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Properties of Baryons in the Chiral Quark Model
Tommy Ohlsson
Teoretisk fysik, Institutionen för fysik, Kungliga Tekniska Högskolan
SE-100 44 Stockholm
SWEDEN
E-mail: tommy@theophys.kth.se

Abstract

In this thesis, several properties of baryons are studied using the chiral quark
model. The chiral quark model is a theory which can be used to describe low
energy phenomena of baryons.

In Paper 1, the chiral quark model is studied using wave functions with
configuration mixing. This study is motivated by the fact that the chiral quark
model cannot otherwise break the Coleman–Glashow sum-rule for the magnetic
moments of the octet baryons, which is experimentally broken by about ten
standard deviations. Configuration mixing with quark-diquark components is
also able to reproduce the octet baryon magnetic moments very accurately.

In Paper 2, the chiral quark model is used to calculate the decuplet baryon
magnetic moments. The values for the magnetic moments of the ∆++ and Ω−

are in good agreement with the experimental results. The total quark spin
polarizations are also calculated and are found to be significantly smaller than
the non-relativistic quark model results.

In Paper 3, the weak form factors for semileptonic octet baryon decays are
studied in the chiral quark model. The “weak magnetism” form factors are
found to be consistent with the conserved vector current (CVC) results and
the induced pseudotensor form factors, which seem to be model independent,
are small. The results obtained are in general agreement with experiments and
are also compared with other model calculations.

Key words: Chiral quark model, baryons, configuration mixing, magnetic
moments, Coleman–Glashow sum-rule, spin structure, spin polarizations, weak
form factors, semileptonic decays.
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Preface

This thesis is a result of my research work at the Division of Mathematical
Physics, Theoretical Physics, Department of Physics, Royal Institute of Tech-
nology in Stockholm during the years 1996-1997.

The thesis consists of two parts. The first part is a summary of the theory
of the field of my research. The summary is intended to introduce the reader
to the field and to put the research into its context. The second part contains
a collection of my papers (i.e. scientific articles) in which my research work
and the results thereof are presented.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) is the present theory of the strong inter-
action. The particles of QCD, quarks and gluons, are interacting with each
other with a strength denoted αs, the strong coupling constant. The coupling
constant αs is, however, not a constant, but a “running” coupling constant,
that varies with energy, see Fig. 1.1.

Figure 1.1: The running coupling constant αs. The plot shows measurements
of αs, plotted against the momentum scale Q at which the measurements were
made. The figure has been obtained from the book by M. E. Peskin and D. V.
Schroeder [1].

1



2 Chapter 1. Introduction

At high energies, when αs is small, QCD can be used perturbatively, but
at low energies, when αs becomes large, this is no longer possible.

Since perturbative QCD breaks down at low energies, one has to use other
methods, such as QCD lattice techniques or effective Lagrangian models, to
describe physics in this energy region.

The non-relativistic quark model (NQM) is a simple model for describing
properties of hadrons (particles which are bound states of quarks) in the low
energy region. The NQM gives very good results for the masses of the hadrons,
but only moderate results for the magnetic moments and the weak form factors,
and fails to describe the spin structure of baryons.

When describing properties of hadrons at low energies, it has been known
since long that it is important to incorporate spontaneous chiral symmetry
breaking in the theory. One model for describing such a property is the chiral
quark model (χQM).

The χQM is an effective chiral field theory approach for describing structure
and properties of hadrons and especially baryons at low energies. In this model
the appropriate degrees of freedom are quarks, gluons, and Goldstone bosons.

The χQM has been suggested to replace the NQM, which is a too simple
model. We are therefore going to describe and discuss the χQM and various
extensions of this model, which can better account for properties of baryons.
Properties that can be calculated with the χQM are e.g. magnetic moments,
spin polarizations, form factors, and mass spectra.

The background material for my research is presented in the following chap-
ters and the research results can be found in the three papers at the end of this
thesis.



Chapter 2

A Survey of Baryons

This chapter is a survey of the particles having strong interaction. These parti-
cles are called hadrons. The hadrons are divided into mesons, which are bosons
(integer spin particles) with baryon number 0, and baryons, which are fermions
(1
2 -integer spin particles) with baryon number different from 0. Especially the

baryons will be discussed in some detail, since the physical properties of the
baryons are one of the main topics in this thesis.

The hadrons that are known all fall into multiplets that reflect underlying
internal symmetries. To account for this in a simple way, it was suggested
that hadrons are composed of more elementary particles with certain basic
symmetries, called quarks [2, 3]. The quarks are fermions with spin 1

2 . There
are at present believed to be six different kinds of quarks or flavors. These
are denoted u (’up’), d (’down’), s (’strange’), c (’charm’), b (’bottom’), and t
(’top’). The u, c, and t have charge 2

3 and the d, s, and b have charge − 1
3 . The

first three quarks u, d, and s are called light quarks and in what follows of this
thesis only these quarks will be discussed.

The actual existence of quarks has only been indirectly confirmed by exper-
iments that probe hadronic structure by means of electromagnetic and weak
interactions. The reason why quarks cannot be studied directly is due to quark
confinement.

Internal symmetries refer to the fact that particles come in families, called
multiplets, which have degenerate or nearly degenerate masses. Each multiplet
is looked upon as a realization of an irreducible representation of an internal
symmetry group. Such groups are identified by the patterns of experimentally
observed multiplets. If the masses in a multiplet are not exactly equal to
each other, then the associated symmetry is said to be only an approximate
symmetry. Among the hadrons which consist of the light quarks, the internal
symmetries Q (charge), I (isospin), B (baryon number), and S (strangeness)

3



4 Chapter 2. A Survey of Baryons

are since long recognized. These symmetries have varying degrees of exactness
in nature.

The hypercharge is defined by

Y ≡ B + S, (2.1)

and I3, the third component of isospin I, is related to the electric charge Q by
the empirical relation

Q = I3 +
Y

2
, (2.2)

called the Gell-Mann–Nishijima relation.
In addition to already mentioned quantum numbers, quarks also possess

the quantum number color. Experiments indicate that there should be three
different colors. These are denoted by r (’red’), g (’green’), and b (’blue’). Any
physical state must be a color singlet, since color is confined. This immediately
implies that the number of quarks making up a baryon must be three or divisible
by three.

Three quarks q1, q2, and q3 can bind together to form a baryon (q1q2q3).
Similarly, a quark q1 and an antiquark q̄2 can bind together to form a meson
(q1q̄2).

Since quarks have spin one-half, the baryon and meson ground state con-
figurations can carry the spin quantum numbers J = 1

2 ,
3
2 and J = 0, 1, respec-

tively. There are also excited states of baryons and mesons which have other
spin quantum numbers.

If the mass difference between strange and non-strange quarks are neglected,
then in the language of group theory, the three light quarks (u, d, s) belong
to the fundamental representation (denoted 3) of SU(3), sometimes denoted
SU(3)flavor, whereas the antiquarks belong to the conjugate representation (de-
noted 3∗). The qqq and qq̄ constructions then involve the following group
representation products

3 ⊗ 3⊗ 3 = 10⊕ 8⊕ 8 ⊕ 1, (2.3)

3⊗ 3∗ = 8⊕ 1. (2.4)

Thus baryons appear as decuplets, octets, and singlets, whereas mesons appear
as octets and singlets.

Finally, quarks and antiquarks transform as triplets and antitriplets of the
color SU(3) gauge group, sometimes denoted SU(3)color, and all baryons and
mesons are color singlets.

The octet baryons have spin 1
2 and the decuplet baryons have spin 3

2 . The
weight diagrams for the baryon octet and the baryon decuplet are shown in
Figs. 2.1 and 2.2, respectively.
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Figure 2.1: The JP = 1
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octet of baryons.

In this thesis only baryons which consist of the light quarks (u, d, s) will be
discussed. In Papers 1 and 3 we study the octet baryons and in Paper 2 we
study the decuplet baryons.

2.1 The Non-Relativistic Quark Model

The non-relativistic quark model (NQM) attempts to describe the properties
of light hadrons as a composite system of the u, d, and s valence quarks.

Let us first consider the masses of the octet and decuplet baryons. The
degenerate isospin multiplet masses of the baryons are presented in Table 2.1.

We observe that there is a mass difference between the Λ and Σ0, although
they are built up from the same quark flavors (see Fig. 2.1). This has to do
with the fact that Λ is an isosinglet and Σ0 is a member of an isotriplet.

In the NQM the baryon masses can be described by the following simple
mass formula with a hyperfine coupling term [5, 6]

m(B(q1q2q3)) = mq1
+mq2

+mq3
+h

(
sq1

· sq2

mq1
mq2

+
sq2

· sq3

mq2
mq3

+
sq3

· sq1

mq3
mq1

)
, (2.5)

where mqi
and sqi

are the (constituent) mass and spin of the quark qi, respec-
tively. The hyperfine term accounts for the difference in quark spin structure
between Λ and Σ, thereby giving them different masses.
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Figure 2.2: The JP = 3
2

+
decuplet of baryons.

We will here assume that the u and d quarks have the same mass. The u
and d quarks are sometimes called non-strange quarks. The mass of the non-
strange quarks is m and the mass of the strange quark s is ms. The parameter
h is a measure of the hyperfine coupling strength.

By fitting the quark masses m and ms and the hyperfine parameter h to the
baryon masses, one can obtain excellent results (the masses are within about
1 %) [7]. See, e.g. Refs. [5, 6, 8] for results.

