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Dysbiosis commonly impacts otherwise healthy individuals over the age of 50 due to seemingly innocuous changes in diet,
hydration, or physical activity. Noninvasive biomarkers are emerging as checkpoints for immune health, energy-yielding
metabolization, and oxidative stress during the aging process. These biomarkers work individually and collectively to detect
dysbiosis, injuries, and infections, providing opportunities for earlier interventions with greater certainty of a positive long-
term outcome. Measurements of C-reactive protein (CRP), white blood cells (WBCs), and neutrophil elastase are reliable
biomarkers of persistent immune response. The absence of urinary bikunin is an accurate measure of immune system recovery
during injuries, surgeries, and infections. Oxidative stress by-products of 4-hydroxynonenal (HNE), such as HNE-albumin
adduct, allow assessing immune exhaustion and poor cell oxygenation. Overwhelming the immune system reduces the ability
of monocytes (CD14) to transform into macrophages and impairs the energy-yielding metabolism signaling of adipokines,
lowering the ability to improve cardiorespiratory fitness (CRF) or achieve significant weight loss. Bacterial endotoxins in urine
are reliable indicators of ongoing infections and dysbiosis of the gut. Efficient gut microbiome health is predicted by dietary
metabolites spilled into urine such as S-hydroxybutyrate, 2-methylbutyrate, 1,5-anhydroglucitol, enterolactone, enterodiol,
carboxy-4-methyl-5-propyl-2-furanpropanoic acid, p-cresol, hydroxytyrosol, ethyl glucuronide, and F2-isoprostane and with
blood markers like ferritin, homocysteine, and total cysteine. Vitamins B12 and D and folate are also key biomarkers that can
monitor nutrient absorption during the aging process.

Keywords: adiponectin receptor; health aging; infectious disease; innate immunity; macrocytic anemia; metabolic syndrome
(metS); microbiome; nutrition; vitamin deficiencies

1. Introduction

Dysbiosis is a microbiome etiology whereby the commensal-
ism and mutualistic bacteria needed for healthy digestion are
overwhelmed by pathogenic bacteria causing onset of
chronic inflammation and oxidative stress (Figure 1) [1-7].
Dysbiosis leads to dysregulation of energy-yielding metabo-
lization and occurs with nutritional imbalances in carbohy-
drates, protein, and fats as well as by antibiotic usage [2,
8-12]. The gastrointestinal system digests complex biomole-
cules from food cells after commensal bacteria metabolize
food cell wall membranes, which then releases carbohydrate,
peptides, lipids and nutrients to the host’s enterocytes lining
the intestines and then into blood circulation (Figure 1) [13,

14]. Intestinal enterocytes have tight intracellular junctions
preventing intact bacteria from crossing into the blood
stream and allow intercellular digestion pathogenic bacteria
into glycopeptides and endotoxins [13, 15]. During dysbio-
sis, enterocytes will release more endotoxins into blood cir-
culation, causing a systemic activation of inflammasome
stress responses [16, 17]. Prolonged systemic inflammasome
stress reduces the immune system’s ability to respond to
localized injuries or infections and will eventually lead to
immune exhaustion [18]. Nutritional interventions for dys-
biosis reduce endotoxins and oxidative stress, thereby
improving immune health [2, 8-11].

Chronic inflammatory stress during aging is often asso-
ciated with metabolic syndrome (metS) and underlying
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FIGURE 1: Gut metabolism of bacteria and nutrients. (a) The enterocyte layer of the gastrointestinal system prevents bacteria from crossing
into the blood and invading the body. (b) Enterocytes digest complex biomolecules from food cells after commensal bacterial digestion and
release carbohydrate, peptides, lipids and nutrients into blood circulation. (c) The enterocyte layer also digests excessive bacteria during
dysbiosis and releases endotoxins and glycopeptides into blood circulation causing systemic oxidative stress and inflammation to tissues.
Systemic endotoxins reduce the immune system’s ability to response to specific injury and infection sites.

insulin resistance, which are well known to lead to higher
morbidity and mortality risks associated with chronic dis-
eases [19, 20]. Insulin resistance reduces the energy balance
by impairing the body’s ability to metabolize fatty acids
and carbohydrates, which in turn increases obesity but also
diminishes the immune response [21]. Diminished energy
balance and immunity at age 60 and over are characterized
by obesity, reduced mobility, poor fitness, loss of cognitive
function, and poor gut microbiome [22, 23]. Persistent inflam-
matory responses damage tissues, leading to diabetes, autoim-
mune disorders, and epigenetic cellular changes in tissues [22,
24]. Healthy aging has been defined as increased life expec-
tancy and quality of life, as measured by improvements in
chronic inflammatory levels [25, 26]. Fitness is also an impor-
tant healthy aging practice that improves chronic inflamma-
tory levels [27, 28]. Poor nutrition is now well understood to
alter gut health and impair energy-yielding metabolism, diabe-
tes, and insulin resistance during aging [22, 23].

Diagnostics such as hemoglobin Alc (hbA1C) are exam-
ples of biomarkers that have been successfully used to pro-
mote healthy aging by monitoring the development of
diabetes [29]. This biomarker measures the 30-day average
of hyperglycemia, allowing a convenient quarterly check
for improvements. The predictive value of biomarkers for
health screening is greatly magnified when a noninvasive
sample like saliva or urine allows repetitive measurement
[30]. Calculation of biomarkers in saliva and urine requires
accounting for specimen specific gravity [31]. Other com-
mon diagnostic biomarkers and risk factors such as lipide-
mia, hypertension, obesity, and the gut microbiome have
failed to predict damaging impacts during aging early
enough for interventions before such irreversible damage
occurs [19, 20, 32]. Cardiorespiratory fitness (CRF) levels
upon recovery after a defined exercise challenge are better
measured by using digital tools and fitness equipment than

by a biomarker [33, 34]. Measuring respiratory function by
CRF is important for managing recovery from respiratory
infections and injuries [33, 35]. Step and heartbeat monitors
are common digital tools used for motivating fitness. How-
ever, they offer poor diagnostic accuracy for determining
overall fitness level (receiver operating characteristic area
under the curve [ROC AUC score] of 0.50-0.60) in none-
Iderly populations (age < 60). The system biology of the
interaction between the microbiome and human nutrition
is an emerging topic [22, 23]. New biomarkers are emerging
as a means for gauging a person’s unique nutrigenomic pro-
file as aging progresses due to ever-increasing sensitivity of
new bioanalytical methods [36, 37]. Noninvasive biomarkers
are evaluated herein for their ability to predict improved
immune response, metabolic energy, and oxidative stress
levels to provide a scientific foundation for developing an
in vitro diagnostic (IVD) panel for healthy aging.

