
The role of radiotherapy in patients with metastatic cancer

Eduardo Urias, MD, MBA

Radiation Oncology Joe Arrington Cancer Center Covenant Medical Group

The pillars of cancer treatment

Surgery

- Staging/diagnostic
- Resection/dissection
- Debulking

Radiation therapy

- External beam
- Brachytherapy
- Radiopharmaceuticals

Local therapies

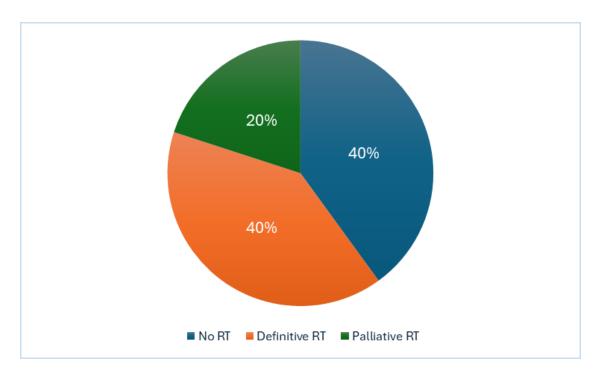
Medical therapy

- Cytotoxic chemotherapy
- Targeted therapy
- Hormonal therapyImmunotherapy
- Cellular therapy

Systemic therapy

Objectives

- Brief overview of radiation therapy (RT)
- How RT can help (and hurt) patients with metastatic cancer
- Supporting a patient with metastatic cancer undergoing RT



Objectives

- Brief overview of radiation therapy (RT)
 - What is RT
 - How RT is planned and delivered
- How RT can help (and hurt) patients with metastatic cancer
- Supporting a patient with metastatic cancer undergoing RT

~60% of patients with cancer receive RT, mostly with definitive (curative) intent

History of RT

- 1895 Wilhelm Roentgen publishes his discovery of an "invisible light", aka, X rays
- 1896 first medical uses of RT including treating breast tumors
- 1898 Marie Curie publishes her discovery of radioactivity in matter. Reports on its biological effects shortly after

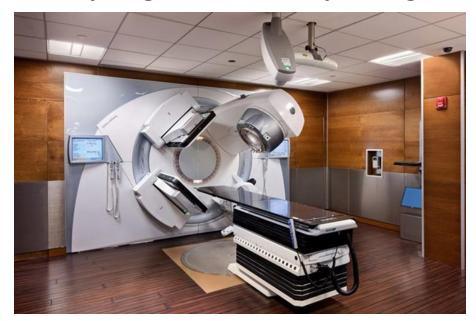
Wilhelm Roentgen

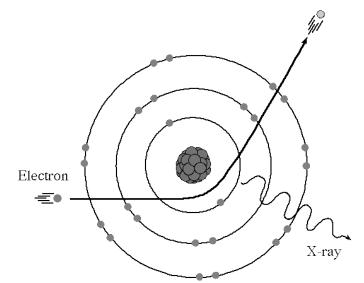
Marie Curie

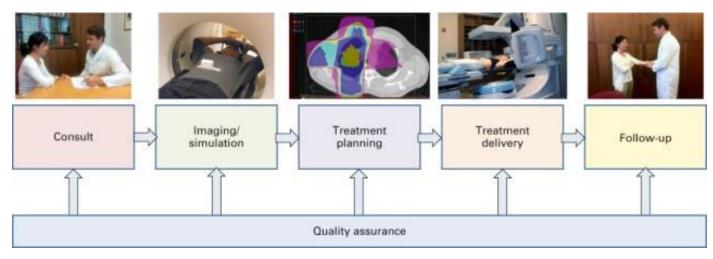
How RT works

- Causes DNA damage accumulation that leads to cell death
- Both healthy and cancer cells are susceptible to radiation damage, but cancer cells have a lesser ability to repair the damage

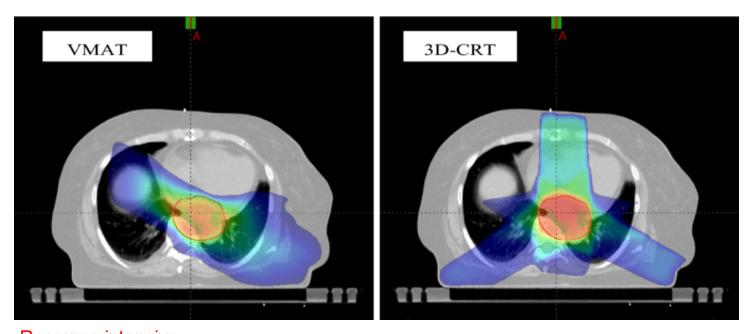
Radiosensitivity


- Different cell types in the body have different responsiveness to RT
- Organ damage is a function of dose and volume exposed