The parameter values from the fit are

m ≈ 363 MeV, (2.6)

ms ≈ 538 MeV, (2.7)

and
h

4m2
≈ 50 MeV. (2.8)

A similarly good fit can also be obtained for the mesons.
Despite the success with the NQM for calculating the baryon masses, one

is not able to obtain the magnetic moments and the weak axial-vector form
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Particle Mass (MeV)

N (p and n) 939
Λ 1116
Σ (Σ+, Σ0, and Σ−) 1193
Ξ (Ξ0 and Ξ−) 1318
∆ (∆++, ∆+, ∆0, and ∆−) 1232

Σ∗ (Σ∗+, Σ∗0, and Σ∗−) 1385

Ξ∗ (Ξ∗0 and Ξ∗−) 1533
Ω 1672

Table 2.1: The degenerate isospin multiplet masses of the baryons. Data have
been obtained from Ref. [4].

factors with the same accuracy.
For baryons, flavor and spin may be combined in an approximate flavor-spin

SU(6) symmetry, in which the six basic quark states are u↑, u↓, d↑, d↓, s↑, and
s↓. Consider now the proton SU(6) wave function [9]:

|p↑〉 =
1√
18
ǫijk

(
u↓i

†
d↑j

† − u↑i
†
d↓j

†)
u↑k

†|0〉. (2.9)

When calculating physical quantities, many terms in this wave function yield
the same contributions. Hence one can often use the following simplified SU(6)
wave function for the proton

|p↑〉 =
1√
6

(
2|u↑u↑d↓〉 − |u↑u↓d↑〉 − |u↓u↑d↑〉

)
, (2.10)

where color and permutations in flavor have been suppressed. From this wave
function one can count the number of quark flavors with spin parallel and
antiparallel to the total spin of the proton. The result of the counting is

nu↑(p) =
5

3
, nu↓(p) =

1

3
, nd↑(p) =

1

3
, nd↓(p) =

2

3
. (2.11)

These numbers are the eigenvalues of the quark number operator with respect
to helicity and they also sum up to two u quarks and one d quark. From
the differences, which are exactly the expectation values of twice the quark
spin operator, one obtains the contribution by each of the quark flavors to the
proton helicity. The differences are

∆up =
4

3
, ∆dp = −1

3
, ∆sp = 0. (2.12)
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The sum of these differences is ∆Σp = ∆up + ∆dp + ∆sp = 1. (Sometimes also
the notations ∆u, ∆d, ∆s, and ∆Σ will be used for the proton.) In the next
chapter we will discuss experimental results for these differences. We will see
that they differ a lot from the above NQM values.

The experimentally measured magnetic moments of the octet baryons are
presented in Table 2.2.

Particle Magnetic moment (µN )

p 2.79 ± 0.00
n −1.91 ± 0.00
Λ −0.61 ± 0.01

Σ+ 2.46 ± 0.02
Σ0 -
Σ− −1.16 ± 0.03
Ξ0 −1.25 ± 0.02
Ξ− −0.65 ± 0.01

Table 2.2: The magnetic moments of the octet baryons. Data have been ob-
tained from Ref. [4] and are given in units of the nuclear magneton, µN .

In the NQM, the magnetic moments of the octet baryons can be parame-
terized as [5, 8]

µ(p) = ∆uµu + ∆dµd + ∆s µs, (2.13)

µ(n) = ∆uµd + ∆dµu + ∆s µs, (2.14)

µ(Σ+) = ∆uµu + ∆dµs + ∆s µd, (2.15)

µ(Σ−) = ∆uµd + ∆dµs + ∆s µu, (2.16)

µ(Ξ0) = ∆uµs + ∆dµu + ∆s µd, (2.17)

µ(Ξ−) = ∆uµs + ∆dµd + ∆s µu, (2.18)

µ(Λ) = µs, (2.19)

µ(Σ0) =
1

2

(
µ(Σ+) + µ(Σ−)

)
, (2.20)

where in the first six formulas the factors ∆u = 4
3 , ∆d = − 1

3 , and ∆s = 0
are the differences in Eq. (2.12) and µu, µd, and µs are the quark magnetic
moments.

Because of the assumption of isospin symmetry mu = md, one has µu =
−2µd. Using this, the proton and neutron magnetic moments are reduced to
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µ(p) = −3µd and µ(d) = 2µd, and thus the ratio between them is

µ(p)

µ(n)
= −1.5, (2.21)

which is close to the experimental value of −1.46.
Furthermore, we have seen from the fit to the baryon masses that ms is

about 3/2 times heavier than m, i.e. ms

m ≃ 3
2 . Thus, we can make the approx-

imation µs = 2
3µd. This means that the formulas for the magnetic moments of

the octet baryons can all be expressed in terms of the magnetic moment of the
d quark, µd.

However, when we fit the NQM formulas for the octet baryon magnetic
moments to the experimental data, we obtain results which are of the right
order, but still far from good (the magnetic moments are within about 25 %).
See, e.g. Ref. [8] for results. The parameter value for the magnetic moment of
the d quark from the fit is

µd ≈ −0.9µN , (2.22)

where µN ≡ 1
2Mp

is the nuclear magneton (Mp is the mass of the proton). The

magnetic moments of the quarks can be introduced as [6]

µu =
2

3

1

2m
, µd = −1

3

1

2m
, and µs = −1

3

1

2ms
. (2.23)

Using these magnetic moments, we obtain the following masses

m ≈ Mp

3 · 0.9
≈ 348 MeV and ms =

3

2
m ≈ 522 MeV, (2.24)

which are slightly smaller, but entirely compatible with the constituent quark
mass values obtained by fitting the baryon masses.

Let us next discuss the weak axial-vector form factor for the neutron-proton
transition, which is the matrix element of the quark axial-vector current op-
erator. This matrix element, denoted gnp

A , is essentially the matrix element
of σz between the neutron and the proton. Experimentally, this is gnp

A
exp

=
1.2601±0.0025. With the NQM, the value is gnp

A = ∆up−∆dp = 5
3 ≈ 1.67. As

we see, the NQM value is far from the experimental value. This is yet another
indication that the NQM does not provide a good description of physics.

It seems that we have to abandon the NQM for a more realistic model.
In Chapter 4, we are going to discuss the χQM. With this model we are

able to obtain magnetic moments and weak axial-vector form factors, which
are very accurate. But first, in the next chapter, we will set up a more general
framework for calculating different properties of the baryons.
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Chapter 3

Properties of Baryons

In this chapter some of the most important properties of baryons are discussed.
Here the discussion will be more general than in the previous one for the NQM,
so that we will be able to apply this on the χQM in the next chapter. In the
last section of this chapter we will discuss the concept of ū-d̄ asymmetry, which
is not present at all in the NQM, but as we will see in the χQM. Definitions for
the properties that have been used in the scientific articles are also given here.

3.1 Spin Structure and Spin Polarizations

The NQM can be successfully used to predict the masses of hadrons and es-
pecially the baryons, but it fails to give a good description of the quark spin
structure of these particles.

In the NQM, we have the following quark spin polarizations for the proton

∆u =
4

3
, ∆d = −1

3
, ∆s = 0, and ∆Σ = 1. (3.1)

In 1988 the European Muon Collaboration (EMC) [10,11] announced that
it had measured the fraction of the proton spin carried by the quarks ∆Σ to
be ∆Σ ≈ 0, and also ∆s 6= 0. This was the beginning of what was to be called
the “nucleon spin crisis”. A lot of activity has been going on since then in this
field, and the present experimental results may be summarized as [12]

∆u = 0.83 ± 0.03, (3.2)

∆d = −0.43 ± 0.03, (3.3)

∆s = −0.10 ± 0.03, (3.4)

∆Σ = 0.31 ± 0.07. (3.5)

11
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The E143 Collaboration [13] has found the total contribution from all quarks to
be ∆Σ = 0.30±0.06, and the contribution from strange quarks and antistrange
quarks to be ∆s = −0.09 ± 0.02. They are the most precise determinations to
date and are consistent with the earlier results [12].

Note that ∆Σ = 1 means that the spin is carried by the quarks alone. If
∆Σ < 1, then the remainder of the spin must be carried by something else.
The remaining spin could be built up from other components, such as orbital
motion of the quarks, so called collective effects, and, if in the relevant energy
region, also gluons.

Let us now define the spin structure and the quark spin polarizations gen-
erally for a baryon.

The spin structure of a baryon B is described by the function B̂, which is
defined by

B̂ ≡ 〈B↑|N |B↑〉, (3.6)

where |B↑〉 is the wave function and N is the number operator

N = Nu↑ û↑ +Nu↓ û↓ +Nd↑ d̂↑ +Nd↓ d̂↓ +Ns↑ ŝ↑ +Ns↓ ŝ↓.

Using the definition (3.6) together with the number operator, it follows that

B̂ = nx↑(B)x̂↑+nx↓(B)x̂↓+ny↑(B)ŷ↑+ny↓(B)ŷ↓+nz↑(B)ẑ↑+nz↓(B)ẑ↓, (3.7)

where the coefficient nq↑↓(B) of each symbol q̂↑↓ should be interpreted as the
number of q↑↓ quarks.

The quark spin polarization, ∆qB , where q = u, d, s, is defined as

∆qB ≡ 〈B↑|σq
z |B↑〉 = nq↑(B) − nq↓(B), (3.8)

where the σq
z is the Pauli spin matrix of the quark q. If there are antiquarks in

the baryons, then one has to redefine the quark spin polarization as

∆qB ≡ ∆B
q + ∆B

q̄ , (3.9)

where ∆B
q = nq↑(B) − nq↓(B) and ∆B

q̄ = nq̄↑(B) − nq̄↓(B). Thus the quark
spin polarizations are the sum of the quark and antiquark polarizations.

The total spin polarization of a baryon B (the spin fraction carried by the
quarks in the baryon) is given by

∆ΣB = ∆uB + ∆dB + ∆sB . (3.10)

In Papers 1 and 2 we investigate the quark spin polarizations for different
types of baryons. In Paper 1 we study the octet baryons, and in Paper 2 the
decuplet baryons.
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3.2 Magnetic Moments

The magnetic moment for a baryon B is defined as the expectation value of the
z component of the magnetic moment operator with maximal spin projection
along the z axis

µ(B) ≡ 〈B; J, Jz = J |µz |B; J, Jz = J〉, (3.11)

where µz is the z component of the magnetic moment operator. Eq. (3.11) can
also be written as

µ(B) =
∑

q=u,d,s

〈B|µqσ
q
z |B〉, (3.12)

where
µq =

eqgq

4mq

is the magnetic moment of the quark q and σq
z is the Pauli spin matrix of the

quark q. The parameters eq, gq, and mq are the electric charge, the gyromag-
netic ratio, and the mass for the quark q, respectively. For the light quarks
eu = 2

3 and ed = es = − 1
3 . The gyromagnetic ratio for a quark is about 2,

since a quark has spin 1
2 . We will use gq = 2, for q = u, d, s, which means that

µq = eq
1

2mq
. (3.13)

Using the right hand side of Eq. (3.12), the magnetic moment of a baryon
B can be expressed by

µ(B) =
∑

q=u,d,s

∆qBµq = ∆uBµu + ∆dBµd + ∆sBµs. (3.14)

If there are antiquarks in the baryon, then one has to rewrite Eq. (3.14) as

µ(B) =
∑

q=u,d,s

(
∆B

q µq + ∆B
q̄ µq̄

)
=

∑

q=u,d,s

(
∆B

q − ∆B
q̄

)
µq ≡

∑

q=u,d,s

∆̃q
B
µq,

(3.15)

since µq̄ = −µq. Note that if ∆B
q̄ = 0, then ∆̃q

B
= ∆qB = ∆B

q .
Using the magnetic moment formulas for the octet baryons p, n, Σ−, Σ+,

Ξ0, and Ξ−, one can show the so called Coleman–Glashow sum-rule for the
octet baryon magnetic moments

µ(p) − µ(n) + µ(Σ−) − µ(Σ+) + µ(Ξ0) − µ(Ξ−) = 0. (3.16)

In Section 4.3 we will discuss this sum-rule further in the framework of the
χQM.
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In Paper 1 we study the magnetic moments of the octet baryons in the
χQM. In both Paper 2 and 3 we use various quantities obtained in Paper 1. In
Paper 2 we extend our model for the octet baryon magnetic moments to the
decuplet baryon magnetic moments. As input in Paper 2 we use the parameters
obtained in different fits in Paper 1. We obtain magnetic moments for the ∆++

and Ω−, which are in good agreement with experimental data. In Paper 3 we
calculate weak form factors for semileptonic octet baryon decays. These form
factors will be discussed in the next section.