2. Healthy Aging Diagnostics
2.1. Immune Health

2.1.1. Innate Immunity Response. Healthy aging requires a
fully functionating innate immune system to completely
resolve managing injuries and infections [19, 38]. The
impact of innate immune system response to injury, infec-
tion, and dysbiosis is shown in Figures 2a, 2b, and 2c. Path-
ogenic bacteria are commonly acquired during aging as
upper respiratory tract infections, urinary tract infection,
or in wounds and injuries, as well as entering the gastroin-
testinal system in food [37]. These microbes can progress
to bacteremia or bacteriuria with > 10* colony-forming units
(CFUs)/milliliter [37]. Pathogenic bacteria may overcome
the commensal bacteria of the host by producing virulence
factors which increase pathogenicity and survival against
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FIGURE 2: Innate immune response to injury, dysbiosis, and infection. (a) Epithelial cell, endothelial cell, smooth muscle, fibroblast, platelets,
and other cells produce oxidative stress when tissues and organs are damaged during injuries, infections, and chronic disease. Oxidative
stress triggers the innate immunity to release kallikrein, thrombin, plasmin, factors VII and X, and trypsin serine proteases to cause
swelling, clotting, vascular dilation, and tissue remodeling. (b) The gut microbiome releases bacteria endotoxin into blood causing
additional oxidative stress reflecting the balance of pathogenic and symbiotic microbiota during dysbiosis problems brought on by
infectious illnesses, certain diets, or the prolonged use of antibiotics or other bacteria-destroying medications. (c) Microbes, parasites,
and viruses which enter the body during infections through the respiratory, urinary tracts, gut, and wounds generate and release
endotoxins into blood which causes additional oxidative stress and reflects cellular damage due to infection. (d) Neutrophilic innate
immune cells migrate to inflamed tissues under oxidative stress and initiate a proinflammatory response to infections or tissue injury.
Red blood cells respond by increasing oxygenation and initiating coagulation to repair hypoxic tissue under oxidative stress. Monocytes
shed the C-terminal fragment of adiponectin receptor (AdipoR CTF) in response to oxidative stress to transform into MO macrophages
(CD14+/CD63+/TACE+) to initiate the adaptive immune response. (e) Neutrophilic innate immune cells release elastase to initiate
pathogen destruction (phagocytosis). M1 macrophages (CD14+/CD63+/TACE+/CD206+ [mannose receptor]) initiate adaptive immunity
for antigen presentation by responding to interferon gamma (IFN-y). (f) Increased elastase releases the serine protease inhibitor,
bikunin, to initiate the anti-inflammatory cascade. M2 macrophages (CD14+/CD63+/TACE+/CD220+ [insulin receptor]) initiate

extracellular membrane remodeling, cellular regeneration, and clean-up of apoptotic cells by responding to IL4 and IL-13.

the host’s immune response and antibiotics [17]. Bacteria
cell lysis releases lipopolysaccharide (LPS), lipoteichoic acid
(LTA), and O-antigen cell wall components during infec-
tions and dysbiosis which act as endotoxins, causing oxida-
tive stress. Trace levels of endotoxin are now measurable
by new technologies allowing earlier assessments of nutri-
tional interventions for dysbiosis, injuries, and infection
(Table 1) [2, 7, 37].

Chronic inflammation signifies a persistent innate
immune cell response which is typical of chronic diseases
of aging [20]. The innate immune system is driven by white
blood cell (WBC), primarily composed of 60%-70% granu-
locytes (polymorphonuclear leukocytes), which include neu-
trophils, eosinophils, and basophils Figure 2d [38].
Granulocytes generate pro- and anti-inflammatory signals
to fight off viruses, bacteria, fungi, or parasites and to repair
injuries in tissues and organs. Neutrophils are the most com-
mon granulocytes, created in the bone marrow and typically
circulating in the bloodstream for 6-10h prior to self-
destructing after one burst of activity. Injured cells and tis-
sue, gut microbiome dysbiosis, and infectious pathogens all
lead to endotoxins and oxidative stress in the circulatory sys-

tem, which are now measurable by new high-sensitivity
bioanalytical methods [37, 39-42]. Elevation in the number
of gram — and + bacteria beyond >10* CFU/mL in a blood
drop, urine, or saliva sample indicates an active pathogenic
infection while >10? CFU/mL a residual infection (Table 1)
[37, 39-42]. Endotoxins (LPS, LTA, and O-antigens) are
released from the gut and infections to the bloodstream for
elimination into urine [2, 7, 37]. Notably, pathogen levels
in the gut and during infections are being impacted by mod-
ern methods of food production and nutrition [43, 44].
The pro- and anti-inflammatory response of the innate
immune system to endotoxins and oxidative stress is shown
in Figures 2d, 2e, and 2f. Elevation of WBC and elastase in
blood, urine, or saliva is a reliable indication of an active
innate immune response generating a proinflammatory
response [19, 40, 45-48]. Complete cell counts of leukocytes
(CD45+), granulocytes (CD45+CD15+), and monocytes
(CD45+CD14+) using microscopy, flow cytometry, or
immunocytochemistry (ICC) demonstrate elevation in the
number of leukocytes (CD45+) in a blood drop (> 12,500/
uL), urine (>10/uL), or saliva [30] sample (>230/uL) and
therefore indicate an active innate immune response (see
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Table 1) [19, 40, 45-48]. Human neutrophilic elastase is a
well-established marker of neutrophilic exposure. A release
above a threshold of 10 neutrophils/uL is significant in any
biofluid (see Table 1) [39, 50, 51]. Neutrophils are motile,
entering into the intestinal spaces of tissues upon vascular
permeation due to proinflammatory signaling of swelling,
clotting, vascular dilation, and tissue remodeling, allowing
phagocytosis of pathogenic bacteria [7].