Radio- sensitivity	<u>Tissue</u>
Very low	Nervous system and muscles
Low	Nongrowing cartilage and bone, thyroid, pancreas, lungs, and kidneys
Medium	Growing cartilage, bone, and blood vessels
High	Lens, skin, cornea, bladder, uterus, and gastrointestinal tract (non-small intestines) Cataracts, 0.5 Gy Skin erythema, > 3-6 Gy
Very high	Testes, ovaries, bone marrow, lymphoid tissues, and small intestines • Male sterility, 0.15 Gy in one brief exposure (temporary or permanent)


How RT is delivered

 A linear accelerator accelerates an electron and smashes it into a highdensity target, where X-rays are generated


RT workflow

thoracickey.com

Different techniques for different cases

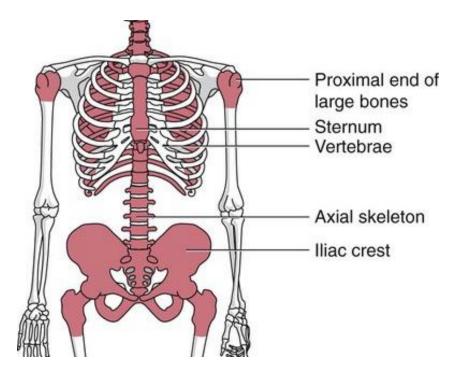
Resource intensive Longer planning (e.g., treatment delay) Better dose distribution, resulting in lower risk of side effects and/or higher doses

Typical prescriptions

- Gray (Gy) = unit of absorbed dose of radiation
- Fraction (fx) = individual treatment
- Palliative treatments are mostly 1 5 fractions of treatment
 - E.g.:
 - 8 Gy in 1 fx
 - 12 Gy in 1 fx
 - 20 Gy in 5 fx
 - 20 Gy in 1 fx
 - 30 Gy in 10 fx

Objectives

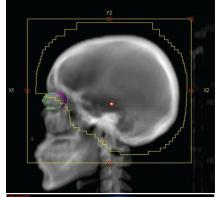
- Brief overview of radiation therapy (RT)
 - What is RT
 - How RT is planned and delivered
- How RT can help (and hurt) patients with metastatic cancer
 - Palliative RT
 - Metastasis-directed definitive therapy
- Supporting a patient with metastatic cancer undergoing RT


Palliative RT

- Bone pain
- Brain metastases
- Spinal cord compression / any nerve compression
- Bleeding masses
- Obstructive masses
- Other symptomatic tumors

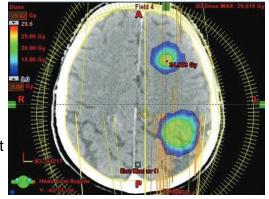
Bone pain

- 60-80% response rates to RT
- Full palliative effect typically takes several weeks
- Pain flares are possible (may signal a good pain response)
- Special considerations: bone marrow suppression depending on the site of treatment

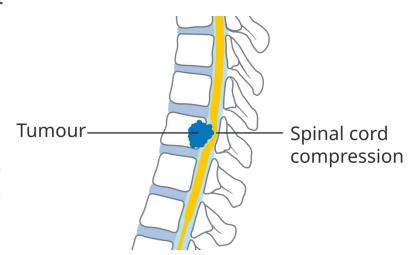

Active bone marrow distribution in adults
Oncohemakey.com

Brain metastases

Whole brain radiotherapy

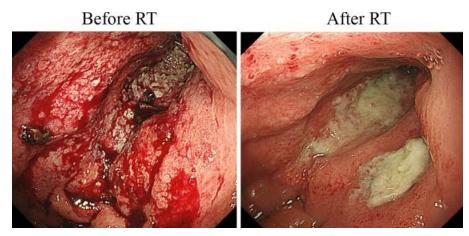

- Same-day treatment is possible
 - Higher toxicity
- Reserved for multiple mets and/or patients with poor prognosis

