14 \times 2 \times 2 \times 16=200.96$ cu. ft. (Volume needs to be converted to gallons)
200.96 cu. ft. x $7.48=1,503$ gallons
$\Rightarrow M G=0.0015$ (Use this value to complete the second formula)
Step 3 - Fill numbers into the formula.
Dosage in mg/l = \qquad
\qquad
0.0015×8.34
Step 4 - Calculate
Dosage in $\mathrm{mg} / \mathrm{l}=$ \qquad
0.01251 (You must do what is on bottom first.)
$0.4 \div 0.01251=32 \mathrm{mg} / \mathrm{I}$ dosage (Use this value to complete the first formula)
Step 3B - Fill numbers into the formula.
$32 \mathrm{mg} / \mathrm{I}=$ Demand $+2.6 \mathrm{mg} / \mathrm{I}$ Unknown value must be by itself
Demand = 32 mg/l - $2.6 \mathrm{mg} / \mathrm{l}$
Step 4 - Calculate
$32-2.6=\mathbf{2 9 . 4} \mathrm{mg} / \mathrm{l}$ demand

Advanced Math Strategies

Equations to MEMORIZE!

- $E B C T=V \div F$
- $\mathrm{V}=$ volume of media
- F = Flow of water
- Make sure units match
- Feed = Permeate + Concentrate
- Feed = Water entering R.O.
- Permeate $=$ Portion of feed water moving through R.O. as Product
- Concentrate = Portion of feed water Rejected as Waste
- \% Recovery = Permeate \div Feed $\mathbf{x} 100$
- Percent of water entering an R.O. that becomes Product
- $1^{\circ} \mathrm{f}$ change $=1.5 \%$ change in production rate
- First, find how much the temp. changed $\times 1.5=\%$ production change
- Second, change \% to a decimal and multiply by starting prod. rate
- Third, add or subtract this number from the starting prod. rate
- Colder = Subtract, Warmer = Add
- 1 psi $=100$ ppm TDS Difference
- 1 psi of osmotic backpressure towards the feed side for every 100 ppm TDS removed during R.O.

Empty Bed Contact Time

1. Determine the amount of carbon media in cu. ft. needed to remove Hydrogen Sulfide if the flow rate is $\mathbf{2 . 5}$ GPM. According to the carbon manufacturer, an EBCT of 4.5 minutes is adequate for Hydrogen Sulfide removal.

Step 1 - Starting Material
Flow = 2.5 GPM (information in question)
EBCT $=4.5 \mathrm{~min} \quad$ (information in question)
Volume = ? cu. ft. (answer unit)
Step 2 - Write down the formula.
EBCT = Volume \div Flow
Not found on the "Conversion Table". Memorize.
Step 3 - Fill numbers into the formula.
4.5 min $=$ Volume $\div \mathbf{2 . 5}$ GPM Unknown value must be by itself

Volume $=4.5 \mathrm{~min} \times 2.5 \mathrm{GPM}$
Step 4 - Calculate and convert.
$4.5 \times 2.5=11.25 \mathrm{gal}$
Make sure that your answer is in the unit that the question asked for.
$11.25 \div 7.48=\underline{1.5 \mathrm{cu} . \mathrm{ft}}$.
2. An activated carbon canister is 6 inches in diameter and 18 inches high. The carbon occupies $\mathbf{7 0 \%}$ of the canister volume. If the flow rate is $\mathbf{0 . 1 1}$ gallons per minute, what is the EBCT in minutes?

Step 1 - Starting Material
Diameter $=6 \mathrm{in}=0.5 \mathrm{ft}$
(information in question, ALWAYS convert to feet)
Radius $=\mathbf{0 . 2 5} \mathbf{f t}$ (radius is half the diameter)
Height = 18 in = $1.5 \mathrm{ft} \quad$ (information in question, ALWAYS convert to feet)
Carbon volume $=\mathbf{7 0 \%}$ of Canister volume
Flow $=0.11$ GPM (information in question)
EBCT = ? min (What you are looking for)
Step 2 - Write down the formula.
EBCT $=$ Volume \div Flow \quad (Memorize formula) (Volume refers to media (carbon))
Step 3A - Fill numbers into the formula.
EBCT = Volume $\div \mathbf{0 . 1 1}$ GPM (There is another piece of information missing)
Step 2 - Write down the formula.
Volume $=\pi r^{2} \mathbf{x}$ Height
Step 3 - Fill numbers into the formula.
Volume $=3.14 \times 0.25 \mathrm{ft} \times 0.25 \mathrm{ft} \times 1.5 \mathrm{ft}$