WBC counts are strongly correlated to CRF during aging
[113, 114]. The National Health and Nutrition Examination
Survey has demonstrated WBC counts as a measure of risk
of chronic disease, infections, cancers, morbidity, and mortal-
ity [33, 49]. A person’s physical fitness does improve personal
WBC counts, cardiovascular risk, and respiratory function
[33]. Other inflammatory biomarkers associated with elevated
WBC such as cytokines, chemokines, and growth factors are
also predictive of healthy aging in many cases [88, 115]. Fit-
ness interventions complemented with restriction diets can
lead to greater body mass index (BMI) loss and lower WBC
counts within 1 year, with neutrophilic leukocytes and plate-
lets most impacted. Other inflammatory markers showed no
statistically significant changes upon intervention, such as C-
reactive protein (CRP), interleukins (IL-6, IL-8), tumor necro-
sis factor-a (TNFa), c-peptide (inactive insulin form), and T
cell markers of adaptive immunity. Additionally, monocyte
chemoattractant protein (MCP-1) and IL-18 biomarkers were
statistically significantly activated neutrophilic leukocytes dur-
ing autoimmune disease.

Continuous chronic inflammation increases oxidative
stress and leads to excessive protease activity where recep-
tors, like the adiponectin receptor (AdipoR), are deactivated
and immune exhaustion is likely [19, 51]. Chronic inflam-
mation can be reduced with a combination of nutrition
and fitness [52, 53]. High-sensitivity CRP is a blood bio-
marker that has been used to monitor improvements in
chronic inflammation (2-10 mg/L) in cardiovascular disease
[54-56]. Values above 10 mg/mL reflect true clinical inflam-
mation due to infection, injury, or autoimmune disease [38].
Saliva CRP measurements are only slightly reflective of
blood value due to diurnal variation and elevate from
238.5+94.78 to 1519.5 + 660.4 pg/mL during inflammation
[57]. Values of CRP only improve with significant weight
loss and improved CRF [33, 58]. Notably, many common
anti-inflammatory medications, such as aspirin and nutri-
tional supplements, such as vitamins C and E, omega-3 fatty
acids, and zinc, lower CRP levels without corresponding
changes in the WBC counts [54, 59, 60].

2.1.2. Bikunin Response. Bikunin in urine is a reliable indica-
tor of infection and/or recovery from injuries [19]. Bikunin
is a serine protease inhibitor released by neutrophilic elastase
to suppress proinflammatory serine proteases [19, 38]. As a
drug named ulinastatin, bikunin is well established as pro-
tecting the body during acute circulatory failure, sepsis,
ischemic injury, cardiac arrest, traumatic brain injury, pan-
creatitis, and many conditions from immune-mediated apo-
ptosis [19, 116-119]. Bikunin is rapidly eliminated from the
body during infection or injury so that the immune system
can continue to repair tissue damage and eliminate patho-

gens (Table 1) [19]. Urinary bikunin is a well-studied bio-
marker for chronic inflammation and more sensitive than
CRP, persisting until the immune system returns to normal
status [19, 38]. Bikunin correlates strongly with WBC counts
and is formed by neutrophilic elastase whereas CRP is pro-
duced by the liver in a delayed mechanism to activate C3
complement and cause opsonization. Bikunin reflects wors-
ening inflammation in patients > age 50 with metS, diabetes,
and chronic diseases in a range from 2.0 to 7.5 mg/L. These
patients are generally overweight (32% with BMI 25-30) or
obese (52% with BMI > 30). Bikunin correlates with lower
risk of comorbidities when conventional diagnostics fail to
predict death and complications. Bikunin values above
7.5mg/mL are diagnostic of clinical injuries and systemic
infections, upper respiratory infections, urinary tract infec-
tions, cardiovascular tissue injury, glomerulus nephritis,
and pancreatitis [38].

Bikunin as a serine protease inhibitor prevents pro-
longed proteolysis and is an anti-inflammatory response that
protects cells and tissues from immune-mediated apoptosis
leading to irreversible cellular changes and autoimmune dis-
ease (Figure 2e) [120]. Prolonged neutrophilic exposure by
elevated WBC counts causes tissue damage by constant acti-
vation of immune-mediated apoptosis through proinflam-
matory signaling caused by constant release of
inflammatory proteases (neutrophilic elastase, cathepsin G,
proteinase 3, and granzyme B) leading to shedding of cyto-
kines (IL-1, IL-6, IL-8, IL-10, and TNFa), interferon gamma
(IEN-v), chemokines (MCP-1, CXCL9, CCL11, and CXCL),
and growth factors [19, 20, 38, 51]. Prolonged elevation of
bikunin indicates a proinflammatory state where immune
cells are causing damage to tissues and inducing poor wound
healing [19, 20, 38]. Bikunin inhibits the release of cytokines,
chemokines, and growth factors in the Janus kinase and sig-
nal transducer and activators of transcription (Jak-STAT)
pathway, increasing protein kinase B (Akt) and phos-
phatidylinositol 3-kinase (PI3K) phosphorylation by block-
ing the potassium large conductance calcium-activated
channel (KCNMA) [19, 116-119]. Bikunin also inhibits uro-
kinase activation of mitogen-activated protein-extracellular
signal-regulated kinase (MAPK/ERK) by plasmin, protease
active receptor (PAR) activation of protein kinase C by tryp-
sin, and granzyme B activation of caspase 8. It further blocks
the extrinsic death factor receptor to help prevent immune-
mediated apoptosis and promote tissue generation [19].
Bikunin also inhibits epithelial cell, endothelial cell, smooth
muscle, fibroblast, and platelet release of serine proteases
(kallikrein, thrombin, plasmin, trypsin, and factors VII and
X) from causing additional swelling, clotting, and vascular
dilation [19, 38].