Stereotactic Radiosurgery (SRS)


- Many hurdles to doing emergently
- Resource-intensive
- May delay treatment
- Spares most of the radiographically uninvolved brain

Nerve compression (mostly spinal cord)

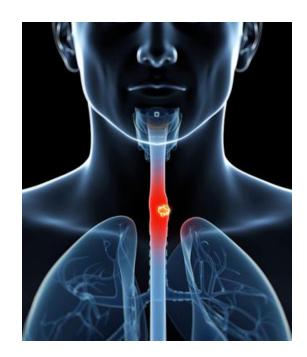
- Could be an emergency if sudden onset of neurologic deficits
- If diagnosis is known, always start steroids first while plan for surgery or radiotherapy is decided
 - If the type of cancer is not known, steroids could compromise pathologic confirmation



Hemostasis

- 80-90% response rates
- Decrease in bleeding as early as first treatment

- Considerations:
 - Alternatives: embolization by IR, surgical resection
 - Radiosensitivity of tumor

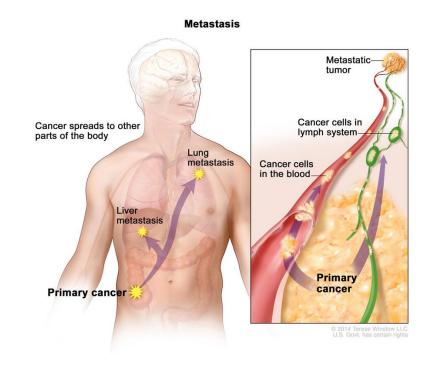


Effect of RT in a patient with hemorrhagic gastric cancer. Sugita, et al, J of Gl Cancer, 2021

Obstructive masses

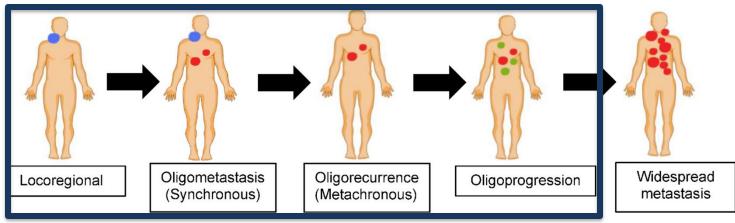
- Examples: esophagus, bowel, airway
- Typically, mild-moderate and temporary response to palliative RT
- Patients without widespread metastatic disease should be considered for more aggressive course, potentially chemo-RT

Other symptomatic tumors

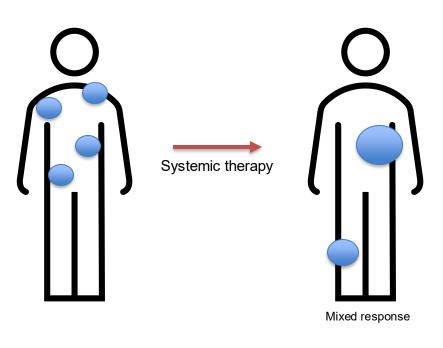

Objectives

- Brief overview of radiation therapy (RT)
 - What is RT
 - How RT is planned and delivered
- How RT can help (and hurt) patients with metastatic cancer
 - Palliative RT
 - Metastasis-directed definitive therapy
- Supporting a patient with metastatic cancer undergoing RT

