

The Dead-End Danger Zone

How Uncirculated Water in Distribution System Dead-Ends Can Pose a Health Threat to Consumers

2511 North 9th Street, St. Louis, MO 63102 www.hydrants.com / info@hydrants.com

800-231-3990

Kupferle Movie

STEP ONE: Recognizing the Threats

Dead-End Danger Zone Concern #1

Disinfectant Residuals Dissipation

- Disinfectant residuals can begin to dissipate within 200 hours in uncirculating water*
- On average, free chlorine dissipates at a rate of 1.5 ppm per week,
 chloramines at a rate of .625 ppm per week (after the initial 200 hours)
- Other factors such as pH and temperature can accelerate this rate of dissipation
- Once disinfectant residuals fall below minimum levels (.2 ppm), they become ineffective in controlling the growth and spread of microbial pathogens**

Dead-End Danger Zone Concern #2

CAUTION!

Rising Disinfectant Byproducts

- Disinfectant Byproducts (DBPs) form when naturally occurring organic material in water comes in contact with chlorine, transforming them into toxins such as TTHMs and HAAs[†]
- DBPs, when consumed, have been shown to cause health related issues, such as atherosclerosis (heart disease), kidney and/or liver cancers. Some recent studies have shown a connection with DBPs and Alzheimer's disease as well.
- DBPs can begin to form in water in as little as 4-7 days⁺⁺

^{* &}quot;Optimizing Distribution System Water Quality", an AWWA Webcast – January 2010

^{**} EPA Guidelines for residual level s are 4.0 mg/L (ppm) maximum, .5 mg/L (ppm) minimum

[†] EPA Guidelines for DBPs is .080 mg/L (ppm) for Trihalomethanes (TTHMs) and .060 mg/L (ppm) for Haloacetic Acids (HAAs)

^{††} How Old Is Too Old for Distribution System Water?, Opflow, March 2011

STEP TW0: Identifying Hazardous Dead-Ends

Water Quality Analysis Tools

• Dead-End Water Quality Specification Booklet

- Horizontal Axis = Length of dead-end main
- Vertical Axis = Number of service connections
- Worksheet Window = Number for water turnover in days
- Color coded to easily identify water quality status

Provided upon request 800-231-3990 / info@hydrants.com

Water Quality Spreadsheet Calculator

- Easy to use, just input data in color coded cells
- Automatically calculates results for water age
- Provides suggested flushing times for problem dead-ends

FREE download at www.hydrants.com

How Safe is the Water on Your Dead-Ends? Intert Information about Your Guest-End(s) before to Find Out Step One: One- your pile doe in Indian (S. 6. 8 50 or 13) Step One: One- your pile doe in Indian (S. 6. 8 50 or 13) Step TWO: Enser the weight of your double of authorities in miles. Step TWO: Enser the weight of your double of authorities in miles. Step TWO: Enser the weight of your double of authorities in miles. Step Three: Enser the of Market in Pipe (negatives) 84,239 Step Three: Enser the of Market (Connections with a water flaw) Amount of Uncirculated Water (negatives) 76,319 Amount of Uncirculated Water (negatives) 8 of Days to Consume Uncirculated Water (negatives) 10 Step Three: Enser the Step Three of the Pipe Step Three of Days (Negative Step Three of Days) 10 Step Three: Enser the Step Three of Days (Negative Step Three of Days) 10 Step Three: Enser the Step Three of Days (Negative Step Three of Days) 10 Step Three: Enser the Step Three of Days (Negative Step Three of Days) 10 Step Three: Enser the Step Three of Days (Negative Step Three of Days) 10 Step Three: Enser the Step Three of Days (Negative Step Three of Days) 10 Step Three: Enser the Step Three of Days (Negative Step Three of Days) 10 Step Three: Enser the Step Three of Days (Negative Step Three of Days) 10 Step Three: Enser the Step Three of Days (Negative Step Three of Days) 10 Step Three: Enser the Step Three of Days (Negative Step Three One) 10 Step Three: Enser the Step Three of Days (Negative Step Three One) 10 Step Three: Enser the Step Three of Days (Negative Step Three One) 10 Step Three: Enser the Step Three O