2.1.3. Macrophage Response. The macrophage response of
the innate immune system is triggered by endotoxins and
oxidative stress and an imbalance caused by injury, dysbio-
sis, and infection (Figures 2d, 2e, and 2f). Monocytes
(CD45+CD14+) are the third most common type of innate
immune cells and account for 2%-10% of leucocytes in the
blood and are essential to immune health, with elevation of
>800/uL indicative of an active innate immune response
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(Table 1) [19, 20, 38, 51]. Monocytes transform into macro-
phages as they migrate into body tissues for phagocytosis by
first differentiating into MO macrophages (CD45+CD14
+CD63+) due to the release of neutrophil protease and the
presence of oxidative stress in tissue [51]. MO macrophages
become proinflammatory M1 macrophages (CD45+CD14
+CD63+TACE+CD206+) in response to IFNy and bacterial
endotoxins (LPS, LTA, and O-antigen) to activate phagocy-
tosis [51]. Monocytes become insulin resistant during the
aging process, becoming less responsive to endotoxins and
reactive oxidative species (ROS) [51, 121-123]. MO macro-
phages influence the classical and nonclassical processes of
adaptive immunity and antigen presentation. Monocytes
can perform phagocytosis using intermediary opsonizing
proteins such as antibodies or complements that coat the
pathogen, as well as by binding to the microbe directly via
pattern-recognition receptors that recognize specific patho-
gens. Monocytes are also capable of killing infected host cells
via antibody-dependent cell-mediated cytotoxicity. This
process occurs with MO macrophages differentiated into
M2 anti-inflammatory macrophages (CD45+CD14+CD63
+CD220+) in response to the presence of IL-4 and IL-13
and cells killed by phagocytosis during repair of tissue.
Vitamin D has a direct endocrine function and regula-
tory impact on immune health, improving macrophage
response, lowering WBC counts, and decreasing immune
cell death [8, 61, 62]. Vitamin D improves the total antioxi-
dant capacity and reduces microbiota-generated oxidative
stress and production of ROS while increasing glutathione
(GSH). Measuring the need for vitamin D supplementation
to promote immune health is independent of the effects of
common anti-inflammatory medication, and its deficiency
is measured by a blood value of <20ng/mL (Table 1) [63].
Notably, concentrations of CRP are lowered to 2.02 mg/dL
(1.95-2.08) from 2.60mg/dL (2.41-2.82) after treatment
for vitamin D deficiency [64]. Vitamin D deficiency is also
measurable in saliva, with values of 17.4+8.0ng/dL
improved to 20.8 + 6.3 ng/dL upon supplementation [65].

2.2. Energy-Yielding Metabolism

2.2.1. Metabolic Response. Poor energy-yielding metabolism
can be attributed to obesity and metS with a commensurate
increased risk of morbidity and mortality [124, 125]. The
underlying insulin resistance observed with metS and obe-
sity impacts the energy metabolism of the body and impairs
CRF by limiting the ability of the body to oxidize fatty acids
and restore energy [19]. Progression to the onset of diabetes
is diagnosed by an HbA1lc level greater than >6.5% or by a
fasting blood glucose or oral glucose tolerance test. Contin-
ued hyperglycemia leads to advanced glycation end products
attaching to proteins which in turn degrades cell function
and destroys elastin and collagen in skin and tissue [19].
Treatments to reduce hyperglycemia help to reduce weight
but do not necessarily address the underlying insulin resis-
tance or progression of chronic diseases [19]. Insulin resis-
tance can be measured by understanding the compartment
model of pancreatic secretion of insulin, its utilization, and
metabolization [19]. It is not sufficient to just measure pan-
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creatic insulin secretion to determine insulin resistance.
Fasting to determine glucose and insulin values over time
must be considered [19]. Blood and urine levels of -hydro-
xybutyrate provide a measure of metabolic efficiency for car-
bohydrate and fat burning under lower lipid peroxidation
levels stress during caloric restriction diets without a fasting
collection (Table 1) [89]. Insulin resistance impairs the abil-
ity of the body to respond to oxidized fatty acids and hyper-
glycemia, thereby limiting the ability to heal injuries and
fight infections [19, 51, 126]. A reduced aerobic fat burning
ability increases oxidative stress and occurs with impaired
adipose tissue [19]. The health of the adipose can be mea-
sured by adipokine, adiponectin, and leptin levels as risk fac-
tors for an inability to tolerate a hypercaloric high-fat diet
and a significant risk of developing metS and diabetes
(Table 1) [19, 127]. Further, while modest elastin/collagen
preservation with topical antioxidants can somewhat
improve skin health, the underlying metabolic stress is not
resolved and further degradation can be expected [128].

2.2.2. Adipokine Response. Adiponectin and leptin are adipo-
kines which provide a measure of adipose health for optimal
energy-yielding metabolism [19, 51, 88, 91]. Leptin predicts
adipose health and appetite control through the Sh2b1l neu-
roreceptor directly linked to brown fat transformation which
regulates body weight and insulin resistance and which
could be impacted by artificial sweeteners [129]. Adiponec-
tin is an insulin-sensitizing hormone released from adipose
tissue that explains how cells are activated to oxidize fatty
acids and store glycogen for future energy [19]. Adiponectin
secretion from the adipose is suppressed during obesity and
diabetes, offering a metabolic pathway explanation for insu-
lin resistance [19, 51]. Adiponectin’s mechanism of action is
not through insulin’s activation of Akt but rather through
the adiponectin activation of AMP-activated protein kinase
(AMPK), which stimulates glucose uptake and lipid oxida-
tion to produce energy [19, 91]. Activation of AMPK
reduces oxidative stress in the tissues and organs and
increases oxidization of fatty acids in liver and muscle con-
trolling whole-body glucose homeostasis [130].
Adiponectin signaling of AMPK is deactivated by pro-
teolytic shedding of the C-terminal fragment from the adi-
ponectin receptor (AdipoR CTF) (Figure 2ef) [51].
AdipoR CTF shedding correlates with an increased inflam-
masome measured by bikunin [20]. In obesity/age models,
proteolytic shedding of AdipoR CTF correlates with an
impaired energy-yielding metabolism and increases with
obesity, age, and poor diet leading to Type 1 and 2 diabetes
[19, 51]. Pancreatic damage was observed with increased
neutrophil infiltration, leading to AdipoR CTF shedding
and the presence of helper T cells and antigen activation pre-
sentation [51]. Antibodies to AdipoR CTF can be measured
in humans and increase with aging, obesity, and diabetes
[19, 20]. A healthy immune system is characterized by con-
tinuous shedding of AdipoR CTF [20, 51]. A lack of AdipoR
CTF shedding reflects immune system exhaustion and a
generally impaired energy-yielding metabolism, increasing
the risk of morbidity and mortality in chronic diseases [19,
20]. A prolonged inflammasome leads to loss of proteostasis
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or excessive protease activity without inhibition, which in
turn leads to complete shedding of AdipoR CTF and hyper-
glycemia with impaired monocyte immune response [51].