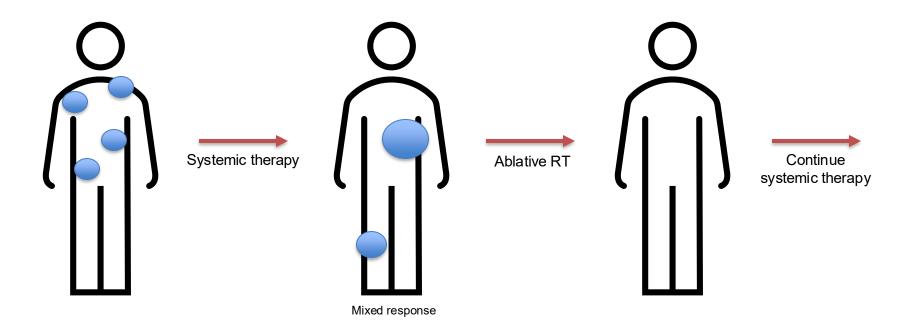
Hematogenous spread of cancers

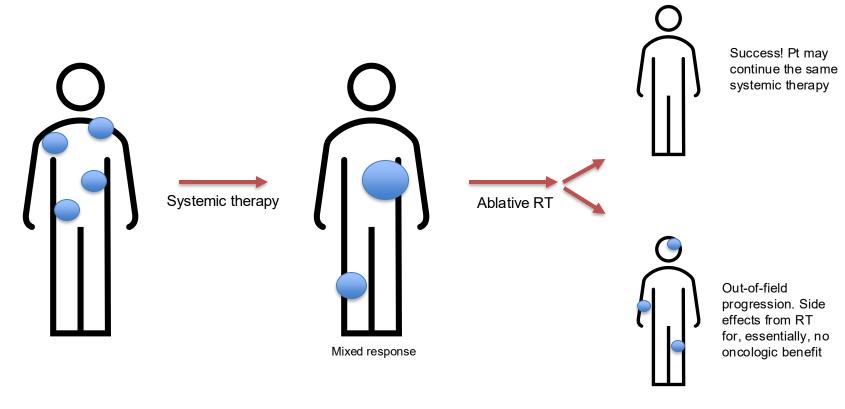

 Once a patient develops metastatic cancer, there are, potentially, innumerable microscopic reservoirs of tumor deposits as well as persistent cancer cells in circulation

Metastasis-directed therapy

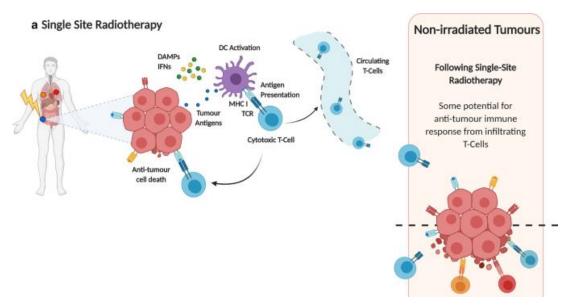

 For many cancers with few progressing lesions (typically considered ≤5), RT can improve outcomes and delay time to next systemic therapy

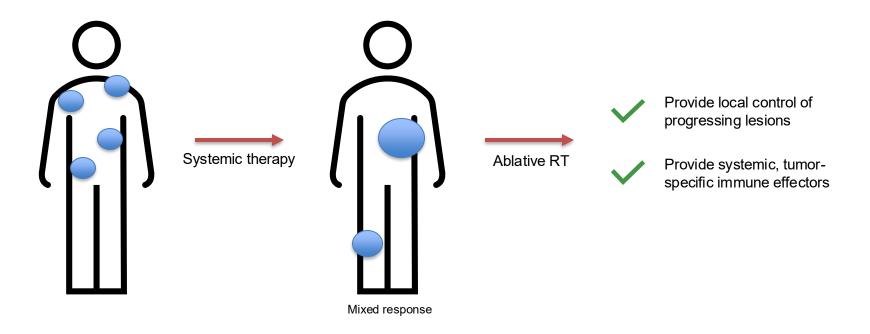
RT may delay further progression


Bahig, Cancers, 2022

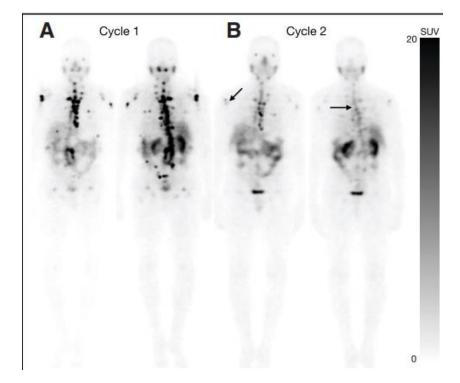


Was the treatment a failure? What's the next step?




Radiotherapy as an immune-modulator

Colton, et al, Radiation Oncology, 2020


Radiotherapy as an immune-modulator

Radiopharmaceuticals

- Cancer-specific ligands bound to a radioactive source, injected IV.
- E.g., Pluvicto, Xofigo, Lutathera.
- Requires extensive coordination and radiation safety protocols.