3.3 Weak Axial-Vector Form Factors

The weak axial-vector form factors of the semileptonic baryon decays are an
important set of parameters for the investigation of the quark spin structure
of the baryons.

The matrix element of the weak V-A current, Jweak = JV − JA, for the
semileptonic decays B → B′ + l− + ν̄l can be written to lowest order as

〈B′|Jµ
weak|B〉 = ū′

(
fQM
1 γµ − gQM

1 γµγ5
)
u, (3.17)

where u (u′) and |B〉 (|B′〉) are the Dirac spinor and external baryon state of

the initial (final) baryon B (B′), respectively. The fQM
1 is the SU(6) quark

model vector form factor and the gQM
1 is the SU(6) quark model axial-vector

form factor.
The weak axial-vector form factor GA is defined by

GA ≡ gQM
1

fQM
1

. (3.18)

A matrix element between two octet baryon states, B and B′, of the weak
hadronic current j, that transforms as an octet under SU(3), has the general
form

〈B′
i|jj |Bk〉 = ifijkF + dijkD, (3.19)

where fijk are the totally antisymmetric structure constants of SU(3) and dijk

are the corresponding constants which are totally symmetric. The axial-vector
parameters F and D are the only parameters needed to express all such matrix
elements. This means that all GA’s can be expressed in terms of the two
axial-vector parameters F and D [14].

Expressed in the parameters F and D they are [15]

Gnp
A = F +D (3.20)

GΣ−Σ0

A = F (3.21)
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gQM
1

Σ±Λ
=

√
2

3
D (3.22)

GΞ−Ξ0

A = F −D (3.23)

for the ∆S = 0 decays and

GΣ−n
A = F −D (3.24)

GΞ−Σ0

A = F +D (3.25)

GΞ−Λ
A = F − D

3
(3.26)

GΛp
A = F +

D

3
(3.27)

GΞ0Σ+

A = F +D (3.28)

for the ∆S = 1 decays. The Σ0 → Σ+ + l− + ν̄l and Σ0 → p + l− + ν̄l

decays cannot be observed, since the electromagnetic decay Σ0 → Λ + γ is
predominant. The corresponding GA’s are therefore not listed above. See
Fig. 3.1 for all possible semileptonic octet baryon decays.

The axial-vector parameters F and D are related to the quark spin polar-
izations of the proton by the following definitions

∆u− ∆d ≡ F +D, (3.29)

∆u+ ∆d− 2∆s ≡ 3F −D, (3.30)

where as before the quantities ∆u, ∆d, and ∆s are the proton quark spin
polarizations. These relations can be found in e.g. Refs. [16, 17]. Solving
Eqs. (3.29) and (3.30) for the parameters F and D expressed in ∆u, ∆d, and
∆s, one obtains

F =
1

2
(∆u− ∆s), (3.31)

D =
1

2
(∆u− 2∆d+ ∆s). (3.32)

Using the relations (3.31) and (3.32), the GA’s can be rewritten as

Gnp
A = ∆u − ∆d (3.33)

GΣ−Σ0

A =
1

2
(∆u− ∆s) (3.34)

gQM
1

Σ±Λ
=

1√
6

(∆u− 2∆d+ ∆s) (3.35)

GΞ−Ξ0

A = ∆d− ∆s (3.36)
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Ξ− Ξ0

Σ0

Σ− Σ+

∆S = 1
∆S = 0

n p

Λ

Figure 3.1: The semileptonic octet baryon decays.

for the ∆S = 0 decays and

GΣ−n
A = ∆d− ∆s (3.37)

GΞ−Σ0

A = ∆u − ∆d (3.38)

GΞ−Λ
A =

1

3
(∆u+ ∆d− 2∆s) (3.39)

GΛp
A =

1

3
(2∆u− ∆d− ∆s) (3.40)

GΞ0Σ+

A = ∆u − ∆d (3.41)

for the ∆S = 1 decays. Some of these GA’s can be found in Ref. [18].
We now calculate those weak axial-vector form factors that have been ex-

perimentally measured. Inserting the NQM values of the proton quark spin
polarizations in the above formulas for Gnp

A , GΣ−n
A , GΞ−Λ

A , and GΛp
A , we ob-

tain results which are presented in Table 3.1 together with the corresponding
experimental values.

We observe that the GA’s are not within the experimental errors, except
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Decay Experiment NQM

n→ p 1.26 ± 0.01 5
3 ≈ 1.67

Σ− → n −0.34 ± 0.02 − 1
3 ≈ −0.33

Ξ− → Λ 0.25 ± 0.05 1
3 ≈ 0.33

Λ → p 0.72 ± 0.02 1

Table 3.1: The weak axial-vector form factors GBB′

A . Experimental data have
been obtained from Ref. [4].

for GΣ−n
A .

In Section 4.5, we discuss the GA’s further in the spirit of the χQM and we
will see that we are able to improve on the NQM results.

3.4 The ū-d̄ Asymmetry

Several experiments during the years have shown that there is an asymmetry
in the light antiquark distributions in the nucleon.

The ū-d̄ asymmetry in the nucleon, sometimes also called the antiquark
flavor asymmetry, is described by the difference and ratio between antiquarks
in the proton ū − d̄ and ū/d̄, respectively. If we have ū-d̄ symmetry, then
ū− d̄ = 0 and ū/d̄ = 1. In the case when both ū and d̄ are equal to zero, then
the ratio ū/d̄ is undefined.

In 1975 data from the Stanford Linear Accelerator Center (SLAC) [19]
indicated a significant deviation from the expected vanishing value for the ū-
d̄ difference, ū − d̄ = 0. This was the first experiment measuring the ū-d̄
asymmetry via the Gottfried sum-rule. The next experiment, which showed the
flavor asymmetry, was the E288 Collaboration with the Drell-Yan experiment
at Fermilab in 1981 [20]. For a recent compilation of experiments which have
measured the ū-d̄ asymmetry, see Ref. [21].

In Subsections 3.4.1 - 3.4.3 we will discuss the physical processes, deep
inelastic scattering (DIS) and Drell-Yan processes, from which we can obtain
the ū-d̄ quantities and the experimental results thereof. Later on in Chapter 4
we are going to derive the theoretical expressions for these quantities in the
χQM.

There are several theoretical models for magnetic moments in which this
measured ū-d̄ asymmetry is not present. Among them are the NQM, the purely
phenomenological SU(3) parameterization by Bos et al. [22, 23], the model by
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Buck and Perez [24], which is a model where they have added a configuration
mixing term to the usual SU(6) spin function, and the model suggested by
Casu and Sehgal [25].

3.4.1 Deep Inelastic Scattering

In deep inelastic lepton-nucleon scattering (DIS), to lowest order, the virtual
photon γ∗ from the lepton l interacts with the nucleon target N . The reac-
tion is illustrated in Fig. 3.2. The cross section of the reaction is related to

γ*

Pn

p’

l’

q
l

N hadrons

p

P

θ

Figure 3.2: The kinematics in deep inelastic lepton-nucleon scattering l+N →
l′ + hadrons.

two structure functions F1 and F2 depending on transverse and longitudinal
reactions of the virtual photon.

The momentum of the in-going lepton is p and the momentum of the out-
going lepton is p′. According to the kinematics in Fig. 3.2, the momentum
transfer in the reaction must be q = p − p′. The momentum of the nucleon is
P , whereas the momentum of the out-going hadron system must be Pn = P+q.
Introduce the notations

ν ≡ p0 − p′
0

= E − E′ (3.42)

q2 = (p− p′)2 = m2
l +m2

l′ − 2(EE′ − p · p′) ≈ −4EE′ sin2 θ

2
(3.43)

W 2 ≡ (P + q)2 = M2 + 2Mν −Q2, (3.44)

where Q2 ≡ −q2 and P · q ≡Mν (M is the nucleon mass).

The parameter ν describes the energy loss of the lepton. The square of
the momentum transfer q2 is always negative, i.e. q2 < 0, since the photon is



3.4. The ū-d̄ Asymmetry 19

virtual. A Lorentz invariant expression for ν is

ν =
P · q
M

. (3.45)

Introduce also the variable

x ≡ Q2

2Mν
, (3.46)

where 0 ≤ x ≤ 1.
Assuming that the one-photon exchange process in Fig. 3.2, the cross section

of unpolarized lepton (electron or muon) DIS is calculated to be

dσ =
2M

s−M2

α2

Q4
LµνWµν

d3p′

E′ , (3.47)

where α is the fine structure constant, s is one of the Mandelstam variables and
is given by s = (p+P )2. The lepton tensor can be calculated in the unpolarized
case to be

Lµν = 2
(
pµp′

ν
+ p′

µ
pν − p · p′gµν

)
, (3.48)

where gµν is the metric tensor. The hadron tensor in terms of two structure
functions W1 and W2 is given by

Wµν = −W1

(
gµν − qµqν

q2

)
+W2

1

M2

(
Pµ − P · q

q2
qµ

)(
Pν − P · q

q2
qν

)
.