Deactivation of the AMPK response by AdipoR CTF
shedding occurs naturally in monocytes transforming into
macrophages (M0, M1, and M2) for fighting microbial path-
ogens and repairing injuries [51, 131]. Loss of AMPK signal-
ing reduces the ability to oxidize fatty acids and increases
immune cell sensitivity to oxidative stress [51, 131]. Shed-
ding of AdipoR CTF occurs with the shedding of cytokines
like TNFa, IL-6, and IL-12 by the TNFa convertase enzyme
(TACE) during the proinflammatory response initiated by
any neutrophil protease [51]. Immune cells lacking AdipoR
CTF are also unable to bind to an insulin degradation
enzyme, which correlates with high intracellular insulin
levels characteristic of cellular insulin resistance [51]. Oxida-
tive stress exceeding the active inflammasome response (loss
of proteostasis) indicates exhaustion of AdipoR CTF shed-
ding and limits the ability of the immune system to fight
infection and make repairs [51]. Bikunin regulates proteos-
tasis to maintain the energy-yielding metabolism of AMPK
by inhibiting PAR activation and activating phosphorylation
of Akt/PI3 by blocking KCNMA [19, 51].

2.2.3. Nutritional Response. Carbohydrate and protein fer-
mentation by gut bacteria produces short-chain fatty acids
like 2-methylbutyrate in blood and urine indicative of dys-
biosis (Table 1) [10]. Hyperglycemia produces urinary 1,5-
anhydroglucitol indicative of an excessive carbohydrate diet
(Table 1) [92]. The quantity and source of dietary proteins
regulate the production of cytotoxic metabolites by gut
microbiota, which alter the rectal mucosa of the host [10].
Amino acids, glycans, and other metabolites generated and
digested by gut bacteria create environmental controls that
are cytotoxic or promoting of bacterial species [8,
132-134]. Ferritin is indicative of excessive protein intake,
while homocysteine and total cysteine predict unhealthy
lean weight and need for protein intake (Table 1) [10, 95,
96]. Protein intake in a hypercaloric diet has been linked
to metS, obesity, KD, LD, and DM [95, 135, 136].

Measuring nutritional status can improve the microbiota
to promote an optimized metabolism [2, 6, 7]. A restricted
Mediterranean-inspired diet in the PREDIMED-Plus Trial
clearly demonstrated improved glucose metabolism-related
parameters (fasting glucose, HbAlc, and insulin resistance)
in a diet high in n-3 fatty acids (n-3 FAs) [88, 90]. Weight
loss in metS occurred after 12 months and correlated with
B-hydroxybutyrate and phospholipids shifting toward n-3
FAs from n-6 fatty acids with improved lipogenesis [88,
90]. The best sources of n-3 FAs are fish followed by red
meat, linseed oil, and canola oil [95, 97]. Fish diet and n-3
FAs are measured by urinary carboxy-4-methyl-5-propyl-
2-furanpropanoic acid and have shown beneficial effects in
glycemic control and insulin sensitivity [95, 97]. The intake
of fish increases plasma and erythrocyte n-3 FAs, allowing
eicosapentaenoic acid and docosahexaenoic acid concentra-
tions to reduce oxidative stress [137]. Dietary intake of pal-
mitate and oleate also has a broad impact on systemic and
tissue lipid profiles in humans [138].

Tolerance to hypercaloric western diets which are heavy
in simple carbohydrates, protein, fat, and preservative varies
greatly between person and race [139]. Metabolic adaptation
in lipogenic transcription factors for fatty acid uptake, 3-oxi-
dation, and lipogenesis alters the a-ketoglutarate pathway to
remove excess acetyl-CoA carboxylase from the cell mito-
chondria in the mammalian rapamycin (mTOR) pathway,
reducing a person’s ability for weight loss and ketogenesis
[90]. Mitochondria are the oxidative energy reaction centers
in cells that have their own DNA and can produce an excess
of ROS, which can then induce programed cell death (apo-
ptosis) and reduce mitochondrial efficiency further, which
already diminishes during aging. Intermittent fasting by
spacing caloric loads of carbohydrates and fat food reduces
oxidative stress [89]. Reducing intake of foods with toxic
metabolites reduces mitochondrial stress. For example, uri-
nary excretion of cytotoxic p-cresol is increased in an exces-
sive soy protein diet [95]. Excessive alcohol consumption of
0.2-0.1g (2-1 drinks)/day increases oxidative stress, which
can be measured by urinary hydroxytyrosol and ethyl glucu-
ronide levels [98, 99].