SPECT showing disease response to Pluvicto in a patient with metastatic prostate cancer. Yadav, J Nucl Med, 2024

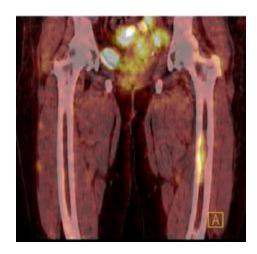
Objectives

- Brief overview of radiation therapy (RT)
 - What is RT
 - How RT is planned and delivered
- How RT can help (and hurt) patients with metastatic cancer
 - Palliative RT
 - Metastasis-directed definitive therapy
- Supporting a patient with metastatic cancer undergoing RT
 - Case studies

How to support a patient with metastases receiving RT

- Factors influencing toxicity: area being irradiated, overlapping prior RT, concurrent systemic therapy, volume of organs exposed to radiation, dose of radiation.
- Should we hold systemic therapy?
- Should we hold RT?
- Steroids (pain flare, mass effect in CNS, esophagitis), blood transfusions, neutropenic precautions, antiemetics, antidiarrheals, skin care (Aquaphor, barrier creams, Silvadene, Mepilex).

- 38 year old female presents to the ER with 3 month history of worsening vaginal bleeding. Hemoglobin 6 at presentation; she has symptoms of anemia including dizziness and excessive fatigue. Transfused 2 units of blood.
- Pelvic exam notable for bright red blood in the vaginal vault and a 7 cm friable mass at the cervix.
 - Exam under anesthesia was performed and bleeding sources were cauterized. Vagina was packed extensively.
- PET/CT scan shows multiple pulmonary, hepatic, and nodal mets.


- Not recommended:
 - Start systemic therapy hemorrhaging primary tumor is unlikely to have a sufficiently rapid response
 - Surgery morbidity likely not be justified in the setting of widely metastatic disease; could delay time to start systemic therapy
- Hospitalist consults IR and patient is taken to OR for feeding artery embolization. Unable to locate specific feeder; patient continues to bleed.
- Radiation Oncology is consulted. Patient starts treatment the next day.
 Bleeding improves after second treatment.

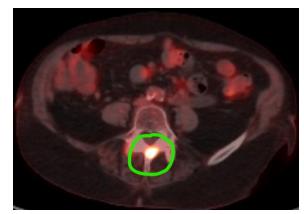
- Patient completes 10 fx of RT. Bleeding is reduced to occasional spotting.
- Develops dysuria and mild diarrhea
- Next: rule out UTI. May give Azo and/or tylenol for relief. Consider Imodium for diarrhea; may consider temporary low-residue diet if severe.

- 68 year old man with widely metastatic prostate cancer on hormonal deprivation therapy. Worsening left thigh pain for several weeks, now limiting mobility and increasing opioid use.
- Not a candidate for Pluvicto due to underlying CKD.


Ozdemir, MedNuc Im Mol, 2012

- Evaluated by Ortho who determines patient to be a poor candidate for surgery.
- RO sees patient. Starts treatment a couple of days after; 5 fx planned
- Severe increase in pain after fx 3.
- Next: start steroids (dexamethasone 4mg bid). Counsel on low weight bearing.

- 69 year old man with history of metastatic NSCLC on 3rd line of systemic therapy. He presents to the hospital with a 3-day history of headaches, confusion, and right hemiparesis.
- CTs of his body also show progression of disease.



- What to do?
 - Start steroids
 - Consult Neurosurgery?
 - Consult Radiation Oncology?
 - Discuss hospice?
- RO consulted. Whole brain radiotherapy was started on the same day.
- The patient struggled with nausea, vomiting, fatigue, and severe headaches.
- 2 weeks after treatment his neurologic symptoms improved, including left-sided hemiparesis.

- 86 year old man with history of locally advanced rectal adenocarcinoma treated 10 years prior. Incidentally found to have a lung nodule and L5 lesion; lung biopsy confirms metastatic rectal adeno.
 - No targetable mutations, low PD-L1 expression, low tumor mutational burden.

- Next step?
 - Chemo-immunotherapy?
 - Surgery?
 - RT?
 - Hospice?
- Patient elects for definitive RT. Develops fatigue that improves 3 weeks after finishing treatment.
- Remains disease free 6 months after RT.

When seeing a patient undergoing RT

- Always confirm whether concurrent systemic therapy is appropriate.
 - Radiosensitizing systemic therapy could increase the risk of toxicity.
- Don't forget to rule out important complications, potentially non-RT related: UTI, skin infections, metabolic/infectious encephalopathy.
- In palliative cases, steroids are your friends.
- Always feel free to reach out to treating Radiation Oncologist.

Thank you