(3.49)
Using Eqs. (3.47) - (3.49), the cross section becomes

dσ

dΩdE′ =
α2

4E2 sin4 θ
2

[
2W1(ν,Q2) sin2 θ

2
+W2(ν,Q2) cos2

θ

2

]
, (3.50)

where dΩ is the solid angle in which the final lepton emerges.
The structure functions F1 and F2 are defined in terms of W1 and W2 as

F1 ≡ MW1, (3.51)

F2 ≡ νW2. (3.52)

The F1 is associated with the transverse cross section, and the F2 with both
the transverse and longitudinal ones.

In the Bjorken limit (Q2 → ∞ with finite and fixed x), the two structure
functions F1 and F2 are related to each other by the Callan–Gross relation

2xF1 = F2. (3.53)
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3.4.2 The Gottfried Sum-Rule

Experiments on DIS of leptons and nucleons have revealed evidence that the
leptons scatter, not from the whole nucleon, but from a (almost free) pointlike
spin 1

2 constituent of it, called a parton. It is natural to identify the partons as
quarks. This is called Feynman’s parton model [26, 27].

The Gottfried sum-rule is associated with the difference between the proton
and neutron F2 structure functions measured in unpolarized electron and muon
DIS.

Since there is no fixed neutron target, the deuteron is usually used for
obtaining the neutron F2 by subtracting out the proton part with nuclear
corrections [21].

In the parton model, the structure functions F2 and F1 are given by [28,29]

F2(x) = x
∑

q=u,d,s

e2q [q(x) + q̄(x)] , (3.54)

F1(x) =
1

2x
F2(x), (3.55)

where eq is the charge of the quark q. Here eu = 2
3 and ed = es = − 1

3 . The
structure function F2 for the proton and neutron are

F p
2 (x) =

4

9
x (up(x) + ūp(x)) +

1

9
x
(
dp(x) + d̄p(x) + sp(x) + s̄p(x)

)
(3.56)

and

Fn
2 (x) =

4

9
x (un(x) + ūn(x)) +

1

9
x
(
dn(x) + d̄n(x) + sn(x) + s̄n(x)

)
, (3.57)

respectively. With the assumption of isospin symmetry in the nucleon, the
parton distributions in the neutron can be related to those in the proton. The
relations are

un(x) = dp(x), ūn(x) = d̄p(x),

dn(x) = up(x), d̄n(x) = ūp(x),

sn(x) = sp(x), s̄n(x) = s̄p(x).

Using these relations, one obtains the difference between the F2 for the proton
and neutron as

F p
2 (x) − Fn

2 (x) =
1

3
x (u(x) − d(x)) +

1

3
x
(
ū(x) − d̄(x)

)
, (3.58)

where u(x) = up(x), d(x) = dp(x), ū(x) = ūp(x), and d̄(x) = d̄p(x). Intro-
ducing the valence quark probability distributions uv(x) = u(x) − ū(x) and
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dv(x) = d(x) − d̄(x), this difference can be written as

F p
2 (x) − Fn

2 (x)

x
=

1

3

[
uv(x) − dv(x) + 2

(
ū(x) − d̄(x)

)]
. (3.59)

The valence quark distributions should satisfy

∫ 1

0

uv(x) dx = 2 and

∫ 1

0

dv(x) dx = 1, (3.60)

due to the fact that there are two u valence quarks and one d valence quark in
the proton. Integrating Eq. (3.59) over the variable x, one obtains the result

∫ 1

0

F p
2 (x) − Fn

2 (x)

x
dx =

1

3
+

2

3

∫ 1

0

[
ū(x) − d̄(x)

]
dx. (3.61)

If the quark sea is flavor symmetric, i.e. ū(x) = d̄(x) ∀x, then

∫ 1

0

F p
2 (x) − Fn

2 (x)

x
dx =

1

3
, (3.62)

which is called the Gottfried sum-rule [30]. Introducing the definitions

IG ≡
∫ 1

0

F p
2 (x) − Fn

2 (x)

x
dx, (3.63)

ū ≡
∫ 1

0

ū(x) dx, and d̄ ≡
∫ 1

0

d̄(x) dx, (3.64)

Eq. (3.61) can be rewritten as

IG =
1

3
+

2

3

(
ū− d̄

)
. (3.65)

Experimentally, the New Muon Collaboration (NMC) [31,32] at CERN found
that, with a reasonable extrapolation in the very small x region, the integral
IG deviated significantly from 1

3 :

IG = 0.235 ± 0.026.

Solving Eq. (3.65) for ū− d̄, one finds

ū− d̄ =
3

2

(
IG − 1

3

)
. (3.66)

This leads to the result that, in the proton quark sea, there are more d̄ quarks
as compared to ū quarks

ū− d̄ = −0.148 ± 0.039.
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3.4.3 Drell-Yan Processes

The Drell-Yan process in proton-nucleon collisions, p + N → l+ + l− + X , is
illustrated in Fig. 3.3.

l

l

p

N

P

P

+

-

1

2

x  P

x  P
q

1

22

1

Figure 3.3: The Drell-Yan process p+N → l+ + l− +X . P1 is the momentum
of the proton p and P2 is the momentum of the nucleon N . xi, where i = 1, 2,
is the momentum fraction of the i-parton. q is the momentum of the virtual
photon.

A measurement of the difference of the Drell-Yan process of proton on
proton and proton on neutron can detect the antiquark ratio, because in such
processes the massive l+l− pair is produced by qq̄ annihilations [33]. The Drell-
Yan cross section in proton-nucleon collisions is [33]

s
d2σpN

d
√
τdy

≡ s
d2σ(p+N → l+ + l− +X)

d
√
τdy

=
8πα2

9
√
τ

∑

q=u,d,s

e2q
(
qp(x1)q̄N (x2) + q̄p(x1)qN (x2)

)
, (3.67)

where τ ≡ M2

s , x1 ≡ √
τey, and x2 ≡ √

τe−y. Furthermore,
√
s is the center of

mass collision energy, M is the invariant mass of the lepton pair, and y is the
rapidity. Neglecting the sea-sea contributions to the cross sections, one obtains

σpp ≡ s
d2σpp

d
√
τdy

∣∣∣∣
y=0

=
8πα2

9
√
τ

(
8

9
uvū+

2

9
dvd̄

)
, (3.68)

σpn ≡ s
d2σpn

d
√
τdy

∣∣∣∣
y=0

=
8πα2

9
√
τ

(
4

9
(uvd̄+ dvū) +

1

9
(dvū+ uvd̄)

)

=
8πα2

9
√
τ

5

9

(
uvd̄+ dvū

)
, (3.69)
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where all quark distributions are evaluated at x =
√
τ , since x = x1 = x2 when

y = 0. The Drell-Yan (DY) cross section asymmetry is defined as

ADY ≡ σpp − σpn

σpp + σpn
. (3.70)

Inserting Eqs. (3.68) and (3.69) into Eq. (3.70) gives

ADY =
(4uv − dv)(ū − d̄) + (uv − dv)(4ū− d̄)

(4uv + dv)(ū + d̄) + (uv + dv)(4ū+ d̄)
, (3.71)

where again all quark distributions are evaluated at x =
√
τ . Introducing the

notations

λ(x) ≡ uv(x)

dv(x)
and λ̄(x) ≡ ū(x)

d̄(x)
, (3.72)

Eq. (3.71) can be expressed as

ADY =
(4 − λ(x))(λ̄(x) − 1) + (1 − λ(x))(4 − λ̄(x))

(4 + λ(x))(λ̄(x) + 1) + (1 + λ(x))(4 + λ̄(x))
. (3.73)

Thus with experimental measurement ofADY = −0.09±0.02(stat.)±0.025(syst.)
and data fit for λ in the range of [2.00, 2.70], the NA51 Collaboration [34] at
CERN obtained, at the kinematic point of y = 0 and x = x1 = x2 = 0.18, the
following ratio of the antiquark distributions

ū/d̄ = 0.51 ± 0.04(stat.) ± 0.05(syst.).

This result is again a clear indication of the excess of d̄ quarks over ū quarks
in the nucleon.

In the next chapter we are going to discuss the χQM. With this model we
are able to obtain a ū-d̄ asymmetry, which is not present in the NQM and the
other models discussed in the beginning of this section.
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Chapter 4

The Chiral Quark Model

The chiral quark model (χQM) was originated by Weinberg [35] and developed
by Manohar and Georgi [36], in order to improve the NQM. The chiral quark
idea is that there is a set of internal Goldstone bosons (GBs), which couple
directly to the constituent (valence) quarks in the interior of the hadrons and
particularly the baryons, but not at so small distances that perturbative QCD
is applicable.

Although we cannot use QCD perturbatively in the low energy region, it is
generally assumed that it has the features of

1. confinement: Asymptotic freedom, i.e. limQ→∞ αs(Q) = 0, suggests
that the running coupling constant αs increases at low momentum trans-
fer and long distance, the reason for the binding of quarks and gluons
into hadrons. Experimental data indicate that the confinement scale is
ΛQCD = (100 → 300) MeV.

2. chiral symmetry breaking (χSB): If mq = 0, q = u, d, s, then the QCD
Lagrangian is invariant under the independent SU(3) transformations of
the left-handed and right-handed light quark fields, i.e. the QCD La-
grangian has a global SU(3)L × SU(3)R symmetry. This can be realized
in

(a) Wigner mode: One expects a chirally degenerate particle spectrum:
an octet of scalar mesons which have approximately the same masses

as the octet of pseudoscalar mesons and a spin 1
2

−
octet baryons

degenerate with the spin 1
2

+
octet baryons, etc.

(b) Goldstone mode: The QCD vacuum is not a chiral singlet, but it
possesses a set of quark condensates 〈0|q̄q|0〉 6= 0, where q = u, d, s.

25
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Thus, the symmetry is spontaneously broken as

SU(3)L × SU(3)R → SU(3)L+R = SU(3)V ,

which gives rise to an octet of approximately massless pseudoscalar
mesons. These have been tentatively identified with the observed
0− mesons, i.e. the π, K, and η mesons, although the precise re-
lation between the internal and physical GBs is not yet completely
understood.

The absence in nature of the degeneracy described in the Wigner mode
suggests that the symmetry must be realized in the Goldstone mode.