Dietary interventions with indigestible carbohydrates
such as whole grain and rye wheat fibers have not yielded
improved energy metabolism but did increase commensal
gut microbes and reduce lipidemia [128]. A sufficient fiber
diet can be measured by urinary enterolactone and entero-
diol lignan metabolites [93, 94]. Antioxidant foods including
fruits, vegetables, cereals, and nuts include natural antioxi-
dants such as vitamin C, vitamin E, flavanols, anthocyanins,
quercetins, and polyphenols at subcytotoxic levels that
induce robust cellular in vivo signaling [100-102, 140]. Anti-
oxidant vitamins such as C, D, and E and omega-3 fatty
acids have been associated with reduced oxidation, stress,
and inflammation [59, 141, 142]. Vitamin C supplementa-
tion causes a reduction in inflammation (CRP and IL-6)
improved energy-yielding metabolism by blood glucose, tri-
glycerides, and hbA1C after 8 weeks of treatment [143-145].
Concentrations of n-3 and n-6 fatty acids in saliva are reflec-
tive of food intake and not chronic oxidative stress [146].
Vegetarian diets with natural vitamin E (< or 100IU/day
resveratrol) improve WBC counts and CRP and may have
antithrombotic effects. However, supplemented vitamin E
requires levels in the cytotoxic range (400 IU/day a-tocoph-
erol) to decrease lipid oxidative stress [147, 148]. Metabolites
of F2-isoprostanes measure the effects of an antioxidative
diet [100-102]. The effects of ingesting tomatoes, plantains,
grapes, legumes, nuts, and citrus are detected by urinary gly-
cerates, stachydrine, hypaphorine, tryptophan, and proline
derivatives [92, 136, 149]. A lack of plant-based diet and
overdoing protein intake can be detected by urinary gamma
glutamyl peptides due to overwhelming of GSH homeosta-
sis [95].

Precision nutrition (nutrigenomics) is gaining interest as
a means to address nutrient and vitamin deficiency on a per-
sonalized basis by measuring specific biomarkers [150].
Vitamin B deficiency (B1, 2, 3, 5, 6, and 12, folate, and bio-
tin) is well studied and known to increase with age, metS,
and an inadequate diet [70-72]. Gut absorption of vitamin
B does not decline with age but rather the cell metabolism
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and signaling diminish as well [73-80]. Vitamin Bs are
known to regulate bacterial growth and are strongly associ-
ated with improved immune cell response and an optimized
gut microbiome [151-153]. Markers of gut microbiome
health are important to judge the idiosyncratic and highly
individualized response to vitamin and nutrient supple-
ments [6, 154]. Treatments with vitamins B and D boast
immune health claims against various pathogens, reducing
inflammation and oxidative stress and improving metabolic
processes [61, 66-69]. Supplementation for vitamin B and D
deficiency is known to reduce the risk or severity of cardio-
vascular disease, stroke, sepsis, dementia, and other condi-
tions [81, 82, 152].

Testing for vitamin B12 and folate deficiency is a well-
accepted component of the optimization of an energy-
yielding metabolism (Table 1) [72]. Vitamin B deficiency
can be measured by immunoassay for the holotranscobala-
min complex (active B12) that promotes the uptake of cobal-
amin by all cells via specific receptors, including leukocytes,
neutrophils, and monocytes [83-85]. Active B12 is normally
at 200-900 pg/mL in serum, while values of 30-200 and
<30g/mL indicate borderline and clinical deficiency [65,
66, 83-87]. Folic acid deficiency leads to vitamin B defi-
ciency at <2ng/mL in serum, with >4ng/mL considered
normal. Endogenous folate is abundant in saliva due to diet
intake of 0.32 pmol/ng saliva, but systemic deficiency can be
measured by immunoreactive folate-binding proteins [155].
Active B12 and folic acid-binding protein are found in
saliva, but normal and deficiency ranges are yet to be estab-
lished (Table 1) [155, 156].

2.3. Oxidative Stress

2.3.1. Cell Senescence Response. Cell senescence and autoph-
agy during aging can be predicted by impaired immune
health and increased oxidative stress biomarker levels
(Table 1 and Figure 2d,f) [25, 157, 158]. Tissue survival
and regeneration rely on oxygenation for thriving cellular
health [159]. Oxygenation is a key factor in tissue health,
and management of oxygenation (blood oxygen) declines
in pulmonary and vascular diseases associated with aging
(Figure 2d) [160]. Vascular thrombus and fibrosis damage
impair oxygenation, a self-perpetuating cycle leading to car-
diac stress and tissue necrosis, which can be detected by
standard coagulation and cardiac panels [55, 103]. Patholog-
ical lack of oxygenation (hypoxia) or low partial pressure of
oxygen (hypoxemia) leads to tissue necrosis and loss of
autophagy in all tissues, including the brain and heart.
Necrosis and fibrosis markers specific to vascular and neuro-
logical systems are important indicators of ongoing damage
[118, 161-164].

Oxidative carbonyl species impact the cellular function
of the mTOR pathway implicated in many age-related disor-
ders [51, 90, 165]. Poor injury recovery is characterized by
poor monocyte polarization into M1/M2 macrophages and
lack of clean-up of cellular materials damaged by reactive
oxygen species and resulting oxidative stress [51]. Oxidative
adducts of lipids induce monocytes to produce proinflam-
matory M1 macrophages through the liver X receptor and
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to activate clearing microbial pathogens and wounds [109,
148]. Oxidative stress is therefore indicative of poor immune
health and persistent biomolecular and cell damage [19,
146]. Increased oxidation of lipids and proteins has been
implicated in cardiovascular comorbidities, hypertension,
and autoimmune disease. Thus, poor aging is correlated to
cellular signaling in the NF-kappa B and Jak-STAT path-
ways which regulate the death Fas receptor (APO-1) for
the natural programmed cell death (apoptosis) need for
recycling of cellular materials (autophagy) in order to elimi-
nate by-products of oxidative stress [165, 166]. Further, neu-
trophilic infiltration causes activation of the Jak-STAT-2,4
pathways through TACE proteolysis and leads to this
immune-mediated apoptosis through cytokine and growth
factor release [51]. However, continuous proinflammatory
stress prevents the signaling switch to the Jak-STAT-1,3 path-
way and JNK stress-activated protein kinases needed for tissue
regeneration and regulation of senescence through repression
of p38 MAP kinase and expression of tumor protein p53, the
“guardian of the genome” [167]. The Jak-STAT-1,3 pathway
also activates PIWI-dependent nuclear receptor complex for-
mation in this process. The PIWI nuclear receptor binds to
piRNAs with a length of ~26-31 nucleotides for directing
DNA methylation in epigenetic gene control of cellular differ-
entiation during tissue remodeling [168]. Tissue self-renewal
and regeneration are initiated by tissue pluripotent stem cells
which rely heavily on growth factor activation of specific stem
cell factors, hormone receptors, and hormones. Impaired tis-
sue self-renewal occurs with diminished hormonal response
cell responses in aging leading to incorrect cellular differentia-
tion and loss of tissue function [169].

