Basic Math

Conversions

1. A Large storage tank has a volume of 25 cu . Ft. How many gallons of water can this tank hold when full?
2. A water tower that is 15.4 yards tall shows a pressure of how many psi at the bottom?
3. A residential water softener holds 1 cubic foot of resin with a hardness removal capacity of 30,000 grains per cubic foot. The water being treated contains 15 gpg total hardness. The household uses $\mathbf{2 5 0}$ gallons per day. How many days can this softener run before total exhaustion?
4. A commercial softener holds 50 cubic feet of resin with a hardness removal capacity of 30,000 grains per cubic foot. The water being treated contains $\mathbf{2 5}$ gpg total hardness. How many gallons of water can be treated before the exchange capacity is exhausted?

Math Strategies

4-Step Process for Word Problems:

1. Write down given numbers with units.
2. Write down the correct formula.
3. Fill numbers into formula.
4. Calculate and convert to correct units.

Disinfection formulas use million gallons (MG):

- Move decimal 6 places to the left from gallons value \bigcirc 150,000 gallons $\boldsymbol{\rightarrow} \mathbf{0 . 1 5} \mathbf{~ M G}$

Change chlorine percentage to a decimal:

- Move decimal 2 places to the left from percent value
- $\mathbf{1 5 \%} \rightarrow 0.15$
- $\mathbf{5 \%} \rightarrow 0.05$

ALWAYS change to feet, NEVER leave in inches!

Volume

1. A rectangular tank is 2 ft tall, 2 ft wide, and 4 ft long. How many gallons of water can this tank hold when full?
2. A rectangular tank is 96 in. tall, 36 in. wide, and 48 in. long. How many gallons of water can this tank hold when full?
3. A cylindrical tank is $\mathbf{2} \mathrm{ft}$. in diameter and $\mathbf{4} \mathrm{ft}$. to the overflow. How many gallons of water can this tank hold when full?
4. A cylindrical tank is 36 in. in diameter and 72 in. to the overflow. How many gallons of water can this tank hold when full?
5. A 6 in water main is 50 ft . long. How many cubic feet of water can this pipe hold when full?

Disinfection 1

1. Determine the chlorine dosage needed to achieve a $0.7 \mathrm{mg} / \mathrm{I}$ residual in a system with a demand of $9.3 \mathrm{mg} / \mathrm{l}$.
2. Determine the chlorine dosage needed to achieve a $3.5 \mathrm{mg} / \mathrm{I}$ residual in a system with a demand of $8.0 \mathrm{mg} / \mathrm{l}$.
3. Determine the demand if a residual of $0.5 \mathrm{mg} / \mathrm{l}$ is sustained in a system after dosing $3.2 \mathrm{mg} / \mathrm{l}$ chlorine.
4. Determine the demand if a residual of $0.8 \mathrm{mg} / \mathrm{l}$ is sustained in a system after dosing $9.6 \mathrm{mg} / \mathrm{l}$ chlorine.

Disinfection 2

1. Determine how much 100% chlorine must be added to $\mathbf{3 5 0 , 0 0 0}$ gallons of water to produce a $2.5 \mathrm{mg} / \mathrm{I}$ dosage.
2. Determine how much 100% chlorine must be added to $\mathbf{1 , 2 5 0 , 0 0 0}$ gallons of water to produce a $5.8 \mathrm{mg} / \mathrm{l}$ dosage.
3. Determine how much 100% chlorine must be added to $\mathbf{1 5 , 0 0 0}$ gallons of water to produce a $2.0 \mathrm{mg} / \mathrm{l}$ dosage.

Disinfection 3

1. How many pounds of 5% bleach are needed to equal 25 pounds of $\mathbf{1 0 0 \%}$ chlorine?
2. How many pounds of 65% calcium hypochlorite are needed to equal 10 pounds of 100% chlorine?
3. How many pounds of 100% chlorine are needed to equal 50 pounds of 15\% bleach?
4. How many pounds of 100% chlorine are needed to equal 63 pounds of 85\% calcium hypochlorite?

Disinfection 4

1. Determine the dosage when you add 20 pounds of pure chlorine to a storage tank that holds 12,000 gallons of water.
2. Determine the dosage when you add 100 pounds of pure chlorine to a storage tank that holds $\mathbf{2 4 , 0 0 0 , 0 0 0}$ gallons of water.
3. Determine the dosage when you add 27 pounds of pure chlorine to a storage tank that holds $\mathbf{3 6 0 , 0 0 0}$ gallons of water.