One of the basic ideas of the χQM is that the non-perturbative QCD phe-
nomenon of chiral symmetry breaking will take place at an energy scale much
higher than that of QCD confinement. It was suggested by Manohar and
Georgi [36] that the chiral symmetry breaking will manifest in the Goldstone
mode at the scale

ΛχSB = 4πfπ, (4.1)

where fπ ≈ 93 MeV is the pseudoscalar (pion) decay constant, so ΛχSB ≈
1169 MeV ≃ 1 GeV. Thus on scales between ΛQCD and ΛχSB there are internal
GBs of pseudoscalar nature, massive quarks, and gluons. These are all coupled
rather weakly to each other in this regime. The value of αs in the effective
theory region (the χQM region) can be estimated to αs(ΛQCD ≤ Q ≤ ΛχSB) ≃
0.3 [36].

4.1 The Chiral Quark Model – The Theory

4.1.1 The QCD Lagrangian

The strong interactions of the light quarks u, d, and s are described by the
QCD Lagrangian

L = −1

4
Gµν,aGa

µν + Ψ̄
(
iD/ −M

)
Ψ, (4.2)

where
Gµν,a = ∂µGν,a − ∂νGµ,a − gfabcGµ,bGν,c

is the gluonic gauge field strength tensor,

Ψ ≡




u
d
s



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is the Dirac quark field,

Dµ = ∂µ + igGµ

is the covariant derivative, and M is the color-independent quark mass matrix.
The mass matrix M is a phenomenological quantity whose origin is unknown,
but which can always be brought to diagonal form. Thus, the mass term in the
QCD Lagrangian can be written as

Lmass ≡ −Ψ̄MΨ, (4.3)

where

M ≡




mu 0 0
0 md 0
0 0 ms


 .

The g is the gluon coupling constant (strong coupling constant), fabc, where
a, b, c = 1, . . . , 8, are the totally antisymmetric structure constants of SU(3),
Gµ,a, where a = 1, . . . , 8, are the gluon fields,

Gµ ≡ Gµ,a λ
a

2
,

and mq, where q = u, d, s, are the quark masses. The gluons are the quanta of
the gauge fields of SU(3)color and they are massless. The λa, where a = 1, . . . , 8,
are the Gell-Mann matrices that satisfy the SU(3) commutation relations

[
λa, λb

]
= 2ifabcλc (4.4)

and the normalization condition

tr(λaλb) = 2δab. (4.5)

If QCD leads to quark confinement, as we shall assume, then the mass pa-
rameters mq, where q = u, d, s, are not directly observable quantities. However,
they can be determined in terms of observable hadronic masses through current
algebra methods (which we shall not go into here). These masses are called
current quark masses, to distinguish them from the constituent quark masses,
which will be used here. Constituent quark masses, also called effective quark
masses, are parameters used in phenomenological quark models of hadronic
structure, like the χQM. The constituent quark masses are in general larger
than the current quark masses.

Finally, we mention that QCD is a renormalizable theory, which means that
it is possible to use the theory to make finite calculations to arbitrary order in
perturbation theory. For details see Refs. [37, 38].
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4.1.2 Chiral Symmetry

If the left- and right-handed quark fields are introduced as

qR ≡ PRq =
1

2

(
1 + γ5

)
q =

(
ψqR

0

)
(4.6)

qL ≡ PLq =
1

2

(
1 − γ5

)
q =

(
0
ψqL

)
, (4.7)

where q = u, d, s, γ5 ≡ iγ0γ1γ2γ3 =

(
I 0
0 −I

)
and ψqR

and ψqL
are two-

component spinors, then

q = qR + qL =

(
ψqR

ψqL

)
. (4.8)

For the γ matrices we use the chiral representation convention of Ref. [39].
Using these left- and right-handed quark fields, the QCD Lagrangian can

be written as

L = −1

4
Gµν,aGa

µν + iΨ̄RD/ ΨR + iΨ̄LD/ ΨL − Ψ̄LMΨR − Ψ̄RMΨL, (4.9)

where ΨR ≡




uR

dR

sR


 and ΨL ≡




uL

dL

sL


.

The transformations
q → γ5q

are called chiral transformations. Under these transformations ψqR
→ ψqR

and
ψqL

→ −ψqL
, since

(
ψqR

ψqL

)
→
(
I 0
0 −I

)(
ψqR

ψqL

)
=

(
ψqR

−ψqL

)
. (4.10)

Then, it follows from the definitions (4.6) and (4.7) that qR → qR and qL →
−qL, and also that ΨR → ΨR and ΨL → −ΨL. This means that the La-
grangian (4.9) is not invariant under chiral transformations, since the mass
terms −Ψ̄LMΨR and −Ψ̄RMΨL change sign when chiral transformations are
applied. If the mass terms are neglected, then the Lagrangian (4.9) will have
an SU(3)L × SU(3)R chiral flavor symmetry. This symmetry is not manifest
at low energies in nature, thus it must be broken. As discussed above, two
non-perturbative effects are believed to occur in this theory. These are QCD
confinement and chiral symmetry breaking. The SU(3)L × SU(3)R chiral sym-
metry is spontaneously broken down to an SU(3)V symmetry at an energy
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scale ΛχSB, which is about 1 GeV. This is significantly larger than the QCD
confinement scale ΛQCD, which is about 200 MeV. The relevant energy regions
are:

• Q > ΛχSB: In this energy scale region quarks are free and massless.
Chiral symmetry (χS) is also manifest.

• ΛQCD ≤ Q ≤ ΛχSB: In this energy scale interval, the χQM works. The
GBs have given mass to the quarks due to spontaneous symmetry break-
ing. The GBs are also massive. The degrees of freedom are quarks,
gluons, and GBs.

• Q < ΛQCD: In this energy scale region quarks are bound into hadrons
and they are also massive.

See Fig. 4.1 for a qualitative illustration of the different energy regions.

χQM

QCDΛ Λ χSB
Energy
 scale

Figure 4.1: The energy scale. The QCD confinement scale (ΛQCD) lies some-
where between 100 MeV and 300 MeV and the chiral symmetry breaking (ΛχSB)
takes place at about 1 GeV.

4.1.3 The Chiral Quark Model Lagrangian

The dynamics of the Goldstone bosons is usually described by a 3 × 3 unitary
matrix field Σ, which takes values in SU(3). This field is defined as

Σ ≡ e2iΦ/fπ , (4.11)

where the Goldstone boson fields are

Φ =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 .
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and fπ is the pseudoscalar (pion) decay constant measured in π+ → l+ + νl.
Experimentally, fπ ≈ 93 MeV. For simplicity, an auxiliary field ξ is introduced
as

ξ ≡ eiΦ/fπ , (4.12)

which satisfies the relation

Σ = ξξ = ξ2. (4.13)

The effective Lagrangian above ΛQCD and below ΛχSB includes quark,
gluon, and Goldstone boson fields and can be written down as the most gen-
eral Lagrangian, which conserves C, P , and T . The conditions follow because
the Lagrangian (4.2) has these three symmetries, which are not spontaneously
broken by QCD. There are many equivalent such effective Lagrangians.

The first few terms of the effective Lagrangian are

Leff = −1

2
tr (GµνGµν)+Ψ̄

(
iD/ + V/ − gaA/ γ

5 −M
)

Ψ+
1

4
f2

π tr
(
∂µΣ†∂µΣ

)
+. . . ,

(4.14)
where

V µ =
1

2

(
ξ†∂µξ + ξ∂µξ†

)
, (4.15)

Aµ =
1

2i

(
ξ†∂µξ − ξ∂µξ†

)
, (4.16)

ga is a possible quark axial-vector current coupling constant, which, however,
should be equal to one in the χQM [40], and

Gµν = ∂µGν − ∂νGµ + ig [Gµ, Gν ] .

The lowest order terms of the effective Lagrangian are

Leff,0 = Ψ̄
(
iD/ + V/ −A/ γ5 −M

)
Ψ + . . . , (4.17)

The quark-GB interaction part of the Lagrangian (4.17) is

Lint = Ψ̄
(
V/ −A/ γ5

)
Ψ. (4.18)

Expanding the vector and axial-vector fields (4.15) and (4.16) up to first order
terms in Φ/fπ, one finds

V µ = 0 + O
(

(Φ/fπ)2
)
, (4.19)

Aµ =
1

fπ
∂µΦ + O

(
(Φ/fπ)

3
)
. (4.20)
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Inserting Eqs. (4.19) and (4.20) into the Lagrangian (4.18), one obtains

Lint = − 1

fπ
Ψ̄∂µΦγµγ5Ψ + O

(
(Φ/fπ)

2
)
≈ − 1

fπ
Ψ̄∂µΦγµγ5Ψ. (4.21)

Using the Dirac equation (iγµ∂µ −mq) q = 0, the Lagrangian (4.21) can be
reduced to

Lint ≈ i
∑

q,q′=u,d,s

mq +mq′

fπ
q̄′ Φq′qγ

5q = i
∑

q,q′=u,d,s

gqq′

8 q̄′ Φq′qγ
5q, (4.22)

where gqq′

8 ≡ mq+mq′

fπ
. The parameters mq and mq′ are quark masses.

The Lagrangian of the quark-GB interaction, ignoring space-time structure,
is to lowest order

LI = g8Ψ̄ΦΨ, (4.23)

where g8 is a coupling constant. This is the interaction Lagrangian of the chiral
quark model (χQM), when other interactions are small and can be ignored.

The χQM interaction Lagrangian describes the reaction

q↑ → q′
↓

+ GB → q′
↓

+ (qq̄′)0,

where q, q′ = u, d, s. The initial quark has spin up, q↑, whereas the final quark
has spin down, q′

↓
. This is due to the emission of a GB, which is of pseudoscalar

nature. The reaction is called the “spin flip” process. Of course the opposite
reaction could occur, i.e. that the initial quark has spin down and the final
quark has spin up. The reaction process is shown in Fig. 4.2. Observe that

g8

q q’

q

q

’GB

Figure 4.2: The spin flip process.

this reaction, unlike gluon emission, is also a possible flavor changing process,
since q 6= q′ in general.
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4.2 The Chiral Quark Model – The Recipe

In this section the recipe how to calculate the quark spin polarizations for a
baryon in the χQM will be described. This section is quite technical, since all
formulas are derived in detail. The reason is that these are not easily accessible
elsewhere in the literature.