2.3.2. 4-Hydroxynonenal (HNE) Response. Persistent chronic
inflammation without repair is characterized and measur-
able by oxidative stress biomarkers such as HNE [7, 19, 70,
170]. Oxidative stress pathways including superoxide anion,
singlet oxygen, hydroxyl radical, hydrogen peroxide, peroxy-
nitrite anion, and nitric oxide all lead to protein, enzyme,
lipid, DNA, and cellular damage, inactivation, and pro-
grammed death (apoptosis) [70, 171]. Oxidative stress,
including hypoxia, results in nitrosative stress, endoplasmic
reticulum stress, mitochondrial dysfunction, and carbonylic
stress. Nitrosative and oxidative stress are measured by and
associated with ROS. Every individual has a highly variable
and often dynamic ability to tolerate unhealthy oxidative
stress levels. Measuring unhealthy oxidative stress can be
inferred through ROS levels but more accurately assessed
through fragments, adducts, or metabolites of tissue, cellular,
or nucleic damage. Malondialdehyde (MDA) and HNE are
aldehydes that result from lipid peroxidation of polyunsatu-
rated fatty acids [70]. Many biomarkers of oxidative stress
such as MDA, HNE, 8-hydroxy-2'-deoxyguanosine
(OHdG), and nitrotyrosine are not stable in biological fluids
and are poor markers [7, 19, 70, 170]. The formation of
HNE is the end of the chain of reaction of all ROS and nitro-
sative species. Reactive HNE reacts with proteins, lipids, and
glycoconjugate to form stable measurable adducts, allowing
the quantitation of a 30-day average level of oxidative stress
in an organism [110, 172].
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Protein adducts of HNE for serum proteins such as albu-
min allow measurement of systemic oxidative stress, whereas
cell-specific proteins measure specific stress to tissue
(Table 1) [109-112]. The attachment of HNE to proteins
occurs immediately to form an adduct which can be detected
by immunoassays. Adducts to proteins are a stable method
for assessment of overall oxidative stress [31, 172, 173].
Adducts of HNE to human serum albumin (HNE-albumin)
have been shown highly reproducible within a patient, reflect-
ing a 30-day average oxidative stress correlating with nitrotyr-
osine, OHAG, and MDA [174]. Albumin has a fairly constant
protein presence in blood at 3.4-5.4 g/L, saliva at 0.1-2 mg/L,
and urine at 0.5-80mg/L [19, 31]. HNE-albumin in urine is
0.59 +0.09 and 2.0 + 0.5mg/dL for low and high inflamma-
tion, respectively (Table 1) [31]. Systemic oxidative stress
(>1.5mg/mL HNE-albumin) and chronic inflammation
(2.0-7.5mg/L bikunin) are observed in 69% of adults over
50 without diabetes or cardiovascular disease and 82% of
adults with diabetes in the absence of known infections or
recent surgeries [31]. The ratio of HNE to albumin is typically
s 1:1-1:5 or ~1.5-2.2 nmol of adduct [31]. Oxidative stress is
measured relative to the total amount of albumin in the sam-
ple (HNE-albumin/albumin) [31]. Measuring oxidative stress
adds to the assessment of chronic inflammation by determin-
ing if the immune system is addressing oxidative stress factors
or is in fact overwhelmed [19, 31, 51]. Antioxidant supple-
mentation like vitamins D and C decreases carbonylic reactive
species like MDA and HNE [104, 175, 176]. Vitamin C also
decreases oxidative stress by interaction with GSH and
paraoxonase-1 [104, 105, 175, 176].

The kidney is a highly sensitive oxygen sensor and medi-
ates red blood cell (RBC) production in response to hypoxia
due to release of erythropoietin and activation of the hypoxia
inducible factor 1 to increase blood oxygen-carrying capacity
production [177, 178]. Slight hypoxia, such as caused by
higher altitudes (up to 8000 ft, 2500 m), increases the blood’s
oxygen-carrying capacity [178, 179]. Slight hypoxia, when
combined with good metabolic health, results in increased
blood hemoglobin (Hgb) and delays the onset of replicative
senescence in neurological cultured cells and extends lifespan
in animal models [180, 181]. However, unhealthy blood oxy-
gen saturation (<90%) caused by low-perfusion conditions
or high altitudes above 14,000ft/4300M closely simulates
poor aging [182, 183]. The brain requires an ongoing and sta-
ble oxygen supply to support its underlying functions. The role
of oxygen in the functional activity of the brain is important in
the relationship of healthy aging and its potential pathologies.
Clinical signs and symptoms of poor oxygenation are fatigue,
dyspnea on exertion, vertigo, palpitation, low blood pressure,
pallor, and headaches resulting from diminished delivery of
oxygen to tissues. Age-related reduction of mental quality of
life is caused by fatigue, headaches, weight loss, impaired bal-
ance, mood changes, muscle loss, neuropathy, dementia,
weakness, leukopenia, neuropsychiatric behavior, and gastro-
intestinal issues [72].