Basic Math Answer Key

Conversions:

1.$\frac{25 \mathrm{cu} . \mathrm{Ft} .}{1}$ $\frac{7.48 \mathrm{gal} .}{1 \mathrm{cu} . \mathrm{Ft} .}$ $=25 \times 7.48$ 2. 15.4 yards 3 ft. 1 psi	$=\mathbf{1 8 7} \mathbf{~ G a l}$.	
	$=15.4 \times 3 \div 2.31$	$\mathbf{= 2 0} \mathbf{~ p s i}$.

2. $\frac{15.4 \text { yards }}{1} \frac{3 \mathrm{ft} .}{1 \text { yard }} \quad \frac{1 \mathrm{psi}}{2.31 \mathrm{ft}}$

$$
=15.4 \times 3 \div 2.31=\mathbf{2 0} \mathbf{~ p s i} .
$$

3. $\frac{1 \mathrm{cu} \text {. Ft. }}{1} \quad \frac{30,000 \text { grains }}{1 \mathrm{cu} \text {. Ft. }} \frac{1 \text { gallon }}{15 \text { grains }} \frac{1 \text { day }}{250 \text { gallons }}=1 \times 30,000 \div 15 \div 250=8$ days
4. $\frac{50 \mathrm{cu} \text {. Ft. }}{1} \frac{30,000 \text { grains }}{1 \mathrm{cu} . \text { Ft. }} \quad \frac{1 \text { gallon }}{25 \text { grains }} \quad=50 \times 30,000 \div 25=60,000 \mathrm{gal}$.

Volume:

1. $4 \mathrm{ft} . \times 2 \mathrm{ft} . \times 2 \mathrm{ft} . \quad=16 \mathrm{cu}$. Ft. $\times 7.48=\mathbf{1 2 0}$ Gallons
2. $4 \mathrm{ft} . \times 3 \mathrm{ft} . \times 8 \mathrm{ft}=96 \mathrm{cu}$. Ft. $\times 7.48=\mathbf{7 1 8}$ Gallons
3. $3.14 \times 1 \mathrm{ft} . \times 1 \mathrm{ft} . \times 4 \mathrm{ft} . \quad=12.45 \mathrm{cu} . \mathrm{Ft} . \times 7.48=93.9$ Gallons
4. $3.14 \times 1.5 \mathrm{ft} . \times 1.5 \mathrm{ft} . \times 6 \mathrm{ft}$. $=42.4 \mathrm{cu}$. Ft. $\times 7.48=317$ Gallons
5. $3.14 \times 0.25 \mathrm{ft} . \times 0.25 \mathrm{ft} \times 50 \mathrm{ft}$. $=9.8$ cubic feet

Disinfection 1:

1. $9.3 \mathrm{mg} / \mathrm{l}+0.7 \mathrm{mg} / \mathrm{l}=\mathbf{1 0} \mathrm{mg} / \mathrm{l}$
2. $8.0 \mathrm{mg} / \mathrm{l}+3.5 \mathrm{mg} / \mathrm{l} \quad=11.5 \mathrm{mg} / \mathrm{l}$
3. $3.2 \mathrm{mg} / \mathrm{l}=$? $+0.5 \mathrm{mg} / \mathrm{l} \rightarrow 3.2 \mathrm{mg} / \mathrm{l}-0.5 \mathrm{mg} / \mathrm{l}=2.7 \mathrm{mg} / \mathrm{l}$
4. $9.6 \mathrm{mg} / \mathrm{l}=$? $+0.8 \mathrm{mg} / \mathrm{l} \rightarrow 9.6 \mathrm{mg} / \mathrm{l}-0.5 \mathrm{mg} / \mathrm{l}=8.8 \mathrm{mg} / \mathrm{l}$

Disinfection 2:

1. $0.35 \times 2.5 \times 8.34=4.3$ Lbs.
2. $1.25 \times 5.8 \times 8.34=\mathbf{6 0 . 5}$ Lbs.
3. $0.015 \times 2.0 \times 8.34=\mathbf{0 . 2 5}$ Lbs.

Disinfection 3:

1. $25 \div 0.05$ = $\mathbf{5 0 0}$ Lbs. Compound
2. $10 \div 0.65$
3. $50=? \div 0.15 \quad \rightarrow \quad 50 \times 0.15 \quad=7.5$ Lbs. Pure
4. $63=$? $\div 0.85 \quad \rightarrow \quad 63 \times 0.85 \quad=53.6$ Lbs. Pure

Disinfection 4:

1. $20 \div(0.012 \times 8.34) \rightarrow 20 \div(0.1) \quad=\mathbf{2 0 0} \mathbf{~ m g} / \mathrm{l}$
2. $100 \div(24 \times 8.34) \quad \rightarrow \quad 100 \div(200.16)=0.5 \mathrm{mg} / \mathrm{l}$
3. $27 \div(0.36 \times 8.34) \rightarrow 27 \div(3) \quad=9 \mathrm{mg} / \mathrm{l}$