4.2.1 Flavor Content Calculation

Let a denote the probability of emitting a GB. This GB will eventually split up
into a quark-antiquark pair, see Fig. 4.2. These fluctuations of GBs should be
small enough to be treated as perturbations. The probability parameter a is
proportional to the square of the coupling constant g8, i.e. a ∝ |g8|2. The GBs
of the χQM are pseudoscalars and will therefore be denoted by the JP = 0−

meson names π, K, η, and η′, as is usually done.
For example, the transition u→ d+ π+ (see Fig. 4.3 (c)) gives

|ψ(u→ d+ π+)|2 = ad̂+ aπ̂+ = ad̂+ aû+ a ˆ̄d. (4.24)

In the following, only the transitions u→ u, d, s+ GB will be discussed, see
Fig. 4.3 (b) - (d). A very similar discussion can of course be easily made for

u u

(a)

u

’0 π   η   (η )

u

(b)

u

π+

d

(c)

u s

K +

(d)

Figure 4.3: u→ q + GB, where q = u, d, s.

the d→ u, d, s+ GB and s→ u, d, s+ GB transitions.
The possible u transitions are

u→
(
u+

(
π0, η

)
, d+ π+, s+K+

)
.

Expanding the Lagrangian (4.23), one obtains

LI = g8Ψ̄ΦΨ
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= g8
(
ū d̄ s̄

)



1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η







u
d
s




= g8

[
ū

(
1√
2
π0 +

1√
6
η

)
+ d̄π− + s̄K−

]
u+ . . . . (4.25)

The first term in expansion (4.25) corresponds to the wave function

ψ(u) ∼ u

(
1√
2
π0 +

1√
6
η

)
+ dπ+ + sK+. (4.26)

If the GBs are substituted with their quark contents, then

ψ(u) ∼
(

1

2
+

1

6

)
u(uū) +

(
−1

2
+

1

6

)
u(dd̄) +

(
−2

6

)
u(ss̄)

+ d(ud̄) + s(us̄), (4.27)

since π0 = 1√
2
(uū− dd̄), η = 1√

6
(uū+ dd̄− 2ss̄), π+ = ud̄, and K+ = us̄. The

transition probabilities of a u quark can be expressed by the function

|ψ(u)|2 = a

[(
2

(
1

2
+

1

6

)2

+

(
−1

2
+

1

6

)2

+

(
−2

6

)2

+ 12 + 12

)
û

+

(
1

2
+

1

6

)2

ˆ̄u+

((
−1

2
+

1

6

)2

+ 12

)
(d̂+ ˆ̄d)

+

((
−2

6

)2

+ 12

)
(ŝ+ ˆ̄s)

]

=
2a

9

[
14û+ 2ˆ̄u+ 5

(
d̂+ ˆ̄d+ ŝ+ ˆ̄s

)]
, (4.28)

where the coefficient of the q̂ (or ˆ̄q), where q = u, d, s, should be interpreted as
the probability of creating this quark (or antiquark) flavor by emitting a GB
from a u quark. Similarly for the d and s quarks, the transition probability
functions are obtained as

|ψ(d)|2 =
2a

9

[
14d̂+ 2 ˆ̄d+ 5

(
û+ ˆ̄u+ ŝ+ ˆ̄s

)]
(4.29)

and

|ψ(s)|2 =
2a

9

[
14ŝ+ 2ˆ̄s+ 5

(
û+ ˆ̄u+ d̂+ ˆ̄d

)]
. (4.30)

The total probabilities of emission of a GB from u, d, and s quarks are
given by

ΣPq =
2a

9
(14 + 2 + 5 · 4) =

8a

3
, (4.31)
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where q = u, d, s.
There is also another possibility that the u quark will not emit a GB as is

shown in Fig. 4.3 (a). The probability of no GB emission from the u quark is
given by

Pu = 1 − ΣPu = 1 − 8a

3
. (4.32)

Similarly for the d and s quarks

Pd = Ps = 1 − 8a

3
. (4.33)

The quark (flavor) content in the proton according to the NQM is

p̃0 = 2û+ d̂. (4.34)

This means that ū−d̄ = 0 in the NQM. An emission of a GB can be represented
in the χQM by making the substitution

q̂ → Pq q̂ + |ψ(q)|2

in the NQM quark (flavor) content. This substitution describes one interaction.
Making this substitution in the proton quark content p̃0, it follows that

p̃1 = 2Puû+ Pdd̂+ 2|ψ(u)|2 + |ψ(d)|2. (4.35)

Inserting Eqs. (4.32), (4.33), (4.28), and (4.29) into Eq. (4.35) yields

p̃1 = 2(1 − a)û+ 2aˆ̄u+

(
1 − 8a

3

)
d̂+

8a

3
ˆ̄d+

10a

3
ŝ+

10a

3
ˆ̄s. (4.36)

This leads to a ū-d̄ asymmetry in the proton quark sea

ū− d̄ = 2a− 8a

3
= −2a

3
, (4.37)

which is not present in the NQM. Using the value a = 0.083 from Ref. [41], one
has ū−d̄ ≈ −0.06. Experimentally, this difference is ū−d̄ = −0.15±0.04 [31,32].
Similarly for the ratio, one has

ū/d̄ =
2a

8a/3
=

3

4
= 0.75 (4.38)

Experimentally, this ratio is ū/d̄ = 0.51 ± 0.09 [34].
We see that we are able to obtain a ū-d̄ asymmetry in the framework of

the χQM. The important thing here is not the exact values, which we have
obtained, but the fact that we obtain values different from zero. Further im-
provements of the χQM will be discussed later in this chapter. Let us first
discuss the spin content of the proton in the basic χQM.
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4.2.2 Spin Content Calculation

The GB emission will flip the helicity (spin) of a quark q as is indicated in the
reaction

q↑ → q′
↓

+ GB → q′
↓

+ (qq̄′)0

(or q↓ → q′
↑

+ GB → q′
↑

+ (qq̄′)0), while the quark-antiquark pair created by
the GB is unpolarized:

ψ(GB) =
1√
2

[
ψ(q↑)ψ(q̄′

↓
) − ψ(q↓)ψ(q̄′

↑
)
]
. (4.39)

One of the first χQM predictions about the spin structure is that (to leading
order) the antiquarks are not polarized [8]:

∆q̄ = nq̄↑ − nq̄↓ = 0. (4.40)

The possible transitions for a u quark with spin up are

u↑ →
(
u↓ +

(
π0, η

)
, d↓ + π+, s↓ +K+

)
,

which corresponds to the wave function

ψ(u↑) ∼ u↓
(

1√
2
π0 +

1√
6
η

)
+ d↓π+ + s↓K+. (4.41)

Inserting the quark contents of the GBs, one obtains

ψ(u↑) ∼ u↓
(

2

3
uū− 1

3
dd̄− 1

3
ss̄

)
+ d↓(ud̄) + s↓(us̄). (4.42)

The transition probability of a u quark can be expressed by the function

|ψ(u↑)|2 = a

[((
2

3

)2

+

(
−1

3

)2

+

(
−1

3

)2
)
û↓ + 12d̂↓ + 12ŝ↓

]

= a

(
2

3
û↓ + d̂↓ + ŝ↓

)
, (4.43)

where the coefficient of the q̂↓, where q = u, d, s, should be interpreted as the
probability of creating this quark with spin down by emitting a GB from a u
quark with spin up. Similarly for the d and s quarks with spin up, the transition
probability functions are obtained as

|ψ(d↑)|2 = a

(
û↓ +

2

3
d̂↓ + ŝ↓

)
(4.44)
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and

|ψ(s↑)|2 = a

(
û↓ + d̂↓ +

2

3
ŝ↓
)
. (4.45)

The quark spin structure in the proton according to the NQM is

p̂0 =
5

3
û↑ +

1

3
û↓ +

1

3
d̂↑ +

2

3
d̂↓. (4.46)

From this spin structure one is able to obtain the quark spin polarizations in
the NQM. The quark spin polarizations for the proton are

∆up =
4

3
, ∆dp = −1

3
, and ∆sp = 0. (4.47)

This means that the total quark spin polarization ∆Σ for the proton is

∆Σp = 1, (4.48)

i.e. the spin of the proton in the NQM is carried by the quarks alone.
Making the substitution

q̂↑ → Pq q̂
↓ + |ψ(q↑)|2

in Eq. (4.46), one finds the quark spin structure of the proton after one inter-
action in the χQM as

p̂1 =

(
5

3
− 32

9
a

)
û↑+

(
1

3
+

5

9
a

)
û↓+

(
1

3
− 1

9
a

)
d̂↑+

(
2

3
+

1

9
a

)
d̂↓+aŝ↑+2aŝ↓.

(4.49)
The quark spin polarizations for the proton in the χQM can now be calculated.
They are

∆up =

(
5

3
− 32

9
a

)
−
(

1

3
+

5

9
a

)
=

4

3
− 37

9
a, (4.50)

∆dp =

(
1

3
− 1

9
a

)
−
(

2

3
+

1

9
a

)
= −1

3
− 2

9
a, (4.51)

∆sp = a− 2a = −a. (4.52)

The total quark spin polarization for the proton in the χQM is thus given by

∆Σp = 1 − 16

3
a. (4.53)

The quark spin polarizations in the χQM will of course reduce to the ones in
the NQM, if one puts a = 0.
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The quark spin polarizations for the neutron can be found by using isospin
symmetry. This means that ∆un = ∆dp, ∆dn = ∆up, and ∆sn = ∆sp. The
quark spin polarizations for all the other baryons can of course be obtained
from similar derivations as the one above for the proton.

The quark spin polarizations for the proton in the χQM in its simplest form
were first obtained by Eichten, Hinchliffe, and Quigg [41].

Using a = 0.083 [41], we obtain ∆Σp ≈ 0.56. This is much better than the
NQM result ∆Σp = 1. Remember that the latest experiments indicate that
∆Σp ≈ 0.30. Thus, the χQM gives an explanation for why the spin carried by
the quarks can be so small in the experiments.

Let us now turn to a discussion of improvements of the χQM.