2.3.3. Hgb Response. Markers of anemia seek to address the
inability of RBCs to transport oxygen [74, 75, 105]. Age-
related anemia is estimated to impact 900 million people

globally over the age of 65 [85, 184]. Improving detection
and treatment of age-related anemia improves mental qual-
ity of life and plays an important role in the effectiveness of
aging care [71, 72]. The primary diagnostic method of gen-
eral anemia is low Hgb concentration or hematocrit value
in blood [103]. Anemia pathophysiology is categorized as
being due to RBC efficiency, accelerated RBC destruction,
and impaired RBC production and judged by the size and
shape of the RBC as distinguished by cytology and hematol-
ogy. Age-related anemia due to accelerated RBC destruction
causing Hgb deficiency can be due to autoimmune disease,
toxins, infections, cancers, or medicines and can be detected
by Hgb in blood. Age-related pernicious macrocytic anemia
is typically associated with impaired vitamin and nutrient
absorption [74, 107, 108]. Abnormal RBC response to oxida-
tive stress damage (ferroptosis) has been used to explain
impairment [86]. Macrocytic anemias are commonly due
to related vitamin B deficiency, hypothyroidism, testoster-
one deficiency (40-50-year men), or medication such as
metformin, aspirin, and nitrous oxide. Monitoring of these
hormones is typically performed in an endocrinology assess-
ment of macrocytic anemia [185]. Active B12 and folate
measurements are useful. Additionally, biomarkers identi-
fied for chronic alcohol consumption, malnutrition, vegetar-
ian diets, and genetic factors further contribute to age-
related macrocytic anemia (Table 1).

Vitamin and nutrient supplements with Vit B, iron, zinc,
and iodine are a safe, well-accepted treatment for resolving
anemia due to Hgb deficiency and improving nutritional sta-
tus [104, 106]. Treatments can be monitored by blood immu-
noassays and iron panels [103]. Hgb deficiency is likely when
the serum ferritin level is less than 50ng per milliliter
(112.35pmol per liter). Serum ferritin values greater than or
equal to 100 ng per milliliter (224.70 pmol per liter) generally
exclude iron deficiency anemia (Table 1). Transferrin is also
measured to estimate the total iron-binding capacity. Lower
transferrin with higher ferritin indicates a lower total iron-
binding capacity and could indicate increased oxidative stress
to RBCs. The normal range for transferrin in serum is 215-
380mg/dL. A predictable amount of transferrin is present
per Hgb found. Anemia has also been detected in saliva, where
the mean level of salivary ferritin in subjects with iron defi-
ciency was significantly higher at 139.37 + 47.90 ug/dL when
compared to the levels in nonanemic subjects at 94.18 +
62.90 ug/dL [186-188]. Transferrin is typically <4.0mg/L in
saliva and correlates with the amount of Hgb in saliva, which
normally ranges from 0.045 to 2 mg/dL Hgb [45, 189]. The
measurement of transferrin and ferritin in saliva for anemia
requires accounting for bleeding of the gums by additionally
measuring and ratioing to Hgb [31].

3. Challenges and Prospects

Progressing noninvasive biomarker panels to widespread
clinical practice will require new technologies enabling
one-touch and rapid measurements utilizing novel point of
care systems [37]. Analytical validation of autocalibration,
standardization, high reliability, and error-free use of these
systems must be proven capable when administered by
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untrained users. Noninvasive urine or saliva analysis must
correct for sample variation caused by changes in sample
concentration. Blood finger-prick samples of ~1 L must
correct for collection variations in hematocrit values. Addi-
tional clinical validation studies will be needed with larger
populations to set normal reference ranges, define quantita-
tion requirements, and establish relationships needed for
promoting healthy gut microbiomes [30]. Each biomarker
will have to undergo independent validation before the inte-
gration of multiplexed panel results can be applied to
machine learning analysis of multimodal data and further
validated. Outcome studies using precise nutritional inter-
ventions lasting only 3-6 months will have to demonstrate
an improvement of dysbiosis to support widespread clinical
adoption.

4. Conclusion

Healthy aging biomarkers are showing value for establishing
trends in normal immune health, normal energy-yielding
metabolism, and oxidative stress. Chronic inflammation
and oxidative stress leading to dysbiosis, tissue damage,
and infections can be monitored before signs of clinical
pathology become evident. Biomarkers of diet, vitamins,
and nutrition related to improved digestive health and
energy conversion can potentially keep oxidative stress from
exceeding the inflammasome response and allow continued
immune system health. Biomarkers of tissue oxygenation
health relate directly to mobility and mental quality of life,
with mobility itself preventing an increase in the by-
products of dysfunction, cellular senescence, and impaired
regeneration. Maintaining healthy gut microbiomes can be
aided by early monitoring of biomarkers that enable adher-
ence to a personalized nutritional plan and when used in
combination with broad coverage of key aging factors.

Nomenclature

Active B12 holotranscobalamin complex

AdipoR adiponectin receptor

AdipoR CTF C-terminal fragment from the AdipoR
AGE advanced glycation end products

Akt protein kinase B

AMPK AMP-activated protein kinase

BMI body mass index

CD cluster of differentiation

CFU colony-forming units

CRF cardiorespiratory fitness

CRP C-reactive protein

CXC cysteine-X-cysteine

CCL CXC ligands

n-3 FAs n-3 fatty acids

GSH glutathione

hbA1C hemoglobin Alc

Hgb hemoglobin

HNE 4-hydroxynonenal

HNE-albumin  adducts of HNE to human serum albumin
IFN-y interferon gamma

IL interleukin
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IVD in vitro diagnostics
Jak-STAT Janus kinase and signal transducer and
activators of transcription

KCNMA potassium large conductance calcium-
activated channel

LPS lipopolysaccharide

LTA lipoteichoic acid

MAP mitogen-activated protein

MAPK/ERK kinase-extracellular signal-regulated
kinase

MCP monocyte chemoattractant protein

MDA malondialdehyde

metS metabolic syndrome

mTOR mammalian target of rapamycin

OHdG hydroxy-2'-deoxyguanosine

PAR protease active receptor

PI3K phosphatidylinositol 3-kinase

RBC red blood cell

ROC AUC score receiver operating characteristic area
under the curve

ROS reactive oxidative stress
TACE TNFa convertase enzyme
TNF« tumor necrosis factor-o
WBC white blood cell
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