Complete Distribution Dead-End Analysis

- Customer provides information on distribution dead-ends
- Kupferle provides a comprehensive distribution dead-end analysis
- Color-coded report sorts dead-ends by water age/quality
- Report includes recommendations for aging water issues

For a FREE comprehensive analysis of your distribution system dead-ends contact us at 800-231-3990/info@hydrants.com

ABC Water Company						
CRITICAL						
						Recommended Daily
Pipe Size						Flush Times
		124,886		112,646		54
						47
						17
						35
				106,806		60
HIGH						
	Dead-End Length in		# of Service	Total Uncirculated	# Days for Water	Recommended
Pipe Size	Miles	Total Water Volume	Connections	Water	Recycling	Flush Times
6	5,4	41,855	16	36,095	6	13
4	10.3	35,484	12	31,164	7	13
4	2.6	8,957	5	7,157	4	1
6	6.7	51,932	23	43,652	5	13
8	8.1	111,610	41	96,850	7	38
MODERATE						
	Dead-End Length in		# of Service	Total Uncirculated	# Days for Water	Recommended
Pipe Size	Miles	Total Water Volume	Connections	Water	Recycling	Flush Times
4	2.4	8,268	9	5,028	2	-3
6	3.8	29,454	19	22,614	3	1
4	5.1	17,570	12	13,250	3	0
4	4.7	16,192	11	12,232	3	0
6	6.2	48,056	41	33,296	2	-8
SAFE						
	Dead-End Length in		# of Service	Total Uncirculated	# Days for Water	Recommended
Pipe Size	Miles	Total Water Volume	Connections	Water	Recycling	Flush Times
		14,814		2,934		-23
10	2.1	45,217	53	26,137		-22
		44,181	88	12,501		-59
	9.1	125,389	143	73,909		-58

Portable Intelligent Monitoring and Flushing Station

- Attaches to an existing fire hydrant or blow-off using a 2½ NST connection
- Amperometric chlorine analyzer and Programmable Logic Controller
- Residual and flushing data retrieved manually or transmitted to SCADA
- Analytic tool that can provide valuable data for addressing water quality issues

STEP THREE: Solutions To Address Problems

Intelligent Monitoring & Flushing Stations

- Designed for critical zones or areas that require constant residual /DBP maintenance
- Installs directly onto dead-end water main (line, solar and turbine power options)
- Built-in Programmable Logic Control (PLC) and Amperometric Chlorine Analyzer
- Analyzes residuals and compares to programmed minimum level
- Automatically flushes when residuals are below programmed minimum level
- Flushes exact amount of water needed to reach programmed desired residual level
- Residual and flushing data can be retrieved manually or transmitted to SCADA
- Import data into a pre-formatted spreadsheet that includes tables, charts and graphs
- Keeps water safe utilizing technology for the ultimate water flushing efficiency!

Eclipse i-Series 9800i GENESIS

Automatic Flushing Stations

- Designed for critical or high risk dead-ends requiring year-round residual/DBP maintenance
- Provides programmable flushing times to keep residuals consistent and remove aging water
- Includes programmable hand-held controller (9-volt battery operated)
- Adjustable solenoid-valve flushes up 150 to 200 gpm (1" and 2" models)
- Above or below grade discharge models available
- Warm and freezing climates models, with lockable UV resistant enclosures
- Keeps water safe for consumers, while saving time, water and money!

Eclipse 9800WC

Eclipse 9400

Portable Automatic Flushing Stations

- Designed for high or moderate risk dead-ends requiring periodic residual/DBP maintenance
- Attaches to existing fire hydrants or any 2½" NST blow-off
- Provides programmable flushing times to keep residuals consistent and remove aging water
- Includes programmable hand-held controller (9-volt battery operated)
- Adjustable solenoid-valve flushes up to 200 gpm (1" and 2" models)
- Lockable powder-coated aluminum enclosure
- Keeps water safe for consumers, while saving time, water and money!

Eclipse 9700

Manual Blow-Offs

- Designed for moderate or safe dead-ends requiring annual or infrequent residual/DBP maintenance
- Easy to operate and repairable/maintainable from above ground no digging!

Eclipse #2 MainGuard #77

• 2" and 4" sizes, above and below grade, warm and cold (self-draining) models available for a variety of applications

MainGuard #7500