4.2.3 The χQM with U(3) Symmetry Breaking

The χQM discussed above has an SU(3) symmetric Lagrangian. To make the
model more realistic one can add an SU(3) singlet of η′ bosons to the octet
of GBs. The Lagrangian is now U(3) symmetric, and such a symmetry is not
observed in nature. To insure that the U(3) symmetry is broken, the η′ bosons
should come with a coupling constant different from the coupling constant g8
for the other GBs. This is realized by adding the SU(3) scalar interaction

L′ = g0Ψ̄ η′

√
3
Ψ, where g0 is the coupling constant for the η′ bosons, to the

Lagrangian (4.23). The total interaction Lagrangian is then

LI = g8Ψ̄ΦΨ + g0Ψ̄
η′√

3
Ψ = g8Ψ̄

(
Φ + ζ

η′√
3
I

)
Ψ, (4.54)

where ζ ≡ g0/g8 and I is the 3 × 3 identity matrix.
Adding the η′ meson to the GBs, one obtains the following quark spin

polarizations for the proton [42, 43]

∆up =
4

3
− 1

9

(
8ζ2 + 37

)
a, (4.55)

∆dp = −1

3
+

2

9

(
ζ2 − 1

)
a, (4.56)

∆sp = −a. (4.57)

Here the total quark spin polarization for the proton is given by

∆Σp = 1 − 1

3

(
16 + 2ζ2

)
a (4.58)

and the ū-d̄ asymmetry formulas are

ū− d̄ =
2

3
(ζ − 1) a (4.59)
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and

ū/d̄ =
6 + 2ζ + ζ2

8 + ζ2
. (4.60)

Again, if ζ = 0 (i.e. no η′), the formulas in this subsection reduce to the
basic χQM formulas discussed in Subsections 4.2.1 and 4.2.2.

Using Eq. (4.60) together with the experimental result ū/d̄ = 0.51 ± 0.09,
this implies that −4.3 < ζ < −0.7, see Figure 4.4.

-5 -4 -3 -2 -1 0
 ζ

0.4

0.5

0.6

0.7

0.8

u/
d

Figure 4.4: The ū/d̄ ratio as a function of ζ. The dashed line shows the ū/d̄
ratio without U(3) symmetry breaking. The solid line is the experimental value.
The long dashed lines indicate the experimental error bars.

Taking the value ζ = −1.2 and inserting this into Eq. (4.59), one obtains
a ≈ 0.10 [42]. It is pleasant that a is indeed small, fulfilling the hope that once
the features of the non-perturbative phenomenon of spontaneous symmetry
breaking are collected in the GBs, the remanent dynamics is perturbative.

Inserting the values a = 0.10 and ζ = −1.2 into Eqs. (4.58) - (4.60) gives

∆Σp ≈ 0.37, ū− d̄ ≈ −0.15, and ū/d̄ ≈ 0.53. (4.61)

These values agree very well with the experiments.

4.2.4 The χQM with SU(3) Symmetry Breaking

The fact that the strange quark s is heavier than the non-strange quarks u
and d, i.e. ms > m, where m = mu = md, and the GB non-degeneracy,
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would affect the phase space factors for various GB emission processes. Such
SU(3) symmetry breaking effects will be introduced in the Lagrangian, simply
through the insertion of the following suppression factors: α for the kaons (K),
β for the eta (η), and as before ζ for the eta prime (η′), as these strange quark
carrying GBs are more massive than the pions (π). The suppression factors α
and β are SU(3) symmetry breaking parameters, and the ζ is a U(3) symmetry
breaking parameter.

The Lagrangian of interaction is now

LI = g8Ψ̄ΦΨ, (4.62)

where

Φ =




π0

√
2

+ β η√
6

+ ζ η′

√
3

π+ αK+

π− − π0

√
2

+ β η√
6

+ ζ η′

√
3

αK0

αK− αK̄0 −β 2η√
6

+ ζ η′

√
3


 .

Simple physical considerations would suggest that it should be harder to emit
a heavier GB, than a lighter one. Therefore, these suppression factors have
been introduced, and the probabilities for processes involving strange quarks
will be accordingly modified.

Introducing the suppression factors α and β, one obtains the following quark
spin polarizations for the proton [44, 45]

∆up =
4

3
− 1

9

(
21 + 12α2 + 4β2 + 8ζ2

)
a, (4.63)

∆dp = −1

3
− 1

9

(
6 − 3α2 − β2 − 2ζ2

)
a, (4.64)

∆sp = −α2a. (4.65)

The total quark spin polarization now turns into

∆Σp = 1 − 1

3

(
9 + 6α2 + β2 + 2ζ2

)
a (4.66)

and the ū-d̄ asymmetry formulas become

ū− d̄ =

(
2ζ + β

3
− 1

)
(4.67)

and

ū/d̄ =
21 + 2(2ζ + β) + (2ζ + β)2

33 − 2(2ζ + β) + (2ζ + β)2
. (4.68)



40 Chapter 4. The Chiral Quark Model

SU(3) symmetry breaking in the χQM has recently been considered by
several authors [44–47].

If ζ = 0 (i.e. no η′) and α = β = 1 (no suppression), then the formulas in
this subsection will reduce to the ones in Subsections 4.2.1 and 4.2.2.

We end this subsection with a discussion about the total quark spin po-
larizations of the decuplet baryons. The total quark spin polarization for a
decuplet baryon B is given by [48]

∆ΣB = 3 − a
(
9 + 6α2 + β2 + 2ζ2

)
+ a

(
3 − 2α2 − β2

)
x, (4.69)

where x is the number of s quarks in the baryon.
When a = 0, i.e. GB emission is not possible, then Eq. (4.69) reduces to

the NQM result ∆ΣB = 3, as it should. We observe that the NQM result is
independent of the number of s quarks in the baryon.

If we have SU(3) symmetry, i.e. α = β = 1, then Eq. (4.69) will reduce
to ∆ΣB = 3 − 2a

(
8 + ζ2

)
, which is equal to about 1.11, since a = 0.10 and

ζ = −1.2. This result is also independent of the number of s quarks.
Remember that the experimental value of the total quark spin polarization

for the proton is about one third of the corresponding NQM value. If we believe
that the situation is the same for the decuplet baryons, then the χQM result of
1.11 is very good. However, there are no experimental data for the total quark
spin polarizations of the decuplet baryons.

When we include SU(3) symmetry breaking, the total quark spin polariza-
tion becomes larger and it increases linearly with the number of s quarks. For
the numerical results, see Table III in Paper 2.

A formula similar to Eq. (4.69) does not exist for the octet baryons.
The quark spin polarizations for the decuplet baryons are listed in Paper 2.

4.2.5 The Probability Parameter a

The parameter a can be calculated, using the chiral field theory approach, to
be [41]

a =
g2
8

32π2

∫ 1

0

θ(Λ2
χSB − τ(z))z

{
ln

Λ2
χSB +m2

π

τ(z) +m2
π

+ m2
π

[
1

Λ2
χSB +m2

π

− 1

τ(z) +m2
π

]}
dz, (4.70)

where g8 ≡ 2m
fπ

, τ(z) ≡ m2 z2

1−z , and θ is the Heaviside function.
Using the data ΛχSB = 1169 MeV, m = 350 MeV, fπ = 93 MeV, and mπ =

140 MeV, one obtains a ≈ 0.15. If one instead uses the effective quark mass of
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the non-strange quarks m = 232 MeV obtained from the χQM [49], then the
result is a ≈ 0.083.

Using the ū-d̄ asymmetry formulas for the χQM with SU(3) symmetry
breaking, Eqs. (4.67) and (4.68), one can construct the following system of
equations





ū− d̄ =
(

2ζ+β
3 − 1

)
a ≈ −0.15

ū/d̄ = 21+2(2ζ+β)+(2ζ+β)2

33−2(2ζ+β)+(2ζ+β)2 ≈ 0.51
, (4.71)

where the right hand sides are the experimental results. Solving the system of

equations (4.71), one finds 2ζ + β ≈
{

−4.1
−2.1

and a ≈
{

0.064
0.088

.

All these values of a are consistent with a = 0.1.

4.3 The Coleman–Glashow Sum-Rule

Let us now turn the discussion to the Coleman–Glashow sum-rule, which im-
poses a constraint how well the octet baryon magnetic moments can be ac-
counted for.

The Coleman–Glashow sum-rule for the octet baryon magnetic moments is
as before

µ(p) − µ(n) + µ(Σ−) − µ(Σ+) + µ(Ξ0) − µ(Ξ−) = 0. (4.72)

This sum-rule is fulfilled in the NQM, which can easily be seen by inserting
Eqs. (2.13) - (2.18) into Eq. (4.72). In previous studies of the χQM, which
consider the octet baryon magnetic moments [8,43], it also turns out that this
sum-rule is always fulfilled. This is not good since the sum-rule is experi-
mentally found to be broken with about ten standard deviations. Putting the
experimental results of the magnetic moments [4] into the left hand side of
Eq. (4.72), one finds (0.49 ± 0.05)µN .

In Paper 1 we show that the Coleman–Glashow sum-rule is always fulfilled
in the χQM to lowest order, irrespective of SU(3) symmetry breaking. This is
because all model calculations have been carried out by using the usual SU(6)
wave functions for the octet baryons.

In the next section and Paper 1 we will discuss a possible way of overcoming
this problem.
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4.4 The Chiral Quark Model with Configura-

tion Mixing

In this section we will consider yet another extension of the χQM. This ex-
tension though is of a completely different character, since until now, we have
kept the usual SU(6) wave functions when we have calculated the quark spin
polarizations of the octet baryons. Now we will introduce the concept of wave
function configuration mixing. Configuration mixing is realized by introduc-
ing symmetry breaking in the wave functions. The reason why we are led to
introduce configuration mixing is that this is a possible way of breaking the
Coleman–Glashow sum-rule. There are other models which also violate the
Coleman–Glashow sum-rule, some of them can be found in Refs. [22–25]. How-
ever, these models do not include ū-d̄ asymmetry and are therefore defective
in this aspect.

One way of realizing configuration mixing in wave functions is to write the
baryon states as

|B〉 = cos θB|B1〉 + sin θB|B2〉, (4.73)

where |B1〉 is the usual SU(6) wave function and |B2〉 is the configuration
mixing term. The parameter θB is a measure of the amount of mixing.

In Paper 1 we study two types of configuration mixing in the wave functions
of the octet baryons. These are quark-gluon and quark-diquark configuration
mixings and they will be discussed below.

Especially with the quark-diquark configuration mixing, we are able to ob-
tain values of the octet baryon magnetic moments, which are in very good
agreement with the experimental results. As a consequence of this, the χQM
with quark-diquark configuration mixing also violates the Coleman–Glashow
sum-rule to the right degree.