Step 4 - Calculate

$3.14 \times 0.25 \times 0.25 \times 1.5=0.29 \mathrm{cu} . \mathrm{ft}$. (Convert to gallons to match flow units)
$0.29 \mathbf{c u} \mathbf{f t}$. $\mathbf{7 . 4 8}=\mathbf{2 . 2}$ gallons (This is the total canister volume; you need media volume)
Step 2 - Write down the formula.
Carbon volume $=\mathbf{7 0 \%}$ of canister volume
Step 3A - Fill numbers into the formula.
Carbon volume $=0.70 \times 2.2$ gal ("of" means to multiply)(change "\%"to a decimal)
Step 4A - Calculate
$0.70 \times 2.2=1.5$ gal Carbon (Use this value to complete the first equation)
Step 3B - Fill numbers into the formula.

$$
\text { EBCT = } 1.5 \mathrm{gal} \div 0.11 \text { GPM }
$$

Step 4 - Calculate

$1.5 \div 0.11=\underline{14} \mathbf{m i n} \mathrm{EBCT}$

Water Analysis

1. From the following water analysis, determine the type and amount of hardness:

Total alkalinity $=\mathbf{3 0 0} \mathbf{~ m g} / \mathrm{I}$ (Alkalinity is jackets)
Hardness $=\mathbf{2 0 0 ~ m g} / \mathrm{l}$ (Hardness is People)

Use the picture story

There are $\mathbf{2 0 0}$ people and $\mathbf{3 0 0}$ jackets. Therefore:
All 200 people can put on a jacket and go outside.
There are 0 people left inside the house.
There are 100 extra jackets laying on the floor.

Temporary Hardness: $200 \mathrm{mg} / \mathrm{I}$ (Temporary hardness = People outside)

Permanent Hardness: __ $\mathbf{0} \mathbf{~ m g} / \mathrm{I} \quad$ (Permanent hardness = People inside)
2. From the following water analysis, determine the type and amount of hardness:

Total alkalinity $=\mathbf{1 5 0} \mathbf{~ m g} / \mathrm{I}$ (Alkalinity is jackets)
Hardness $=\mathbf{3 5 0} \mathbf{~ m g} / \mathrm{l}$ (Hardness is People)
Use the picture story
There are 350 people and 150 jackets. Therefore:
150 people can put on a jacket and go outside.
There are $\mathbf{2 0 0}$ people left inside the house.
There are $\mathbf{0}$ extra jackets laying on the floor.

Temporary Hardness: $\quad 150 \mathrm{mg} / \mathrm{I}$ _ (Temporary hardness = People outside)

Permanent Hardness: $\mathbf{2 0 0} \mathbf{~ m g / l}$ (Permanent hardness = People inside)
R.O.

1. Calculate the feed to an RO that is producing $\mathbf{5} \mathrm{gpm}$ permeate and $\mathbf{1 5} \mathrm{gpm}$ concentrate.

Step 1 - Starting Material
Permeate $=5$ gpm (information in question)
Concentrate $=\mathbf{1 5} \mathrm{gpm} \quad$ (information in question)
Feed = ? (what you are looking for)
Step 2 - Write down the formula.
Feed $=$ Permeate + Concentrate (Not found on the "Conversion Table". Memorize)
Step 3 - Fill numbers into the formula.
Feed $=\mathbf{5} \mathbf{g p m}+15 \mathrm{gpm}$
Step 4 - Calculate
$5+15=\underline{20}$ gpm feed
2. Calculate the concentrate to an RO that is producing $\mathbf{1 0}$ gpm permeate and with a $\mathbf{4 0}$ gpm feed.

Step 1 - Starting Material
Permeate $=10$ gpm (information in question)
Feed = 40 gpm (information in question)
Concentrate $=$? (what you are looking for)
Step 2 - Write down the formula.
Feed $=$ Permeate + Concentrate (Not found on the "Conversion Table". Memorize)
Step 3 - Fill numbers into the formula.
$40 \mathrm{gpm}=10 \mathrm{gpm}+$ Concentrate (Unknown value must be by itself.)
Concentrate $\mathbf{= 4 0}$ gpm $\mathbf{- 1 0 ~ g p m ~}$
Step 4 - Calculate

40-10 = $\mathbf{3 0 \mathrm { gpm } \text { Concentrate }}$
3. Calculate the recovery of an RO that has a $\mathbf{8 0} \mathbf{~ g p d}$ feed and produces $\mathbf{2 0} \mathbf{~ g p d}$.

Step 1 - Starting Material
Feed $=\mathbf{8 0}$ gpd \quad (information in question)
Permeate $=20$ gpd (information in question, Product $=$ Permeate)
Recovery = ? (what you are looking for)
Step 2 - Write down the formula.
\% Recovery = Permeate /Feed x 100 (Not found on the "Conversion Table". Memorize)
Step 3 - Fill numbers into the formula.
\% Recovery = $\mathbf{2 0}$ gpd / 80 gpd x 100
Step 4 - Calculate
$20 / 80 \times 100=0.25 \times 100=\underline{25 \%}$
4. When 6 gallons of permeate and 24 gallons of concentrate are produced by an RO unit, what is the recovery?

Step 1 - Starting Material

Permeate $=\mathbf{6}$ gal (information in question)
Concentrate $\mathbf{= 2 4}$ gal (information in question)
Recovery = ? (what you are looking for)
Step 2 - Write down the formula.
\% Recovery = Permeate /Feed x 100 (Not found on the "Conversion Table". Memorize)
Step 3A - Fill numbers into the formula.
\% Recovery = 6 gal / Feed $\mathbf{x} 100$ (There is another piece of information missing)
Step 2 - Write down the formula.
Feed $=$ Permeate + Concentrate
Step 3 - Fill numbers into the formula.
Feed = $\mathbf{6}$ gal $\mathbf{+ 2 4}$ gal
Step 4 - Calculate
$6+24=30$ gal Feed (Use this value to complete the first formula)
Step 3B - Fill numbers into the formula.
\% Recovery = $\mathbf{6}$ gal / $\mathbf{3 0}$ gal x 100

Step 4 - Calculate
$6 / 30 \times 100=0.2 \times 100=\underline{20 \%}$
5. Calculate the osmotic back pressure on an RO that has 1600 TDS feed and 100 TDS permeate.

Step 1 - Starting Material
Feed TDS = 1600 (information in question)
Permeate TDS = 100 (information in question)
Osmotic back pressure = ? (what you are looking for)
Osmotic pressure: 1 psi = 100 TDS difference (Memorize)
Step 2 - Find the difference across the Membrane
1600 TDS \rightarrow in [Membrane] 100 TDS \rightarrow out
1600-100 = 1500 TDS difference
Step 3 - Calculate pressure from TDS difference
Osmotic pressure $=$ TDS difference $\div 100$
$1500 \div 100=\underline{15}$ psi Osmotic Back Pressure
6. An RO unit is making $\mathbf{2 0}$ gph at $\mathbf{7 7 * f}$. If the temperature drops to $65 * \mathrm{f}$ what will the production rate be?

Step 1 - Starting Material

Starting Production Rate $=\mathbf{2 0}$ gph (information in question)
Starting Temperature $=\mathbf{7 7} \boldsymbol{*} \quad$ (information in question)
Ending Temperature $=65 * \mathbf{f}$ (information in question)
Ending Production Rate=? (what you are looking for)
1^{*} f temperature change $=1.5 \%$ change in production (Memorize)
Step 2 - Find Temperature change
Temperature change = Starting Temperature - Ending Temperature
77*f-65*f = 12*f temperature change
Step 3 - Find \% change in production
$\%$ change in production $=$ Temperature change $\times 1.5 \%$
$12 * f \times 1.5 \%=18 \%$ Change in production

Step 4 - Find exact change in production

Change in production = \% change x Starting Production Rate
$0.18 \times 20 \mathrm{gph}=\mathbf{3 . 6}$ gph Change in production (Change \% to decimal)
Step 5 - Find Ending Production Rate
Ending Production Rate = Starting Production (+or-) Change in Production (If it got warmer you add, if it got colder you subtract)
30 gph - 3.6 gph = 16.4 gph Ending Production Rate

Softener Math!

Using the Diagram, answer the following Questions:

1. How many cubic feet of resin does the unit contain?

Diameter $=36$ in = $3 \mathrm{ft} \quad$ Radius $=1.5 \mathrm{ft} \quad$ Height $=\mathrm{D}=4 \mathrm{ft}$ Volume $=\pi r^{2} x$ Height
Volume $=3.14 \times 1.5 \mathrm{ft} \times 1.5 \mathrm{ft} \times 4 \mathrm{ft}=\underline{\mathbf{2 8}} .26 \mathrm{cu} . \mathrm{ft}$
2. How many gallons of water can the freeboard hold?

Diameter $=36$ in $=3 \mathrm{ft} \quad$ Radius $=1.5 \mathrm{ft} \quad$ Height $=1 / 2 \mathrm{D}=2 \mathrm{ft}$
Volume $=\pi r^{2} x$ Height
Volume $=3.14 \times 1.5 \mathrm{ft} \times 1.5 \mathrm{ft} \times 2 \mathrm{ft}=14.13 \mathrm{cu} . \mathrm{ft} .=105.7 \mathrm{gal}$