4.4.1 Quark-Gluon Configuration Mixing

The wave function for an octet baryon with quark-gluon configuration mixing
is given by

|B↑〉 = cos θg
B|B↑

1 〉 + sin θg
B|(B8G)↑〉 (4.74)

where |(B8G)↑〉 is the gluonic octet baryon color-singlet wave function and θg
B

is the quark-gluon mixing angle.
The wave function |(B8G)↑〉 is a coupling of an octet baryon color-octet

wave function |B8〉 and a spin-one color-octet gluon wave function |G〉. This
type of configuration mixing has been investigated by Lipkin [50] in order to

improve the ratio of proton and neutron magnetic moments µ(p)
µ(n) and also by

Noda et al. [51].
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The quark spin polarizations with quark-gluon configuration mixing are
listed in Appendix B1 at the end of Paper 1.

4.4.2 Diquarks

Before we turn to the subject of quark-diquark configuration mixing, we will
briefly discuss diquarks.

In the ordinary non-relativistic quark model, baryons consist of three point-

like quarks with spin-parity 1
2

+
, i.e. the light quarks u, d, s with charges 2/3,

−1/3, −1/3, and so on. This model is successful in explaining gross properties
of baryons, e.g. it gives good mass spectra for the octet and decuplet baryons.
However, it is difficult to obtain good values of the magnetic moments for these
baryons in this model (in principle impossible).

The diquark model is a modification of the usual quark model by considering
that two quarks are glued together to form a diquark [3].

In the SU(6) model, two quarks can form 21 symmetric states and 15 anti-
symmetric states:

6⊗ 6 = 21⊕ 15. (4.75)

The SU(3) content of the representation 21 can be expressed as

21 = {6} × 3 + {3∗} × 1, (4.76)

where the brackets indicate irreducible representations of SU(3) and the factors
3 and 1 are spin degrees of freedom of the diquark. There are SU(3)-sextet
axial-vector diquarks and SU(3)-triplet scalar diquarks.

We will only consider the scalar diquarks. The symbol (q1q2)d will denote
a scalar diquark built up of the quarks q1 and q2.

4.4.3 Quark-Diquark Configuration Mixing

The wave function for an octet baryon with quark-diquark configuration mixing
is given by

|B↑〉 = cos θd
B|B↑

1〉 + sin θd
B|B↑

d〉, (4.77)

where |B↑
d〉 is the quark-diquark wave function and θd

B is the quark-diquark
mixing angle.

This type of quark-diquark configuration mixing has been studied earlier
by Noda et al. [51]. They found that it can give a good fit to existing data on
the strange sea polarization in the proton.

In Paper 1 we illustrate how a simple mechanism in the form of a toy model
can bring about quark-diquark configuration mixing in the wave functions for
the octet baryons.
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The quark spin polarizations with quark-diquark configuration mixing are
listed in Appendix B2 at the end of Paper 1.

4.5 Weak Form Factors in the χQM

The transition matrix element MB→B′l− ν̄l
for the decay B → B′ + l− + ν̄l

(q → q′ + l− + ν̄l), is given by

MB→B′l−ν̄l
=

G√
2
Vqq′ 〈B′(p′)|Jµ

weak|B(p)〉Lµ, (4.78)

where G is the Fermi coupling constant, Vqq′ is the qq′-element of the Cabibbo–
Kobayashi–Maskawa mixing matrix [52, 53], and conservation of momentum
gives that p = p′ + pl− − pν̄l

. The leptonic current is

Lµ = ūl−(pl−)γµ

(
1 − γ5

)
vν̄l

(pν̄l
), (4.79)

where pl− (pν̄l
) and ul− (vν̄l

) are the momentum and Dirac spinor of the lepton
(antineutrino), respectively. The hadronic weak current is

Jµ
weak = Jµ

V − Jµ
A, (4.80)

where Jµ
V is the vector current and Jµ

A is the axial-vector current. The matrix
element of the vector current in momentum space of the transition B → B′ +
l− + ν̄l is given by

〈B′(p′)|Jµ
V |B(p)〉 = ū′(p′)

(
f1(q2)γµ − i

f2(q2)

MB +MB′

σµνqν

+
f3(q2)

MB +MB′

qµ

)
u(p) (4.81)

and the matrix element of the axial-vector current by

〈B′(p′)|Jµ
A|B(p)〉 = ū′(p′)

(
g1(q2)γµγ5 − i

g2(q2)

MB +MB′

σµνqνγ
5

+
g3(q2)

MB +MB′

qµγ5

)
u(p), (4.82)

where MB (MB′), p (p′), u(p) (u′(p′)), and |B(p)〉 (|B′(p′)〉) are the mass, mo-
mentum, Dirac spinor, and external baryon state of the initial (final) baryon
B (B′), respectively, and q = p − p′ is the momentum transfer [9]. The func-
tions fi(q

2), i = 1, 2, 3, are the vector current form factors and the functions
gi(q

2), i = 1, 2, 3, are the axial-vector current form factors. The form factors
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are Lorentz scalars and they contain all the information about the hadron dy-
namics. f1 is the vector form factor, f2 is the induced tensor form factor (or
weak magnetism form factor or anomalous magnetic moment form factor), f3
is the induced scalar form factor, g1 is the axial-vector form factor, g2 is the
induced pseudotensor form factor (or weak electric form factor), and g3 is the
induced pseudoscalar form factor.

Under G-parity, the f2 transforms with the same sign as the f1, whereas
the f3 has the opposite sign, and the g3 transforms with the same sign as the
g1, whereas the g2 has the opposite sign. The currents with form factors f3
and g2 are therefore called second-class currents, and the others are first-class
currents [54].

One also introduces the notations

ρf ≡ f2
f1
, ρg ≡ g2

g1
, gA ≡ g1

f1
, gPT ≡ g2

f1
, (4.83)

where gA is called the weak axial-vector form factor and gPT is called the weak
pseudotensor form factor.

When measuring the weak form factors, it is normally assumed that the
second-class current form factors f3 and g2 are negligible. However, for strange-
ness-changing transitions, i.e. ∆S = 1 transitions, these currents may be non-
negligible. Hsueh et al. [55] have measured the second-class current form factor
g2 for the Σ− → n + e− + ν̄e transition and found it quite large. All existing
experimental data have quite large errors, so while waiting for the experiments
to become better, several theoretical works in this field have been made [56–62].
Most of them have been done in the framework of the MIT bag model.

In Paper 3 we derive the following estimates of the weak vector and axial-
vector form factors for the semileptonic octet baryon decays B → B′ + l− + ν̄l

in the χQM up to first order in the SU(3) symmetry breaking mass differences

f1 = fQM
1 (4.84)

f2 =

(
Σ

σ
GA − 1

)
fQM
1 (4.85)

f3 =
Σ

σ
(EGA − ǫ) fQM

1 (4.86)

and

g1 = gag
QM
1 (4.87)

g2 =

(
Σ

σ
ǫ− 1

2

(
1 +

Σ2

σ2

)
E

)
gag

QM
1 (4.88)

g3 =

(
1

2

(
1 − Σ2

σ2

)
+

Σ2

σ2
gq
3

)
gag

QM
1 , (4.89)
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where Σ ≡MB +MB′ , ∆ ≡MB −MB′ , E ≡ ∆
Σ , σ ≡ mq +mq′ , δ ≡ mq −mq′ ,

ǫ ≡ δ
σ , and GA ≡ gQM

1

fQM

1

. Note that the first-class current form factors f1, f2, g1,

and g3 only contain terms with even powers of E and ǫ, while the second-class
current form factors f3 and g2 only contain terms with odd powers of E and ǫ.
This follows from the Ademollo–Gatto theorem [59,63]. Observe also that the
expressions for fi and gi, where i = 1, 2, 3, in Eqs. (4.84) - (4.89) are evaluated
at q2 = ∆2.

The parameter gq
3 is found to be

gq
3 =

σ2

∆2 −m2
Φ

ga, (4.90)

where mΦ is the mass of the pseudoscalar GB field.
We here quote the simple result

gA = gaGA, (4.91)

where ga is the quark axial-vector current coupling constant and GA is the
SU(6) weak axial-vector form factor. It is argued that ga should be equal to
one in constituent quark models [40], and since the χQM is such a model, we
put ga = 1. In Section 3.3, we have derived the SU(6) weak axial-vector form
factors GA for all semileptonic octet baryon decays.

All the weak form factors are discussed and investigated in Paper 3. The
results obtained for the gA’s are encouraging and represent an improvement of
the NQM results. The ρf ratios obtained are within the experimental errors
and also close in magnitude to the conserved vector current (CVC) results.
Unfortunately, the theoretical estimates for the only measured ρg and gPT ,

ρΣ−n
g and gΣ−n

PT , are not in agreement with the experimental values by Hsueh
et al. [55] However, none of the other existing models give values in agreement
with the experimental ones either.
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Conclusions

In this thesis we have studied various aspects of baryons in the framework of
the chiral quark model (χQM).

As can be seen from these studies, the χQM represents a clear improvement
over the NQM for the description of baryon properties, such as quark spin po-
larizations, magnetic moments, and weak form factors. Even so, the χQM can-
not reproduce the experimentally observed breaking of the Coleman–Glashow
sum-rule for the octet baryon magnetic moments. Using quark-diquark config-
uration mixing in the SU(6) wave functions for the octet baryons, we have seen
that the Coleman–Glashow sum-rule can be broken to the right degree. As a
bonus we also obtain very accurate octet baryon magnetic moments.

Using parameters obtained in the χQM in Paper 1, we are also able to
obtain values of the magnetic moments for the decuplet baryons ∆++ and Ω−,
which are in general agreement with the present experimental data.

In addition, using quark spin polarizations from the χQM, we can calculate
weak vector and axial-vector form factors for the semileptonic octet baryon
decays. The results are in general agreement with the experiments.

Further research is required to understand how configuration mixing comes
about and how gluons and diquarks could change the interaction Lagrangian,
since so far such interactions have been neglected. Other future developments
could be to introduce the dynamics of the Goldstone bosons and to incorporate
relativistic effects in the calculations. Investigation of baryon scattering should
also be possible in the spirit of the χQM.

More experimental results for the other decuplet baryons are needed in
order to be able to compare with our predictions, and also, if possible, some
data from experiments on the spin polarizations of the decuplet baryons.

Better experimental results for the second-class weak form factors would
also be of importance to be able to distinguish between various models.

47
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